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Abstract

A machine learning model was created to predict the electron spectrum generated by a GeV-class laser wakefield

accelerator. The model was constructed from variational convolutional neural networks, which mapped the results of

secondary laser and plasma diagnostics to the generated electron spectrum. An ensemble of trained networks was used

to predict the electron spectrum and to provide an estimation of the uncertainty of that prediction. It is anticipated

that this approach will be useful for inferring the electron spectrum prior to undergoing any process that can alter or

destroy the beam. In addition, the model provides insight into the scaling of electron beam properties due to stochastic

fluctuations in the laser energy and plasma electron density.

Keywords: laser plasma interactions; particle acceleration; neural networks; machine learning

1. Introduction

Laser wakefield accelerators (LWFAs) generate multi-

GeV electron beams from cm-scale plasma channels using

approximately 100 TW laser pulses[1–6]. The extreme

acceleration gradients of LWFAs, coupled with their relative

accessibility, have led to widespread research and pursuit

of several applications, such as compact light sources[7–10],

generation of bright γ-rays[11] and ultra-relativistic positron

beams[12], and for future particle colliders[13]. Also, the

combination of GeV electron beams and high-intensity laser

pulses allows for the study of fundamental physics such as

strong-field quantum electrodynamics[14–17].

Correspondence to: M. J. V. Streeter, School of Mathematics and
Physics, Queen’s University Belfast, BT7 1NN Belfast, UK. Email:
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In LWFAs, the non-linear laser pulse evolution[18,19] and

its effect on the injection and acceleration processes[20–23]

are highly sensitive to the initial conditions and can lead to

significant shot-to-shot variation of the electron beam prop-

erties[24,25]. Recent work on high-stability laser systems and

plasma sources has demonstrated improved stability, with the

observation of few-percent variation in the electron beam

energy and charge over 24 hours of continuous operation[26].

Long-term high-repetition rate operation has opened up the

possibility of using machine learning techniques to model

the sources of electron beam variation and to use closed-loop

algorithms to optimise performance[26–31].

For applications such as the study of the radiation reaction,

knowledge of the pre-interaction electron beam properties is

required to make precise measurements of any changes of

these properties and thereby infer the validity of theoretical
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2 M. J. V. Streeter et al.

models[32–34]. The destructive nature of the measurements

necessitates predictable LWFA performance through one of

the following: improved stability; preserving part of the spec-

trum as a reference[33]; or by developing models capable of

producing the electron beam properties from a given shot. In

general, the ability to make predictions of the outputs from

plasma accelerators will be advantageous to many of their

applications.

Previous work in developing machine learning models

for LWFAs has demonstrated the prediction of scalar met-

rics of the electron beam, such as total charge or peak

energy[29–31,35]. However, many applications will require the

prediction of vector properties, such as the spectrum or

the longitudinal phase space, for which neural networks

provide a convenient framework. A densely connected neural

network (DNN) is made of densely connected layers, in

which every input is the weighted sum of all of the outputs

of the previous layer, with the individual weights as free

parameters of the model. A non-linear activation function

(e.g., a sigmoid function) then takes the weighted sum plus

a bias value (another free model parameter) as its argu-

ment and returns an output value. An alternative to deeply

connected layers is a convolutional layer, which performs

convolutions between the input vector and a set of kernels.

Networks using these layers, known as convolutional neural

networks (CNNs), have been shown to be better suitable for

learning meaningful features from natural signals[36]. Further

improvement to the predictive power of neural networks has

been seen when including stochasticity in the outputs of

individual nodes, in an architecture known as a variational

neural network (VNN)[37].

In conventional accelerators, Emma et al.[38] demonstrated

training of a DNN to produce synthetic diagnostic out-

puts that matched the measured outputs for a new unseen

dataset. CNNs have been used to predict X-ray properties

from the post-undulator electron beam spectrum[39], while

ensembles of DNNs have also been used to predict the

electron beam longitudinal phase space and current profile

from non-destructive bending radiation measurements[40].

In this work, we report on the training of an ensemble

of VNNs to model the LWFA-generated electron spectrum

using secondary diagnostics of the laser and plasma condi-

tions. The LWFA ensemble was trained using a subset of

experimental measurements of the electron spectrum with

the remainder used for model validation. Each individual

VNN in the ensemble was trained with a different subset

of the training data, so that the ensemble provided both

a mean prediction and an estimate of its uncertainty. The

model also reveals the extent to which the measurements

obtained from the available diagnostics are predictive of

the accelerator performance, and which parameters have the

strongest influence.

2. Experimental methods and results

The experiment was performed using the Gemini laser

system at the Central Laser Facility in the UK (see Figure 1

for details). Laser pulses with an energy of EL = (6.6±0.5) J

and a pulse duration of approximately equal to 50 fs were

used to drive a GeV-scale LWFA. The pulses were focused

with an f /40 off-axis parabolic mirror to a spot size of

(50±2) × (45±2) µm in the horizontal (polarisation)

and vertical planes, respectively, giving a peak intensity

of (5.5±0.5) × 1018 W cm−2. The focus was aligned to a

gas jet that was composed of a mixture of 2% nitrogen and

98% helium, enabling ionisation injection[41–44]. The gas jet

had an average electron density of (1.00±0.07)×1018 cm−3

over a 17 mm length.

The LWFA-generated electron energy spectrum dW/dE

was measured using the spectrometer scintillator screen

images, which were energy-calibrated by numerical tracking

of electron trajectories in the magnetic field. The interferom-

etry and top view cameras were used to extract the electron

density profile, ne(z), and the laser scattering profile, SL(z),

respectively, where z is the laser propagation axis. A 2D

Gaussian fit was performed on the far-field image to obtain

six parameters: the peak fluence I0; the centroids x0 and y0;

the major and minor root-mean-square (RMS) spot widths

σa and σb; and the angle of the major axis of the ellipse

with x-axis θ . Due to the aberrations and clips caused by this

beam-line, this far-field is not an exact replica of the main

Plasma density 

interferometry

Electron

spectrometer

Input drive laser

Top view

laser scattering

Far-field camera

LWFA

Figure 1. Illustration of the experimental setup (not to scale). The primary

laser focus was aligned to the front edge of a supersonic gas jet emitted from

a 15 mm diameter nozzle positioned 10 mm below the laser pulse propaga-

tion axis. The input laser energy was measured by integrating the signal

on a near-field camera before the compressor, which was cross-calibrated

with an energy meter and adjusted for the 60% compressor throughput. The

scattered laser signal was observed from above by an optical camera, and the

plasma channel electron density profile was measured using interferometry

with a transverse short-pulse probe laser. The small (� 0.1%) transmission

of the focusing laser pulse through a dielectric mirror was directed onto a

CCD camera to obtain an on-shot far-field image. Electron beams from the

LWFA were deflected by a magnetic dipole onto two Lanex screens (only

the first is shown here), which were used to determine the electron spectrum

in the range of 0.3 < E < 2.5 GeV.
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Laser wakefield accelerator modelling with variational neural networks 3

laser focus, but is representative of the shot-to-shot focal spot

fluctuations.

The experimental results for this analysis were taken from

an investigation of the radiation reaction, in which a sec-

ond counter-propagating laser pulse is used to collide with

the LWFA electron beam. For training and validating our

predictive tool, we wish to only use shots where the laser

pulse did not significantly overlap with the electron beam, so

that the electron spectrum was not affected. For successful

collisions, a gamma-beam was generated via the inverse

Compton scattering interaction and was diagnosed spatially

with a CsI scintillator array[16] imaged onto a 1024 × 1024

pixels charge-coupled device (CCD).

Due to the shot-to-shot variation in the electron beam

position, most shots did not result in a significant collision,

providing a large number of null shots for model training

and testing. The brightness of the signal on the gamma

detector was used to provide an approximate metric of the

collision intensity. The 99.99th percentile pixel value of the

background subtracted CCD image was taken as the peak of

the gamma signal Cγ . The highest value of this metric was

Cγ = 4380, whereas the median value was Cγ = 12. From

analysis of the collision statistics, a value of Cγ ≤ 100 was

estimated to result from collisions with a peak normalised

vector potential of a0 < 1.4. For 1 GeV electrons, this would

result in a less than 1% energy loss[14], approximately equal

to the resolution of the spectrometer. Therefore, this value

was taken as a threshold for null shots, for which the electron

beam is unaffected by the collision. The experimental data

were taken during a 5-hour period with a total of 779 shots.

Model training and validation datasets were taken from shots

for which Cγ ≤ 100, with 90% (570 shots) used for training

and 10% (75 shots) reserved for model validation.

3. Neural network architecture and training

The measurements of ne(z), SL(z) and dW/dE were stored

as 1D vectors of lengths 310, 100 and 200, respectively.

Although each of these signals is composed of at least

100 values, the variations over the full dataset are limited,

and so in principle only a few parameters are required for

each to encode these variations. An appropriate decoder

would be able to generate a good approximation to the

measured signals from this reduced set of parameters, which

are called latent space variables. In this work, variational

autoencoders (VAEs)[45,46] incorporating convolutional and

densely connected layers were trained, as illustrated in

Figure 2. By using a bottleneck of only a few nodes,

the VAEs were trained to find an optimal latent space

representation of the data, which allowed the decoder to

reconstruct the measured signals.

The trained encoders for ne(z) and SL(z) were used to

encode their respective measurements to their latent space

representations, which were then combined with measure-

ments of the laser far-field and the laser energy to create

the inputs for the predictive model. A VNN, which we call

the translator network, takes those inputs and returns values

that are passed to the trained electron spectra decoder to

generate the predicted spectrum. The translator was trained

to learn the correlation between the reduced input set and the

latent variables of the electron spectra decoder, as illustrated

in Figure 3.

For the variational layers, two parameters are calculated

for each node that represent the expectation value µm and

standard deviation σm. During training, values were sam-

pled from Gaussian distributions given by these parameters,

N (µm,σm), such that the latent values for a given input set,

xm, would vary according to σm.

The training loss function used was as follows[45]:

LT = LMSE −βDKL,

LT =
1

N

N
∑

n=0

[W (En)−WR (En)]
2 −βDKL, (1)

where DKL =
∑M

m=0

[

1+ log(σm)−µ2
m −σm

]

/(2M) is the

Kullback–Leibler (KL) divergence, LMSE is the mean

Figure 2. Variational autoencoder (VAE) architecture for determining the latent space representation of the diagnostics. The type and dimension of each

layer are indicated in the labels. The inset plots show an example laser scattering signal SL and the approximation returned by the VAE. The input (and

output) size Ni is equal to the data binning of the results for each individual diagnostic. Max pooling was used at the output of each convolution layer, which

combined neighbouring output pairs and returned only the maximum of each pair. The average signal, in this case 〈SL〉, was passed as an additional latent

space parameter for the encoder and was used to scale the output of the decoder. The autoencoder structure was the same for each diagnostic, except for the

size of the latent space.
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Figure 3. Diagram of the translator network architecture. Shown in the

inset is an example measurement from the experimental data (black), with

the mean prediction of the LWFA model ensemble (red) and individual

model predictions (pink).

squared error (MSE) and M is the total number of input sets

in a given training iteration. The same loss function was used

to train each VAE and also the final translator VNN, with the

MSE taken between the predicted and measured diagnostic

output (ne(z), SL(z) or dW/dE). The β parameter was used to

scale the relative importance of the regularisation, following

the beta-VAE approach[45]. During model validation, only

the mean weights for the variational layers were used and the

DKL term from Equation (1) was omitted. Every node of the

neural networks used the leaky rectified linear unit (leaky-

ReLU)[47] activation function with α = 0.3, which exhibited

superior learning performance in comparison to sigmoid and

hyperbolic tan functions, as well as leaky-ReLU with other

values of α.

For the diagnostic VAEs, the number of latent parame-

ters was chosen to be the minimum that gave high-fidelity

reconstructions, with the β parameter manually tuned to

ensure that the distribution of each latent parameter for the

training datasets was close to a standard normal distribution

(N (0,1)). One latent space parameter was directly set as

the average of the input signal (normalised by the training

dataset). This parameter was then used to scale the decoder

output and ensured that one of the latent space variables

represents the amplitude of the signal, aiding interpretation

of the trained networks. Once the VAEs were trained, the

weights were frozen during the translator training process.

The translator is a DNN with a variational last layer. The

translator VNN architecture (number of nodes and number

of layers) and the value of β were optimised using a genetic

algorithm. During this process the training data were divided

in two parts, with 50% of the data used to train each

network and the other 50% used to calculate the test loss.

This ensured that the validation dataset was kept purely for

validation of the final model performance and not used in any

tuning of the predictive model. The optimal architecture for

the translator network, shown in Figure 3, comprises three

densely connected layers, with a final variational layer with

five outputs.

In order to quantify the uncertainty in the model pre-

dictions, 100 translator VNNs were trained, each using

randomly selected 50% samples of the training dataset. The

prediction of each of these models can then be used to obtain

an average prediction, while the variation between model

predictions is indicative of the random uncertainty and the

finite size of the training data. In particular, the random sub-

sampling affects the predictive quality in regions where the

training data are sparse, typically at the extremes of the input

parameters, resulting in a larger uncertainty in those regions.

The parameters for the trained VAEs and translator net-

works are summarised in Table 1. Each autoencoder was

trained for 1000 iterations with a batch size of 64. The

translator network was trained in three stages with 200, 400

and 300 iterations performed at 10, 4 and 1 times the final

β value to balance reconstruction fidelity with latent space

smoothness[46]. The training processes were all performed

using the Adam optimiser[48], with a learning rate of 10−3,

which was found to converge well.

4. LWFA prediction results

The measured electron spectra from the validation dataset

are shown in Figure 4(a), along with the reconstructions by

the electron spectra VAE (Figure 4(b)) and the average of

the LWFA model ensemble predictions (Figure 4(c)). The

electron spectra VAE had an MSE of 0.011, and shows good

qualitative and quantitative reproduction of the measured

electron spectra. This indicates that the five parameters of

the latent space, in combination with the structures learnt

by the decoder, are sufficient to accurately generate the set

of observations from the validation dataset. In other words,

the five latent parameters are sufficient to generate the full

Table 1. Summary of autoencoder parameters used for each diagnostic and for the translator model.

Model Ni NL β Validation LMSE

Density profile 310 4+1 2×10−3 1.7×10−3

Scattering profile 100 5+1 10−3 2.3×10−3

Electron spectra 200 4+1 2×10−3 1.1×10−2

LWFA single 18 5 a5×10−4 (7.3±0.5)×10−2

LWFA ensemble 18 5 a5×10−4 5.7×10−2

aFor the LWFA translator models, the value of β varied from high to low during the training, with the final value
given in the table. The training time for each autoencoder was 10 minutes and training of the 100 translator networks
took a total of 3 hours, using an Intel Xeon Gold 6130 CPU at 2.1 GHz with 32 GB of RAM. The analysis and model
training were performed on CLF Data Analysis as a Service (CDAS)[49]. The neural networks were built using the
Keras API (https://keras.io).
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Figure 4. (a) Measured electron spectra and reproduced electron spectra

using (b) the trained variational autoencoder and (c) the mean prediction of

the ensemble of the LWFA models. The individual shots are sorted by cut-

off energy, determined as the highest energy for which the spectra exceed a

threshold value.

variability of electron beams for this experimental setup.

The question is then whether the secondary diagnostics

are sufficient to determine the correct latent variables for

each shot and thereby give an accurate prediction of the

electron spectrum. The mean prediction of the LWFA model

ensemble had an MSE of 0.057 and shows a similar trend in

cut-off energy to the data, except for the few high- and low-

energy outliers. By comparison, a naive prediction that all

measured spectra are equal to the average spectrum from the

training dataset gives an MSE value of 0.11, indicating that

the LWFA model has a significant predictive capability.

Individual predictions of each model of the LWFA ensem-

ble, along with the corresponding measured electron spectra,

are shown in Figure 5. The variation in model predictions

for a given shot is indicative of the uncertainty, due to the

random sub-sampling of the training data and the stochastic

training process. For a large region of the parameter space,

the LWFA model predictions show a good agreement with

the measurements, with large discrepancies occurring for

the outliers in terms of cut-off energy. These shots also

exhibit the largest variation in predictions between individual

models within the ensemble. The total electron beam energy

is reasonably accurately predicted, with relative RMS error

of 12% for the entire validation dataset, compared to the

relative beam energy RMS variation of 30%.

The relative influence of each input parameter on the

LWFA model can be seen by varying each one in turn and

measuring the effect on the resultant spectrum, as shown in

Figure 6. The plasma density parameters have a relatively

modest effect on the electron spectrum, indicating that the

shot-to-shot variation of the plasma density profile is not

the dominant contributor to the electron spectrum variation.

Variations of the laser energy and the scattering profile are

more significant, having the greatest effect on the generated

Figure 5. Individual shots selected at equally spaced intervals of the sorted

shot index from Figure 4. The measured spectra (black) are shown alongside

the predictions of each LWFA model from the trained ensemble (red) and

an individual spectrum measurement closest to the median of the training

data (blue). The sorted shot index is shown in the top right of each panel.

Figure 6. Relative influence of the translator VNN input parameters on the

predicted electron spectra. Each parameter is set to the mean value of the

training dataset and then varied over ±3 standard deviations in 11 steps,

with the variation in the spectrum quantified by the average RMS change

to the spectrum. The nth latent space parameters for the scattering and

density profile encoders are labelled SL(n) and ne(n), respectively. Here,

SL(6) and ne(5) are proportional to the average laser scattering signal and

plasma electron density, respectively.

electron spectra. The spatio-temporal distribution of the laser

pulse is only indirectly diagnosed from the far-field diagnos-

tic and the effect on the scattering profile, and is known to

have a large influence on the accelerated electrons[26,28,29].

Including additional laser diagnostics, such as measurement

of the spatial phase profile[26,30], should enable higher fidelity

predictions.

Although many of the input parameters are not straight-

forward to interpret physically, that is, those that are the

latent space of the autoencoders, the laser energy is a

physically important parameter in LWFAs. In practice, the

inputs for the LWFA models are not independent of one

https://doi.org/10.1017/hpl.2022.47 Published online by Cambridge University Press
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Figure 7. The model predicted effect of varying the laser energy on (a)

the predicted electron spectra and (b) the total electron beam charge. The

data for each shot in the training data (red) are shown in (b), overlaid from

the values calculated from the predicted spectra of the LWFA model (black

points) with a linear fit (black dashed line).

another, as characterised by calculating the Pearson cor-

relation coefficients for the training dataset. This reveals

relatively strong correlations between the laser energy and

several other parameters, especially SL(3), SL(4), SL(6),

ne(4), ne(5) and I0, which had correlation coefficients rang-

ing from r = 0.31 to r = 0.55. The trained LWFA model

is then able to show what effect laser energy fluctuations

have on the electron spectrum by varying each parameter

proportionally according to their correlation coefficients

with laser energy EL, as shown in Figure 7(a). As the laser

energy increases, the peak electron energy is relatively con-

stant, while the overall charge increases. The total electron

beam charge QB is plotted as a function of laser energy in

Figure 7(b), for both the raw data and the LWFA model

predictions. The model prediction shows an approximately

linear increase with laser energy with the equation QB [nC] =

0.48EL [J]−2.1.

The scaling parameters SL(6) and ne(5) are also easy

to interpret, as they are the average scattering signal and

electron density, respectively (normalised to the mean and

variance over the training dataset). The effect of ne(5) on the

electron density profile and the predicted electron spectrum

is shown in Figure 8. The average plasma electron density

varied by 4% over the training dataset, as illustrated by

the small perturbations to the density profile observed in

Figure 8(a). A more significant effect is seen on the electron

spectra in Figure 8(b), with the peak energy shifting higher

as the average density drops, as expected for a dephasing-

limited LWFA[50,51]. The effect on the spectrum is much

smaller than that seen to be caused by the laser energy

variation in Figure 7. This indicates that the level of natural

variations of the plasma electron density in this dataset was

sufficiently low that it was not a dominant contributor to the

shot-to-shot variations in the electron spectra.

Figure 8. The effect of changing ne(5) on (a) the electron density profile

and (b) the predicted electron spectrum. All other latent space parameters

are kept fixed at zero (i.e., their average values from the training dataset),

while ne(5) is varied over the range of ±3 standard deviations in the training

dataset.

Figure 9. The effect of changing SL(3) on (a) the laser scattering profile

and (b) the predicted electron spectrum. All other latent space parameters

are kept fixed at zero (i.e., their average values from the training dataset),

while SL(3) is varied over the range of ±3 standard deviations in the training

dataset.

The other latent parameters generated by the VAEs do not

have straightforward physical interpretations and only have

meaning in combination with the trained encoders. In order

to gain some insight into their physical meaning, the effect of

changing each parameter can be observed on the correspond-

ing diagnostic output, as well as on the predicted electron

spectrum. An example is shown in Figure 9, where the effect

of varying SL(3), the most dominant input parameter to the

translator VNN, is shown.

Figure 9(a) shows that positive SL(3) correlates with an

increased laser scattering peak at the entrance to the gas

jet (z = 0) and for the last half of the plasma, while sup-

pressing the signal for 1 > z > 7 mm. This also results in

an increased predicted total charge as well as an increased

predicted maximum electron energy (see Figure 9(b)), a

clearly beneficial effect for many applications. The scattered

https://doi.org/10.1017/hpl.2022.47 Published online by Cambridge University Press



Laser wakefield accelerator modelling with variational neural networks 7

laser intensity is associated with Raman side-scattering and

wavebreaking radiation, generated as the laser self-guides

and self-compresses to a high peak intensity in the plasma

channel[52,53]. Therefore, the increase of this scattering signal

seen in Figure 9(a) indicates an increased possibility for

the injection of electrons into the plasma wakefield at z =

0 mm, while maintaining a high amplitude plasma wave

for z>7 mm, resulting in the enhanced electron spectrum

predicted in Figure 9(b).

5. Conclusion

In conclusion, we have constructed and trained a predictive

model for an LWFA that is capable of predicting the electron

spectrum for a given shot, based on secondary diagnostics of

the laser and plasma conditions. The model is constructed

from separately trained variational convolutional autoen-

coders, with a VNN used to map a reduced parameter set to

the latent space of an electron spectra decoder. An ensemble

of models was trained on subsets of the training data, with

the range of model predictions providing an estimate of the

uncertainty. The predictive model ensemble performs better

than the naive assumption that the electron spectrum is con-

stant, and so has utility in estimating the electron spectrum in

the case of destructive processes, such as a radiation reaction.

The model fidelity is most likely limited by the lack of

on-shot spatio-temporal information about the laser pulse,

which is known to have a strong influence on the accelerated

electron beam[26]. It is expected that this technique can be

improved by including additional diagnostics of the laser

spatial and spectral phase, and by increasing the size of

the training dataset, especially for reducing the prediction

error for the outliers. Further diagnostics of the laser–plasma

interaction, such as spectrally resolving the scattering signal,

may also provide additional information to improve the

prediction accuracy. Neural networks of this kind could

be an important tool for understanding the performance

sensitivities of plasma accelerators, and also in providing

synthetic diagnostics for applications of their electron beams

and secondary sources.
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