
This is a repository copy of Insights from Rights and Wrongs:A Large Language Model for
Solving Assertion Failures in RTL Design.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/225387/

Version: Accepted Version

Proceedings Paper:
Zhou, Jie, Ji, Youshu, Wang, Ning et al. (7 more authors) (2025) Insights from Rights and
Wrongs:A Large Language Model for Solving Assertion Failures in RTL Design. In: 62nd
DAC, Chips to Systems Conference, proceedings. 62nd Design Automation Conference,
22-25 Jun 2025, Moscone West. , USA

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Insights from Rights and Wrongs: A Large Language Model

for Solving Assertion Failures in RTL Design

Jie Zhou1,2, Youshu Ji2, Ning Wang3, Yuchen Hu1,2, Xinyao Jiao1,2, Bingkun Yao3,

Xinwei Fang4, Shuai Zhao5, Nan Guan3, Zhe Jiang1,2
1School of Integrated Circuits, Southeast University, China
2National Center of Technology Innovation for EDA, China

3Department of Computer Science, City University of Hong Kong, Hong Kong
4Department of Computer Science, University of York, UK

5Department of Computer Science, Sun Yat-sen University, China

Abstract—SystemVerilog Assertions (SVAs) are essential for verifying
Register Transfer Level (RTL) designs, as they can be embedded into
key functional paths to detect unintended behaviours. During simu-
lation, assertion failures occur when the design’s behaviour deviates
from expectations. Solving these failures, i.e., identifying and fixing
the issues causing the deviation, requires analysing complex logical
and timing relationships between multiple signals. This process heavily
relies on human expertise, and there is currently no automatic tool
available to assist with it. Here, we present AssertSolver, an open-
source Large Language Model (LLM) specifically designed for solving
assertion failures. By leveraging synthetic training data and learning
from error responses to challenging cases, AssertSolver achieves a
bug-fixing pass@1 metric of 88.54% on our testbench, significantly
outperforming OpenAI’s o1-preview by up to 11.97%. We release our
model and testbench for public access to encourage further research:
https://github.com/SEU-ACAL/reproduce-AssertSolver-DAC-25.

I. INTRODUCTION

Functional verification is a crucial step in the modern Electronic

Design Automation (EDA) process, ensuring that designs meet

their specifications and perform correctly as intended [1], thereby

mitigating the costly risks associated with silicon failures [2], [3].

SystemVerilog Assertions (SVAs), as one of the key methods in

functional verification [4], capture potential errors in Register Trans-

fer Level (RTL) designs by defining logical conditions and timing

requirements. Unlike stimulus-based verification methods (e.g., using

testbenches), SVAs not only facilitate stimulus-triggered checks but

also enable formal verification [5]. Formal verification, which math-

ematically proves the consistency of the design under test (DUT)

with the behaviour specified by the SVAs, provides higher functional

coverage and addresses boundary conditions that stimulus-based

methods may often overlook.

Despite the significant advantages of SVAs and progress in au-

tomating their generation [6]–[11], automatically solving assertion

failures remains challenging. Assertion failures occur when the design

exhibits unexpected behaviour during simulation. Effectively identi-

fying and fixing these failures still relies heavily on human expertise

to analyse intricate logical dependencies and timing relationships

between multiple signals, which is time-consuming and labour-

intensive. Fig. 1 illustrates that verification engineers must have an

in-depth understanding of the design’s functional intent and carefully

deduce the causes of complex assertion failures.

Large Language Models (LLMs) have demonstrated significant

capabilities in navigating through complex ideas, automating key

steps in hardware design. They have improved a range of tasks,

from code generation [12]–[16] to design verification [17]–[19],

offering potential for solving assertion failures. However, while state-

of-the-art (SOTA) LLMs such as OpenAI’s GPT-4 and o1-preview

demonstrate competence in such task, their performance is often

subject to unnoticed changes, and they lack the ability to be retrained

or fine-tuned by users to incorporate new data or information.

Code Spec

Ports: xxx
Function: xxx

module accu(
... // Port declaration

);
wire end_cnt;
...
always @ (posedge clk or negedge rst_n) begin

if (!rst_n) valid_out <= 0;
else if (!end_cnt) valid_out <= 1; // Logic error

else valid_out <= 0;
end

property valid_out_check;
@ (posedge clk) disable if (!rst_n)

end_cnt |-> ##1 valid_out == 1;
endproperty

valid_out_check_assertion:
assert property (valid_out_check) // Triggered

else $error ("valid_out should be high when end_cnt high");
endmodule

Logs

failed assertion
accu.valid_out_c

heck

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

16 11 13 6 7 8

valid_out

Human deduction

else if (!end_cnt) should be else if (end_cnt)

Code Analysis:

Signal Analysis:

Fix:

clk、rst_n、end_cntLogs

Fig. 1: The process of solving assertion failures in RTL verification.

Engineers analyse the design specification and code signals to identify

the root causes of assertion failures and implement fixes.

To address this limitation, we introduce an open-source LLM,

AssertSolver, specifically designed for automatically solving assertion

failures. As shown in Fig. 2, AssertSolver benefits from an innovative

data augmentation method that enhances the representation of various

assertion failure scenarios in the training dataset, which were previ-

ously underrepresented. AssertSolver is retrained and fine-tuned from

the Deepseek-Coder-6.7b [20], using the dataset that incorporates

not only significantly enhanced examples but also error responses

to challenging cases. By learning from these “right” and “wrong”

examples, AssertSolver demonstrates up to a 11.97% improvement

in solving assertion failures compared to the OpenAI’s o1-preview.

The main contributions of this paper are:

• Development of AssertSolver, an open-source domain-specific

LLM fine-tuned for solving assertion failures, which we have

made publicly available for early adoption;

• Implementation of a data augmentation method that automati-

cally enrich scarce training dataset for assertion failures;

• Adoption of a new training strategy that improves learning from

error responses to challenging cases;

• Publication of openly accessible benchmark for solving assertion

failures, featuring over 900 instances across various bug types.

The rest of the paper is organised as follows: Section II intro-

duces the data augmentation approach and the preparation of the

training dataset. Section III provides a detailed description of our

training strategies. Section IV outlines the research questions and the

experimental setup. Section V presents a comprehensive evaluation

to answer the research questions. Section VI concludes the paper.

II. DATA AUGMENTATION

To effectively train an LLM for solving assertion failures, it

is essential to have access to a comprehensive training dataset.

While current datasets contain a significant number of Verilog code

ar
X

iv
:2

5
0
3
.0

4
0
5
7
v
1

[c

s.
A

R
]

 6
 M

ar
 2

0
2
5

Input Flow GPT-4 Claude-3.5

</> Source.v

Verilog Code

Input Filtering and Syntax Checking

F
il

te
r

C
o

m
p

il
er

Analysis

Spec

Spec

SVA List

Bug List
Valid SVA List

Buggy Verilog

Verifier
pass

Solution

CoT
Compare

B
u

g

L
o

ca
ti

o
n

Incorrect CoT

Correct CoT

(a) Verilog-PT: […{“Text”: The <Verilog Code> failed to compile. The specification is <Spec>, and the failure may have been caused by <Analysis>}…]

(b) Verilog-Bug: […{“Question”: There is a <Buggy Verilog> contains a bug. The specification is <Spec>, please give me a solution.“Answer”: <Solution>}…]

(c) SVA-Bug: […{“Question”: There is a <Buggy SV> and will trigger assertions, <Logs> . The specification is <Spec>, please give me a solution. “Answer”: <Solution>}…

 …{“Question”: There is a <Buggy SV>… , <Logs> . The specification is <Spec>, please give me a solution (“step by step”). “Answer”: <Solution, CoT>}…]

pass
pass

fail

Compiler

Verifier

Compiler

Verifier

1 Key Components Generation and Validation2 CoT Generation and Validation3

Datasets

EDA tools

G
o
ld

en

S
o

lu
ti

o
n

(II) Training

Base Model

AssertSolver

(III) Inference

CoT PT Model SFT Model

“Question”:

“Chosen”:

“Reject”:

Perference pairs

“Question”:

“Chosen”:

“Reject”:

Perference pairs

Datasets(a)

PTPT

Output Flow Training Stage

（I）Generation

DPODPO

Spec

Buggy SV

Logs

AssertSolver

Correct

RTL

Bug Loc.

For heterogeneity

Datasets(b) Datasets(c)

SFTSFT

Output

Incorrect CoT discard

Two forms of

“Answers”

Fig. 2: AssertSolver overview: (I) shows the process for augmenting the training data. (II) describes the training strategy, consisting of

pretraining (PT), Supervised Fine-Tuning (SFT), and Direct Preference Optimisation (DPO) which is used to guide learning from error

responses to challenging cases. In the inference phase (III), AssertSolver locates and fixes the bug based on the specification (Spec), buggy

SystemVerilog (SV) code, and logs, while also providing bug location (Bug Loc.) and an explanation (CoT).

samples suitable for preliminary pretraining, they lack key compo-

nents required for fine-tuning the model to this specific task. These

components include design specifications, SVAs, details of bugs that

could invalidate these assertions, and their corresponding verification

outcomes. To address this gap, we propose a method that integrates

LLMs and EDA tools to augment existing open-source Verilog code,

thereby generating the necessary components for solving assertion

failures. Additionally, to help users understand the model’s problem-

solving process, we have incorporated a Chain of Thought (CoT) [21]

in the dataset. This inclusion is designed to enhance the transparency

of the model’s decision-making process. In this work, we augmented

an open-source dataset [22] with 108,971 Verilog code samples from

Hugging Face in the following 3 stages, as shown in Fig. 2-(I).

Stage 1 : Filtering and Syntax Checking. Given the Verilog

code samples from [22], we employed scripts to filter out code

that exhibited certain undesirable characteristics. Specifically, we

excluded code samples based on the following criteria:

1) Incomplete code that lacks either the ‘module’ or ‘endmodule’;

2) Code comprising only initialisation or assignment statements,

with no functional logic;

3) Duplicated code segments.

Then, each remaining piece of code underwent a syntax check

through the Icarus Verilog compiler [23]. Code with detectable syntax

errors (e.g., those that failed the compilation), were excluded from

the following process, preventing their advancement to the following

stages where assertions could be triggered. However, these incorrect

code samples were not discarded; instead, they are included in

the Verilog-PT dataset as they offer valuable structural insights

into Verilog code. After the syntax check, GPT-4 was employed to

generate a design specification (Spec) for all code samples, but only

those that failed compilation received further analysis. The analysis

aims to provide an explanation for the causes of the syntax errors,

contributing to the formation of the Verilog-PT dataset, as shown in

Fig. 2 dataset (a). The Verlog-PT dataset, containing 22,646 entries,

which is utilised in section III-A.

Stage 2 : Key Components Generation and Validation. For

successfully compiled code, we employed Claude-3.5 to generate

random bugs and SVAs. The use of Claude-3.5, as opposed to GPT-4,

was intended to leverage the heterogeneous design of these models,

thereby helping GPT-4 avoid falling into error traps during self-

validation in Stage 3 .

To mitigate the impact caused by the hallucinations of LLMs [24]–

[26], we utilised EDA tools at this stage to validate the correctness

of the generated components. We employed a two-step verification

process by integrating the compiler with the verifier, SymbiYosys

[27]. Each generated SVA was inserted into the corresponding Verilog

code and verified using SymbiYosys to ensure the SVAs’ validity. Fur-

thermore, we employed the compiler again to identify and eliminate

syntax errors introduced during the random bug generation process.

The remaining bugs were injected individually into the Verilog code,

and each modified version was then verified with the corresponding

SVAs using SymbiYosys to ensure that the bug-SVA pair caused

assertion failures and to generate logs.

Approximately 90% of the bugs and SVA pairs associated with

assertion failures were selected and processed in Stage 3 . The

remaining 10% is reserved for testing, as detailed in Section IV-C.

This selection process is structured to ensure that the training and

test datasets are completely separate, involving the following steps:

1) Organise the buggy Verilog code into categories based on the

length of the code, with bins defined as: (0, 50], (50, 100],
(100, 150], (150, 200], and (200,+∞);

2) Enumerate the unique module names within each bin;

3) Uniformly select 90% of the module names and their corre-

sponding buggy SystemVerilog (SV) code, Spec, and logs for

inclusion in the training dataset.

Bugs that did not cause assertion failures, potentially due to

insufficient SVA coverage, were retained as they represent functional

issues in the original Verilog code. These bugs, together with the

Spec, Verilog code, and solution, were organised into the Verilog-

Bug dataset. This dataset, as shown in Fig. 2 dataset (b), contains

36,650 entries and is used in section III-B to enhance the model’s

understanding of the verification process.

Stage 3 : CoT Generation and Validation. To enhance the

transparency of our model, we incorporated CoTs into the training

data. This integration involves using GPT-4, where we provided Spec,

buggy SV code, logs, and the bug location. The task for GPT-4 is to

generate a CoT that articulates its reasoning behind identifying the

erroneous code and suggesting correction.

Subsequently, we used a script to validate these CoTs by comparing

GPT-4’s output with the ‘golden solution’ obtained from Stage 2 .

The ‘golden solution’ was derived from the initial buggy code and

its correct counterpart. If GPT-4 identified an error and proposed

correction align with it, we consider the CoT to be correct.

In total, approximately 74.55% of the generated CoTs were iden-

tified to be correct. Depending on the correctness of these CoTs, we

organised two types of entries into the SVA-Bug dataset, which totals

7,842 entries as shown in Fig. 2 dataset (c). For entries where the

CoT is correct, the ‘Question’ section includes the phrase ‘step by

step’, and the ‘Answer’ details both the buggy line and its corrected

code, along with the CoT. Otherwise, the ‘Answer’ only includes the

buggy line and the correct code. This dataset, designed specifically

to equip the model with the ability to solve assertion failures and

explain the reasoning process, is utilised in section III-B.

III. TRAINING STRATEGY

To maximise the potential of the dataset generated in Section II, we

implemented a tailored training strategy for AssertSolver, as shown in

Fig. 2-(II). Our strategy started with a foundational pretraining (PT)

phase using the base model, Deepseek-Coder-6.7b, on the Verilog-

PT dataset. This step was to strengthen the model’s understanding of

Verilog code constructs and design specifications. Following this, we

applied Supervised Fine-Tuning (SFT) to fine-tune the AssertSolver

on the SVA-Bug and Verilog-Bug datasets. This step was designed

to equip the model with the necessary skills for solving assertion

failures, and to expand its capability for generalising across related

Verilog debugging tasks. To further refine the model performance,

we revisited unresolved assertion failure cases from the SFT phase,

particularly those with incorrect responses, and employed Direct

Preference Optimisation (DPO) to enable our model to learn from

these error responses to challenging cases.

A. Pretraining

Pretraining is essential for LLMs, especially when preparing them

to handle specialised languages such as Verilog and SystemVerilog.

It is important to infuse domain-specific knowledge during this stage,

which forms a robust base of understanding before any targeted

fine-tuning starts. Recent research [14], [28] supports that continual

pretraining on domain-specific dataset, including unlabeled Verilog

code and syntactically similar language like C/C++ code, can substan-

tially boosts the base model’s understanding of hardware description

languages (HDLs) and improve its performance in downstream tasks.

In line with these insights, we implemented continual pretraining with

the Verilog-PT dataset, comprising the Verilog code that failed in

compilation along with its corresponding specifications and analyses

of compilation failures. The base model, Deepseek-Coder-6.7b, has

been preliminarily trained on a large programming corpus and is

lightweight, making it ideal for this application. This focused pre-

training strategy is essential as the timing and concurrency property

in HDLs differ significantly from software programming paradigms.

During pretraining, each sample x(i) in the Verilog-PT dataset

DPT = {x(i)}Ni=1 is treated as a sequence of tokens. These tokens

serve as the basic units in natural language processing tasks, allowing

LLMs to leverage reasoning over them for next-token predication,

which in turn facilitates text generation [29]–[32]. The sequence for

each sample is expressed as x(i) = (w
(i)
1 , w

(i)
2 , . . . , w

(i)

T (i)), where

w
(i)
t denotes the t-th token and T (i) the total number of tokens in the

sequence. The training objective in this stage focuses on minimising

the negative log-likelihood loss across the dataset:

LPT (θ) = −

N
∑

i=1

T (i)
∑

t=1

logP (w
(i)
t | context

(i)
t ; θ)

Here context
(i)
t refers to the series of preceding tokens which serve

as the basis for predicting w
(i)
t , and P (w

(i)
t | context

(i)
t ; θ) represents

the probability of predicting t-th token based on this context, as

determined by the model’s parameter θ. This pretraining lays the

groundwork for the subsequent fine-tuning process and equips the

model capable of handling tasks within the hardware design domain.

B. Supervised Fine-Tuning (SFT)

Following the unsupervised pretraining phase, where the model

primary learning was to predict the next token, Supervised Fine-

Tuning (SFT) aims to shift the model’s capabilities. This shift moves

the focus from mere text continuation to solving specific question-

answering challenges presented by assertion failures, which require

precise and supervised responses.

To this end, we used the SVA-Bug dataset, which includes Spec,

buggy SV code and logs. These elements are organised into the

model’s input x , as shown in the ‘Question’ section in Fig. 2 dataset

(c). The model output the ‘Answer’ y must include, at a minimum,

the bug line snippet and the corresponding correct code. Additionally,

if the CoT is verified as correct in Stage 3 of section II, it is

also included in y, enhancing the answer with detailed reasoning

steps, marked by the keyword ‘step by step’ in x. Furthermore, we

integrated the Verilog-Bug dataset as an auxiliary task to further

enrich the training data with a broader spectrum of Verilog debugging

scenarios. The data pairs ⟨x, y⟩ from this dataset are structured to

provide the model with both the buggy Verilog code in the input

‘Question’ and the repair plan in the ‘Answer’, which lists the buggy

line and alongside the corrected version, as shown in Fig. 2 dataset

(b). This combination of datasets in the SFT process ensures a

comprehensive learning experience for the model.

The objective of SFT is to refine the model’s ability to predict

the next token in y(i) based on the contextual interplay between the

input x(i) and the sequence of previously generated tokens y
(i)
<t. This

approach is designed to train the model in recognising and replicating

the correct relationships between given ‘Question’ and ‘Answer’:

LSFT (θ) = −
N
∑

i=1

T
(i)
y
∑

t=1

logP (y
(i)
t | y

(i)
<t, x

(i); θ)

where y
(i)
t denotes the t-th token in the output sequence y(i), and

y
(i)
<t represents the sequence of tokens preceding y

(i)
t . The likelihood

P (y
(i)
t | y

(i)
<t, x

(i); θ) indicates the probability of predicting the token

y
(i)
t given the y

(i)
<t and the input context x(i), as governed by the

model parameters θ. The SFT allows the model to produce the answer

in the expected format and to develop a deeper understanding of the

underlying hardware description language.

C. Learning from Error Responses to Challenging Cases

At the SFT stage, AssertSolver is primarily exposed to correct

responses, which limits its ability to process or learn from errors - a

critical aspect of human learning. As noted in research by [33], [34],

effective learning involves not only assimilating correct responses

but also reflecting on and learning from mistakes to prevent future

errors. Current training paradigms often overlook or discard erroneous

data. Inspired by recent research [35]–[37], we propose to equip

TABLE I: Bug types leading to assertion failures and examples

Type Description Expected Form Unexpected Form Assertion†

Direct Bug signal appears directly in the assertion. out <= in; out <= in + 1; assert(out == in)

Indirect Bug signal does not appear directly in the assertion.
temp <= in;
out <= temp;

temp <= in + 1;
out <= temp;

assert(out == in)

Var Incorrect variable name or type. out = in; out = input; –

Value Incorrect variable values, constants, or signal bit widths. out = 4’b1010; out = 4’b1110; –

Op Misuse of operators. out = a | b; out = a & b; –

Cond Bug in conditional statement (e.g., if, always). if (valid) out <= in; if (!valid) out <= in; –

Non cond Bug unrelated to conditional statements. if (valid) out <= in; if (valid) out <= input; –

† The distinction between Direct and Indirect type depends on whether the assertion failure is caused by the directly protected signal. Other types of bugs may cause assertion

failures but are not necessarily directly reflected in the assertions.

TABLE II: Distribution of SVA-Bug and SVA-Eval across code length

intervals and bug types (counts of instances)

Length Interval (0, 50] (50, 100] (100, 150] (150, 200] (200, +∞)

SVA-Bug 3400 2444 921 431 646

SVA-Eval 431 260 102 58 64

Bug Type Direct Indirect Var Value Op

SVA-Bug 5478 2364 546 5104 2254

SVA-Eval 615 300 47 601 274

Bug Type Cond Non cond – – –

SVA-Bug 1573 6269 – – –

SVA-Eval 204 711 – – –

AssertSolver with the ability to learn from its errors, thus enhancing

its decision-making process.

To facilitate this, we evaluate the SFT model using all samples

within the SVA-Bug dataset. Each sample, as illustrated in Fig. 2

dataset (c), includes a ‘Question’ section, which serves as the model’s

input. For each input, the model generates 20 responses. Correctness

is then evaluated by comparing the buggy line suggested by the model

with the correct ‘Answer’ in the dataset. Samples yielding at least

one incorrect response among these 20 outputs are categorised as

challenging cases, representing instances where the model struggles

despite prior exposure to correct solutions. In each challenging case,

the ‘Question’ is denoted as x and the correct ‘Answer’ as p. The

incorrect responses to x are denoted as n[k], where k < 20.

We abstract them into triples: DDPO = {(x(i), p(i), n[k](i))}Ni=1,

where N denotes the number of challenging cases. For this prefer-

ence dataset DDPO, the objective is to train the model to prioritise

generating the correct response p(i) over the error responses n[k](i)

for each x(i). This goal is achieved through the DPO loss function that

encourages the model to maximise the probability of generating the

correct response p(i), while minimising the probability of generating

the error response n[k](i):

LDPO = −ED

[

log σ

(

β log
πθ(p

(i)|x(i))

πref(p(i)|x(i))
− β log

πθ(n[k](i)|x(i))

πref(n[k](i)|x(i))

)]

In this function, πθ and πref represent the current model and the

reference model (SFT model, in this context). The terms πθ(p
(i)|x(i))

and πref(p
(i)|x(i)) denote the likelihood of generating the correct

response p(i) given input x(i) under the respective models. Similarly,

πθ(n[k]
(i)|x(i)) and πref(n[k]

(i)|x(i)) correspond to the probabilities

of generating the k-th error response n[k](i) for the same input.

The log-ratios of these probabilities quantify the divergence between

the two models. The difference between the log-ratios captures the

preference of πθ for generating the correct response p(i) over the error

response n[k](i), guiding the model producing correct answers. The

scaling factor β, set to 0.1, controls the weight of the log-ratio terms,

and the sigmoid function σ maps the log-ratio values to a probability

in the range [0, 1], facilitating smooth learning while ensuring training

stability. This approach allows AssertSolver not only to learn from

errors but also to improve its response accuracy in challenging cases,

leading to more robust decision-making capabilities.

IV. EVALUATION

To evaluate the effectiveness of our trained model, we conduct

extensive experiments designed to answer four key research ques-

tions. This section outlines the dataset property, benchmark and SOTA

counterparts, evaluation metrics, and implementation details.

A. Research Questions

The evaluation is structured to investigate the following four

research questions:

• RQ1: How does the incorporation of learning from error re-

sponses influence the performance of the model as measured by

metrics of pass@1 and pass@5?

• RQ2: How does the effectiveness of our model in solving

assertion failures compare to that of other SOTA LLMs or

models of similar complexity?

• RQ3: How does the model’s performance vary when addressing

randomly generated bugs versus human-crafted cases?

• RQ4: How is the model’s performance impacted by design

variability, specifically in relation to different bug types and

variations in code length?

B. Dataset Property

The challenge of solving assertion failures varies considerably

across different bug types and code lengths. Some categories are

inherently more complex than others. For example, timing-related

bugs that do not directly trigger assertion failures require deep

reasoning and analysis, making them more complex for verification

engineers. Similarly, longer code lengths may increase the complexity

of debugging, as they often involve more intricate logic and a higher

potential for subtle errors. Recognising this, we classified the types

of bugs leading to assertion failures, as shown in Table I. We also

analysed the code lengths and the number of instances falling into

each identified bug category within our training and testing datasets,

as illustrated in Table II. This classification is essential for evaluating

the performance of LLMs across different categories, as it helps

determine whether LLMs can effectively address bug types consistent

with our expectations.

TABLE III: Model performance as pass@k (grey shading: the best

performance across models).

Metric Base Model SFT Model AssertSolver

Pass@1 4.35% 84.66% 88.54%

Pass@5 15.62% 91.64% 90.00%

C. New Open-Source Benchmark and SOTA Counterparts

Given the lack of open-source benchmarks for evaluating tasks

related to solving assertion failures, we have developed a benchmark,

SVA-Eval, to address this gap. This benchmark consists of 877

samples generated by LLMs (SVA-Eval-Machine), as described in

Section II, and 38 manually curated samples (SVA-Eval-Human)

derived from the RTLLM dataset [38], ensuring both the scale of

the dataset and the inclusion of real-world scenarios. Each sample

in SVA-Eval includes the Spec, buggy SV code, logs, and correct

solutions, providing a comprehensive resource for evaluation. The

dataset is publicly available on https://github.com/SEU-ACAL/

reproduce-AssertSolver-DAC-25 to support further research in this

domain.

For the comparison between AssertSolver and the current SOTA

LLMs, we have chosen several commercially available closed-source

models as benchmarks. These include Claude-3.5, GPT-4 [39], and

OpenAI’s latest o1-preview, all of which have demonstrated excep-

tional capabilities in RTL generation and debugging tasks. Further-

more, we have extended our comparative analysis to include open-

source models such as CodeLlama-6.7b [40], Llama-3.1-8b, and our

base model, Deepseek-Coder-6.7b [20]. This inclusive approach aims

to provide a comprehensive overview of AssertSolver’s performance

across a spectrum of platforms and development environments.

D. Evaluation Metrics

To evaluate the performance of our LLM in solving assertion

failures, we employ the pass@k metric, widely used in the evaluation

performance of hardware designs [22], [41], [42]. This metric quanti-

fies the effectiveness of LLMs by measuring their ability to generate

correct solutions for each buggy SV code that causes assertion

failures. For each instance, the model is provided with the buggy SV

code alongside its corresponding specifications and logs, from which

it generates n possible solutions. We then assess these solutions,

deeming c of them effective if they successfully solve the assertion

failure. This approach offers an unbiased estimate of the likelihood

that at least one of the top k selections will address the problem, as

shown by the following equation:

pass@k = Eproblems

[

1−

(

n−c

k

)

(

n

k

)

]

In this study, we set n = 20 and k = {1, 5}.

• Pass@1 assesses the model’s accuracy and consistency by re-

quiring the correct solution to be produced on the first attempt.

An improvement in pass@1 suggests that the model is becoming

more adept in identifying and responding accurately to the bugs,

thus likely improving its precision for such tasks.

• Pass@5 evaluates whether model can provide at least one correct

solution within five attempts. An increase in pass@5 indicates

that there is an enhancement in the model’s ability to generate

diverse solutions, reflecting its flexibility in problem-solving.

E. Implementation Details

Training. We fine-tuned the Deepseek-Coder-6.7b model using 8

A800-80G GPUs and accelerated the process with DeepSpeed ZeRO-

58 84

606
786

Fig. 3: Histogram of correct answers across 20 responses. (x-axis: c

(number of correct solutions in 20 responses))

3 [43]. We opted for full-parameter fine-tuning to achieve optimal

performance and set an initial learning rate of 10−4 for pretraining

and SFT, incorporating a warm-up phase during the first 10% of

training steps. For DPO, a lower learning rate of 10−6 was used, as

it focuses on learning the difference between correct and incorrect

answers, rather than directly optimizing for explicit answers.

Inference. We combined the Spec, buggy SV code, and logs from

the benchmark, requiring LLMs to return responses in a JSON format

with a candidate buggy line, suggested fix, and CoT (Fig. 2-(III)).

In experiments, we found open-source models often deviated from

the prompt format, so we iteratively refined prompts until n = 20
JSON responses were generated per assertion failure case for pass@k

evaluation. The temperature was 0.2 for consistent yet diverse outputs,

except for o1-preview, which has a fixed temperature that cannot be

adjusted through the application programming interface.

V. RESULTS AND ANALYSIS

RQ1: To answer this question, we compared three models: the base

model, the SFT model, and AssertSolver, using the SVA-Eval dataset.

As shown in in Table III, the base model shown the pass@1 and

pass@5 rates below 5% and 16%, respectively. In contrast, both the

SFT model and the AssertSolver, which underwent pre-training and

fine-tuning process with our augmented dataset, consistently achieved

more than 80% pass@1 and pass@5. This presents a significant

performance improvement, with over a 16-fold improvement in

pass@1 and a 5-fold increase in pass@5.

In evaluating the performance between the SFT model and the

AssertSolver, a clear differences is observed. The AssertSolver, which

was further trained on errors from challenging cases, demonstrated

an improvement in pass@1 performance, increasing from 84.66%

to 88.54%. However, this was accompanied by a slight decline in

pass@5 performance, from 91.64% to 90%, compared to the SFT

model. As outlined in Section IV evaluation metric, pass@1 and

pass@5 reflect distinct characteristics of the underlying model. This

observation suggests that although the model’s precision improves

with additional training on errors from challenging cases, its ability

to generate a diverse range of solutions decreases.

Further analysis examined the performance of 915 test cases in

the SVA-Eval dataset. In each cases, it generated n = 20 possible

solutions. We evaluated these solutions, deeming c of them effective.

These test cases were then categorised into 21 distinct outcomes

ranging from ‘c = 0’ (indicating no effective solutions) to ‘c = 20’

(where all solutions were effective). Intermediate values suggested

varying levels of success and correlated with increased uncertainty as

shown in Fig.3. In the figure, the AssertSolver generally outperforms

the SFT model in deterministic scenarios (i.e., ‘c = 0’ and ‘c = 20’)

but fell short in non-deterministic ranges. This finding, as supported

by Table III, indicates that while adding challenging cases enhances

the model’s precision, it may limit the diversity of the solutions.

RQ2: For this research question, we compared the performance

of AssertSolver with leading commercial and open-source LLMs,

including the recently released o1-preview from OpenAI, focusing

TABLE IV: Performance comparison between AssertSolver and other

LLMs (grey shading: the best performance across models).

Model
SVA-Eval-Machine SVA-Eval-Human SVA-Eval

pass@1 (%) pass@5 (%) pass@1 (%) pass@5 (%) pass@1 (%) pass@5 (%)

Claude-3.5 74.86 84.10 66.58 77.48 74.52 83.83

GPT-4 58.04 78.45 54.74 74.01 57.90 78.27

o1-preview 76.96 87.73 67.50 87.94 76.57 87.74

Deepseek-coder-6.7b 4.41 15.85 2.89 10.27 4.35 15.62

CodeLlama-7b 5.95 17.06 4.47 12.85 5.89 16.89

Llama-3.1-8b 20.18 32.41 14.08 24.48 19.92 32.08

AssertSolver 89.04 90.38 76.97 81.35 88.54 90.00

(a) Performance comparison across different bug types

(b) Performance comparison across different code length intervals

Fig. 4: Comprehensive comparison with closed-source LLMs.

on pass@1 and pass@5 metrics within the SVA-Eval dataset. These

comparisons are detailed in Table IV. AssertSolver outperforms

all other models, achieving more than 80% in the pass@1 metric

(reaching 88.54%) and 90% in pass@5, while the second-best model,

the o1-preview, scored 76.57% and 87.74% respectively. Further

analysis, divided by the methods used to generate bugs, indicated

that AssertSolver consistently performs best in all categories, except

for pass@5 in the SVA-Eval-Human. Considering the results from

RQ1, where the AssertSolver demonstrated a preference for preci-

sion over diversity—thereby trading off performance in pass@1 for

pass@5—these outcomes align with expectations.

RQ3: As shown in Table IV, we observed that the performance

for both pass@1 and pass@5 in SVA-Eval-Human consistently

underperforms compared to SVA-Eval-Machine, with the exception

of the pass@5 metric on the o1-preview model. Across all tested

models, there was an average relative decline of approximately 19%

in pass@1 and 15% in pass@5, which were calculated by averaging

the ratio of the pass@1 and pass@5 rates between the SVA-Eval-

Machine and SVA-Eval-Human datasets. This observation suggests

there may be a systemic difference between machine and human-

generated bugs, but requiring further investigation to confirm.

RQ4: To answer this research question, we evaluated AssertSolver’s

performance across different bug types and code lengths against

closed-source LLMs, as shown in Fig. 4. AssertSolver consistently

surpasses the performance of compared LLMs in pass@1 across all

tested scenarios and outperforms in pass@5 in 10 out of 12 (83%)

scenarios. Despite slight underperformance in the ‘Var’ and in code

length exceeding 200, AssertSolver demonstrates better results in

(a) Pass@1 under different scenarios

(b) Pass@5 under different scenarios

Fig. 5: The performance of STF Model and AssertSolver in various

bugs types and code length intervals.

all remaining cases. Particularly, for shorter code (under 100 lines)

and the bugs classified as ‘Direct’, ‘Value’, and ‘Non cond’, both

pass@1 and pass@5 reached over 90%, showcasing AssertSolver’s

effectiveness across various design scenarios.

Further analysis, as shown in Fig. 5, highlights how learning from

error responses to challenging cases improves the pass@1 across

nearly all scenarios, particularly for code lengths exceeding 200 lines,

with the exception of code between 150-200 lines. While there is

a slight decrease in pass@5 in these instances, this drop is not

unexpected. AssertSolver prioritises precision over diversity, leading

to performance that inherently favours pass@1 results.

VI. CONCLUSION

We presented AssertSolver, the first open-source LLM designed to

address assertion failures in RTL design. To overcome the challenge

of data underrepresentation in training datasets, we implemented a

data augmentation method that automatically enriches the training

data with diverse assertion failure scenarios. Also, we introduced a

novel training strategy that enables the model to learn not only from

the augmented data but also from errors in challenging cases, thereby

enhancing its capability to solve assertion failures effectively.

Our experimental results show that AssertSolver achieves pass@1

and pass@5 rates of 88.54% and 90.00%, respectively, on a compre-

hensive test set of over 900 instances. This performance surpasses the

recently released o1-preview by 11.97% and 2.26% in the pass@1

and pass@5 metrics, respectively. Furthermore, by learning errors

from challenging cases, AssertSolver exhibits increased pass@1 rate.

This significant performance underscores the model’s suitability for

applications that require high reliability and consistency, such as

solving assertion failures in hardware design.

Moreover, we have made AssertSolver publicly available for early

adoption and released an openly accessible evaluation benchmark

for solving assertion failures, featuring various bug types generated

by both machine and domain experts. Our work demonstrates that

domain-specific fine-tuning of LLMs, combined with effective data

augmentation and training strategies, can significantly advance the

automation of solving assertion failures in hardware design.

REFERENCES

[1] L.-T. Wang, Y.-W. Chang, and K.-T. T. Cheng, Electronic design
automation: synthesis, verification, and test. Morgan Kaufmann, 2009.

[2] J. Rajendran, V. Vedula, and R. Karri, “Detecting malicious modifica-
tions of data in third-party intellectual property cores,” in Proceedings
of the 52nd Annual Design Automation Conference, 2015, pp. 1–6.

[3] H. Witharana, Y. Lyu, S. Charles, and P. Mishra, “A survey on assertion-
based hardware verification,” ACM Computing Surveys (CSUR), vol. 54,
no. 11s, pp. 1–33, 2022.

[4] R. K. Ranjan, C. Coelho, and S. Skalberg, “Beyond verification: Lever-
aging formal for debugging,” in Proceedings of the 46th Annual Design
Automation Conference, 2009, pp. 648–651.

[5] E. Seligman, T. Schubert, and M. A. K. Kumar, Formal verification: an
essential toolkit for modern VLSI design. Elsevier, 2023.

[6] K. Maddala, B. Mali, and C. Karfa, “Laag-rv: Llm assisted assertion
generation for rtl design verification,” in 2024 IEEE 8th International
Test Conference India (ITC India). IEEE, 2024, pp. 1–6.

[7] S. S. Miftah, A. Srivastava, H. Kim, and K. Basu, “Assert-o: Context-
based assertion optimization using llms,” in Proceedings of the Great
Lakes Symposium on VLSI 2024, 2024, pp. 233–239.

[8] W. Fang, M. Li, M. Li, Z. Yan, S. Liu, H. Zhang, and Z. Xie, “Assertllm:
Generating and evaluating hardware verification assertions from design
specifications via multi-llms,” arXiv preprint arXiv:2402.00386, 2024.

[9] V. Pulavarthi, D. Nandal, S. Dan, and D. Pal, “Assertionbench: A
benchmark to evaluate large-language models for assertion generation,”
arXiv preprint arXiv:2406.18627, 2024.

[10] M. Orenes-Vera, M. Martonosi, and D. Wentzlaff, “Using llms to
facilitate formal verification of rtl,” arXiv e-prints, pp. arXiv–2309, 2023.

[11] C. Sun, C. Hahn, and C. Trippel, “Towards improving verification pro-
ductivity with circuit-aware translation of natural language to systemver-
ilog assertions,” in First International Workshop on Deep Learning-aided
Verification, 2023.

[12] M. Liu, N. Pinckney, B. Khailany, and H. Ren, “Verilogeval: Evaluating
large language models for verilog code generation,” in 2023 IEEE/ACM
International Conference on Computer Aided Design (ICCAD). IEEE,
2023, pp. 1–8.

[13] S. Thakur, B. Ahmad, H. Pearce, B. Tan, B. Dolan-Gavitt, R. Karri, and
S. Garg, “Verigen: A large language model for verilog code generation,”
ACM Transactions on Design Automation of Electronic Systems, vol. 29,
no. 3, pp. 1–31, 2024.

[14] N. Wang, B. Yao, J. Zhou, X. Wang, Z. Jiang, and N. Guan, “Large
language model for verilog generation with golden code feedback,” arXiv
preprint arXiv:2407.18271, 2024.

[15] C.-T. Ho, H. Ren, and B. Khailany, “Verilogcoder: Autonomous verilog
coding agents with graph-based planning and abstract syntax tree (ast)-
based waveform tracing tool,” arXiv preprint arXiv:2408.08927, 2024.

[16] S. Thakur, J. Blocklove, H. Pearce, B. Tan, S. Garg, and R. Karri, “Au-
tochip: Automating hdl generation using llm feedback,” arXiv preprint
arXiv:2311.04887, 2023.

[17] K. Xu, J. Sun, Y. Hu, X. Fang, W. Shan, X. Wang, and Z. Jiang,
“Meic: Re-thinking rtl debug automation using llms,” arXiv preprint
arXiv:2405.06840, 2024.

[18] W. Fu, K. Yang, R. G. Dutta, X. Guo, and G. Qu, “Llm4sechw:
Leveraging domain-specific large language model for hardware debug-
ging,” in 2023 Asian Hardware Oriented Security and Trust Symposium
(AsianHOST). IEEE, 2023, pp. 1–6.

[19] X. Yao, H. Li, T. H. Chan, W. Xiao, M. Yuan, Y. Huang, L. Chen, and
B. Yu, “Hdldebugger: Streamlining hdl debugging with large language
models,” arXiv preprint arXiv:2403.11671, 2024.

[20] D. Guo, Q. Zhu, D. Yang, Z. Xie, K. Dong, W. Zhang, G. Chen,
X. Bi, Y. Wu, Y. Li et al., “Deepseek-coder: When the large language
model meets programming–the rise of code intelligence,” arXiv preprint
arXiv:2401.14196, 2024.

[21] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in neural information processing systems,
vol. 35, pp. 24 824–24 837, 2022.

[22] S. Thakur, B. Ahmad, Z. Fan, H. Pearce, B. Tan, R. Karri, B. Dolan-
Gavitt, and S. Garg, “Benchmarking large language models for auto-
mated verilog rtl code generation,” in 2023 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 2023, pp. 1–6.

[23] S. Williams and M. Baxter, “Icarus verilog: open-source verilog more
than a year later,” Linux Journal, vol. 2002, no. 99, p. 3, 2002.

[24] G. Perković, A. Drobnjak, and I. Botički, “Hallucinations in llms:
Understanding and addressing challenges,” in 2024 47th MIPRO ICT
and Electronics Convention (MIPRO). IEEE, 2024, pp. 2084–2088.

[25] G. P. Reddy, Y. P. Kumar, and K. P. Prakash, “Hallucinations in large
language models (llms),” in 2024 IEEE Open Conference of Electrical,
Electronic and Information Sciences (eStream). IEEE, 2024, pp. 1–6.

[26] S. Tonmoy, S. Zaman, V. Jain, A. Rani, V. Rawte, A. Chadha, and
A. Das, “A comprehensive survey of hallucination mitigation techniques
in large language models,” arXiv preprint arXiv:2401.01313, 2024.

[27] C. Wolf et al., “Symbiyosys,” URL: https://symbiyosys. readthedocs.
io/.[Cited on page 6.], 2022.

[28] B. Yao, N. Wang, J. Zhou, X. Wang, H. Gao, Z. Jiang, and N. Guan,
“Location is key: Leveraging large language model for functional bug
localization in verilog,” arXiv preprint arXiv:2409.15186, 2024.

[29] S. J. Mielke, Z. Alyafeai, E. Salesky, C. Raffel, M. Dey, M. Gallé,
A. Raja, C. Si, W. Y. Lee, B. Sagot et al., “Between words and
characters: A brief history of open-vocabulary modeling and tokenization
in nlp,” arXiv preprint arXiv:2112.10508, 2021.

[30] M. Qi, Y. Huang, Y. Yao, M. Wang, B. Gu, and N. Sundaresan, “Is
next token prediction sufficient for gpt? exploration on code logic
comprehension,” arXiv preprint arXiv:2404.08885, 2024.

[31] R. Sennrich, “Neural machine translation of rare words with subword
units,” arXiv preprint arXiv:1508.07909, 2015.

[32] Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shinohara, T. Shino-
hara, and S. Arikawa, “Byte pair encoding: A text compression scheme
that accelerates pattern matching,” 1999.

[33] N. Mercer, “Talk and the development of reasoning and understanding,”
Human development, vol. 51, no. 1, pp. 90–100, 2008.

[34] T. Reich, A. Kaju, and S. J. Maglio, “How to overcome algorithm
aversion: Learning from mistakes,” Journal of Consumer Psychology,
vol. 33, no. 2, pp. 285–302, 2023.

[35] Y. Tong, D. Li, S. Wang, Y. Wang, F. Teng, and J. Shang, “Can llms
learn from previous mistakes? investigating llms’ errors to boost for
reasoning,” arXiv preprint arXiv:2403.20046, 2024.

[36] K. Chen, C. Wang, K. Yang, J. Han, L. Hong, F. Mi, H. Xu,
Z. Liu, W. Huang, Z. Li et al., “Gaining wisdom from setbacks:
Aligning large language models via mistake analysis,” arXiv preprint
arXiv:2310.10477, 2023.

[37] S. An, Z. Ma, Z. Lin, N. Zheng, J.-G. Lou, and W. Chen, “Learning from
mistakes makes llm better reasoner,” arXiv preprint arXiv:2310.20689,
2023.

[38] Y. Lu, S. Liu, Q. Zhang, and Z. Xie, “Rtllm: An open-source benchmark
for design rtl generation with large language model,” in 2024 29th Asia
and South Pacific Design Automation Conference (ASP-DAC). IEEE,
2024, pp. 722–727.

[39] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[40] B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,
J. Liu, R. Sauvestre, T. Remez et al., “Code llama: Open foundation
models for code,” arXiv preprint arXiv:2308.12950, 2023.

[41] H. Huang, Z. Lin, Z. Wang, X. Chen, K. Ding, and J. Zhao, “Towards
llm-powered verilog rtl assistant: Self-verification and self-correction,”
arXiv preprint arXiv:2406.00115, 2024.

[42] S. Liu, W. Fang, Y. Lu, Q. Zhang, H. Zhang, and Z. Xie, “Rtlcoder:
Outperforming gpt-3.5 in design rtl generation with our open-source
dataset and lightweight solution,” in 2024 IEEE LLM Aided Design
Workshop (LAD). IEEE, 2024, pp. 1–5.

[43] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “Deepspeed: System
optimizations enable training deep learning models with over 100 billion
parameters,” in Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2020, pp. 3505–
3506.

	Introduction
	Data Augmentation
	training strategy
	Pretraining
	 Supervised Fine-Tuning (SFT)
	Learning from Error Responses to Challenging Cases

	Evaluation
	Research Questions
	Dataset Property
	New Open-Source Benchmark and SOTA Counterparts
	Evaluation Metrics
	Implementation Details

	Results and Analysis
	Conclusion
	References

