

This is a repository copy of *Strigolactones optimise plant water usage by modulating vessel formation*.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/id/eprint/225418/</u>

Version: Supplemental Material

Article:

Zhao, J., Shi, D., Kaeufer, K. et al. (11 more authors) (Accepted: 2025) Strigolactones optimise plant water usage by modulating vessel formation. Nature Communications. ISSN 2041-1723 (In Press)

This is an author produced version of an article accepted for publication in Nature Communications, made available under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Supplementary Information for

Strigolactones optimise plant water usage by modulating vessel formation

Jiao Zhao^{1,*}, Dongbo Shi^{1,2,3,*,⊠}, Kiara Kaeufer^{1*}, Changzheng Song¹, Dominik Both¹, Anna Lea Thier¹, Hui Cao², Linus Lassen², Xiaocai Xu⁴, Yuki Hamamura⁵, Laura Luzzietti¹, Tom Bennett⁶, Kerstin Kaufmann⁴, Thomas Greb^{1,⊠}

Affiliations:

¹Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
²Genetics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
³RIKEN Center for Sustainable Resource Science, Yokohama, Japan
⁴Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
⁵Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
⁶School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK

[⊠]correspondence: <u>tohaku.seki@riken.jp</u>, <u>thomas.greb@cos.uni-heidelberg.de</u>

*These authors contributed equally to this work.

Supplementary Fig. 1: FACS gate settings for nucleus purification.

a, Gate setting and dot plot of the FACSAria cell sorter for nucleus purification and 10x Chromium application. Nuclei were purified through Gate P1, P7 and P2 in a sequential manner. The percentages of each population compared to the parent population are indicated. FSC: forward scatter; SSC: side scatter; 405-C: fluorescence excited by 405 nm laser (hoechst nucleus staining); -A: area; -H: hight; -W: width. **b–c**, Gate setting and dot plot of the FACSAria cell sorter for nucleus purification and VASA-seq application. Nuclei were purified through Gate P1, P7 and P2 in a sequential manner. Individual P2 nuclei were sorted into single wells of three 384-well plates as 'nuclei from the whole hypocotyl' (**b**). (**c**) P2 nuclei were further gated by fluorescence intensity, and individual GFP-positive/RFP-negative (P4), GFP-negative/RFP-positive (P5), or GFP-positive/RFP-positive (P6), nuclei were collected into single well of three 384-well plates as 'cambium nuclei'. *PXY*_{pro}:*H4-GFP*;*SMXL5*_{pro}:*H2B-RFP* plants were prepared independently for (**b**) and (**c**). **d**, Dot plot of the FACSAria cell sorter obtained from wild type plants using the same gate settings as used in (**c**) as a control. **e**, Histogram of hoechst signals of P2 nuclei demonstrating nucleus integrity.

Supplementary Fig. 2: Activity of transcriptional or translational reporters for vascular cluster-specific genes identified in the 10x snRNA-seq dataset.

a-h, Transcript abundance in the UMAP plot (left; see Fig. 1 for annotation) and maximum intensity projection of confocal images obtained from hypocotyl cross-sections of plants carrying promoter reporter transgenes (right): Xylem parenchyma a and developing vessel cluster (**a**, *AT1G14190*), xylem parenchyma b cluster (**b**, *PERICYCLE FACTOR TYPE-A* (*PFA*)1/AT1G31050, **c**, *AT5G10580*, **d**, *MYB48*/AT3G46130), unknown #3 cluster (**e**, *AT1G58225*, **f**, *PLANT NATRIURETIC PEPTIDE A (PNP-A)/AT2G18660*), developing phloem cluster (**g**, *TETRASPANIN (TET)5/AT4G23410*), phloem parenchyma (**h**, *CYTOCHROME P450*, *FAMILY 83*, *SUBFAMILY A (CYP83A)1/AT4G13770*). GFP signals are shown in green. Cell walls were stained by Direct Red 23 or Renaissance SR2200 and are shown in magenta. Scale bars represent 100 μm.

Supplementary Fig. 3: Detailed gene clustering analysis based on the 10x snRNA-seq dataset taking the pseudotime trajectory analysis into account.

Genes were categorised in 28 modules based on the detected expression patterns in cambiumrelated cells. The aggregate transcript abundance of all the genes categorised in each gene module is shown in each UMAP plot and the ID number of the gene module is labelled at the bottom of each UMAP plot. Transcript abundance is shown in a colour-scale by the percentage of the abundance in the cell with the highest value. See Fig. 1 for UMAP annotation. See Supplementary Data 2 for gene lists of each module.

Supplementary Fig. 4: Identification of hypocotyl cell types using VASA-seq.

a, UMAP plot of VASA-seq analysis using 1,559 hypocotyl nuclei organised in 19 clusters obtained through unsupervised clustering. **b**–**c**, Dot plots showing the expression of tissue-specific genes identified by 10x Chromium analysis (Supplementary Data 1, 2) (**b**) and previously characterised tissue-specific marker genes (**c**), validating the annotation of cluster identities. The size of circles represents the percentage of cells with expression (percent expressed), whereas the colour indicates the scaled average expression (average expression). XP: xylem parenchyma; CSC: cambium stem cells; devP: developing phloem; CC: companion

cells; PP: phloem parenchyma; EPI-C: epidermis-cortex. Source data are provided as a Source Data file.

Supplementary Fig. 5: Nucleus fluorescence detected during VASA-seq analyses and CSC-specific marker genes.

a, UMAP plots showing the fluorescence intensity of nuclei collected from PXY_{pro} :H4-GFP;SMXL5_{pro}:H2B-RFP plants captured during the sorting and excited by 488 nm (GFP, left) or 561 nm (RFP, right) laser light, respectively. **b**, Venn diagram showing the overlap of cluster-specific marker genes identified in the 10X_CSC, VASA_CSC and VASA_dividing cell clusters. **c**, Violin plot showing the Hoechst nuclear fluorescence signal excited by 405 nm laser light for each nucleus cluster. Source data are provided as a Source Data file.

Supplementary Fig. 6: Activity of transcriptional reporters and hybridization chain reaction (HCR)-based *in situ* hybridization for cambium-related genes identified in 10x and VASA snRNA-seq dataset.

a-h, Transcript abundance in the UMAP plot of the VASA-seq dataset (top; see Supplementary Fig. 4 for annotation) and maximum intensity projection of confocal images (bottoms) obtained from hypocotyl cross-sections of plants carrying promoter reporter transgenes (GFP, shown in green) and/or *in situ* hybridization (shown in red) of each gene listed below. **a**, *INNER CENTROMERE PROTEIN (INCENP)/AT5G55820*; **b**, *THAUMATIN-LIKE PROTEIN (ATLP)1/AT1G18250*; **c**, *AT4G16970*; **d**, *HEAVY METAL ASSOCIATED PROTEIN (ATHMP)25/AT3G06130*; **e**, *FORMIN HOMOLOGY (FH)2/AT3G07540*; **f**, *AT2G01610*; **g**, *AT1G29980*; **h**, *AT4G22730*. Cell walls were stained by Direct Red 23 and Renaissance SR2200 and are shown in magenta and blue, respectively. Scale bars represent 100 μm.

Supplementary Fig. 7: Expression of phytohormone-inducible genes in cambium-related clusters identified in the VASA-seq analyses.

a–g, Violin plot (top) and UMAP visualisation (bottom) of transcript abundance of 198 indole 3 acetic acid (IAA; auxin)-inducible genes (**a**), 60 zeatin (CK; cytokinin)-inducible genes (**b**), 512 abscisic acid (ABA)-inducible genes (**c**), 34 1-amino-cyclopropane-1-carboxylic acid (ACC; ethylene precursor)-inducible genes (**d**), 28 brassinolide (BL; brassinosteroid)-

inducible genes, 522 brassinolide (BL; brassinosteroid)-inducible genes (e), methyl jasmonate (MJ; jasmonate)-inducible genes (f) and 40 gibberellic acid 3 (GA)-inducible genes (g) curated from Nemhauser et al., 2006^{24} in the cambium-related cell clusters. The result of the Steel-Dwass test for multiple comparisons is indicated by letters (p < 0.05). Gene lists used in this analysis can be found in Supplementary Data 3. g, A close-up of the UMAP generated during VASA-seq cluster identification (Supplementary Fig. 4) is shown as a reference. Source data are provided as a Source Data file.

Supplementary Fig. 8: Expression of SMXL7pro:SMXL7d53-GR DEX-induced genes and

GR24^{4DO}-suppressed genes in 10x snRNA-seq dataset. Transcript abundance of $SMXL7_{pro}$: $SMXL7^{d53}$ -GR DEX-induced genes and GR24^{4DO}suppressed genes is shown in UMAP visualisation (top) and violin plot (bottom). Statistical groups determined by the Steel-Dwass test for multiple comparisons are indicated by letters (p < 0.05). Source data are provided as a Source Data file.

Supplementary Fig. 9: Activity of transcriptional reporters for genes involved in SL signalling in hypocotyl sections and expression patterns detected in snRNA-seq datasets. **a**–e, Maximum intensity projection of confocal images obtained from hypocotyl cross-sections of four week-old plants carrying $SMXL6_{pro}:mTurquoise2-ER$ (**a**), $SMXL7_{pro}:mTurquoise2-ER$ (**b**), $SMXL8_{pro}:mTurquoise2-ER$ (**c**), $D14_{pro}:mTurquoise2-ER$ (**d**), or $MAX2_{pro}:mTurquoise2-ER$ (**e**) transgenes, respectively (left). mTurquoise2 signals are shown in green. Cell walls were stained by Direct Red 23 and are shown in magenta. Magnified images of white squared regions are shown on the right of each figure. Yellow arrows indicate developing vessel elements. Scale

bars represent 100 μ m on the left images, and 20 μ m in the magnified images on the right. White lines indicate the corresponding domains of cambium and xylem. Xy: xylem; C: cambium; Ph: Phloem; P: Periderm. Transcript abundance of each gene in the UMAP plot of 10x and VASA-seq datasets are shown on the right, respectively. Abbreviations for annotated clusters are XP: xylem parenchyma; CSC: cambium stem cell; devP: developing phloem; PP: phloem parenchyma. See Fig. 1 and Supplementary Fig. 4 for detailed annotation.

Supplementary Fig. 10: Expression patterns of SL biosynthetic genes detected in snRNA-seq datasets.

Transcript abundance of each SL biosynthetic gene in the UMAP plot of 10x and VASA-seq dataset are shown on the right, respectively. *AtD27*: Arabidopsis *DWARF27* (*AT1G03055*); *MAX3* (*AT2G44990*); *MAX4* (*AT4G32810*); *MAX1* (*AT2G26170*); *CLAMT*: Carlactonoic Acid Methyltransferase (*AT4G36470*); *LBO*: Lateral Branching Oxidoreductase (*AT3G21420*). See Fig. 1 and Supplementary Fig. 4 for detailed annotation.

Supplementary Fig. 11: Identification of hypocotyl cell types applying 10x Chromium on wild type and *d14* mutants.

a, UMAP plot of snRNA-seq analysis using in total 1,506 nuclei collected from wild type and *d14* mutants organised in 15 clusters obtained through unsupervised clustering. **b**, UMAP plot colour-coded by genotype. **c**, Dot plot showing the expression of tissue-specific genes identified by 10x Chromium analysis (Supplementary Data 2,, Supplementary Data 3). The size of the circles represents the percentage of cells with expression (percent expressed), whereas the colour indicates the scaled average expression (average expression). Abbreviations for annotated clusters are devV: developing vessel; XP: xylem parenchyma; CSC/X: cambium stem cell/xylem; CSC/P: cambium stem cell/phloem; devP: developing phloem; CC:

companion cell; PP: phloem parenchyma; devC: developing cortex; EPI: epidermis. **d**, **f**, **h**, Transcript abundance of the *PXY*, *MP* and *VND7* genes in the UMAP plot shown in (**a**). **e**, **g**, **i**, Hypocotyl cross-sections from plants carrying $PXY_{pro}:ECFP-ER$ (**e**), $MP_{pro}:EYFP-ER$ (**g**) or $VND7_{pro}:mTurqouise2-ER$ transgenes (e, g: wild type; i: *d14*) (**i**). Arrows indicate developing vessel elements. Scale bar represents 50 µm. Source data are provided as a Source Data file.

Supplementary Fig. 12: Histological analysis of *max1*, *brc1* mutants and higher order of *max2*, *smxl6*, *smxl7* and *smxl8* mutants.

a–**b**, Toluidine blue-stained hypocotyl cross-sections from five week-old wild type (**a**) and *max1* (**b**) mutant plants. **c**, Quantification of the vessel element numbers per section, the average area of individual vessel elements, the total vessel area per section and the ratio between the vessel element area and the total xylem area in different genotypes. n=9 (wild type) and n=8 (*max1*). **d**, **e**, Toluidine blue-stained hypocotyl cross-sections from five week-old wild type (**d**) and *brc1* (**e**) plants. **f**, Quantification of vessel elements per section comparing wild type and *brc1* plants. n=11 (wild type) and 10 (*brc1*). *p* value was determined by the two-sided Welch's t-test (**c**, **f**) and asterisks indicate p < 0.01. **g**, **h**, Toluidine blue-stained hypocotyl

cross-sections from five week-old wild type (**g**) and *kai2* (**h**) plants. i, Quantification of vessel elements per section comparing wild type and *kai2* plants. n=15 for each genotype. *p* value was determined by the two-sided Welch's t-test. This assay was conducted in parallel with the Fig. 3e vessel element analysis, and both share the same wild type data. **j**, Toluidine blue-stained hypocotyl cross-sections from five week-old wild type (WT), *max2* and higher order mutants in various combinations. Scale bar represents 50 μ m (**a**, **d**, **j**) or 100 μ m (**g**), respectively. **k**, Quantification of the ratio between the vessel element area and the total xylem area in each mutant. n=6 (wild type), 5 (*max2*), 10 (*max2;smxl6*), 8 (*max2;smxl7*), 8 (*max2;smxl8*), 6 (*max2;smxl6;7*), 12 (*max2:smxl6;8*), 13 (*max2;smxl7;8*), and 7 (*max2;smxl6;7;8*) plants. Statistical groups are indicated by letters and were determined by a one-way ANOVA with post-hoc Tukey-HSD (95 % CI). Source data are provided as a Source Data file.

Supplementary 13: Histological analysis of the GR24^{4DO} effect on vessel formation in WT, *d14*, and *max1* mutants.

a, **b**, Appearance of four week-old plants after application of 2 μ M acetone (a) or GR24^{4DO} (b) in wild type, *d14*, and *max1* mutants. Scale bar represents 100 μ m. The cross sections were stained with 0.02 % Basic Fuchsin supplemented in ClearSee to stain lignified vessel elements and observed by using 561 nm laser light. Lignified vessel elements were captured and displayed in magenta. The peripheral periderm was stained as well due to suberin deposition. **c**–**e**, Quantification of vessel elements per section (c), mean of individual vessel element area in distinct sections (d) and vessel area / xylem area ratio (e) comparing plants treated with 2 μ M acetone and GR24^{4DO}. n=6 (Mock-treated wild type), 8 (GR24^{4DO}-treated wild type), 5 (Mock-treated *d14*), 7 (GR24^{4DO}-treated *d14*), 5 (Mock-treated *max1*), 8 (GR24^{4DO}-treated *max1*) plants. Asterisks indicate *p*<0.05 determined by the two-sided Welch's t-test. *p* values and source data are provided as a Source Data file.

Supplementary Fig. 14: Effect of altered SL-signalling on water usage and stomatal and drought response vessel conductance of elements a, Pot weight changes when growing wild type (WT), d14, max2 and smxl6;7;8 plants during water deficiency treatments. Measurements were analysed by t-test at each timepoint comparing mutant genotypes to wild type. Asterisks indicate significance (p < 0.01, source Dataset). n=109 (WT), n=111 (d14), n=109 (max2), n=108 (smxl6;7;8). Results from three independent experiments are included. b, Quantification and comparison of stomatal conductance found in wild type, d14, max2 and smxl6;7;8 plants under well-watered conditions. n=18 (wild type, d14 and smxl6;7;8), n=19 (max2) and 12 days (12 D) after initiating water deficiency treatments n=18 (wild type and d14), n=19 (max2), n=17(smxl6;7;8). Conductance was measured on three leaves per plant. Plot shows average conductance of the three leaves per plant. c, Stomatal conductance measurement in WT, brc1, d14;smxl6;7;8, and max2;smxl6;7;8. Conductance was measured on three leaves per plant. Plot shows average conductance of the three leaves per plant. n=15 plants each. A p value of twosided Welch's t-test is shown. d, Xylem vessel of four-week old WT and d14 grown under well watered control conditions (left) and subjected to a two-week water deficiency treatment (right) is shown. Asterisks indicate stress related vessels, appearing upon water deficiency. Scale bar indicates 40 µm. e, Quantification of the number of stress-related vessel elements in WT and d14. n=19 plants (WT), n=22 plants (d14). p=0.019 (two-sided Welch's t-test). Statistical groups are indicated by letters and were determined by a one-way ANOVA with post-hoc Tukey-HSD (95% CI). Source data are provided as a Source Data file.

Supplementary Fig. 15: Stomata density analysis in SL-signalling mutants and upon auxin signalling modulation in vascular tissues. a, Quantification and comparison of stomatal conductance found in wild type, d14, and $WOX4_{pro}:D14/d14$ plants under well-watered conditions, n=16 (wild type), n=15 (d14 and $WOX4_{pro}:D14/d14$), and 12 days (12 D) after initiating water deficiency treatments, n=17 (wild type), n=15 (d14 and $WOX4_{pro}:D14/d14$). Conductance was measured on three leaves per plant. Plots show average conductance of the three leaves per plant. **b**, Stomatal density (stomata per mm²) comparing genotypes shown in (**c**). n=17 (wild type) n=15 (d14 and $WOX4_{pro}:D14/d14$

obtained from three independent experiments. **c**, Photomicrographs of the abaxial leaf surface of the same plants used for the 12 D water deficiency stomatal conductance measurement of wild type, *d14*, and *WOX4*_{pro}:*D14/d14* plants. Size bar indicates 50 µm. **d**, Photomicrographs of the abaxial leaf surface of wild type, *d14*, *max2*, and *smxl6*;7;8. Same plants used for stomatal density analysis as for the 12 D water deficiency stomatal conductance measurement. Size bar indicates 50 µm. **e**, Stomatal density (stomata per mm²) comparing genotypes shown in (**d**). n=16 (wild type and *smxl6*;7;8), n=18 (*max2*), n=17 (*d14*) obtained from three independent experiments. **f**, Quantification of cuticle thickness of WT and *d14*. An average of three measurements from one image is shown. n=13 images from four plants (wild type), n=24 images from six plants (*d14*). A *p* value of Welch's t-test is shown. **g**, **h**, Photomicrographs and stomatal density on the abaxial leaf surface of mock- or DEXx-treated plants carrying a *PXY*_{pro}:*GR-MP*Δ*III*/*IV* transgene. n=14 (mock), n=16 (DEX) plants obtained from three independent experiments. *p* value from two-sided Welch's t-test is shown. Statistical groups are indicated by letters and were determined by a one-way ANOVA with post-hoc Tukey-HSD (95 % CI). Size bar indicates 50 µm. Source data are provided as a Source Data file.

Supplementary Fig. 16: Primary vessel development in d14 mutants and cambiumderived vessel formation in ABA signalling- and stomata-related mutants.

a, Morphology of xylem strand in wild type and d14 roots five days after germination. Xylem strands were visualised by Basic Fuchsin staining. The proportion indicates the frequency of plants observed with two metaxylem and two protoxylem strands. The scale bar represents 20 μ m. **b**–**e**, Toluidine blue-stained hypocotyl cross-sections from five week-old wild type (WT, **b**) and d14 (**c**), ABA biosynthesis mutant aba2-11 (**d**) and stomata-related mutants (**e**)

including *epidermal patterning factor 1 (epf1), epf2, epf1;epf2*, and *too many mouths (tmm)*. Scale bar represents 50 μ m. **f**–**i**, Quantification of the vessel element numbers per section (**f**), the average area of individual vessel elements (**g**), the total vessel area per section (**h**) and the ratio between the vessel element area and the total xylem area (**i**) in each mutant shown in (**b**–**e**). n=5 (wild type), 6 (*d14*), 6 (*aba2*), 5 (*epf1*), 5 (*epf2*), 5 (*epf1;epf2*) and 6 (*tmm*). Statistical groups are indicated by letters and were determined by a one-way ANOVA with post-hoc Tukey-HSD (95 % CI). Source data are provided as a Source Data file.

Supplementary	y Table 1:	Oligo	sequences	used	in	this	study
---------------	------------	-------	-----------	------	----	------	-------

I	Primers	5' to 3' sequence
Oligos for cloning	SMXL6 promoter	AACAGGTCTCAACCT CTTCTGAAACTTAGGGTTTTTCG AACAGGTCTCATGTT CGCCGGCAAAAAAAAGTC
construction	SMXL6 terminator	AACAGGTCTCACTGC CATGCATATATATAAATGAGGTAATAAT AACAGGTCTCATAGT CATTCAAAACAAGATATGAACATC
	SMXL7 promoter	AACAGGTCTCAACCT TGTGACAGTTTGGATTTGTTGAG AACAGGTCTCATGTT CGTCGCCGGTTTAGTTA
	SMXL7 terminator	AACAGGTCTCACTGC TTATTGTTGTTGTAATTTTATG AACAGGTCTCATAGT ATGGAGGTAATGCAAATCCTC
	SMXL8 promoter	AACAGGTCTCAACCT TTCAAGGAACTCCGACGAC AACAGGTCTCATGTT CGCCGACGACCATATATAAC
	SMXL8 terminator	AACAGGTCTCACTGC GTTAAAGAGAACTTTATATGGA AACAGGTCTCATAGT CTAACACATCCTCTAACTATC
	D14 CDS	TAACATATAGCCATG AGAGCTGGTTTAAGTACGAT TCGCTAGCATGGATC TCACCGAGGAAGAGCTCG
	SMXL7 CDS	AACAGGTCTCAGGCTCAATGCCGACACCAGTAACCAC AACAGGTCTCACTGAGATCACTTCGACTCTCGCCGGA
SMXL7 ^{d53}	SMXL7 ⁴⁵³ mutagenesis	CTTGACGATAGATTCACAGATTACATTGCTGGC GCCAGCAATGTAATCTGTGAATCTATCGTCAAG
	AT1G14190 promoter	AACAGGTCTCAACCT AACGTAAGTTTTTCTTGTTTTCTCCTG- GACTG AACAGGTCTCATGTT GTCAATCTTGATTTTGAGATTGAGAGA- CAGAGTTTTG
	AT5G10580 promoter	AACAGGTCTCAACCT TCAAACTTAAAATAATACAAAACTCA- TATAATAAAAAAAGGTAAAGAC AACAGGTCTCATGTT TTGATCTCTCCTTTTCTATGTATATAATC- TTCTCTTTC
	<i>MYB48</i> promoter	AACAGGTCTCAACCT AAATAGTGTTACTTTGCTCTTAACCATT- G GTAGGGTCTCTTTATTGTGATGTCAC AACAGGTCTCAATAA AcAGACCCTACATTCTCAATAGGATAAT- CC AACAGGTCTCATGTT CTCTCTGTCTCTTTAGCTCTTCTTTATC
	AT1G58225 promoter	AACAGGTCTCAACCT GTACAAACGCTTAAGCATGCTGAGTC AACAGGTCTCATGTT TTTGATACTAAGCTCTACTACTAATTTC- TTTGTTCTG
	PNP-A promoter	AACAGGTCTCAACCT TACCCGCAACCTCCATTATAACATTCAA- GAAC AACAGGTCTCATGTT TTTCTTTAACTTGTTTGTGAAATAACGA- AGCAAAGGG
	TET5 promoter	AACAGGTCTCAACCT AGGGATAGCTGAGTTCATAGCCACTTTC AACAGGTCTCATGTT TTTCCTTCTCTCTCTCTTTTTATTTGTTA- CTAGATGATTCTTTGAATC

	CYP83A1 promoter	AACAGGTCTCAACCT TCAATACTCAAGTGTTTGGTGTTAGC- TGTAGATAG AACAGGTCTCATGTT TCTTAGTTGTTACTACTTTTGAGTGTTA- CATTGAACAGC
	INCENP promoter	AACAGGTCTCAACCT GAAAGGAAAATTTATAAATGCAATGA- CTGCTGTACCA AACAGGTCTCATGTT CGCCGACGACCTACTCTAGAGATAGAG
	ATLP-1 promoter	AACAGGTCTCAACCT ATTCAGCATTTAATGGAATTGGCTACTT- GTATGTC AACAGGTCTCATGTT TGATGGGAGCTCTACTGAGCAAGAG
	AT4G16970 promoter	AACAGGTCTCAACCT GCTTTGAACAACTACCCATCAGTAAAT- TCTC AACAGGTCTCATGTT TGCAAATGCTGTGAATCTGAGGGAG
	ATHMP25 promoter	AACAGGTCTCAACCT ACGAATCCAAAGGGAAAAGATGGTA- ACAC AACAGGTCTCATGTT TTTTCCTCAACTCAAAATCTCTTTCTCT- CGC
	FH10 promoter	AACAGGTCTCAACCT CTGAAGACAACTCATTTAAGTGACTA- CCTTAAGAA AACAGGTCTCATGTT TTTTGGGGGTTTTCTTGTAGAGATTTTG- TGTTC
	AT2G01610 promoter	AACAGGTCTCAACCT CCAATATTCATTCAAAATCTAGGCTCA- TTGGT AACAGGTCTCATGTT GATTTTTAGAGGAGTGATTGGCGGTTTA- TGTA
	AT1G29980 promoter	AACAGGTCTCAACCT TTTTAACGGCCCAATATGCTTTTCTT- CTATTATC AACAGGTCTCATGTT TTCTTCGTCTTCCTCAAGATATCTAAA- TGCTCTC
	AT4G22730 promoter	AACAGGTCTCAACCT GTAGCATAATGTGGATATCCTTCTAGA- GACTAGAG AACAGGTCTCATGTT TGAATTTTCTTGTCTCTCTGTTTAGAA- ATTACTGAGC
Oligos for genotyping	smxl6-4 (SALK_050363)	AGCCAGAGAAAGACTCGAACC TCCGAAATTAAGCTCGATGTG
	smxl7-3 (WiscDsLox339C04)	GATCAAGAAACGAACGCTGAG CGTATTAGCCTCTCGGATTCC
	smxl8-1 (SALK_025338)	GAATCACAAATTCTGCATGGC CTGACGAAGCTCCACTTTCAC
	<i>d14-1</i> (WiscDsLoxHs137_07E)	AAGAATATGGCAAGTGCAAC GATGATTCCGATCATAGCG
	max2-1 (tilling)	GTATTCATTCGAGGAAGAACAC CATCCCTTAAGTTTGGGATTC
	max1-1	CCACTGATAATAATAGCAGAAG GATAAATCCATCTTGAGTTGTG
	<i>brc1-2</i> (SALK_091920)	TGTAGAACAACCCACTGAGCC ATCGATGGTGGTGCATTAGTG

	<i>epf1-1</i> (SALK_137549)	TTTTTCATTATTCGCTTAAAGTGTAG AGCAAAAGGAAAACAAAAC
	<i>epf2-3</i> (SALK_047918)	TAAAACCTCTGCCTCAACCAG TTACCGGTATGATGGAGATGG
	tmm-1 (SALK_011958)	ATGGCACGATATGAATTCTTCCGCCAA ACTAGATATTAGCATAAAAATGAAATTAGG
	aba2-11	TTGATGTGACAGGCTTTTGG TCTTGCAGATCAACAATGCAG
Oligos for qRT-PCR	EF1-a	TGAGCACGCTCTTCTTGCTTTCA GGTGGTGGCATCCATCTTGTTACA
	IRX3	TCCGGCGTGTAGACCTTGCTA GGGAACCACTTGGGGAACTGA
	VND6	GAAAATGGACCGCCTCATGA TCATCGTGGTTAGCTTCTTCTTGA
	VND7	TTCGAAACGCAGTCGTATAATCC ATTAGCTTCGACCTCATTATAGCTTTG
Oligos for HCR- <i>in situ</i> hybridization	ATHMP25	P1GCTCGACGTaaTTGCTCTGAGTCAATCTTGGTCGTGGCTCGACGTaaGATTGTTGTTACCCTTTGGAGCTCCGCTCGACGTaaCATTACTGTTACCTCCACCTCCACCGCTCGACGTaaCGGAAACCTCCCGAAACTCCTCCAGGCTCGACGTaaCGGAAACCTCCCGAAACTCCTCCAGGCTCGACGTaaCGTGTTGCTGCATTTGCATAGGATCGCTCGACGTaaCCTTGCGTACATCATTGGTTGGAACGCTCGACGTaaGGATTCGGATATTGGTGGGAGCTTTGGCTCGACGTaaCATTCCCATAAGGTGGAGGATATGGP2TACGCTCCCAGAGACAGTCACTTTCGAATCCTTTGCAACAACTGATTGGCCATTTGGGACTGATTaaTCCTTTGCAACAGATTCAGTTGCTGGCCCATCTTTGGaaTCCTTTGCAACAAGCGTTCATCATCATCGTTGTGAGCAaaTCCTTTGCAACATCTGTGGTCCTCCACCTCCCATGGaaTCCTTTGCAACACCGCCGCTAAATATGCTGTTGTTGTGTGTGTGTGTGTGTG
	FH10	P1 GCTCGACGTaaGAAGATGACGTAGCAAAGTCCGTCC GCTCGACGTaaGAGAGGCCGGAGAGGCGTATGATAAG GCTCGACGTaaGAGAATGTGGAAGGAGCTAGATAAG GCTCGACGTaaTACGGGAAGGAGTTTGCGGTTTAGG GCTCGACGTaaTACGGGAAGGAGTTGCGGTTAAGG GCTCGACGTaaACATCGGAGGTAGAAGGAGCTACAG GCTCGACGTaaACATCGGAGGTAGAAGGAGCTACAG GCTCGACGTaaACATCGGAGGTAGAAGGAGCTACAG GCTCGACGTaaACCAGCTATAGACGCGAGAGGCGAG GCTCGACGTaaACCAGCTATAGACGCGAGAGGCGAG GCTCGACGTaaCCAGCTATAGACGCGAGAGGCGAG GCTCGACGTaaCCAGCTATAGACGCGAGAGGCGAG GCTCGACGTaaCTATTGTTCCTTACTGTTCTCTCC GCTCGACGTaaCTCTCTGTTGAGTTGTATCAAGCTC GCTCGACGTaaCTCTCTGTTGAGTTGTATCAAGCTC GCTCGACGTaaCTGGTCACCGACTCCCTGAATTTCC GCTCGACGTaaCTGGTCACCGACTCCCTGAATTTCC GCTCGACGTaaCTCACAAGCAGCCTGTATAACGCTG

	P2 AGCGCAGGATAGCAGGGAGAAGATGaaTCCTTTGCAACA AGCTTGAAGAAGGTGACGGCGACTGaaTCCTTTGCAACA GAGCTGTAAAGTGGGAAGAACGGCGaaTCCTTTGCAACA CGGCGGAGATAGCAGGAATAAGGAGaaTCCTTTGCAACA CTTGGATTCATCTTTGAAATGACTGaaTCCTTTGCAACA GAAGTGACGACGTTGCCGAGGTAGAaaTCCTTTGCAACA TACGGGCAGGTAATGGCGGGAGAGGaaTCCTTTGCAACA ATTGATTCTCCGGTCTCGTGATTCTaaTCCTTTGCAACA CATTCTCAGCGACTGCCCACCATATaaTCCTTTGCAACA GGCGTGGTGGAAACTGAAGAGTACAaaTCCTTTGCAACA GAAGGTAACAGCAGCAGCGGCCGAaaTCCTTTGCAACA GAAGGTAACAGCAGCAGCGGCCGAaaTCCTTTGCAACA CATCCCTCAGCAGCAGCAGCGGCCGAaaTCCTTTGCAACA ATCTCCTCAGCAGCAGCAGCGGCCGAaaTCCTTTGCAACA CACCGTAGTCCAACTCTGCAGATTTaaTCCTTTGCAACA CACCGTAGTCCAACTCTGCAGATTTaaTCCTTTGCAACA
AT2G01610	P1 GCTCGACGTaaCTGAGATTGATCCGAATATCAAGAG GCTCGACGTaaAAAATCTAGATCGTTGGTTGTTGTAG GCTCGACGTaaAGAGTGACGTGAAGCAGACGTCTGG GCTCGACGTaaCGGCAGACGTGAGAGCATGGCGCGGCAC GCTCGACGTaaCGGCAGAGCGTGAGAGTTTGGAGAG GCTCGACGTaaCAGTCTCGGATTACGGCGGAAGCTG GCTCGACGTaaTTGACGGAGAGATCCTCTCATCTCG GCTCGACGTaaTCACCGACCTCCGAGCTGCCGTGC GCTCGACGTaaTCACCGACCTCCGAGCTGCCGTGC GCTCGACGTaaTCAATGCTGCACTCATCCACGTCTG GCTCGACGTaaTCAATGCTGCACTCATCCACGTCTG GCTCGACGTaaATTACTCGTTAGCCTCTTCACTTCC P2 TGTTTGGTCGTGGAAGCAAACGGACaaTCCTTTGCAACA AGAGTAGCGTTGCAGCTGGTAGCCGATCCTTTGCAACA TGTCTTGAACGGCAGAGGCGTAGCCGATCCTTTGCAACA TTGGCTTGTGAAAGTGAAACGCCGAaaTCCTTTGCAACA TTGGCTGTGGAAGGAAACGCCGAaaTCCTTTGCAACA TTGGCTGTGGAAGGAAACGCCGAaaTCCTTTGCAACA TCCACCGCGTCTCGACGTCGACGACCGTCGTTGCAACA ACGTTACTCATCTGGACGTCGCGTaaTCCTTTGCAACA ACGTTACTCATCTGGAACTCATGTCGCGTCGAACACTTTGCAACA ACGTTACTCATCTGGAACCTAAACGCCGAaaTCCTTTGCAACA ACGTTACTCATCTGGAACCTAAACGaaTCCTTTGCAACA ACGTTACTCATCTGGAACCTAAACGACGCCGTAGTCTTTGCAACA ACGTTACTCATCTGGAACCTAAACGACCCTTTGCAACA ACGTTACTCATCTGGAACCTAAACGACTCTTTGCAACA ACGTTACTCATCTGGAACCTAAACGACTCTTTGCAACA ACGTTACTCATCTGGAACCTAAACGACTCTTTGCAACA ACGTTACTCATCTGGAACCTAAACGACTCTTTGCAACA CGAGCCGATCACAACGGTCCTCTATCTTGCAACA
AT1G29980	P1 GCTCGACGTaaAACGGAGACACTGAGCAGAAACAAG GCTCGACGTaaTAAACCATCCTCAACCGCCGGAGAC GCTCGACGTaaACTCCGTCGTCAGGAAAGCCACTTG GCTCGACGTaaGGACAATGAGGATCATTCCGCCTTG GCTCGACGTaaGGACAATGAGGATCATTCCGCCTTG GCTCGACGTaaGCCCACCCTTGAACGTGACTGAATAG GCTCGACGTaaGTCCCACCCTTGAACGTGACTGAATAG GCTCGACGTaaGTCCCACCCTTGAACGCTATAAAGC GCTCGACGTaaGGCCCACCCTTGAACGCTATAAAGC GCTCGACGTaaTCAACAAACCGAACCGCTCTGTTCG GCTCGACGTaaTCAACAAACCGAACCGCTCTGTTCG GCTCGACGTaaTCAACAAACCGAACCGCTCTGTTCG GCTCGACGTaaTGCTGAGAGTAGCTCGACGGCTCG GCTCGACGTaaCGCCTAAATAGCCAATGGTTCCTTGC GCTCGACGTaaCAGCCTTAGCCGTGAAATTCAAACC GCTCGACGTaaCAAGGAGCTCATATCATCAGTCCTC P2 GTCGTCAGCGACGGCGACTAAGACGaaTCCTTTGCAACA CTTGGGATATCGGATGGTCCGTCAGaaTCCTTTGCAACA CTTGGGATATCGGATGGTCCGTCAGaaTCCTTTGCAACA CTAATCGGACGGCGTGACGGCCACGTGaaTCCTTTGCAACA

	AAATCAACGTTCCGCGACGCCAGCAaaTCCTTTGCAACA TTCCGCTTCAAACGCCCACGCATAAaaTCCTTTGCAACA AATGTCATCGATGATTGGTCCACAAaaTCCTTTGCAACA CCCTTTGGAACAGAGAAGTGATCCGaaTCCTTTGCAACA CAACCATTTGTGAAATAATTCCTTCaaTCCTTTGCAACA ACCTGCGTGGCCTAGTGAGAAAGACaaTCCTTTGCAACA AAGTTCTGCGCCTGATCACCTGCGAaaTCCTTTGCAACA CACTGTAGAACGCAACTCTGGTTCGaaTCCTTTGCAACA
AT4G22730	P1 GCTCGACGTaaAGGATCAGTAACGTGGCACATAAGG GCTCGACGTaaCATGGATCAGCTCTGCATTTCCTCGAAC GCTCGACGTaaCATGGATCGCCGTTAAACGTCCATG GCTCGACGTaaGATTGAGCTCTGCAACGCCGGGAGAC GCTCGACGTaaGATATCTGCCGGAATCTCACCAGAG GCTCGACGTaaGTTTGTTGTGTGCAGAGACAACAC GCTCGACGTaaGTCCAACTGAGGAATGTTGGCTAGG GCTCGACGTaaGCAAGACTCACTAAAGGCGATGCAC GCTCGACGTaaGCAAGACTCACTAAAGGCGATGCAC GCTCGACGTaaGCAGAATCCACGTAGCTTCACTAAG GCTCGACGTaaGAAGACTCACTAAAGGCGATCACAAG GCTCGACGTaaGAAGGTTGTGAAGACCCGAATCAGC GCTCGACGTaaGAAGGTTGTGAAGACCCGAATCAGC GCTCGACGTaaGAAGGTTGTGAAGACCCGAATCAGC GCTCGACGTaaGAAGGTTGTGAAGACCCGAATCAGC GCTCGACGTaaGAAGGTTGTGAAGACCCGAATCAGC GCTCGACGTAGAAAGACTCTTCACGAAGACTCTTCGCAACA CAAGCGACGATTCCAGCACGACAGACCCTTTGCAACA CAAGCGACGATTCCGACGACACGAC

Supplementary Table 2: Vector construction strategy used in this study

Greengate Cloning							
Construct (ID)	List of entry modules						
	Α	В	C	D	Е	F	Z
SMXL6 _{pro} :mTurquoise2- ER (pJZ18)	pJZ13	<i>pGGB0</i> <i>06</i>	pSW596	<i>pGGD0</i> 08	pJZ12	pGGF0 01	<i>pGGZ00</i> <i>3</i>
SMXL7 _{pro} :mTurquoise2- ER (pJZ24)	pJZ22	<i>pGGB0</i> <i>06</i>	pSW596	pGGD0 08	pJZ23	pGGF0 01	<i>pGGZ00</i> <i>3</i>
SMXL8 _{pro} :mTurquoise2- ER (pKR15)	pKR13	<i>pGGB0</i> <i>06</i>	pSW596	<i>pGGD0</i> 08	pKR14	pGGF0 01	pGGZ00 3
VND7 _{pro} :mTurqoise2- ER (pJZ35)	pVL23	<i>pGGB0</i> <i>06</i>	pSW596	<i>pGGD0</i> 08	pVL21	pGGF0 01	<i>pGGZ00</i> <i>3</i>
SMXL7 _{pro} :SMXL7 ^{d53} - GR (pJZ61)	pJZ22	pVL50	pJZ60	pAP31	pJZ23	pGGF0 01	<i>pGGZ00</i> <i>3</i>
AT1G14190 _{pro} :GFP-ER	pDS233	<i>pGGB0</i>	pGGC0	pGGD0	pGGE00	pGGF0	<i>pGGZ00</i>
(pDS263)		<i>06</i>	14	08	1	01	<i>3</i>
AT5G10580 _{pro} :GFP-ER	pDS319	<i>pGGB0</i>	pGGC0	<i>pGGD0</i>	<i>pGGE00</i>	<i>pGGF0</i>	pGGZ00
(pDS325)		06	14	08	1	01	3
MYB48 _{pro} :GFP-ER	pLL006	<i>pGGB0</i>	pGGC0	<i>pGGD0</i>	<i>pGGE00</i>	<i>pGGF0</i>	<i>pGGZ00</i>
(pLL106)		<i>06</i>	14	08	1	01	<i>3</i>
AT1G58225 _{pro} :GFP-ER	pDS252	<i>pGGB0</i>	pGGC0	<i>pGGD0</i>	<i>pGGE00</i>	pGGF0	<i>pGGZ00</i>
(pDS276)		06	14	08	1	01	<i>3</i>
PNP-A _{pro} :GFP-ER	pDS230	<i>pGGB0</i>	pGGC0	<i>pGGD0</i>	pGGE00	pGGF0	pGGZ00
(pDS261)		<i>06</i>	14	08	1	01	3
TET5 _{pro} :GFP-ER	pDS249	<i>pGGB0</i>	pGGC0	<i>pGGD0</i>	pGGE00	pGGF0	pGGZ00
(pDS273)		06	14	08	1	01	3
CYP83A1 _{pro} :GFP-ER	pDS250	<i>pGGB0</i>	pGGC0	<i>pGGD0</i>	pGGE00	pGGF0	<i>pGGZ00</i>
(pDS274)		<i>06</i>	14	08	1	01	<i>3</i>
INCENP _{pro} :GFP-ER	pDS253	<i>pGGB0</i>	<i>pGGC0</i>	<i>pGGD0</i>	<i>pGGE00</i>	pGGF0	<i>pGGZ00</i>
(pDS277)		<i>06</i>	14	08	1	01	<i>3</i>

ATLP-1 _{pro} :GFP-ER (pDS278)	pDS254	<i>pGGB0</i> <i>06</i>	pGGC0 14	<i>pGGD0</i> 08	<i>pGGE00</i> 1	pGGF0 01	pGGZ00 3
AT4G16970 _{pro} :GFP-ER (pDS279)	pDS255	<i>pGGB0</i> <i>06</i>	pGGC0 14	<i>pGGD0</i> 08	<i>pGGE00</i> 1	pGGF0 01	<i>pGGZ00</i> <i>3</i>
ATHMP25 _{pro} :GFP-ER (pLL122)	pLL022	<i>pGGB0</i> 06	pGGC0 14	<i>pGGD0</i> 08	<i>pGGE00</i> 1	pGGF0 01	<i>pGGZ00</i> <i>3</i>
FH10 _{pro} :GFP-ER (pLL123)	pLL023	<i>pGGB0</i> 06	<i>pGGC0</i> 14	<i>pGGD0</i> 08	pGGE00 1	<i>pGGF0</i> <i>01</i>	pGGZ00 3
AT2G01610 _{pro} :GFP-ER (pLL118)	pLL018	<i>pGGB0</i> 06	pGGC0 14	<i>pGGD0</i> 08	pGGE00 1	pGGF0 01	pGGZ00 3
AT1G29980 _{pro} :GFP-ER (pLL115)	pLL015	<i>pGGB0</i> 06	pGGC0 14	<i>pGGD0</i> 08	pGGE00 1	pGGF0 01	pGGZ00 3
AT4G22730 _{pro} :GFP-ER (pLL127)	pLL017	<i>pGGB0</i> 06	pGGC0 14	<i>pGGD0</i> 08	pGGE00 1	pGGF0 01	pGGZ00 3
Entry modules used in this study							
ID	Explanatio	on			Reference	2	
ID <i>pJZ12</i>	Explanation	o n minator in j	pGGE		Reference This study	2	
ID <i>pJZ12</i> <i>pJZ13</i>	Explanation	on minator in j omoter in p	pGGE GGA		Reference This study This study	2	
ID pJZ12 pJZ13 pJZ22	Explanation	on minator in j omoter in p minator in j	pGGE GGA pGGE		Reference This study This study This study	2	
ID pJZ12 pJZ13 pJZ22 pJZ23	Explanation SMXL6 terr SMXL6 pro SMXL7 terr SMXL7 pro	minator in p moter in p minator in p	pGGE GGA pGGE GGA		Reference This study This study This study This study	2 7 7 7 7	
ID pJZ12 pJZ13 pJZ22 pJZ23 pKR13	Explanation SMXL6 terr SMXL6 proc SMXL7 terr SMXL7 proc SMXL8 terr	minator in p moter in p minator in p moter in p minator in p	pGGE GGA pGGE GGA pGGE		Reference This study This study This study This study This study	2 7 7 7 7 7 7	
ID pJZ12 pJZ13 pJZ22 pJZ23 pKR13 pKR14	Explanation SMXL6 terr SMXL6 proc SMXL7 terr SMXL7 proc SMXL8 terr SMXL8 proc	minator in p moter in p minator in p minator in p minator in p	pGGE GGA pGGE GGA gGA		Reference This study This study This study This study This study	2 7 7 7 7 7 7 7	
ID pJZ12 pJZ13 pJZ22 pJZ23 pKR13 pKR07	Explanation SMXL6 terr SMXL6 proc SMXL7 terr SMXL7 proc SMXL8 terr SMXL8 proc SMXL8 proc	minator in p moter in p minator in p minator in p moter in p omoter in p	pGGE GGA pGGE GGA GGA		Reference This study This study This study This study This study This study	2 7 7 7 7 7 7 7 7 7	
ID pJZ12 pJZ13 pJZ22 pJZ23 pKR13 pKR07 pJZ60	Explanation SMXL6 terr SMXL6 pro SMXL7 terr SMXL7 pro SMXL8 terr SMXL8 pro SMXL8 pro SMXL7 CE	minator in p monoter in p minator in p minator in p minator in p S in pGGC	pGGE GGA pGGE GGA GGA		Reference This study This study This study This study This study This study This study		
ID pJZ12 pJZ13 pJZ22 pJZ23 pKR13 pKR07 pJZ60 pDS233	Explanation SMXL6 terr SMXL6 pro SMXL7 terr SMXL7 pro SMXL8 terr SMXL8 pro SMXL8 pro SMXL7 CE SMXL7 d53 pro	minator in p moter in p minator in p moter in p minator in p moter in p DS in pGGC in pGGC	pGGE GGA pGGE GGA GGA C		Reference This study This study This study This study This study This study This study This study		

<i>pLL006</i>	MYB48 promoter in pGGA	This study
pDS252	AT1G58225 promoter in pGGA	This study
pDS230	PNP-A promoter in pGGA	This study
pDS249	TET5 promoter in pGGA	This study
pDS250	CYP83A1 promoter in pGGA	This study
pDS253	INCENP promoter in pGGA	This study
pDS254	ATLP-1 promoter in pGGA	This study
pDS254	AT4G16970 promoter in pGGA	This study
pLL023	FH10 promoter in pGGA	This study
pLL018	AT2G01610 promoter in pGGA	This study
pLL015	AT1G29980 promoter in pGGA	This study
pLL017	AT4G22730 promoter in pGGA	This study
pGGZ003	Destination vector	Lampropoulos et al. 2013
pGGF001	Basta resistance in <i>pGGF</i>	Lampropoulos et al. 2013
pGGB006	Signal Peptide (ER) in <i>pGGB</i>	Lampropoulos et al. 2013
pGGC014	GFP in <i>pGGC</i>	Lampropoulos et al. 2013
pGGE001	RBCS terminator in <i>pGGE</i>	Lampropoulos et al. 2013
pSW596	mTurquoise2 (CFP) in <i>pGGC</i>	Schürholz et al. 2018
pVL21	<i>VND7</i> promoter in <i>pGGA</i>	Schürholz et al. 2018
pVL23	<i>VND7</i> terminator in <i>pGGE</i>	Schürholz et al. 2018
pGGD008	HDEL in <i>pGGD</i>	Lampropoulos et al. 2013