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 27 

ABSTRACT 28 

Enhanced anthropogenic nitrogen (N) inputs to ecosystems may have substantial impacts on 29 

microbially mediated soil organic carbon (SOC) cycling. One way to link species-rich soil 30 

microbial communities with SOC cycling processes is via soil extracellular enzyme activities 31 

(EEAs). However, the effects of N addition on EEAs and the associated driving factors 32 

remain poorly understood. By conducting a meta-data synthesis, we find that N addition 33 

increases hydrolytic C-degrading EEAs that target simple polysaccharides by 12.8%, but 34 

decreases oxidative C-degrading EEAs that degrade complex phenolic macromolecules by 35 

11.9%. The net effect of N addition on SOC storage is determined by the shifts between these 36 

two types of C-degrading EEAs, and the impacts varied across different ecosystem types. 37 

These insights highlight the crucial but understudied roles of hydrolytic and oxidative C-38 

degrading EEAs on SOC dynamics with ongoing enhanced anthropogenic N loading. 39 

Understanding the mechanisms behind these C-degrading EEAs could help optimize SOC 40 

sequestration and inform climate mitigation strategies across different ecosystems. 41 

 42 

Key words: nitrogen addition, hydrolytic C-degrading enzyme activities, oxidative C-43 

degrading enzyme activities, soil microorganisms, soil carbon storage, meta-data synthesis. 44 
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 65 

I. INTRODUCTION  66 

Reactive nitrogen (N) emissions to the atmosphere have increased substantially over the past 67 

decades in most regions, primarily due to human activities (Fenn et al., 2018; Liu et al., 68 

2013). This escalation exhibits significant spatial variation among regions (Liu et al., 2016; 69 

Schwede et al., 2018). Increasing N deposition to the land surface has significantly increased 70 

the productivity of terrestrial ecosystems, notably due to the alleviation of N limitation 71 

(Mason et al., 2022). Furthermore, N availability is key to ecosystem functioning, the cycling 72 

of nutrients and the flow of energy through the biosphere, with profound impacts on soil 73 

organic carbon (SOC) decomposition in terrestrial ecosystems (Ye et al., 2018).  74 



 

 

Despite numerous studies in recent decades, the net effects of N addition on SOC storage are 75 

controversial. Recent meta-analyses of N addition experiments at global or regional scales 76 

have shown that N addition can increase SOC storage by 4–11% (Chen et al., 2018a; Hu et 77 

al., 2024a,b; Janssens et al., 2010; Liu & Greaver, 2010; Xu et al., 2021; Yue et al., 2017). 78 

This increase in SOC storage may occur because N inputs can alleviate N limitation for 79 

microbial decomposers and decrease microbial degradation of pre-existing SOC for N 80 

acquisition (i.e. negative priming effect and reduced N mining from organic matter) (Craine, 81 

Morrow & Fierer, 2007; Hicks, Lajtha & Rousk, 2021; Kuzyakov, 2010). Conversely, N 82 

addition could increase soil N availability and the activity of previously N-limited microbial 83 

decomposers, thereby enhancing SOC decomposition and reducing SOC storage (Zhang et 84 

al., 2014). N addition may lead to soil acidification. It can indirectly impact SOC storage by 85 

inhibiting microbial growth (Ontman et al., 2023), reducing enzyme efficiency (Chen et al., 86 

2017), decreasing necromass accumulation (Ye et al., 2018), and affecting soil structure 87 

(Cotrufo et al., 2015; Liang, Schimel & Jastrow, 2017). These combined effects can lead to a 88 

long-term decrease in SOC storage. Several mechanisms may help explain changes in SOC 89 

storage following N addition, including altered C inputs due to a change in net primary 90 

productivity (Čapek et al., 2018), changes in microbial activity (Crowther et al., 2019) and/or 91 

changes in soil aggregation (Lu et al., 2021a), but a comprehensive understanding of the 92 

overall effects of N addition on SOC decomposition remains elusive. Specifically, the lack of 93 

a mechanistic understanding hinders our ability to predict long-term effects of N addition on 94 

SOC dynamics. 95 

Changes in SOC storage resulting from N addition are associated with a range of soil 96 

microbial properties, including community composition, physiology, and metabolic activities 97 

(Jing et al., 2021; Ni et al., 2021). However, establishing a direct link between diverse soil 98 

microbial properties and changes in SOC storage remains a formidable challenge due to the 99 



 

 

intricate feedbacks between plants, soil, and microbes (Chen, Sinsabaugh & van Groenigen, 100 

2023). Extracellular enzymes are produced by plants and soil microorganisms, providing 101 

another perspective for understanding the effects of N addition on SOC storage. Soil 102 

extracellular enzyme activities (EEAs) mediate the transformation of SOC by catalysing rate-103 

limiting steps in SOC decomposition (Fanin et al., 2022; Sinsabaugh, 2010), which may 104 

directly or indirectly affect SOC storage. Hydrolytic and oxidative C-degrading EEAs are 105 

among the most important C-degrading enzymes targeting the degradation of litter and SOC 106 

with different qualities. Hydrolytic C-degrading enzymes catalyse the degradation of 107 

cellulose, whereas oxidative C-degrading enzymes facilitate the biodegradation of lignin and 108 

other phenolic compounds in litter and soil (Ljungdahl & Eriksson, 1985). Hydrolytic and 109 

oxidative C-degrading EEAs can provide another mechanistic insight to track SOC dynamics 110 

(Chen et al., 2017) and the ratio of oxidative to hydrolytic C-degrading EEAs provides an 111 

index that reflects microbial preference in utilizing various pools of litter and SOC (Yang et 112 

al., 2019). It is important to note that geography significantly influences the soil’s physical 113 

and chemical properties (Islam et al., 2020; Lira-Martins et al., 2022). These soil 114 

characteristics, in turn, can impact the abundance, diversity, and activity of soil microbes 115 

(Choe, Kim & Lee, 2021; Islam et al., 2020; Carson et al., 2007). For instance, soils rich in 116 

specific minerals may foster the growth of certain microbial communities, thereby 117 

influencing the overall pattern of EEAs (Choe et al., 2021; Carson et al., 2007). Therefore, 118 

understanding the responses of soil C-degrading EEAs to N addition is central to predicting 119 

changes in SOC cycling and its feedback to climate change, which may offer fresh insights to 120 

advance the understanding of the intricate plant–soil–microbial feedback on SOC storage 121 

under N addition. 122 

In this study, we performed a comprehensive global meta-data synthesis of the responses of 123 

soil C-degrading EEAs to N addition. This study aims to provide novel insights into the role 124 



 

 

of soil EEAs in mediating the response of SOC storage to N addition. Several previous meta-125 

analyses have synthesized the impact of N addition on soil C-acquisition EEAs (Chen et al., 126 

2017; Jia et al., 2020; Jian et al., 2016; Xiao et al., 2018), but the links between soil EEAs 127 

and SOC storage have not been explicitly examined, let alone the underlying mechanisms. 128 

Additionally, there has been a surge in field studies on soil C-acquisition EEAs related to N 129 

addition over recent years, providing a unique opportunity to examine the links between soil 130 

EEAs and SOC storage. To this end, we conducted a comprehensive synthesis of data from 131 

multiple field experiments that concurrently measured C-degrading EEAs and SOC in 132 

response to N addition (Allison et al., 2010; Du et al., 2014; Luo et al., 2019; Rappe-George 133 

et al., 2017; Zhu et al., 2020). A meta-data synthesis approach was combined with a state-of-134 

the-art model selection analysis to evaluate simultaneously the importance of a range of 135 

biotic and abiotic factors on the effects of N addition on SOC and C-degrading EEAs. In 136 

particular, we explored the role of C-degrading EEAs related to changes in SOC storage by 137 

analysing data from N addition studies that included both SOC storage and C-degrading 138 

EEAs. Based on previous experimental and synthesis studies, we hypothesized that: (1) N 139 

addition suppresses C-degrading EEAs due to altered N availability; and (2) N addition 140 

increases SOC storage, which is associated with N-induced changes in C-degrading EEAs. 141 

 142 

II. METHODS 143 

(1) Data collection 144 

We systematically searched all peer-reviewed journal articles that investigated the effects of 145 

N addition on SOC storage as well as the underlying enzymatic mechanisms, using Web of 146 

Science (http://apps.webofknowledge.com/), Google Scholar (http://scholar.google.com/), 147 

and China National Knowledge Infrastructure (CNKI, www.cnki.net/) up to October 1st, 148 

2022. The literature search was performed following guidelines from Preferred Reporting 149 



 

 

Items for Systematic Reviews and Meta-Analyses (see online Supporting Information, 150 

Appendix S1 for PRISMA flow chart). Various key word combinations were used for the 151 

search: (nitrogen addition OR nitrogen amendment OR nitrogen enrichment OR nitrogen 152 

fertilizer OR nitrogen elevated OR nitrogen deposition) AND (glucosidase OR cellobiosidase 153 

OR xylosidase OR peroxidase OR phenol oxidase OR polyphenol oxidase OR lignin 154 

modifying enzymes OR cellulase) AND (soil carbon) AND (terrestrial OR soil OR land). 155 

Additional studies that were not covered by these search terms but were cited in Chen et al. 156 

(2018b) were also included. We reviewed each article to determine whether the studies met 157 

the following criteria: (1) articles must have an N addition treatment with a paired ambient 158 

treatment (control). For multifactorial studies, only ambient and N addition treatments 159 

(including multiple N addition levels) were included. Data from N addition treatments 160 

combined with other factors (e.g. P addition) were excluded. (2) Ambient and N addition 161 

treatments must be conducted at the same experimental site, thus the microclimate, ecosystem 162 

type, and soil types are similar between ambient and N addition treatments. (3) Details of N 163 

addition methods (rate, frequency, form, and duration) must be provided. (4) Activity of at 164 

least one kind of C-degrading EEA must be measured. (5) The experiment must be conducted 165 

in the field. Studies involving model simulations and incubations in the laboratory (e.g. 166 

greenhouse or pot experiments) were not included. We used Plot Digitizer version 2.0  to 167 

digitally extract data from figures when the results were graphically reported. When data 168 

from different years were available in the same study, we used the latest data in accordance 169 

with the commonly used approach in meta-data synthesis studies (Lu et al., 2021a,b). When 170 

data for the same variable from multiple soil layers were provided, we only used data from 171 

the uppermost soil horizon to maintain independence across the different studies.  172 

Following the criteria mentioned above, we obtained a meta-data set of 379 paired 173 

observations from 102 publications (see Appendix S2 for full list of included studies). In 174 



 

 

brief, the variables examined in this study included C-degrading EEAs (listed in Table 1), 175 

plant properties (expressed as plant productivity, e.g. aboveground biomass, diameter at 176 

breast height, root biomass, litter biomass, net primary productivity), soil properties (soil pH, 177 

SOC, recalcitrant SOC, soil total N and the ratio of SOC to N) and microbial properties 178 

[microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), MBC:MBN, 179 

bacterial and fungal biomass, and the ratio of fungal to bacterial biomass]. The following 180 

indicators of SOC recalcitrance were used: (i) soil lignin content or the size of the slow-181 

decomposing C pool; and (ii) the heavy fraction of C or non-hydrolyzable organo-mineral 182 

complexed C. To estimate the effect of N addition on microbial biomass, we prioritized the 183 

following proxies based on their availability: (1) for MBC and MBN, we tabulated microbial 184 

biomass measured by chloroform fumigation (Brookes et al., 1985; Vance, Brookes & 185 

Jenkinson, 1987); (2) for bacterial biomass, we tabulated microscopic counts in soil extracts, 186 

bacterial phospholipid fatty acid (PLFA) concentrations (Bossio & Scow, 1998; Frostegård, 187 

Tunlid & Bååth, 2011) or quantitative PCR analysis; and (3) for fungal biomass, we used 188 

microscopic counts in soil extracts, fungal PLFA concentrations, or soil concentrations of 189 

ergosterol. Results for specific groups of fungi or bacteria (e.g. arbuscular mycorrhizal fungi, 190 

saprotrophic fungi, ammonia-oxidizing bacteria/archaea, and actinomycetes) were excluded 191 

to avoid biasing results towards subsets of the fungal or bacterial communities. In our 192 

analysis, hydrolytic C-degrading EEAs were represented by the activities of β-1,4-193 

glucosidase, β-1,4-xylosidase, and β-1,4-D-cellobiohydrolase, or a combination of these. 194 

These hydrolytic C-degrading enzymes accelerate the breakdown of cellulose or 195 

hemicellulose. Oxidative C-degrading EEAs were represented by the activities of peroxidase, 196 

phenol oxidase, polyphenol oxidase, or a combination of these (Table 1). These oxidative C-197 

degrading enzymes mediate the breakdown of relatively recalcitrant molecules such as lignin, 198 

phenols, and other aromatics. The above enzymes are among the most important for the 199 



 

 

degradation of litter and SOC (Chen et al., 2017; Jian et al., 2016; Margida, Lashermes & 200 

Moorhead, 2020). In instances where researchers reported the presence of multiple types of 201 

hydrolytic and oxidative C-degrading EEAs, the sum of their values was used to represent the 202 

cumulative response of hydrolytic or oxidative C-degrading EEAs (Chen et al., 2018b). 203 

In our data set, we also recorded a wide range of environmental variables, including latitude 204 

(30.4°S to 69.0°N), longitude (145.7°W to 137.9°E), mean annual temperature (MAT, –5.4 to 205 

24.8 °C), mean annual precipitation (MAP, 69–3537 mm), initial soil pH (3.2–8.7), initial 206 

SOC (3.3–179.1 g·kg–1) and initial total nitrogen (TN, 0.43–12.7 g·kg–1). The global 207 

distribution of the experimental sites is presented in Fig. 1. If these data were not reported, 208 

we contacted the corresponding author for more information. Otherwise, we obtained MAT 209 

and MAP from the WorldClim database (www.worldclim.org/), and background N deposition 210 

from the Global N deposition database (http://webmap.ornl.gov/). We classified ecosystem 211 

types according to the Whittaker Biome Diagram (Whittaker, 1962), and soil types according 212 

to the Food and Agriculture Organization taxonomy (www.fao.org/soils-portal/soil-213 

survey/soil-classification/usda-soil-taxonomy/en). 214 

 215 

(2) Data analysis 216 

We quantified the effects of N addition on the studied variables using response ratios (RRs), 217 

which were calculated for each observation by taking the natural logarithm of the average 218 

EEAs of the ambient and N addition treatments as described in Equation (1), in which𝑋t 219 

and𝑋c are the respective means of a given variable in the N addition treatment group and the 220 

ambient (control) group, respectively.  221 

RR = In
𝑥̅t𝑥̅c     (1) 222 

The variance (v) of RR was calculated following Equation (2), where SDt and 𝑛t are the 223 

standard deviation and sample size of a given variable observed in the treatment group, 224 



 

 

andSDc and 𝑛c are the respective mean, standard deviation and sample size of a given 225 

variable in the control group. 226 

v = 
SDc2𝑛c×𝑥̅c2 + SDt2𝑛t×𝑥̅t2    (2) 227 

The effects of N addition on plant productivity, soil characteristics, C-degrading EEAs and 228 

microorganisms were evaluated by mixed-effects models using the rma.mv() function from 229 

the R package metafor (Viechtbauer, 2010). The random factor ‘experiment’ was included to 230 

ensure independence among multiple RRs within an experiment (an experiment may have 231 

included several N addition rates). Previous meta-analyses suggest that the response of C-232 

related processes to N enrichment can vary with ecosystem types and fertilization regimes 233 

(Chen et al., 2015; Chen et al., 2018b; Deng et al., 2018). Thus, all observations were 234 

subdivided into four categories based on ecosystem type (forest, grassland, farmland and 235 

shrubland) and various N addition properties, including N addition rate (high, >10 g N m–2 236 

year–1; medium, 5–10 g N m–2 year–1; low, <5 g N m–2 year–1), experimental duration (<5 237 

years, 5–10 years, and >10 years), N addition frequency (< 4 times year-1, 4–12 times year-1 238 

and > 12 times year-1), and N fertilizer form [mix; organic, i.e. urea; inorganic, i.e. NH4NO3, 239 

NaNO3, NH4Cl, (NH4)2SO4]. We chose these thresholds for breakpoints based on results 240 

from previous studies (Chen et al., 2018b; Lu et al., 2021a; Song et al., 2019) and general 241 

breakpoints used in manipulative N-addition experiments in our data set. The statistical 242 

results reported include total heterogeneity among all observations, the heterogeneity in the 243 

RRs associated with each moderator variable (QM), and the residual error. A significant QM 244 

indicates a significant effect of the moderator variable on the RR (Hedges, Gurevitch & 245 

Curtis, 1999). The effects of N addition were considered significant if the 95% confidence 246 

interval did not overlap with zero. The results are reported as percentage change with N 247 

addition [i.e.100% × (eRR–1)] to aid interpretation. 248 



 

 

If standard deviations were not reported, we calculated them from the standard error and the 249 

number of replicates. Alternatively, we estimated them using the coefficient of variation from 250 

all complete cases, following the method described by Bracken (1992). Estimation of 251 

standard deviations was performed using the R package metagear (Lajeunesse, 2016; Terrer 252 

et al., 2021). We also calculated the ratio of oxidative to hydrolytic C-degrading EEAs, the 253 

ratio of soil microbial C to N, and the fungal to bacterial biomass ratio. We employed the 254 

error propagation method (Lorber, 1986) to calculate the standard deviation (SD𝑦) of these 255 

ratios using Equation (3), where 𝑟 and 𝑠 are the mean values of r and s, respectively and  SD𝑟 256 

and SD𝑠 are the standard deviations, respectively.  257 

SD𝑦 = 𝑟̅𝑠̅ × √(SD𝑟𝑟 )2 + (SD𝑠𝑠 )2
    (3) 258 

The oxidative:hydrolytic C-degrading EEA ratio is an effective indicator for microbial 259 

substrate preference (Romero-Olivares, Allison & Treseder, 2017; Sinsabaugh, 2010; Yang et 260 

al., 2019), with higher ratios indicating relatively greater investment in the decomposition of 261 

chemically recalcitrant C pools (Ren et al., 2017; Romero-Olivares et al., 2017). 262 

Publication bias was examined using Begg’s test and Egger’s test (Begg & Mazumdar, 1994, 263 

1994; Egger et al., 1997; Leimu & Koricheva, 2004). Begg & Mazumdar (1994) proposed 264 

testing the interdependence of variance and effect size using Kendall’s method, and Egger et 265 

al. (1997) proposed a test for asymmetry based on a funnel plot. Our results showed that most 266 

variables did not have publication bias, and where there was potential publication bias for 267 

some variables, this would not affect the results because Rosenthal’s fail-safe number was 268 

much greater than 5n+10 (where n is number of observations; Table S1). 269 

We examined the relative influence of multiple controlling factors on the responses of SOC 270 

storage, hydrolytic C-degrading EEAs, and oxidative C-degrading EEAs to N addition using 271 

model-selection analysis. We used the ‘rma.mv ()’ function from the R package metafor 272 

(Viechtbauer, 2010) and the ‘glmulti()’ function from the glmulti R package (Calcagno & de 273 



 

 

Mazancourt, 2010) to automate the fitting of all possible models containing the predictors. 274 

We utilized the Akaike information criterion to select the most parsimonious models with the 275 

lowest Akaike value. The relative importance of a given predictor was ascertained by 276 

summing the Akaike weights, representing the probability that a particular model is the most 277 

plausible, for all models in which the predictor was present. A cut-off of 0.8 was set to 278 

differentiate between essential and non-essential predictor variables (Calcagno & de 279 

Mazancourt, 2010). We used ‘lmer’ function in the lme4 package to conduct linear mixed-280 

effects models based on a restricted maximum likelihood approach (Bates et al., 2015) to test 281 

the overall effects of significant predictors in Model Selection Analysis, as well as their 282 

interactions. To explore the possible mechanisms of changes in SOC storage under the 283 

condition of N addition, we also conducted meta-regressions between the RRs of SOC 284 

storage and the response of C-degrading EEAs, initial SOC content, N addition rate, and the 285 

ratio of N addition rate to background N deposition rate. We used Spearman’s rank 286 

correlation analysis to evaluate the relationships of C-degrading EEAs with environment 287 

properties, soil properties, and N addition properties.  288 

Based on known relationships, we fitted the data to a structural equation model to evaluate 289 

the direct and indirect effects of N addition on SOC storage. The model was fitted by 290 

maximum likelihood estimation in R using the lavaan package (Rosseel, 2012). The fit of the 291 

final model was evaluated using a chi-squared test. Models are considered to have a good fit 292 

when 0 ≤ chi-squared/df ≤ 2, as well as when 0.05 < P ≤ 1.00 (Schermelleh-Engel, 293 

Moosbrugger & Müller, 2003). 294 

 295 



 

 

III. RESULTS  296 

(1) Responses of hydrolytic and oxidative C-degrading EEAs to N addition 297 

Averaged across all studies, N addition had contrasting effects on hydrolytic and oxidative C-298 

degrading EEAs (Fig. 2). Nitrogen addition significantly increased hydrolytic C-degrading 299 

EEAs by 12.8% with a range of 7.5% to 18.4%. This increase was primarily due to an 300 

increase in activities of β-1,4-glucosidase and β-1,4-D-cellobiohydrolase by 16.7% and 301 

10.9%, respectively. By contrast, N addition significantly decreased oxidative C-degrading 302 

EEAs by 11.9% (ranging from –17.6% to –5.9%), due to a decrease in peroxidase, phenol 303 

oxidase and polyphenol oxidase activity by 7.8%, 14.6%, and 14.0%, respectively (Fig. 2C). 304 

Model selection analysis suggested that the responses of hydrolytic C-degrading EEAs to N 305 

addition were mostly explained by the initial SOC, N addition rate, and the climatic 306 

parameters MAT and MAP (Fig. 3B). In particular, the response of hydrolytic C-degrading 307 

EEAs to N addition was greater when initial SOC levels were high (Fig. S1B). By contrast, 308 

oxidative C-degrading EEAs were mostly explained by ecosystem type, soil type, and MAT 309 

(Fig. 3C). Specifically, N addition decreased oxidative C-degrading EEAs by 12.1% for both 310 

forest and grassland ecosystems (Fig. 4C). The responses of oxidative:hydrolytic C-degrading 311 

EEA ratio were mostly explained by ecosystem type, initial SOC, and N addition rate (Fig. 312 

3D). N addition decreased the oxidative:hydrolytic C-degrading EEA ratio by 19.4% in 313 

forests and by 29.1% in farmland (Fig. 4D). In addition, N addition had more pronounced 314 

negative effects on oxidative:hydrolytic C-degrading EEA ratio when soils were C-rich (Fig. 315 

S1D) or when N addition rates were high (Fig. S2D). There were no significant relationships 316 

between the ratio of N addition rate to background N deposition rate (BND) and any of the 317 

RRs considered (Fig. S3). 318 

 319 



 

 

(2) Linking shifts in C-degrading EEAs to changes in SOC storage with N addition 320 

For studies that reported changes in SOC storage, N addition enhanced SOC storage by an 321 

average of 7.2% and increased soil recalcitrant SOC by 16.2% (Fig. 2B). The N addition-322 

induced increases in SOC storage were predicted by ecosystem type, N-induced changes in 323 

oxidative C-degrading EEAs, and N addition rate (Fig.3A). Furthermore, we found that the 324 

response of SOC storage to N addition was positively related to hydrolytic and negatively 325 

correlated with oxidative C-degrading EEAs (Fig. 5A, B). The relationships between N-326 

induced changes in C-degrading EEAs and SOC storage were significant over a variety of 327 

ecosystems and soil types (Figs 5 and S4). As a result, we found a strong negative 328 

relationship between the overall response of SOC storage and the responses of 329 

oxidative:hydrolytic C-degrading EEA ratio to N addition (Fig. 5C). According to the 330 

structural equation model, N-induced changes in SOC storage and oxidative C-degrading 331 

EEAs were strongly mediated by MBC rather than by changes in the ratio of fungal to 332 

bacterial biomass (Fig. 6). Specifically, reductions in MBC following N addition negatively 333 

affected oxidative C-degrading EEAs ultimately resulting in enhanced SOC storage. In 334 

addition, soil pH had a direct and significant effect on MBC, suggesting that N-induced soil 335 

acidification suppressed the decomposition of SOC by limiting the growth of soil 336 

microorganisms (Fig. 6).  337 

 338 

(3) Effect of ecosystem type on N addition-induced changes in SOC storage and EEAs 339 

Ecosystem type was identified as an important predictor for N addition-induced changes in 340 

SOC storage and C-degrading EEAs (Fig. 4A). Overall, N addition increased SOC storage by 341 

7.0% in forests and by 15.1% in farmlands while having no discernible effect on SOC storage 342 

in grasslands and shrublands. Regarding hydrolytic C-degrading EEAs, N addition resulted in 343 

an increase of 13.3% in forests and 27.2% in farmlands (Fig. 4B). Conversely, we observed a 344 



 

 

reduction of 12.1% in oxidative C-degrading EEAs in both forests and grasslands following 345 

N addition (Fig. 4C). Moreover, changes in SOC storage induced by N addition were 346 

significantly related to the responses of oxidative C-degrading EEAs in all ecosystems (Fig. 347 

5E) while a significant relationship between the response of SOC storage and the responses 348 

of hydrolytic C-degrading EEAs was only observed for forest ecosystems (Fig. 5D).  349 

In farmland ecosystems, our analysis revealed that the responses of hydrolytic C-degrading 350 

EEAs were negatively correlated with soil clay content and N addition duration (Fig. 4E). 351 

The responses of oxidative C-degrading EEAs were positively correlated with background 352 

soil total N content and clay content, and negatively correlated with background soil C:N 353 

ratio and N addition frequency. In forest ecosystems, significant correlations were observed 354 

between C-degrading EEAs and soil properties. Specifically, hydrolytic C-degrading EEAs 355 

showed a positive correlation with initial SOC and total nitrogen (N) content. In contrast, 356 

oxidative C-degrading EEAs exhibited negative correlations with these properties (Fig. 4E). 357 

 358 

IV. DISCUSSION  359 

(1) New insights into SOC dynamics under N addition from EEAs  360 

Our investigation provides compelling evidence that N addition can significantly influence 361 

soil microbial anabolism, as manifested by alterations in C-degrading EEAs. Our analysis 362 

demonstrated that N addition augmented hydrolytic C-degrading EEAs while suppressing 363 

oxidative C-degrading EEAs (Fig. 2). These results are consistent with several recent studies 364 

that also reported these same patterns (Chen et al., 2017; Jian et al., 2016; Xiao et al., 2018). 365 

N limitation can stimulate the production of oxidase enzymes, as N-containing molecules are 366 

often chemically bound within complex, recalcitrant substrates (Kuzyakov & Xu, 2013). By 367 

reducing microbial N limitation and increasing relative microbial C limitation with N 368 

addition (Sinsabaugh, 2010), hydrolytic C-degrading EEAs may be stimulated while 369 



 

 

oxidative C-degrading EEAs are suppressed. While a previous study identified experimental 370 

duration to be a crucial factor influencing the outcomes of C dynamics in plant and soil 371 

responses to N addition (Xu et al., 2021), in our analyses these relationships between changes 372 

in C-degrading EEAs and SOC storage were unaffected by experimental duration (Fig. S5). 373 

This suggests that the strategies for using carbon employed by soil microbes remain 374 

consistent across different durations of N addition (Leff et al., 2015). These robust 375 

relationships offer fresh perspectives into the mechanisms that regulate SOC storage in 376 

response to N addition. 377 

N addition can alter soil C-degrading EEAs, thereby influencing both SOC decomposition 378 

and sequestration (Cao et al., 2021; Riggs et al., 2015). Microorganisms produce oxidative 379 

enzymes in part to mineralize structurally complex C sources to obtain N, which is often 380 

protected or shielded by recalcitrant substrates such as lignin (Manzoni et al., 2012). Thus, 381 

the reduction in oxidative C-degrading EEAs and an increase in hydrolytic C-degrading 382 

EEAs may increase mineral-associated organic matter derived from the decay of cellulose 383 

(Margida et al., 2020). This shift could increase the accumulation of microbial products and 384 

the formation of stable organic matter (Cotrufo et al., 2013). This could also explain the 385 

significant increase in recalcitrant SOC under N addition (Fig. 2) and aligns with recent 386 

comprehensive meta-analyses of N-induced changes in recalcitrant soil carbon (Qi et al., 387 

2023; Xu et al., 2024). Indeed, Chen et al. (2018b) showed that suppression of oxidative C-388 

degrading EEAs by N addition exerted greater control over SOC storage than climatic and 389 

edaphic factors. A novel perspective acknowledges the substantial and direct impact of 390 

microbial biomass in the accumulation of organic matter. This process involves the 391 

transformation of microbial necromass into stable fractions of SOC (Kallenbach, Frey & 392 

Grandy, 2016; Ye et al., 2018). For example, Lu et al. (2021a) reported an increase in soil 393 

aggregate formation and SOC sequestration under N addition. Finally, increased SOC storage 394 



 

 

under N addition may result from decreased microbial N mining from recalcitrant SOC, 395 

known as a negative priming effect (Fanin, Alavoine & Bertrand, 2020; Hicks, Lajtha & 396 

Rousk, 2021). In the presence of excess N, soil microbes switch to using exogenous N 397 

sources rather than degrading SOC for N (Allison & Vitousek, 2005). The reduced ‘mining’ 398 

for organic nutrients can conserve organic matter and result in greater SOC storage 399 

(Blagodatskaya et al., 2007; Nottingham et al., 2015). 400 

In summary, N addition can have multifaceted effects on SOC storage through its impact on 401 

microbial growth and EEAs. The equilibrium between oxidative and hydrolytic C-degrading 402 

EEAs plays a pivotal role in determining the net effect of N addition on SOC storage. Further 403 

research is imperative to advance understanding of the mechanisms underlying these effects 404 

and to devise strategies for managing N addition to enhance SOC storage. 405 

 406 

(2) Factors affecting the enzyme control of SOC storage under N addition 407 

We provide a framework (Fig. 6) proposing several factors modulating the enzymatic 408 

regulation of SOC storage under N addition. First, our data demonstrate that N addition 409 

significantly stimulated plant productivity (Fig. 2), but this increased plant productivity did 410 

not directly influence SOC storage (Fig. 6). Although previous studies have demonstrated 411 

that N addition significantly increased the aboveground productivity of various terrestrial 412 

ecosystems (Čapek et al., 2018; Schulte-Uebbing & de Vries, 2018), our results suggest that 413 

these new C inputs do not necessarily increase SOC storage (Cotrufo et al., 2015; Niu et al., 414 

2016; Lu et al., 2021a). This is particularly true because greater C inputs coupled with more 415 

favourable soil C:N ratios, may accelerate microbial metabolic activity and SOC 416 

decomposition (Liang et al., 2017). Consequently, an increase in plant biomass does not 417 

result systematically in an increase in SOC storage, and N addition can also have neutral or 418 

even negative effects on SOC storage depending on the specific driving mechanisms 419 



 

 

(Crowther et al., 2019; Liu & Greaver, 2010; Lu et al., 2022). These negative responses can 420 

be ascribed to either N saturation over time or the accumulated deleterious effects of long-421 

term N addition on plant and microbial growth (Treseder, 2008). Therefore, stimulated plant 422 

productivity alone cannot be considered as the sole determinant of alterations in SOC storage 423 

in terrestrial ecosystems (Xu et al., 2021), with other mechanisms related to microbial 424 

functions remaining largely unexplored. 425 

Changes in microbial community size and composition may contribute to changes in 426 

hydrolytic and oxidative C-degrading EEAs, resulting in changes to SOC storage. This is 427 

because individual microbial taxa produce only a subset of the enzymes required to degrade 428 

complex organic matter (Condron et al., 2010). While many kinds of soil microorganisms can 429 

secrete hydrolytic C-degrading enzymes, only a small number of microorganisms produce 430 

oxidative C-degrading enzymes, such as white-rot basidiomycetes and xylacarious 431 

ascomycetes (Carreiro et al., 2000). N addition often results in a decrease in fungal biomass 432 

and an increase in bacterial biomass (He, Ruan & Jia, 2024; Huang et al., 2023). With a 433 

lower fungi-to-bacteria ratio, the soil’s efficiency in forming stable SOC is reduced, 434 

potentially diminishing long-term SOC storage (Ali et al., 2021). Fungi and bacteria perform 435 

distinct roles in SOC storage. Bacteria typically decompose organic matter more rapidly, 436 

leading to faster SOC turnover and less stable SOC storage (Don et al., 2017). Conversely, 437 

fungi are more efficient at decomposing complex organic materials and forming stable soil 438 

aggregates, which enhances SOC storage (Fan et al., 2022). Mycorrhizal fungi, in particular, 439 

produce a variety of EEAs that aid in organic matter decomposition (Parihar et al., 2020). 440 

They initially stimulate the decomposition of fresh residues and later tend to suppress the 441 

decomposition of older or more decomposed SOC (Wei et al., 2019). The extensive hyphal 442 

networks of these fungi contribute to SOC by transporting carbon from plants to soil and 443 

forming stable soil aggregates (Wang et al., 2023; Kohler et al., 2017). Saprophytic fungi are 444 



 

 

the primary cellulose degraders, while mycorrhizae (including many basidiomycetes and 445 

ascomycetes) likely function as recalcitrant nitrogen miners. Augmented by their plant hosts’ 446 

energy budgets, these mycorrhizae are also the main producers of phenol oxidase (Burke & 447 

Cairney, 2002). Additionally, N addition promotes SOC accumulation by enhancing the 448 

relative contribution of roots compared to hyphae in SOC accrual (Yuan et al., 2024). 449 

Moreover, previous studies found that N addition can reduce microbial biomass by 5–20% 450 

(Lu et al., 2011; Xiao et al., 2018; Zhang, Chen & Ruan, 2018), possibly contributing to 451 

shifts in taxonomic composition. Our analysis revealed positive associations between 452 

oxidative C-degrading EEAs (but not hydrolytic EEAs) and MBC under N addition (Table 453 

S3), demonstrating that increasing total microbial biomass drives the increase in soil 454 

oxidative C-degrading EEAs (Fig. 6). These results suggest that shifts in C-degrading EEAs 455 

with N addition were associated with changes in microbial community composition. 456 

However, the underlying mechanism of this response remains unclear. High-resolution 457 

analyses that provide more detailed taxonomic information are necessary to assess the 458 

structural response of soil microbial communities to N addition. 459 

Finally, N-induced alterations in soil pH could contribute to enzymatic control of SOC 460 

storage. Soil pH affects the binding of substrates to enzymes and the formation of enzyme 461 

proteins (Sinsabaugh, 2010). Our shifts in C-degrading EEAs with the reduction in soil pH 462 

are consistent with previous explanations for changes in SOC accumulation under N addition 463 

due to changes in microbial biomass and activities (Funakawa et al., 2014). We found that N 464 

addition-induced soil acidification (Fig. 2) inhibited microbial growth and oxidative C-465 

degrading EEAs, which were accompanied by decreased MBC (Fig. 6), microbial respiration 466 

and SOC decomposition (Averill & Waring, 2018; Janssens et al., 2010; Niu et al., 2016; 467 

Wang et al., 2018). Moreover, the consistently negative effect of high soil pH on SOC 468 



 

 

storage suggests that low soil pH may increase the capacity for SOC storage and nutrient 469 

supply in specific biome types (Chen et al., 2018c). 470 

In summary, the responses of soil C-degrading EEAs to N addition are complex. The net 471 

effect depends on how both enzyme production and turnover are affected by changes in both 472 

soil environment and resource availability. Enzyme synthesis and secretion in natural 473 

environments are influenced by a combination of abiotic factors such as soil pH and 474 

temperature, as well as biotic processes including the composition of the soil microbial 475 

community and root–microbe interactions. These abiotic and biotic factors, however, can 476 

vary across different ecosystem types. Consequently, EEAs are likely to be responsive to N 477 

addition across various ecosystem types, as well as to other climate changes (Chen et al., 478 

2018b, 2020a). These changes will have important consequences for ecosystem functions 479 

such as decomposition and nutrient cycling, which will ultimately affect SOC storage.  480 

 481 

(3) Uncertainties and implications 482 

Our findings provide novel insights into the relationships between N addition, soil 483 

extracellular EEAs, microbial communities and SOC dynamics, however several 484 

uncertainties warrant further investigation. First, atmospheric N deposition involves low-dose 485 

and continuous N inputs into ecosystems, whereas many N addition experiments used only 486 

single pulses. High-dose inputs of N may elicit stronger short-term effects on SOC storage 487 

than N applied in several doses across the year (Cao et al., 2020). Therefore, it is necessary to 488 

assess N addition at lower levels over extended timeframes. In addition, the N addition rate in 489 

most experiments exceeded background N deposition rates, and our results may therefore 490 

overestimate the responses of SOC storage to N addition (Fornara & Tilman, 2012). In our 491 

analyses, we computed the ratio of the N addition rate to the background N deposition rate 492 

(Rate:BND). This ratio serves as a measure of the additional N introduced into an 493 



 

 

environment compared to the naturally deposited amount. Although this ratio did not 494 

contribute significantly to explaining the responses of SOC storage or C-degrading EEAs to 495 

N addition (Fig. 3) and the relationships were not significant (Fig. S3), it is important to note 496 

that specific impacts can vary. These variations depend on ecosystem type and the form of N 497 

being added. Therefore, this ratio should be used in conjunction with other measurements and 498 

observations to comprehend fully the effects of N deposition. Second, the data set in this 499 

study was predominantly from Asia (Fig. 1), but geological differences among sites were not 500 

fully considered. Future studies should aim to include a wider range of geographically diverse 501 

samples to investigate the effects of geological influences. This would provide a more 502 

comprehensive understanding of the interplay between geology, soil microbes, and EEAs, 503 

enhancing our ability to predict and manage soil health and function under changing 504 

environmental conditions. Third, different responses of hydrolytic and oxidative C-degrading 505 

EEAs to N addition revealed divergent microbial nutrient acquisition strategies that regulate 506 

SOC storage, but it remains challenging to link the response of C-degrading EEAs to 507 

microbial community structure and diversity. Nitrogen addition often induces changes in 508 

microbial community structure that are consistent with changes in EEAs (Waldrop, Zak & 509 

Sinsabaugh, 2004a). As C mineralization is a complex process that involves the enzyme-510 

mediated catalysis of various organic fractions (Wu et al., 2022), the presumption of 511 

inflexible microbial functional traits during N addition may lead to inaccurate predictions of 512 

SOC storage. Although this meta-data synthesis establishes a framework for plant–soil–513 

microbe interactions, future studies using new methods and technologies, such as advanced 514 

genome sequencing and probe-based technologies, remain necessary to predict accurately the 515 

overall consequences of N addition on SOC storage. In addition, given the strong enzymatic 516 

control of SOC storage under N addition, explicitly representing soil enzymatic processes as 517 

an important component of land surface models will improve our ability to generate a more 518 



 

 

realistic simulation of the responses of SOC storage to environmental changes (Zhang et al., 519 

2022). 520 

 521 

V. CONCLUSIONS  522 

(1) Based on a comprehensive global meta-data synthesis, we offer novel insights into the 523 

role of soil extracellular enzymes in mediating the response of SOC storage to N addition.  524 

(2) Our analysis demonstrates that N addition significantly enhanced SOC storage, with this 525 

enhancement strongly correlated with shifts in soil C-degrading EEAs. Specifically, we 526 

observed an increase in hydrolytic C-degrading EEAs and a decrease in oxidative C-527 

degrading EEAs following N addition, suggesting that soil microorganisms modulate the 528 

cycling of different C pools through distinct mechanisms.  529 

(3) The net effect of N addition on SOC storage is determined by the balance between these 530 

two types of C-degrading EEAs, with impacts varying across different ecosystem types.  531 

(4) These results highlight the profound effects of N addition on microbially mediated SOC 532 

storage in terrestrial ecosystems, emphasizing the importance of understanding these 533 

processes to predict SOC storage better under future climate change scenarios. 534 
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Figure S9 The distribution of relevant studies published over the past several years. 929 
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Table 1. Overview of the enzymes included in our meta-data synthesis. EC is the enzyme 931 

commission number classification for that enzyme or class of enzymes.  932 

Type Extracellular enzyme EC Target 

Hydrolytic  β-1,4-glucosidase 3.2.1.21 Cellulose degradation products 

 β-1,4-xylosidase 3.2.1.37 Hemicellulose degradation products 

 β-D-cellobiosidase 3.2.1.91 Cellulose degradation products 

Oxidative Peroxidase 1.11.1.7 Lignin and other complex compounds 

 Phenol oxidase 1.10.3.2 Lignin and other complex compounds 

 Polyphenol oxidase 1.14.18.1 Lignin and other complex compounds 

933 



 

 

 934 

Fig. 1. Global distribution of the sites included in this meta-data synthesis. The numbers in 935 

parentheses in the key are the number of observations for each ecosystem type. 936 



 

 

 937 

Fig. 2. Results of meta-data synthesis of the average effects (%) of N addition on (A) plant 938 

productivity, (B) soil characteristics, (C) C-degrading extracellular enzyme activities (EEAs), 939 

and (D) microorganismal biomass. Error bars represent 95% confidence intervals. Asterisks 940 

indicate statistical significance: * P < 0.05; ** P < 0.01; *** P < 0.001. The vertical solid 941 

grey line is the zero line, and the numbers on the right of each panel indicate the sample size. 942 

MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; Soil N, soil total 943 

nitrogen; SOC, soil organic carbon. 944 



 

 

 945 

Fig. 3. Model-averaged importance of the predictors of the effects of N addition on (A) soil 946 

organic carbon (SOC) storage, (B) hydrolytic C-degrading extracellular enzyme activities 947 

(EEAs), (C) oxidative C-degrading EEAs, and (D) oxidative:hydrolytic C-degrading EEA 948 

ratio. The importance value is based on the sum of the Akaike weights derived from the 949 

model selection using corrected Akaike’s information criteria. The cut-off was set at 0.8 to 950 

explore the most important variables. In this analysis, duration (year) was treated as a 951 

numeric variable. BND: background N deposition rate (g m–2 yr–1); MAP: mean annual 952 

precipitation; MAT: mean annual temperature; RR, response ratio; TN, total nitrogen. 953 

Ecosystem type: farmland, forest, grassland, and shrubland; Soil type: Alfisol, Aridisol, 954 

Entisol, Gelisol, Histosol, Inceptisol, Mollisol, Oxisol, Spodosol, Ultisol; Rate: N addition 955 

rate (g m–2 yr–1); Form: NH4
+-N, NO3

--N, NH4NO3, urea, and mixed fertilizer. 956 
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 958 

Fig. 4. Average effects (%) of N addition on (A) soil organic carbon (SOC) storage, (B) 959 

hydrolytic C-degrading extracellular enzyme activities (EEAs), (C) oxidative C-degrading 960 

EEAs, and (D) oxidative:hydrolytic C-degrading EEA ratio for various ecosystem types. The 961 

error bars represent the 95% confidence intervals. Asterisks indicate statistical significance: * 962 

P < 0.05; ** P < 0.01; *** P < 0.001. The vertical solid grey line is the zero line, and the 963 

numbers on the right of each panel indicate the sample size. (E) Relationships between 964 

different variables and the response ratio (RR) of SOC storage, hydrolytic C-degrading 965 

EEAs, oxidative C-degrading EEAs, and oxidative:hydrolytic C-degrading EEA ratio. MAP: 966 

mean annual precipitation; MAT: mean annual temperature; MBC, microbial biomass 967 

carbon; MBN, microbial biomass nitrogen; pH, background soil pH; SOC, background soil 968 

organic carbon; TN, background soil total nitrogen. Clay, background clay content expressed 969 

in %. 970 



 

 

 971 

 972 

Fig. 5. Relationship between the response ratio (RR) of soil organic carbon (SOC) storage to 973 

N addition and the responses of hydrolytic C-degrading extracellular extracellular enzyme 974 

activities (EEAs) (A, D), oxidative C-degrading EEAs (B, E), and the ratio of oxidative to 975 

hydrolytic C-degrading EEAs (C, F) to N addition across various ecosystem types. The 976 

regression lines indicate a significant relationship across all ecosystems (A–C) and within 977 

each ecosystem type (D–F), as determined by a mixed-effects meta-regression model with a 978 

95% confidence interval. The bubbles represent individual experiments included in the meta-979 

data synthesis, with the size of the bubbles being proportional to the model weights. 980 

 981 



 

 

 982 

Fig. 6. Structural equation models investigating multivariate effects on soil organic carbon 983 

(SOC) storage under nitrogen addition (χ2 = 7.39, df = 4, P = 0.12; R2 = 0.36). The orange and 984 

blue rectangles represent the significant positive and negative effects of N addition, 985 

respectively. The grey rectangles represent non-significant effects. Numbers in parentheses 986 

indicate the average effects (%) of N addition. Arrows indicate the hypothesized direction of 987 

causation, with red and blue arrows representing significantly positive and negative 988 

relationships, respectively. Grey dashed arrows indicate non-significant relationships. 989 

Numbers next to arrows are standardized path coefficients. BG, β-1,4-glucosidase; BX, β-990 

1,4-xylosidase; CBH, β-D-cellobiosidase; EEA, extracellular enzyme activity; MBC, 991 

microbial biomass carbon; PER, peroxidase; PO, phenol oxidase; PPO, polyphenol oxidase. 992 

Fungi:bacteria is fungal:bacterial biomass ratio. Asterisks indicate statistical significance: * P 993 

< 0.05; ** P < 0.01; *** P < 0.001. 994 
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