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AbstractÐVerifying hardware designs in embedded systems is crucial
but often labor-intensive and time-consuming. While existing solutions
have improved automation, they frequently rely on unrealistic assump-
tions. To address these challenges, we introduce a novel framework,
UVLLM which combines Large Language Models (LLMs) with the
Universal Verification Methodology (UVM) to relax these assumptions.
UVLLM significantly enhances the automation of testing and repairing
error-prone Register Transfer Level (RTL) codes, a critical aspect of
verification development. Unlike existing methods, UVLLM ensures that
all errors are triggered during verification, achieving a syntax error fix
rate of 86.99% and a functional error fix rate of 71.92% on our proposed
benchmark. These results demonstrate a substantial improvement in
verification efficiency. Additionally, our study highlights the current
limitations of LLM applications, particularly their reliance on extensive
training data. We emphasize the transformative potential of LLMs in
hardware design verification and suggest promising directions for future
research in AI-driven hardware design methodologies. The Repo. of
dataset and code: https://anonymous.4open.science/r/UVLLM/.

I. INTRODUCTION

Hardware design verification in embedded systems remains heavily

dependent on human expertise, making it a tedious and error-prone

process that often incurs significant costs [1], as Fig. 1(a) illustrates.

A critical aspect of this process is debugging and repairing errors, an

area where automated program repair (APR) can contribute. Origi-

nally developed for software [2]±[6], APR uses automated tools to fix

errors with minimum human intervention and is now being adapted

for Hardware Description Language (HDL) design verification due

to its potential to reduce human errors and verification costs.

APR systems, as depicted in Fig. 1(b), receive design codes and

test cases, and attempt to enact targeted modifications with predefined

templates to ensure all tests are passed. Innovations such as Cirfix [7],

Strider [8], and RTLrepair [9] demonstrate the potential of APR to

reduce the labor and time required for hardware design verification.

However, these APR methodologies predominantly rely on fixed

templates and focus on addressing functional error, limiting their

scope and effectiveness of the repairs.

Fortunately, recent advancements in LLMs such as generating

hardware code from natural language specifications [10]±[13], and de-

bugging hardware designs for both functional and syntax errors [14]±

[18], have demonstrated promising results in bridging this gap.

However, existing solutions are still insufficient for hardware design

verification due to their reliance on unreliable assumptions and lack

of consideration for the limitations inherent in LLMs. For instance,

despite demonstrations of high fix rates for both syntax and functional

errors [17], our analysis indicates that approximately 10% of the

benchmarks manage to bypass the testbench without undergoing any

repairs, and the reliability of some repairs remains questionable owing

to insufficient coverage of test cases. These findings underscore the

need for more robust solutions capable of effective deployment in

real-world verification scenarios.

To address these shortcomings, we propose a comprehensive end-

to-end hardware design verification framework, Universal Verification

via Large Language Model (UVLLM). This framework integrates

the established UVM with LLMs. Our approach enables the first

automated hardware design verification framework that operates with
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Fig. 1: The frontend process is divided into initial design and verifi-
cation phases, with verification accounting for more than 70% of the
duration [1]. Advanced APR techniques are integrated to automate and
accelerate the repair stage during verification phase (</>: RTL codes).

practically assumptions, while also managing uncertainties associated

with LLM behaviors. This systematic verification strategy, which

encompasses testing and repairing, ensures a more robust solution

than those currently highlighted in LLM-aided debugging research.

The main contributions of this paper are:

• A comprehensive testing: Utilizing the UVM, our approach

enables flexible test modes and efficient coverage collection.

Additionally, the reference models generated by LLMs provide

a robust foundation for testing across diverse input scenarios.

• An open-sourced tooling: We have created an open-source

toolset to enable the broad and early adoption of UVLLM,

thereby easing its integration. These tools are publicly available

at https://anonymous.4open.science/r/UVLLM/.

• Extensive empirical validation: We present an open-source

error dateset derived from verified projects, containing 331 code

instances with realistic errors across various modules, generated

by our paradigm error generator. We will continue to organize

and update this dataset periodically.

• Demonstrated performance improvement: UVLLM, incorpo-

rating GPT-4-turbo, significantly enhances verification automa-

tion, achieving a syntax error fix rate of 86.99% and a functional

error fix rate of 71.92%, exceeding MEIC [17] in terms of

repair rates and execution time under realistic testing scenarios.

It delivers up to 48x speedup in debugging processes when

compared with experienced engineers.

Organisation. The structure of this paper is as follows: Section II

outlines the fundamental concepts of UVLLM, while Section III

delves into the details of UVLLM and their underlying reasons.

Section IV assesses our framework and compares it with existing

methods. Section V provides conclusions and make discussions.
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Fig. 2: The UVLLM Framework Overview: The process begins with the DUT and the Specification (Spec.), where the Spec. is used to generate a
reference model. Initially, the DUT is pre-processed to eliminate syntax and focused timing-related errors (Step 1⃝). Subsequently, the pre-processed
code is tested under a UVM testbench (Step 2⃝), and the log is then post-processed to extract relevant data (Step 3⃝), which the debug agents use to
generate candidate patches (Step 4⃝). These codes and their pass rates are archived in the Repository (Repo.) and Register (Reg.) for future iterations.

II. UVLLM: AN OVERVIEW

Designed to enhance the hardware design verification phase,

UVLLM aids hardware developers in detecting and correcting com-

mon errors in RTL code. The UVLLM is applicable to various

hardware environments, in this work, we illustrate the usage of

UVLLM in Verilog. As depicted in Fig. 2, this framework combines

traditional UVM with LLMs and assumes following inputs:

• Design specifications that outline the intended and expected

behavior of the hardware component;

• RTL codes that contain the untested RTL code of the initial

hardware design, i.e., Design Under Test (DUT).

Reflecting advancements in state-of-the-art (SOTA) research, it is

noted that using LLMs for hardware design verification requires

an iterative approach [17] and is more effective when LLMs are

provided with detailed error information [19]±[21]. However, using

LLMs still presents certain shortcomings, as current applications of

LLMs struggle with reliability, applicability, and processing long code

sequences. Additionally, the use of SOTA LLMs can be costly(e.g.,

the GPT-4-Turbo model, charges $0.01 per 1K input tokens and $0.03

per 1K output tokens [22]). To address these challenges, UVLLM

introduces a cost-efficient, structured four-step process for verifying

RTL code against design specifications, as illustrated in Fig. 2.

1) Pre-processing: Starting with raw RTL code as the input,

this stage utilizes linters such as Verilator to pre-process the code, re-

moving syntax errors and addressing timing-related functional errors

using a combined LLM-script method. The output is syntax-correct

DUT, setting a solid foundation for further functionality testing.

2) UVM Processing: Pre-processed DUT code is then tested

against a pre-built UVM testbench to identify behavioral discrepan-

cies. Outputs include detailed logs that either confirm alignment with

the reference model or highlight deviations with specific signal values

and test pass rates, facilitating targeted repairs.

3) Post-processing: Utilizing the UVM logs as input, this stage

analyzes the logs to extract critical error data using a localization

engine and the Abstract Syntax Tree (AST). The output isolates

mismatch signals and specific error paths, preparing them for precise

correction in the repair stage.

4) Repair: The final stage takes the design description, the

DUT code and the detailed error information from the post-processing

as input. Utilizing the information, the debug agents offer candidate

patches to correct the errors. The repaired DUT code is then synthe-

sized as the stage output for further iteration.

The termination conditions for the framework loop are: 1) no errors

are detected (Success), or 2) the maximum number of iterations is

reached (Failure). If any of the above conditions are met, the iteration

stops. All history files are stored for reference.

Algorithm 1: Pre-processing DUT with Joint LLM-Script.

Input: DUT file FD

Output: Pre-processed DUT file FDprep

1 Function PreproDUT(FD):

2 repeat

3 Log = Linter(FDprep);
4 Errs = Match(Log, Error);
5 Warns = Match(Log, Warning);
6 if Errs then

7 FDprep = GPT(FDprep, Errs);
8 else if Warns then

9 WarnTemps = Search(Warns, WarnList);
10 FDprep = Replace(FDprep, WarnTemps);
11 end

12 until (Errs == ∅)&(Warns == ∅);
13 return FDprep

14 End Function

Modularization. UVLLM uses modular design which allows it to

adapt to a wide range of verification scenarios by enabling the use

of different tools based on the needs. For example, one can replace

an LLM with a more advanced model or use a different linter if

required. This flexibility is made possible by standard interfaces

between the pipelines, which simplify the integration of different tools

via adjustments to the API or by keeping a consistent format.

III. UVLLM: THE FRAMEWORK PIPELINE

As for the operation of the framework, we introduce the joint LLM-

Script pre-processing stage (Section III-A), processing stage with

tests (Section III-B), post-processing stage for error location (Section

III-C), followed by the discussion on the microsystems integrated

with the LLM agents (Section III-D). At last, we present our effort

for human-like error generation (Section III-E) for evaluation.

A. Pre-processing via the Linter

To ensure compliance with best practices and avoid obvious

functional defects, the code is pre-processed using Verilator for linting

before UVM testbench evaluation. Through static code analysis

and slicing, the method pinpoints potential error sources without

executing the code. LLMs have proven effective in Verilog debugging,

especially in repairing syntax errors and refining code with offered

error sources. By resolving syntax errors and identifying semantic

issues early on, the subsequent need for employing LLMs for

debugging is minimized, reducing the costs for the use of LLMs.

Combined LLM-Script Pre-pocessing.

To further reduce costs, as detailed in Algorithm 1, we employ

a cost-effective strategy that combines LLMs with supplementary

scripting to minimize unnecessary LLM usage. In the pre-processing
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stage, LLMs are only utilized to help identify and correct syntax

errors. These models draw on their extensive training across diverse

codebases, efficiently recognizing and amending a broad spectrum of

common coding errors and integrating essential error information.

Additionally, the pipeline incorporates scripts designed to address

specific warnings that, while not syntax errors, could lead to potential

runtime issues, especially some timing-related ones. For instance, in

combinational logic circuits, blocking assignments are typical, and

Verilator issues warnings for using non-blocking assignments in this

case. Through predefined templates, it is possible to systematically

identify and modify issues where a non-blocking assignment ª<=º

should be replaced with a blocking assignment ª=º, ensuring the

code adheres to expected timing behaviors.

The pre-processing stage iterates until all syntax errors and focused

timing-related warnings are resolved. Integrating LLM agents with

scripts establishes a robust foundation for subsequent verification

stages, ensuring that the DUT encounters only functional errors.

B. UVM Processing

Recent studies, such as MEIC [17], validate LLMs’ effectiveness in

hardware debugging. However, these studies neglect the importance

of testbench construction and employ finite test cases, which restricts

the test coverage and leads to overfitting on specific cases. This

limited scope significantly undermines the general applicability of

the results, as evidenced by a 10% reduction in the actual fix rate

reported by MEIC due to many error instances escaping detection. To

overcome these limitations, the UVM framework, depicted in Fig. 3,

is employed as the testbench for UVLLM to verify RTL codes, due

to its robust support for flexible and complete testing modes.

UVM Construct. To verify complex hardware system, the UVM

offers a formal verification structure significantly advanced over

simpler testbenches, incorporating components like Agents, Environ-

ments, Sequencers, Drivers, and Monitors. Each agent encapsulates

a sequencer, driver, and monitor, enabling direct interaction with the

DUT. The Sequencer organizes transactions generated from Sequence

that simulate real-world operations, which the Driver then translates

into pin-level actions on the DUT. Central to UVM’s effectiveness

is the Scoreboard, which compares actual results with expected

outcomes to ensure the DUT performs correctly under various condi-

tions. Additionally, UVM supports various test modes and coverage

collection techniques that further enhance testing thoroughness. This

method helps identify discrepancies and potential failures, enhancing

the reliability and accuracy of the verification process.

Reference Model Generation. In UVM, reference models play a

crucial role in verifying complex designs, such as those used in

digital signal processing and cryptography, by providing high-level

abstractions of the DUT. These models enhance simulation accuracy

and efficiency, contributing to a more streamlined verification process.

Traditionally, C/C++ is preferred for reference models in industry due

to its seamless integration with SystemVerilog via Direct Program-

ming Interfaces (DPI), which accelerates verification cycles [24]±

[26]. In this context, the capabilities of LLMs are especially relevant.

Given the abundance of open-source datasets, LLMs have shown

Algorithm 2: Post-processing with Localization Engine.

Input: DUT file FD , UVM log LUV M , reference waveform
WR, simulation waveform WS , iterations Iter

Output: Error information ErrInfo
1 Function ErrChk(LUV M , WS):

2 / ∗ MT : Mismatch T imestamp ∗ /
3 / ∗ MS : Mismatch Signals ∗ /
4 / ∗ IV : Input V alues ∗ /
5 MT , MS = getMismatch(LUV M , PATMS);
6 if MS then

7 IV = getInputValue(WS , MT );
8 end

9 return MT , MS, IV
10 End Function

11 Function ErrInfoFetch(FD , LUV M , WR, WS , Iter):

12 / ∗ SL : Suspicious Code Lines ∗ /
13 MT , MS, IV = ErrChk(LUV M , WS);
14 for ms ∈ MS do

15 DFG = getDFG(FD , ms);
16 SL = SL

⋃

traverse(DFG, IV );
17 if detectSignal(FL, s) and s ̸∈ MS then

18 MS = MS
⋃

{s};
19 end

20 end

21 ErrInfo = (Iter < TH) ? MS : SL;
22 return ErrInfo
23 End Function

remarkable proficiency in generating C/C++ code, making them

well-suited to assist in crafting adaptable, high-quality reference

models. These LLM-generated models can dynamically respond to

the intricate demands of verification, continuously updating to support

high-fidelity simulations and robust design validation.

Extensibility. The extensibility of the UVM is particularly evident

when considering the integration of automated assertion generation.

UVM’s structured, modular framework for verification is optimally

configured to incorporate advanced enhancements such as AI-driven

assertions, which can systematically verify that the design behaves

as expected across various protocols like APB (Advanced Peripheral

Bus) and AHB (Advanced High-Performance Bus) [27].

C. Post-processing via Localization Engine

Current LLM-aided verification methods tend to use minimally

processed logs as inputs, which are often low in information density,

thereby diminishing the efficiency of LLMs in diagnosing and fixing

errors. To address this, we adopted time-aware dynamic error lo-

calization [8] to extract more concrete and high-value information

from these logs with methods. This method, tailored for HDL

environments, surpasses the static localization method described in

Section III-A by providing greater precision and temporal sensitivity.

The localization engine leverages dynamic analysis and temporal

insights to detect discrepancies between expected and actual signal

outputs as recorded in the UVM log. These discrepancies are crucial

for performing dynamic slicing through data flow graphs (DFGs), as

outlined in Algorithm 2. To optimize token usage, UVLLM adopts a

segmented information extraction strategy. Initially, mismatch signals

are input into the LLM’s prompt as indicators of potential errors. If

subsequent repair attempts fail, this indicates that relying solely on

mismatched signals may be insufficient. To increase diagnostic preci-

sion, the system then incorporates actual execution pathsÐidentified

as suspiciousÐinto the analysis alongside the error signals. This

approach focuses on actual execution paths in operation, leading to

more precise identification of errors.

Rollback Mechanism. During the development of UVLLM, a Roll-

back mechanism was implemented to address the issue of inaccuracies

in LLM outputs, often termed ªhallucinationº [28]±[32]. This feature
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is crucial for preventing the accumulation of errors across iterations

due to reliance on flawed candidate repairs. Despite previous studies

utilizing LLMs as reward models to assess repair quality [17], [33],

there is a lack of robust quantitative metrics to effectively measure the

correctness of these modifications. This gap can lead to inefficiencies

in the rollback process, potentially triggering false positive rollbacks.

Within the UVM framework, the quality of Verilog code iteration

is evaluated using a scoreboard that assigns the test pass rate. We

assume that higher scores correlate with fewer errors and better

functionality. The Rollback mechanism functions by preserving a

history of code versions and their scores. If a new iteration scores

lower than a previous one, indicating a decline in code quality, the

mechanism reverts to the highest-scoring version, as illustrated in

Fig. 2. The alterations that led to the decrement in score are thus

recorded as ªdamage repairsº, which is utilized in Fig. 4.

D. Repair Agent

The LLM agent functions as an adept RTL repair expert, leveraging

three key inputs: the design specification, which outlines intended

functionality and port definitions; RTL code; and error information.

To enhance the repair process and facilitate iterative improvements,

the system incorporates ªdamage repairsº as an additional input,

crucial for preventing the recurrence of unsuccessful corrections when

the rollback mechanism is activated. In a multi-agent setup, specific

modifications to the prompts for each agent address different aspects

of the debugging process, enabling a more nuanced and thorough

error analysis in the RTL code. The primary prompts that guide

the debugging activities of these agents are illustrated in Fig. 4,

emphasizing a tailored approach to error resolution.

Formalizing agent’s outputs. It’s commonly noticed that LLM-

generated responses tend to include detailed explanations during

debugging, which can clutter the main objective of code debugging.

In light of our observations, it becomes evident that LLMs exhibit

enhanced debugging capabilities with superior reasoning process. To

prevent the inclusion of irrelevant details and erase the hallucination

during the iterative cycle, a method for distilling the responses

generated by the LLM is adopted. Utilizing the Structured Outputs

method enables adherence to JSON Schema [34], thereby ensuring

that responses are consistently formatted according to predefined

structures. By requiring the response to be in JSON format and to

contain an element labeled ªcorrectº which consists of pair of wrong

codes and right codes, the code sections accentuated in Fig. 4 are

refined and carried into the subsequent iteration.

E. Benchmark Generation

The incidence of errors in module code is closely related to specific

attributes such as code length and functional complexity [35]±[37].

To evaluate the efficacy of the verification methodology, a well

TABLE I: Part of common Verilog errors in real-world designs.

Types Error Symptoms

D
ec

la
re Type Misuse

output reg [8:0] result;

output [8:0] result;

Bitwidth Misuse
reg [8:0] count;

reg [7:0] count;

A
ss

ig
n

m
en

t Operator Misuse
always @(*) result = a + b;

always @(*) result = a - b;

Variable Name Misuse
assign r1 = r1 temp;

assign r1 = r2 temp;

Value Misuse
if (rstn) data = 32’b0;

if (rstn) data = 32’b1;

C
o

n
d

it
io

n

Wrong Judgment Value
for(i = 0; i < 7; i ++) begin ... end

for(i = 0; i < 15; i ++) begin ... end

Wrong Sensitivity
always@(posedge clk or negedge rstn) ...

always@(posedge clk ) ...

P
o

rt

Port Mismatch
mod mod1(.a(a), .b(b), .in bd({bdg, 1’b1}));

mod mod1(.a(a), .b(b), .in bd(1’b1));

constructed evaluation dataset was developed through a systematic se-

lection of samples from validated open-source datasets, representing

a diverse range of codebases. These samples were then deliberately

infused with typical errors to simulate real-world coding mistakes.
In design bases combining both commercial and open-source IPs,

a comparative analysis was performed on two consecutive versions of

the code: one immediately before and another after code repository

commits. This analysis focused on identifying discrepancies and

documenting changes made during the design process, effectively

highlighting the differences between pre and post-commit versions.

These error-modification pairs, detailed in Table I, were crucial

for developing prompts for LLM and for terms used in pattern

matching, showcasing common human-made errors such as misuse

of assignments and the mismatch port in instantiation. This approach

showcases common human-made errors, such as misuse of assign-

ments and mismatches in port instantiation, and provides a crucial

benchmark for evaluating the verification effectiveness.

IV. EVALUATION

This section presents our experimental setup, evaluation metrics

research questions, and discussions to the results.
Setup. In our experiment, we employed LLM agents via the OpenAI

API, with GPT-4-turbo as the default model. An evaluation bench-

mark was then constructed using the extensively verified RTLLM

dataset [38], which encompasses a diverse array of real-world errors.

The initial code’s ability to pass the compiler is indicated by a syntax

error or functional error. We utilized a range of simulation tools

including VCS [39], Iverilog [40], Modelsim [41], Yosys [42], and the

linting tool Verilator [43] to ensure comprehensive verification and

analysis. We set the threshold of iterations to 5, as the improvement

is hardly observed after that. All experiments were conducted on an

AMD EPYC 7763 2.45GHz CPU. For each instance, we asked LLMs

for 5 times to reduce the randomness of the response.

A. Evaluation Metrics

Recent work [44], [45], tended to use pass@k metrics to assess

functional correctness. For each problem in the problem set, k code

samples are generated at a time, and the problem is considered solved

if any sample passes the simulation test.
Hit Rate (HR). Specifically, our framework quantifies effectiveness

using Hit Rate (HR) [46]. For erroneous code θi and its corrected

version θ∗i , we evaluate a set of test cases {(x1

i , y
1

i ), . . . , (x
m
i , ym

i )}.

The corrected code θ∗i must produce the correct output y
j
i for each

input x
j
i , ensuring all cases pass. That is,

∧m

j=1
aθ∗

i

(

x
j
i

)

= y
j
i . The

overall rate for n corrcted versions is calculated as:

HR =

n
∑

i=1

∧m

j=1

[

aθ∗
i

(

x
j
i

)

= y
j
i

]

n
× 100% (1)
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Fig. 7: Heat map result for FR. The symbol ª×º represents an error
that could not be imposed due to the limitations of the specific module
structure. Syntax and Function represent the weighted mean of the FR
for syntax errors and function errors, respectively.

HR measures the proportion of instances resolved under test cases.

Fix Rate (FR). To overcome limitations in test coverage, our

framework includes Fix Rate (FR), which involves independent expert

validation of the proposed fixes θ∗i . After expert review, if the fix is

confirmed effective across additional scenarios, it is designated as θ̂∗i :

FR =

n
∑

i=1

θ̂∗i
n

× 100% (2)

FR reflects the framework’s repair effectiveness in broader conditions.

Execution Time. In evaluating the framework’s performance, this

paper emphasizes execution time as a critical metric, defined as

the time interval from the initial design input into UVLLM to the

completion of the final code output.

B. Results and Discussions

Result 1:The UVLLM framework’s effectiveness in enhancing hard-

ware design verification is demonstrated through a comparative eval-

uation of Fix Rates (FRs) among various methodologies, as depicted

in Figures 5 and 6. This analysis encompasses traditional script-

based approaches [8], [9], current LLM-aided methods [17], and a

baseline incorporating GPT-4-turbo for benchmark repairs. Across

all categories of errorsÐboth syntax and functionalÐthe UVLLM

framework consistently achieves higher FRs.

Specifically, for syntax errors, the UVLLM framework records an

average FR of 87.6%, representing a significant 26.9% improvement

over the second performing method, MEIC. For functional errors,

UVLLM continues to surpass other methods, registering a FR of

67.3%, which is a 36.3% enhancement relative to MEIC. Notably,

in the case of Incorrect bitwidth as illustrated in Fig. 6, UVLLM’s

FR is more than double that of the next best method, RTLrepair.

Moreover, even in less favorable scenarios, such as Declaration

errors, UVLLM’s FR remains approximately 5% above that of

MEIC, its nearest competitor. These results clearly demonstrate that

UVLLM consistently outperforms other methods, achieving signifi-

cantly higher FRs across diverse scenarios.

Result 2: The evaluation of the UVLLM framework’s capability to

ensure that repaired code adheres to specification requirements is

conducted through an examination of the correctness of repaired code.

Although many methods achieve high hit rates (HRs), their fixes often

overfit to specific input-output (IO) pairs, revealing a discrepancy

between HRs and FRs.

Figures 5 and 6 illustrate this disparity; the shaded areas represent

the deviation between HR and FR, highlighting the failure of these

methods to detect numerous errors, which leads to false negatives

and insufficient coverage. Specifically, for syntax errors, UVLLM

demonstrated no deviation across all scenarios, while deviations for

other methods were observed in 4 out of 5 scenarios with an average

of 5% variations, confirming the achievement of high coverage for

syntax errors. In contrast, for functional errors, the deviations for

other methods were notably higher (all above 30%) whereas UVLLM

maintained a minimal deviation of only 1.4%. Notably, UVLLM had

a maximum deviation of just 5.6% for Logic errors, while the other

methods displayed deviations exceeding 40% for Flawed conditions.

These results suggest that while other methods struggle to achieve

comprehensive coverage for functional errors, UVLLM effectively

mitigates this limitation. These findings indicate that UVLLM sig-

nificantly enhances the practicality of hardware design verification

by integrating formal verification processes, to meet the specification

requirements to the greatest extent possible.

Result 3: The UVLLM framework’s repair capabilities across a

diverse range of hardware modules were evaluated by analyzing the

FRs of 27 common modules, each injected with nine distinct types

of syntax and functional errors. These modules were categorized

into ten representative types, such as adders, counters, and FSMs, to

establish a comprehensive benchmark for evaluating the framework’s

generalization in various verification scenarios.

As illustrated in Fig. 7, where the framework’s FRs were de-

picted using color coding, UVLLM exhibited exceptional adaptability,

achieving robust FRs in simpler modules like counters. For instance,

the FRs for syntax errors and functional errors in these modules

reached 100% and 95%, respectively. In contrast, the FRs were lower

in more complex modules, such as FSMs, with FRs for syntax errors

and functional errors at 89% and 32%, respectively. This indicates

that repairing more complex designs remains challenging.

Across the same types of module, syntax errors consistently

exhibited higher FRs than functional errors, reflecting UVLLM’s

proficiency in addressing syntactic issues. This advantage stems from



TABLE II: Performance comparison of segmented approach across common modules with various error instances.

Types
Pre-processing1 Repair in MS Mode Repair in SL Mode UVLLM2 MEIC [17]

Speedup
FR/% Texec/s FR/% Texec/s FR/% Texec/s FR/% Texec/s FR/% Texec/s

Arithmetic3 s4 69.93 8.30 13.07 5.60 1.31 0.30 84.31 14.20 62.30 197.29 13.89x

Control s 80.91 7.23 8.18 3.38 0.00 0.00 89.09 10.61 63.64 129.02 12.61x

Memory s 60.00 10.29 28.33 5.14 0.00 0.00 88.33 15.43 54.55 147.17 9.53x
Miscellaneous s 79.65 8.31 7.67 4.77 1.18 0.39 88.50 13.47 66.67 62.67 4.65x

Syntax 74.72 8.49 11.29 5.06 0.98 0.27 86.99 13.83 62.99 134.95 9.76x

Arithmetic f 30.26 3.63 33.33 11.27 2.63 0.64 66.23 15.54 40.53 257.28 16.56x

Control f 29.93 3.33 30.61 9.37 5.44 0.84 65.99 13.54 10.91 163.96 12.55x

Memory f 25.00 4.35 58.33 11.22 3.33 0.87 86.67 16.44 22.73 256.49 15.60x

Miscellaneous f 21.25 3.86 49.06 11.54 5.63 0.90 75.94 16.30 40.07 65.37 4.01x
Function 25.96 3.82 41.46 11.19 4.50 0.78 71.92 15.79 34.57 191.76 12.14x

Overall 51.27 6.16 25.80 7.79 2.68 0.49 79.75 14.77 52.14 153.84 10.42x

1 The repair operation of UVLLM comprises three stages: Pre-processing, Repair in Mismatch Signal (MS) Mode, and Repair in Suspicious Line (SL)
Mode. The columns labeled FR and Texec indicate the contributions of each stage to the fix rate and execution time, respectively.

2 The column labeled UVLLM summarizes the total contributions across all stages of the repair operation.
3 Modules are grouped as Arithmetic (Accumulator, Adder, Divider, Multiplier), Control (Counter, FSM), Memory, and Miscellaneous (other modules).
4 Errors are categorized as syntax (ªsº) and function (ªfº).

the extensive training of the LLM on a substantial corpus of HDL

code data, enhancing its syntactic understanding. Additionally, the

compiler and linter contribute detailed localization information that

aids in the repair of syntax errors.

Overall, the framework achieved an FR of 86.99% for syntax errors

and 71.92% for functional errors, representing its reliability across

diverse modules and error scenarios.

Result 4: The UVLLM framework’s evaluation primarily focuses on

how its distinct stages contribute to the fix rate and execution time

during the repair operation, providing insights into each segment of

the verification process.

Table II details the repair process, which unfolds in several stages,

each playing a different role in resolving syntax and functional errors.

The Pre-processing stage was particularly effective in addressing

syntax errors, successfully resolving 74.72% of these cases as high-

lighted. For functional errors, the Mismatch Signal (MS) mode in the

Repair stage was most effective, correcting 41.46% of the instances.

The adoption of segmented steps enables UVLLM to work effectively

and adapt flexibly to various verification scenarios.

For errors strictly related to syntax, the majority were success-

fully corrected during the pre-processing stage. However, 11.29% of

syntax-only errors persisted and advanced to the subsequent repair

stage in MS mode. Similarly, the attempt to resolve 25.96% of func-

tional errors inadvertently introduced new syntax issues, which were

then addressed by the pre-processor. This demonstrates UVLLM’s

ability to compensate for new errors introduced in earlier stages and

mitigate the uncertainties associated with LLMs.

In terms of execution time, the segmented repair operation shows

that the pre-processing stage, despite handling over 50% of all bench-

mark repairs, typically requires less time than repairs conducted in

MS mode. This demonstrates the efficiency benefits of incorporating

a robust pre-processing stage.

Result 5: The UVLLM framework’s execution efficiency was eval-

uated against existing methods from a multidimensional perspective,

mainly focusing on two key metrics: Failure Rates (FRs) and execu-

tion time Texec, as detailed in Table II.

While Fig.5 and Fig.6 show the variations in FR performance

across different error types, UVLLM consistently surpassed MEIC

across all module types. For instance, within the Miscellaneous

modules for syntax errors in Table II, UVLLM achieved an FR of

88.50%, which is 21.83% higher than MEIC’s 66.67%. In handling

functional errors within Arithmetic modules, characterized by their

complex logic, UVLLM maintained an FR of 66.23%, significantly

outperforming MEIC’s 40.53%. These results underscore UVLLM’s

robust capability to effectively resolve a wide spectrum of errors

across different modules compared to existing methods, thus proving

TABLE III: Ablation study. UVLLMpair and UVLLMcomp represent
UVLLM with LLMs generating code pairs and complete codes.

Framework
FR/% Texec/s

Syntax Func. Syntax Func.

UV LLMpair 86.99 71.92 13.83 15.79
UV LLMcomp 70.41 59.25 35.60 71.84

its effectiveness and reliability in boosting system performance.

In terms of operational efficiency, UVLLM also demonstrated a

substantial reduction in execution time. For example, when processing

syntax errors within the Miscellaneous modules, UVLLM recorded

an average execution time of 13.47s, marking a speedup of 4.65x

compared with MEIC. This advantage was even more pronounced

when addressing complex functional errors, where UVLLM achieved

a speedup of up to 16.56x over MEIC in Arithmetic modules. On

average, UVLLM operated 10.42x faster than MEIC, while simulta-

neously achieving higher test coverage and pass rates. These findings

highlight UVLLM’s potential to significantly enhance the design

verification process for practical deployment by merging increased

automation with superior efficiency.

C. Ablation Study

Our research includes the ablation study designed to evaluate the

impact of iteration strategies on the effectiveness of the framework.

Repair generation form. We initially employ an approach that uses

original-repair code pairs to facilitate the generation of new code by

leveraging outputs from LLMs. However, the ablation study exam-

ines an alternative method where entire code snippets are directly

produced by the LLMs, omitting the generation of repair pairs.

As shown in Table III, generating complete code snippets

resulted in a slight decline in repair accuracy and an increase

in execution time compared to generating original-repair code

pairs. Nevertheless, there were specific scenarios where this

direct generation method proved superior. This advantage is

mainly due to the ability of the direct generation method to

handle minor errors that pose significant challenges for LLMs

in terms of search efficiency. In some cases, regenerating the

entire code is more effective than trying to modify or replace

segments of the existing code. For instance, correcting the error

ªmodule a(A); ...(Missing Definition of Port A)...endmoduleº

proves challenging for the replacement strategy, primarily because the

essential context is frequently overlooked, whereas the reproduction

method handles it more straightforwardly.

V. CONCLUSION

In this work, an automated universal verification framework,

UVLLM, which comprehensively addresses main phases of hardware



design verification, including testbench construction, test execution,

result analysis, and repair, is proposed. Tested on the proposed

benchmark, UVLLM achieves average syntax and functional error

fault rates of 86.99% and 71.92%, respectively, while maintaining

nearly 100% test coverage. Additionally, UVLLM performs 10.42

times faster than the previous MEIC framework. The framework

demonstrates that it is feasible to employ the LLMs for the purpose

of Verilog code verification, irrespective of the initial code state. The

utilization of reasonable segmentation and feedback engineering leads

to an improvement in the verification efficiency of the framework.
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