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Continuous-Variable Quantum Key Distribution with Composable Security and Tight
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Constrained devices, such as smart sensors, wearable devices, and Internet of Things nodes, are
increasingly prevalent in society and rely on secure communications to function properly. These
devices often operate autonomously, exchanging sensitive data or commands over short distances,
such as within a room, house, or warehouse. In this context, continuous-variable quantum key
distribution (CV-QKD) offers the highest secure key rate and the greatest versatility for integration
into existing infrastructure. A key challenge in this setting, where devices have limited storage
and processing capacity, is obtaining a realistic and tight estimate of the CV-QKD secure key
rate within a composable security framework, with error correction (EC) consuming most of the
storage and computational power. To address this, we focus on low-density parity-check (LDPC)
codes with non-binary alphabets, which optimise mutual information and are particularly suited for
short-distance communications. We develop a security framework to derive finite-size secret keys
near the optimal EC leakage limit and model the related memory requirements for the encoding
process in one-way error correction. This analysis facilitates the practical deployment of CV-QKD,
particularly in constrained devices with limited storage and computational resources.

I. INTRODUCTION

Quantum key distribution (QKD) [1] allows two parties
to establish a common secret key, which can later be used
in symmetric cryptographic primitives. Its security re-
lies on the fundamental principles of quantum physics
rather than computational complexity conjectures [2–
5] and constitutes, along with post-quantum cryptogra-
phy [6], the leading candidate for countering quantum
threats, such as an eavesdropper equipped with a quan-
tum computer.

Initially, QKD was developed for discrete-variable
(DV) systems, which use discrete degrees of freedom,
such as the polarization of the electromagnetic field.
Later, protocols based on continuous degrees of free-
dom, such as the quadratures of the electromagnetic field,
i.e., continuous-variable (CV) systems [7], emerged, of-
fering high performance in the asymptotic regime and
over short distances, as well as compatibility with ex-
isting technological infrastructure. Recent studies have
advanced both the security [8, 9] and the experimental
performance [10, 11] of CV-QKD, bringing it close to the
repeaterless PLOB bound [12] and making it comparable
to DV-QKD.

The most common and earliest CV-QKD protocols em-
ploy Gaussian modulation of coherent states (GMCS),
utilising homodyne detection [13] or heterodyne detec-
tion [14] in direct or reverse reconciliation (RR) [15].
CV-QKD has also been extended to protocols using dif-
ferent frequencies (thermal states), two-way communi-
cation [16–20], and network settings [21–32]. There also
have been considered schemes with post-selection [33–35]
and discrete modulation [37–41].

In this study, we focus on the GMCS protocol, which is
particularly effective in short- to moderate-loss regimes,
and precisely quantify the demands of postprocessing,

especially error correction (EC), which can significantly
impact the protocol’s performance [42–49]. More specifi-
cally, we adopt the analysis from Ref. [9], which imposes
strict bounds on the secret key length, to evaluate the
protocol’s performance under composable security with
finite-size effects.

Furthermore, we adapt the tight one-way EC bound
from Ref. [50] to non-binary low-density parity-check
(LDPC) codes [51–53] to compute secret key rates with
near-optimal performance. This allows us to estimate
the storage requirements of the encoder during EC. Al-
though this represents only half of the complete EC pro-
cedure, it provides valuable insight in scenarios where
there is a strong asymmetry in computational resources
between the CV-QKD transmitter and receiver. Specifi-
cally, the transmitter, which performs the encoding, can
be lightweight and agile, while the receiver, responsi-
ble for decoding, may be bulkier and better suited for
computationally intensive tasks. This scenario arises in
networks of small sensors transmitting to a central pro-
cessing unit, as seen in smart home sensors, wearable
devices, IoT systems [54–59], or drones [60]. These de-
vices play a crucial role in modern society, supporting
the technological infrastructure by enabling automation,
real-time monitoring, and critical decision making. As
they become increasingly integrated into daily life, cyber
threats targeting them pose significant risks to public
safety. We suggest feasible cases where CV-QKD can be
used to safeguard from these threats.

In Sec. II A, we introduce the composable secret key
length bound. In Sec. II B, we derive the information
leakage in one-way EC for nonbinary LDPC codes. In
Sec. II C, we present the final formula for the secret key
rate, and in Sec. III, we introduce one-way EC with non-
binary LDPC codes. Finally, we link these results to an
estimate of the storage required for the encoding of the
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EC procedure to achieve near-optimal performance.

II. COMPOSABLE SECURITY RATE WITH
TIGHT LEAKAGE BOUND

A. Secret key length with composable terms

The secret-key length is upper-bounded by the follow-
ing expression (see also Ref. [9, Eq. (36)])

sǫcor+ǫh+ǫs
n ≤ nR∞ −

√
n∆ǫs

aep(h) + θ, (1)

obtained assuming that the protocol did not abort, the
extracted key is correct, with probability larger than 1−
ǫcor, and secret with probability larger than 1− ǫsec. The
ǫsec = ǫs + ǫh, where ǫs is the smoothing parameter and
ǫh is the probability of failure of Privacy Amplification
(PA). The asymptotic key-rate R∞ in Eq. (1) is given by

R∞ = H(k)− χ(k : E)− n−1leakec. (2)

The quantity ∆ǫs
aep, given by the expression

∆ǫs
aep(h) ≃ 4 log2

(√
2hd + 2

)

√

log2(2/ǫ
2
s ), (3)

accounts for the penalty due to finite-size effects, while

θ = log2(2ǫ
2
hǫcor) (4)

is the penalty paid for non-ideal verification and Privacy
Amplification while n is the block size of the raw key
after channel parameter estimation (PE) and leakec is
the error correction (EC) leakage.

The quantity H(k), in Eq. (2), is the Shannon entropy
of the key variable k and χ(k : E) is Eve’s Holevo informa-
tion. The key variable k takes values from the alphabet
K = {0, 1, . . . , 2hd − 1} for d-bit digitization of the nor-
malized quadrature results, according to refs. [9, 47, 48].
In this description, the dummy variable h = {1, 2} dis-
tinguishes between homodyne (h = 1) and heterodyne
detection (h = 2). More specifically, for heterodyne pro-
tocol, the digitized outcomes are in the vectorial form
(kq, kp), that can be concatenated as

k = kq2
d + kp, (5)

without loss of any information because the mapping
(kq, kp) ↔ k is one-to-one, and with Shannon entropies
related by the following mathematical expression H(k) =
2H(k) (see Appendix A for details). For error correc-
tion the parties may now decide to use the vectorial form

{k(1)q , k
(1)
p , k

(2)
q , k

(2)
p , . . . , k

(n)
q , k

(n)
p }.

From here, we apply the procedure given in [9,
Eq. (48)], to write Eq. (2) as

R∞ = hH(k)− χ(x : E)− n−1leakec, (6)

where variable x is the continuous-variable version of k.
Note that for the homodyne protocol k and k are equiv-
alent forms of the key variable. The steps to obtain the

Holevo bound for the RR protocol have been detailed in
Ref. [9], hence we give only the final expression for the
CM for the DR protocol in Appendix B.

We can now calculate the secret-key rate after param-
eter estimation, replacing in the Holevo bound the chan-
nel parameters with their worse-case scenario values for
transmissivity τ ǫpe and excess noise ξǫpe , obtaining the
expression below

Rǫpe
∞ = hH(k)− n−1leakec − χ(x : E)|τǫpe ,ξǫpe , (7)

which can replace R∞ in Eq. (1).

B. Theoretical estimation of EC leakage

In case of one-way reconciliation, where low-density
parity-check (LDPC) codes [51, 52] are used (see also
Sec. III), the EC leakage term can be upper-bounded by
the number of syndrome bits, given by

leakec ≤ log2 |M|, (8)

where M is the alphabet of the syndrome strings. One
may calculate the size of the alphabet |M| via EC simula-
tions, as done in Ref. [46] for asymptotic security analysis
and in Refs. [28, 47, 48] for composable security analysis.

However, in a complete theoretical analysis, one may
use the asymptotic bound (Slepian-Wolf coding [61])
stating that

log2 |M| − nhH(k|y) ≥ 0, (9)

where H(k|y) is the conditional Shannon entropy of k
conditioned on the continuous variable y of the other
party. In fact, when considering finite-size effects one
can use a more rigorous bound [50] providing a tighter
estimate of the performance of information reconciliation.
Such a bound is given by

∣

∣log2 |M| − nhH(k|y)−
√
n∆ǫec

leak(h)
∣

∣ ≤ δ(n), (10)

where

∆ǫec
leak(h) =

√

hV (k|y)Φ−1(1− ǫec) (11)

with Φ being the cumulative normal distribution. The
right-hand side of Eq. (10) is given by

δ(n) =
1

2
log2 hn+O(1) (12)

while the conditional entropy and the conditional entropy
variance are given by

H(k|y) = E [− log2 p(k|y)] , V (k|y) = Var [− log2 p(k|y)] .
(13)

We now extend the calculation of Eq. (10) to non-
binary alphabets (i.e., d > 1) using the expression of
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p(k|y) given in Eq. (68) of Ref.[47]. That allows the par-
ties to achieve higher mutual information at short dis-
tances, because when d increases, the entropy of digi-
tized variables approach that of their continuous-variable
counterpart.

To minimize the probability of errors in the final key
string, the parties apply the verification step: one party
sends the syndrome and a hash of the raw key khn with
collision probability ǫcor. The other party will compare

this with the hash of the guessed string k̂hn and, if they
match, then the protocol can continue with probability

pec and conditional probability of error P [k̂n 6= kn|pec] ≤
ǫcor, otherwise they will abort. This means that

P [k̂n 6= kn] =1− pec

[

1− P [k̂n 6= kn|pec]
]

≤ 1− pec [1− ǫcor] := ǫec (14)

We then replace Eq. (10) into Eq. (7) and obtain

Rǫpe+ǫec
∞ = hI(k : y)− χ(x : E)τǫpe ,ξǫpe − ∆ǫec

leak(h)√
n

(15)

where the O
(

log
2
n

n

)

terms are omitted and I(k : y) =

H(k)−H(k|y) is the mutual information between k and
y.

We now can group the mutual information and ∆leak

term in Eq. (15), to define the quantities

ζleakhI(k : y) := hI(k : y)−∆ǫec
leak(h)/

√
n (16)

and

ζdigit := hI(k : y)/I (x : y) , (17)

where the mutual information I(x : y) refers to the Gaus-
sian variables as described in [9, Eq. (83)].

Then using Eq. (16) and (17) into Eq. (15), we can
rewrite the asymptotic rate as follows

Rǫpe+ǫec
∞ = ζI (x : y)− χ(x : E)τǫpe ,ξǫpe , (18)

where

ζ = ζdigitζleak. (19)

C. Secret key rate with tight estimation of EC
performance

Replacing R
ǫpe

∞ of Eq. (7) with R
ǫpe+ǫec
∞ from either

Eq. (15) or (18), we obtain

sǫn/n ≤ rǫn := Rǫpe+ǫec
∞ −

∆ǫs
aep(h)√
n

+
θ

n
−O(log2(n)/n).

This gives the highest number of bits per signal that can
be extracted with security ǫ and a tight estimation of EC
leakage, and it can be used to compute the final secret
key rate,

R := pec(n/N)rǫn, (20)

where N is the number of the total signals in the block.

III. LDPC CODES FOR NON-BINARY
VARIABLES AND STORAGE REQUIREMENTS

In this section we connect practical schemes of EC with
(nonbinary) LDPC codes with the previous theoretical
bound of Eq. (10). This will further allow us to con-
nect the secret key performance with predictions for the
storage requirements of the devices that handle the EC
procedure and especially the encoding phase. The en-
coder obtains a string khn and computes the syndrome
Hkhn = sr where H is a r × Dn parity-check matrix.
In general, every element of the matrix belongs to the
Galois field k = GF = 0, 1, . . . , 2d − 1. More specifi-
cally, the matrix is a representation of a Tanner graph
with hn message nodes and r parity check nodes. When
a message i = 1, . . . , hn is included in a parity check
j = 1, . . . , r, there is an edge between the corresponding
message node and parity-check node while the entry Hji

of the associated parity-check matrix in this intersection
is chosen randomly from k = 1, . . . , 2d − 1.

One then may calculate the corresponding code rate

Rcode =
hn− r

hn
= 1−Rsynd (21)

The code is usually designed by assuming that each mes-
sage participates in dv (column weight) checks and ev-
ery check contains dc (row weight) messages. Then the
number of edges must follow ndv = rdc (for sparse ma-
trices, i.e., dv < dc ≪ r < Dn). Therefore, by replacing
r := hndv

dc
in Eq. (21), we obtain the design rate

Rdesign = 1− dv

dc

, (22)

where we usually set dv = 2 as it gives the best per-
formance in decoding. This means that the design code
rates for regular LDPCs are given by

Rdesign = 0.333, 0.5, 0.6, 0.666, 0.714, 0.75, . . . , 0.777, 0.8 . . . .

On the other hand, irregular LDPC codes can be
designed where the column and row weights are not
constant. Through the probability distributions of the
weights, one defines their means d̄c and d̄v, respectively.
Therefore, we have

Rdesign = 1− d̄v

d̄c

(23)

which allows for more flexible values than before. How-
ever, the performance of these codes is not particularly
stable, i.e., different structures with the same Rdesign re-
spond very differently in terms of correcting different lev-
els of SNRs or in terms of probability of successful EC.
Then from Eq. (8), we have that

leakec ≤ log2 |M| = qr = hndRsynd. (24)

One then may define a tight approximation for the
optimal Rsynd by Eq. (10), where

R∗
synd = H(k|y)/d+∆ǫec

leak(h)/(dh
√
n) + δ(n)/(dhn).

(25)
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N(105) n(105) R∗

code M∗

sparse(MB) Rcode Msparse(MB)

1 0.676 0.78 0.389 0.777 0.464

2 1.6 0.78 0.95 0.777 1.1

4 3.2 0.7949 2 0.8 2.3

TABLE I: We have chosen block sizes 1− 4× 105 and found
the associated R∗

code and M∗

sparse from Fig. 3. Then with the
associated parameters, we have created parity-check matrices
in the CSR format in Python with Rcode ≈ R∗

code, using regu-
lar non-binary LDPC codes. We finally calculated the actual
storage needed for these cases and listed the results under
the Msparse column. These points have been depicted in the
bottom panel of Fig. 3 with red ink following the predicted
performance.

Then, one may find values for the Rcode that perform
closely to the previous tight bound in terms of leakage
(the corresponding structure of the codes needs to be
optimized to achieve a certain probability of successful
EC for a specific SNR). These are given through Eq. (21)
by

R∗
code = 1−R∗

synd (26)

where by n→ ∞ we arrive at the asymptotic expression

R∗
code|n→∞ = 1− d−1H(k|y).

Then, we can calculate the required memory to store
the parity check matrix H as

Mcode := hn× log2 |M| = hndr = n2h2dRsynd (27)

For example, for a protocol using homodyne detection,
with a block size of the raw key equal to n = 105 and
dR∗

synd = 4 × 0.667 we obtain the parity-check matrix
storage to be around 3.34 GBs while for a protocol using
heterodyne detection it will be 4 times larger.

In the CRS format [49, Sec. 6.3], one will need d̄v ×
hn×d bits for storing the non-zero elements of the parity-
check matrix, d̄v × hn × ⌈log2(hn)⌉ bits for storing the

column indices, and
(

log
2
|M|
d

+ 1
)

×
⌈

log2
(

d̄vhn
)⌉

bits

for the row pointers. Gathering all these terms, one may
calculate the sparse matrix representation storage as

Msparse =d̄vhnd+ d̄v hn⌈log2(hn)⌉
+ (hnRsynd + 1)

⌈

log2
(

d̄vhn
)⌉

(28)

For a protocol using homodyne detection with d̄v = 2,
nRsynd = 0.667× 105, d = 4, and n = 105, we have that
the sparse matrix storage will be approximately equal to
0.67 MB while for a protocol using heterodyne detection
2 times larger.

Note here that Eqs. (29) and (30) calculate the prac-
tical storage associated with the parity-check matrix of
a code with rate Rcode = 1 − Rsynd. Theoretically, one
may compute tight bounds for these quantities through

ξ 0.01

ηd 0.8

uel 0.01

τ 10−dB/10

ǫh 2−32

ǫcor 2−32

ǫpe 2−32

ǫs 2−32

TABLE II: Here we present the common parameters used to
plot the secret key rate of Eqs. (20) in all figures.

Eq. (10) and obtain an approximate prediction for them.
Thus, we may write

M∗
code = (hn)2dR∗

synd (29)

M∗
sparse = d̄vhn(q + ⌈log2(hn)⌉)

+
(

hnR∗
synd + 1

) ⌈

log2
(

d̄vhn
)⌉

(30)

The most accurate estimation for these quantities is to
simulate the results, i.e., create parity check matrices for
different block sizes (see Table I) with similar parameters
and store them in CRS format. We have done this us-
ing the EC encoding script developed in the simulation
library for the GMCS protocol with heterodyne detec-
tion [62]. This may give different results due to a partic-
ular choice of the type of variables in the script or other
software parameters used to describe the parity check
matrix in the specific format that may add an overhead,
which is not included in Eq. (30). Although this formula
cannot give very accurate results, it is quite simple and
can provide key insights for the encoding function.

IV. RESULTS

In this section, we connect the previous theoretical re-
sults with the practical implications for the protocol op-
erations and especially the data post-processing part. We
focus on the protocol with homodyne detection. In Fig. 1,
we plot the secret key rate of Eq. (20) against the loss in
dB, where we have optimized over V and the PE ratio
1−(n/N). We also plot the changes in terms of ζ or leak-
age and the associated SNR for the optimized rate value.
These correspond to the values of V and n presented in
the same figure. The rest of the parameters used for this
plot are summarized in Table II.

In Fig. 2, we plot the corresponding RR secret key rate,
where it is clear that the performance has increased in
terms of loss tolerance. This is expected due to the 3
dB loss limit of the direct reconciliation protocol in the
asymptotic regime, which degrades when one assumes
finite-size effects. Clearly, the RR protocol is robust
against higher losses (see Fig. 11) especially when one
uses a large block size. This is not achievable by the
DR protocol. We also include plots for the correspond-
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FIG. 1: In the top panel, we plot the secret key rate of Eq. (20)
(black line) of the Gaussian modulation protocol with coher-
ent states and homodyne detection in direct reconciliation
against the loss in dB. We have optimized over the Gaus-
sian modulation variance V (grey thin line) and the PE ratio
of sacrificed channel uses. We have assumed N = 2 × 105,
d = 4, and pec = 0.9. The rest of the parameters are given in
Table II. We plot also the corresponding SNR (gray dashed-
dotted line). In the second panel, we plot the corresponding
values of the reconciliation efficiency ζ (black line), which fol-
low the same pattern as the Gaussian modulation variance
values. However, we can see that for a constant value of V
the reconciliation efficiency increases linearly with the loss in
dB. Subsequently, we plot the associated R∗

code (black dash-
dotted line). In the third panel, we plot the corresponding
block size (gray dashed line) after optimizing the number of
sacrificed channel uses during PE. We plot also the associated
leakage (black line). In the last panel, we plot Eq. (30) for
the corresponding values of the secret key rate and loss in dB.

ing R∗
code that is needed to achieve the specific perfor-

mance for the given SNR and, similarly, the correspond-
ing M∗

sparse.

By contrast, in Figs. 3 and 4, we plot the secret key
rates for the DR and RR protocols, respectively, against
the block size. We set the loss to 0.02 dB and choose the
other parameters in the same way. We mainly observe
that the DR protocol is advantageous in this regime of
losses: we can achieve high rates by using smaller bock-
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FIG. 2: In the top panel, we plot the secret key rate of Eq. (20)
(black line) of the Gaussian modulation protocol with coher-
ent states and homodyne detection in RR against the loss in
dB. The rest of the parameters and settings have been con-
sidered the same as in Fig. 1. Here we observe a better
performance in terms of tolerable loss compared with the di-
rect reconciliation protocol in Fig. 1. This is expected due
to the known 3 dB loss limit of the DR protocol in the ideal
asymptotic regime which decreases even more when one con-
siders finite-size effects and channel noise.

size. Here, we consider a moderate block size roughly
105 − 106. This is because we would like to investigate
regimes of operation where the high-rate performance in
long distance is not a priority. These regimes are de-
scribed by fast sharing of small keys assuming the small-
est requirements of hardware equipment, either because
of space constraints or cost-effective implementations.
For example, this can be described by QKD implemen-
tations over networks of small sensor devices, Internet
of Things (IoT) nodes, wearable devices, or drones oper-
ating inside a building, outside, connected with fiber or
with free-space links [63, 64].

Apart from the limitations due to the communication
links such as the noise and the losses, one should take into
account as a priority the hardware requirements of the
classical data post-processing. This can be done effec-
tively, in the finite-size regime, using composable terms
connected to every performance aspect. Therefore, we
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FIG. 3: In the first panel, we plot the secret key rate of
Eq. (20) (black line) for the Gaussian modulation protocol
with coherent states and homodyne detection in direct recon-
ciliation against N . We set dB = 0.02. We have optimized
over V and n/N . The rest of the parameters, settings and
lines are the same as in Fig. 1. With red ink, we plot the
points included in Table I of the corresponding Msparse, i.e.,
the actual storage needed for these sparse matrices after cre-
ating them in CRS format using the GMCS simulation library
in [62].

combine tools developed in previous studies to charac-
terize the requirements in storage during one-way EC
and especially the encoding part which is executed by
one of the parties. Note that the DR protocol is advan-
tageous in this regime because it can give higher rates
for smaller block size and can support lightweight and
agile transmitters responsible for the EC encoding while
the bulkier receivers can be better suited for computa-
tionally intensive tasks such as the EC decoding in an
assymetric scenario: for example, a network of small sen-
sors transmitting to a central processing unit.

The syndrome creation, i.e., encoding process, is the
less difficult part of the one-way EC with LDPC codes. In
contrast, the decoding process is rather demanding and
can be effectively handled by larger stations rather than
a constrained device. In such an asymmetric scenario in
terms of computational power, for an appropriate loss
tolerance, the party operating through the constrained
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FIG. 4: In the first panel, we plot the secret key rate of
Eq. (20) (black line) for the Gaussian modulation protocol
with coherent states and homodyne detection in RR against
N . We have set the loss to 0.02 dB. The rest of the parame-
ters, settings and lines are the same as in Fig. 1. We observe
here, that we need a larger block size in order to obtain a
secret key rate compared to the DR protocol in Fig. 3. This
is because the DR protocol offers higher rates than the RR
protocol in the low loss regime.

device is the transmitter and also the encoder during
EC. This describes the DR protocol. In this setting, one
can exploit the trade-off between limitations in robust-
ness against losses with the mitigation of computational-
power requirements.

Then, one still needs to check the compatibility with
storage requirements for the parity check matrix as the
main aspect of the EC encoding procedure. In partic-
ular, the amount of leakage calculated in Eq. (10) that
achieves a specific performance in terms of secret key
rate in Eqs. (20) can be mapped to the associated LDPC
code rate in Eq. (26) and, in turn, to the dimensions
of the related parity-check matrices that give the asso-
ciated leakage. Then we can predict the related storage
requirements by Eq. (30).

In Fig. 3, we can see the behaviour of M∗
sparse against

the block-size. For specific block sizes, we have created
the parity check matrices for the corresponding encod-
ing process in EC and stored them in sparse form. The
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details of these parity check matrices are presented in
Table I while, for the sake of comparison, the storage for
each matrix is described by the red points in the bot-
tom panel. We see that the results are very close to the
predicted values for Msparse. Finally, in Appendix C, we
examine the behaviour of the protocols in terms of losses
when one considers different values for block size, suc-
cessful EC probability, and digitization.

V. CONCLUSION

Small device detectors and IoT device networks play a
crucial role in modern society, enabling real-time moni-
toring, automation, and seamless connectivity across var-
ious sectors, including healthcare, smart cities, indus-
trial automation, and environmental monitoring. Their
ability to collect and process vast amounts of data en-
hances efficiency, reduces human intervention, and sup-
ports decision-making in critical applications. However,
as these devices become deeply integrated into daily life,
their security is of paramount importance. Cyber threats
targeting IoT networks can lead to privacy breaches,
unauthorized surveillance, or even large-scale disruptions
in infrastructure, posing risks to public safety and eco-
nomic stability.

It is paramount then to search for robust solutions
against cyber threats for these devices: one of the main
candidates is QKD offering an information-theoretic se-
curity advantage. Since these devices operate at short
distances, such as within a room, a house, or a ware-
house, CV-QKD which has an advantage in this regime
and especially the GMCS protocols can provide higher se-
cret key rates. In particular, by using non-binary LDPC
codes in a practical implementation of such a protocol,
the parties exploit the high mutual information between
their continuous variables.

However, this is quite challenging due to the increased
requirements of the data post-processing stage in compu-
tational power or storage, not to mention implementing
a QKD protocol on such constrained devices in the first
place. Therefore, in order to investigate the performance
under those circumstances, one needs to develop rigor-
ous theoretical tools. Here we have combined a compos-
able security proof taking into account the main stages
of the data post-processing of a QKD protocol with a
tight bound for EC adapting it to the non-binary LDPC
regime.

This allows us to predict optimal secret key perfor-
mance in terms of reconciliation efficiency and leakage
and match this performance to operational code rates

for given signal-to-noise ratios and error correction suc-
cess probabilities. Based on this, we developed a tool
that models the encoding storage requirements for a non-
binary LDPC EC associated with the given secret key
rate performance.

We combined a composable security framework for the
secret key rate of the GMCS protocols with a finite-size
tight bound for one-way EC leakage of non-binary LDPC
dependent on the given SNR and successful EC proba-
bility. Through this tool, one can theoretically calcu-
late the code rate for close to optimum performance and
the dimensions of the associated parity-check matrix. In
turn, one may calculate the storage requirements of the
EC encoding process, which is crucial, for example, for
the implementation of CV-QKD with constraint devices.
Note here that optimum leakage means optimum value
for storage.

CODE AND NUMERICAL IMPLEMENTATION

The majority of the numerical results and plots in this
manuscript were produced using custom Python code de-
veloped for the calculation of tight leakage bounds in the
context of non-binary LDPC codes. This code represents
a central technical contribution of the present work and
is publicly available at: eqclabs/tight_bound_leakage.
The three red data points in Fig. 3 were obtained using an
independent implementation, as referenced in the main
text. All simulations were performed on nodes of the
Viking High Performance Computing cluster at the Uni-
versity of York, equipped with a 2-core AMD EPYC3
7643 processor and 12 GB of memory. All repositories
are released under the Apache License 2.0 and include
documentation to support reproducibility.
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Appendix A: Virtual concatenation

After digitization, one may apply the concatenation
step useful only on the protocols using heterodyne de-
tection. This is a virtual step that results in a common
description of the GMCS protocols using either homo-
dyne or heterodyne detection. This is summarised by

k = k (A1)

for the case of homodyne detection and

k = kq2
d + kp (A2)

for the case of heterodyne detection. We observe that

p(k) = p(kq, kp) = p(kq)p(kp), kq = kp = k

⇒ p(kq) = p(kp) (A3)
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FIG. 5: We present similar plots to Fig. 1. All the parameters
are the same, apart from pec = 0.4. We observe that the
secret key rate is lower than the corresponding one in the
previous figure. However, the achievable loss has been slightly
improved. We see also very similar performance in terms of
the other parameters β, R∗

code, leakage, and Msparse.
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FIG. 6: We present similar plots to Fig. 2. All the parame-
ters are the same, apart from pec = 0.4. We observe similar
behaviour for the rate as in Fig. 5.
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FIG. 7: We present similar plots to Fig. 1. All the parameters
are the same, apart from assuming a doubled value for block
size N = 4 × 105. We observe that the secret key rate takes
higher values and the achievable loss has been significantly
increased. The leakage level and n has been increased in the
same manner (almost doubled) and similarly M∗

sparse. The
other parameters have remained in similar levels as before.
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FIG. 8: We present similar plots to Fig. 2. All the parameters
are the same, apart from assuming a doubled value for block
size N = 4 × 105. We observe similar behaviour for the rate
as in Fig. 7.
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FIG. 9: We present similar plots to Fig. 1. All the parameters
are the same, apart from assuming a digitization of d = 6. We
observe that the secret key rate takes higher values and the
achievable loss has been significantly increased. The improve-
ment is better compared to increasing the block size as in the
case of Fig. 7. By increasing the digitization, we allow the
choice for larger optimal values for the Gaussian modulation
variance which leads to higher SNRs and very high reconcili-
ation efficiency.

Therefore,

H(k) = H(kq, kp) = −
∑

kq,kp

p(kq, kp) log2 p(kq, kp)

=−
∑

kq ,kp

p(kq, kp) log2 p(kq)−
∑

kq,kp

p(kq, kp) log2 p(kp)

=−
∑

kq

p(kq) log2 p(kq)−
∑

kp

p(kp) log2 p(kp)

=−
∑

k

p(k) log2 p(k)−
∑

k

p(k) log2 p(k) = 2H(k).

(A4)

Appendix B: Conditional Covariance Matrices for
Direct Reconciliation

For the case of direct reconciliation and homodyne de-
tection, the associated conditional CM is given by

VE|x =

(

diag{φ0, φ} ψZ

ψZ ωI

)

, (B1)
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FIG. 10: We present similar plots to Fig. 2. All the parame-
ters are the same, apart from assuming a digitization of q = 6.
We observe similar behaviour for the rate as in Fig. 9.

1065 × 105 6 × 105 7 × 105 8 × 1059 × 10510−8

10−6

10−4

10−2

Se
cr

et
 K

ey
 R

at
e 

(b
its

/u
se

)

0

2

4

6

8

10

SN
R/

 V
 (S

NU
)

1065 × 105 6 × 105 7 × 105 8 × 1059 × 1050.6

0.8

1.0

ζ/
R

∗ co
de

1065 × 105 6 × 105 7 × 105 8 × 1059 × 1050.0

0.1

0.2

le
ak

ag
e 

(M
B)

0

5

10

n 
(×

10
5 )

1065 × 105 6 × 105 7 × 105 8 × 1059 × 105

N

0

2

4

6

M
∗ sp
ar
se

 (M
B)

FIG. 11: We present similar plots to Fig. 4. All the param-
eters are the same, apart from dB = 2. We observe that the
RR protocol can operate in higher losses given an increased
block size above 4× 105.
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where

φ0 =τω + (1− τ), (B2)

φ =τω + (1− τ)(V + 1), (B3)

ψ =
√

τ(ω2 − 1), (B4)

where ω is Eve’s noise variance, V is the Gaussian clas-
sical modulation, τ is the transmissivity of the channel.
For the case of direct reconciliation and heterodyne de-
tection, the associated conditional CM is given by

VE|x =

(

φ0I ψZ

ψZ ωI

)

. (B5)

Appendix C: Other results

We now investigate the behaviour of the protocols, in
terms of the secret key rate against losses, assuming ei-
ther a different successful EC probability, block size, or
digitization parameter. For example, we see that chang-
ing the pec from 0.9 to 0.4 affects the performance of
both reconciliation directions: in Figs. 5 and 6, we see a
considerable drop in terms of the rate but a minimal im-
provement in loss tolerance compared to Figs. 1 and 2,
respectively.

In Figs. 7 and 8, we doubled the block size to 4× 105

compared to Figs. 1 and 2,respectively. Here we see an

improvement in the performance and loss tolerance: we
obtain rates almost in the 3/2 amount or more of loss
in both cases compared to Figs. 1 and 2, respectively.
However, the amount of M∗

sparse required is almost dou-
bled as expected by the linear dependence of M∗

sparse on
block size.

When one increases the digitization parameter (here
from d = 4 to 6), the performance also increases along
with the loss tolerance. We show this tendency in Figs. 9
and 10 for both protocols, respectively. In particular, the
tolerable loss is larger than the double in Figs. 1 and 2.
In addition, the leakage and M∗

sparse increase slightly.
This means that by increasing the digitization param-
eter, we can obtain similar performance as by increasing
the block size avoiding large storage requirements.

Increasing the digitization means that ζdigit approaches
1. In other words, the parties can exploit almost the
whole amount of the CV mutual information available
to them. This is why CV are advantageous especially
for small loss. However, the terms ∆ǫs

aep and ∆ǫec
leak (also

expressed through ζleak) increase with larger digitization
parameters. This will lead to a saturation point for the
secret key rate performance and loss tolerance.

Finally, in Fig. 11, we plot the secret key rate for the
RR protocol against the block size for dB = 2. We ob-
serve that the RR protocol can tolerate higher losses.
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