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Abstract

The deployment of Large Language Models (LLMs) for code debug-

ging (e.g., C and Python) is widespread, benefiting from their ability

to understand and interpret intricate concepts. However, in the

semiconductor industry, utilising LLMs to debug Register Transfer

Level (RTL) code is still insufficient, largely due to the underrepre-

sentation of RTL-specific data in training sets. This work introduces

a novel framework, Make Each Iteration Count (MEIC), which

contrasts with traditional one-shot LLM-based debugging methods

that heavily rely on prompt engineering, model tuning, and model

training. MEIC utilises LLMs in an iterative process to overcome

the limitation of LLMs in RTL code debugging, which is suitable for

identifying and correcting both syntax and function errors, while

effectively managing the uncertainties inherent in LLM operations.

To evaluate our framework, we provide an open-source dataset

comprising 178 common RTL programming errors. The experimen-

tal results demonstrate that the proposed debugging framework

achieves fix rate of 93% for syntax errors and 78% for function errors,

with up to 48x speedup in debugging processes when compared

with experienced engineers. The Repo. of dataset and code: https:

//anonymous.4open.science/r/Verilog-Auto-Debug-6E7F/.

1 Introduction

In hardware development, the verification and debugging processes

are notably laborious and time-consuming, requiring twice the

duration of the design phase itself [21]. This significant investment

in time and resources shows the need for more efficient methods.

Large Language Models (LLMs) have the potential to revolu-

tionise this process, which have demonstrated a remarkable capabil-

ity to interpret hardware specifications using natural language and

generate corresponding Register Transfer Level (RTL) code, such

as Verilog and VHDL. Existing efforts [3, 9, 23, 36] have showcased

the potential of LLMs in automating hardware design, but have also

revealed significant limitations. The primary issues are related to

the unstable performance of LLMs and the intrinsic complexities of

RTL code itself [48], which often result in error-prone outputs. In

response to these limitations, a growing body of research, including

RTLFixer [38], SBF [1], LLM4SecHW [13], HDLdebugger [46], and

AssertLLM [11], has been undertaken to enhance LLM-based RTL

debugging. These studies employed techniques such as prompt en-

gineering [30, 43], model tuning [4, 23], and model training [15, 22]

to address these challenges. However, despite these efforts, the per-

formance of these approaches is still far from practical, as evidenced

by persistently low pass@k rates1.

In contrast to previous works, our approach is inspired by estab-

lished human debugging practices, recognising that łthere is never

one-shot debuggingž. As depicted in Figure 1, the debugging process

1The pass@k metric measures the probability that at least one of the top k outputs gen-
erated by a model correctly solves a given problem, used to evaluate the effectiveness
of solutions in tasks like code generation and debugging.
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Figure 1: Hardware development flow in the human world

(Spec: Specification; Arch: Architecture; Req: requirement): the

flow involves the specification definition, frontend develop-

ment, and backend implementation. After the design require-

ment is defined, the RTL is coded at both IP and SoC levels.

To ensure the design’s correctness, multiple iterations of the

verification and debugging must proceed, usually consuming

twice the duration compared to the design phase.

in human-led environments is not only collaborative but also itera-

tive [19, 20, 24, 41, 42]. Each stage of the debugging process, from

the initial RTL design phase to final verification, involves multiple

iterations where different individuals with diverse capabilities en-

gage in verifying and debugging the code. This method continues

until the code achieves an error-free state or meets stringent cover-

age criteria. Acknowledging that uncertainties in LLM outputs are

similar to the variabilities in human performance, this human-led

model provides a solid foundation for developing LLM-based RTL

debugging methods. Particularly, employing an iterative approach

addresses the inherent uncertainties associated with LLM models.

Contributions.We presentMake Each Iteration Count (MEIC),

a novel framework that utilises multiple LLMs to enable automated

and iterative debugging of RTL code. MEIC is designed to address

the above limitations commonly associated with applying LLMs in

hardware debugging. The main contributions of this paper are:

• An iterative framework: MEIC integrates RTL toolchain

(e.g., compilers and simulators), with two LLM agents, and a

code repository. This allows continuous evaluation, testing

and debugging of RTL code, mitigating uncertainties caused

by the fluctuations in the performance of LLM outputs.

• Dual LLM deployment:MEIC employs a fine-tuned de-

bug agent that identifies and attempts to correct syntax and

function errors, followed by an LLM scoring agent that as-

sesses the quality of RTL candidates derived from the debug

agent. This deployment provides quantified and traceable

feedback that informs further iterations.

• An open-sourced tooling: To ease the adoption of MEIC,

we developed a tooling to enable wide and early utilisation

ofMEIC which is publicly available onhttps://anonymous.

4open.science/r/Verilog-Auto-Debug-6E7F/.
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• Extensive empirical validation: We present an open-

source error dateset derived from RTLLM [25]. This evalua-

tion dataset contains 178 code instances generated from our

random error generator which include common syntax and

function errors across various modules of combinational

and timing logic circuits.

• Demonstrated performance improvement:MEIC, in-

corporating GPT-4, significantly enhances debugging au-

tomation and performance, achieving a syntax error fix rate

of 93% and a function error fix rate of 78% using our test

dataset. Also, it delivers up to 48x speedup in debugging

processes when compared with experienced engineers.

Organisation. The rest of the paper is organised as follows: Sec-

tion 2 presents the top-level concepts of MEIC, Section 3 introduces

the details of MEIC and the rationales. Section 4 evaluates our

framework against five research questions, followed by the related

work given in Section 5. Section 6 concludes and offers the insights.

2 MEIC: An Overview
Intended for use in the design and verification stages, MEIC aims

to help hardware developers identify and correct both syntax and

function errors in RTL code. This systematic framework (see Fig-

ure 2), wraps a RTL toolchain (e.g., compilers and simulators), two

LLM agents (fine-tuned2 for code debugging and assessment), and

a code repository. To ensure the framework’s applicability across

different scenarios, we standardised its inputs as:

• Design specification: outlining the intended and expected

behaviour of the hardware component;

• RTL code: containing the untested RTL code of the initial

hardware design, i.e., Design Under Test (DUT).

• Testbench: acting as the reference for verifying the func-

tional correctness of the RTL code.

MEIC assumes that the LLMs employed can perform better

through proper fine-tuning and prompt engineering. Our approach

for this processing (e.g., fine-tuning and prompt engineering) of

LLMs is discussed in Section 3. Under these assumptions, MEIC

attempts to correct the RTL code as necessary across a number of

iterations from four pipeline stages (Step 1 ś 4 ) in Figure 2, high-

lighting our principle that debugging is an iterative, not an one-shot

process. The iterative MEIC pipeline involves the following steps:

• Step 0 : MEIC begins by taking the user’s inputs, which

are processed in the compiler and simulator to detect the

syntax and function errors, respectively. If no errors are

found, the process terminates, outputting the error-free

code. If errors are detected, the code, its associated logs,

and the design specifications are sent to the debug agent;

• Step 1 : the debug agent is expected to correct the er-

roneous RTL code (both syntax and function errors) by

producing a code candidate based on its inputs;

• Step 2 : the RTL code candidate is analysed and evalu-

ated by the scorer agent, which assesses the quality of the

generated code candidate and assigns a numerical score;

• Step 3 : the RTL code candidate and its score are stored in

the repository to enable a rollback mechanism, preventing

2We acknowledged that fine-tuning’s definitions are various in different LLMs. Here
we use the GPT4 as an example: https://platform.openai.com/docs/guides/fine-tuning.

the current RTL code from being overwritten by potentially

incorrect LLM outputs, e.g., skipping lines of the code;

• Step 4 : the repository selects the RTL code with the high-

est score for the new interaction round, continuing until

the framework meets the termination condition.
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Figure 2: MEIC overview: the framework initialises with the

DUT, which is compiled and simulated by the RTL toolchain

(step 0 ). The resultant logs and code are forwarded to the

debug agent for error resolution (step 1 ). The revised RTL

code is examined by the scorer agent (step 2 ) and stored in

the repository (step 3 ), from which the highest-scored code

is selected for the following debugging iteration (step 4 ).

The framework terminates and outputs the latest design code

analysed in the toolchain if i) no error is found or ii) it reaches the

threshold of the maximum number of iterations.

Modularisation and flexibility. It is worth noting that standard

interfaces between different stages of the pipeline are used. This

ensures easy upgrades and extensions. For instance, replacing the

debug agent with a domain-specific model or altering the RTL

toolchain can be achieved by simply modifying the API or main-

taining consistent log formats. This flexibility allows MEIC to adapt

to various debugging scenarios and technological advancements.

Contexts. As a framework, MEIC is agnostic to the RTL and LLMs.

For illustrative purposes, we used Verilog, the most widely adopted

RTL language in the industry, along with its associated toolchain,

ModelSim [31], as an example throughout the paper. For LLMs, we

used different versions of GPT models from OpenAI (see Section 4).

3 MEIC: The Framework Pipeline
Wefirst discuss our preparations before the operation of the pipeline,

including the error classifications (Section 3.1) and the tuning

method (Section 3.2), both of which aim to enhance the LLM’s

performance. For the operation of the pipeline, we introduce the

simulation process that uses the RTL toolchain combined with

feedback engineering (Section 3.3), followed by the discussion on

the microsystems integrated with the LLM agents for debugging



Table 1: Common Verilog error categories and examples.
Types Error Description Expected Form Unexpected Form

S
y
n
ta
x
E
rr
o
rs

Premature Termination
Missing or redundant punctuation (e.g., semi-colons or commas)

causing premature end of the execution.
module A(input a, output b); module A(input a, output b)

Undefined Variable Using variables that have not been previously declared. assign result = temp; assign resutl = temp;

Operator Misuse

Operator misuse (e.g., incorrectly using the assignment operator ‘=’

instead of the comparison operator ‘==’ for evaluating conditions)

resulting in unacceptable expression format.

if (a == 2’b10)

begin b <= 1’b1; end

if (a = 2’b10)

begin b <= 1’b1; end

Redundant Variable Declaration Declaring the same variable multiple times e.g. in port definitions.
module A(input a, output b);

reg a_temp;

module A(input a, output b);

reg a;

Incorrect Encoding Presence of characters not aligning to ANSI encoding standard. module A(input a, output b); module A(input â, output b);

Incorrect Data Type Assignment Failing to comply with assignment rule for reg- and wire-type data.
reg a;

always @(*) begin a = b; end

reg a;

assign a = b;

Port Mode Declaration Error Failing to declare module port according to the rules.

module A(a, b);

input a;

output b;

module A(a, b);

input a;

//Declaration for b is missing.

Data Index Out-of-Bounds Error Exceeding allowable data bounds during array or vector operations.
reg [32:1]a;

assign b = a[16:1];

reg [32:1]a;

assign b = a[15:0];

Improper Use of Keywords Using reserved keywords incorrectly or as identifiers. reg alway; reg always;

F
u
n
ct
io
n
E
rr
o
rs

Insufficient Bit Width Defining registers with inadequate bitwidth.
wire [3:0] a;

assign a = 4’b1000;

wire [3:1] a;

assign a = 4’b1000;

Incomplete Port Connection Failing to connect all ports during module instantiation in Verilog. mod md(.a(a), .b(b)); mod md(.a(a), .b());

Flawed Sensitivity List Omitting or mis-specifying signal data in Verilog’s sensitivity list.
always @(posedge clk or negedge rst_n)

begin a <= b + c; end

always @(posedge clk or posedge rst_n)

begin a <= b + c; end

Misuse of Assignments Misusing blocking (=) and non-blocking (<=) in sequential design.
always @(posedge clk or negedge rst_n)

begin a <= b + c; end

always @(posedge clk or negedge rst_n)

begin a = b + c; end

Logical Errors in Expressions Complex and incorrect module logic during code formulation. assign a = b + c; assign a = b & c;

Concurrent Variable Use Assigning the same variable in multiple processes. always @(*) begin a=1’b1; end
always @(*) begin a=1’b1; end

always @(*) begin a=1’b0; end

Mismatched Assignment Values
Omitting base indication in values that leads to unexpected assign-

ments.

if (a == 2’b10)

begin b <= 1’b1; end

if (a == 10)

begin b <= 1’b1; end

Incorrect Module Instantiation Instantiating a non-existent module, but only fails in functionality. mod md(.a(a), .b(b)); mdo md(.a(a), .b(b));

Infinite Loop Constructs
Loops using forever, while, or for without a clear termination condi-

tion will not end.
next_stage <= next_stage_temp; next_stage <= current_stage;

(Section 3.4) and for the best-version code selection (Section 3.5).

Finally, we briefly introduce the proposed open-source Verilog error

dataset (Section 3.6) that is used in the evaluation.

3.1 Error Classifications

Understanding error classifications in Verilog is essential for effec-

tive debugging. For human engineers, knowing whether an issue

is a syntax or function error allows for the selection of appropri-

ate tools and techniques (compilers and linters for syntax errors,

and simulators, waveform analysers, and timing analysis tools for

function errors). Similarly, for LLMs, this classification would aid

in executing more accurate debugging processes as it would allow

for a more structured reasoning [8, 26, 40, 45].

Syntax errors. Syntax errors are errors that occur when the code

violates the formal structure of the Verilog language. Such errors are

typically identified by compilers during the parsing stage, prevent-

ing further simulation or synthesis. The compiler, e.g., ModelSim

and DC, produces logs detailing the location and nature of these

errors, thus helping with quick error detection and correction.

Function errors. Function errors encompass all other errors that

affect the operation code and include semantic errors, logical er-

rors, timing errors, etc. Unlike syntax errors, function errors are

concerned with the behaviour and outcome of the code rather than

its grammatical correctness. These errors can be more challenging

to detect and often require extensive testing, simulation, formal ver-

ification, and detailed examination of timing and synthesis reports.

For practical identification of such errors, assertions and testbench

are commonly employed to identify unexpected outcomes for sub-

sequent correction (see Section 3.3).

// Preset the role of the LLM, determine the input and output information.

1 #You are an expert in IC design, specialising in Verilog language. Your primary role is

to analyse Verilog source code, identify errors, and provide updated, error-free designs.

2 #You will be offered the specification, design code, compilation logs and simulation logs.

// Give inputs in format.

3 Here is the design specification:

{Spec.} // ... Spec. details omitted ...

4 Here is the design code:

{Code} // ... Module details omitted ...

5 Here are the logs:

{Logs} // ... Log details omitted ...

// Emphasize the process of Self-planning.

6 #Please offer necessary steps to debug the design module code. Then try to achieve

the debugging.

7 #Your goal is to assist in achieving a fully functional and error-free Verilog design.

Figure 3: Part of the input patterns for the self-planning. In

addition to debugging based on provided files (lines 1-4), the

agent is also required to plan the debugging process (line 5).

Drawing on the practical errors identified in our past hardware

designs and insights from previous studies [7, 34], we categorised

the Verilog errors and gave corresponding examples in Table 1.

3.2 Tuning Method

Domain-specific knowledge. It is well-known that LLMs can

achieve better performance in a specific domain by utilising system-

level instructions and extra domain knowledge [13, 22, 28]. Based

on this property, we fine-tuned the LLM by supplying relevant

information as system-level instructions and incorporating domain

knowledge through the prompts [12, 27, 32, 39, 47].

To facilitate the interpretation and correction of Verilog code,

we incorporated the Verilog-2001 standard [33] into the knowledge,

along with a number of RTL code examples (e.g., HDLBits [44],

Verilog-G [35], RTL Coding Guidelines [29], etc.) and the error

knowledge (in Table 1). The previously gathered debugging-related

data, subjected to cleansing and extraction, given through prompts.



1 After reviewing the documents, I will now proceed to analyse and update the Verilog

code to meet the design specification and resolve any issues indicated in the

compilation and simulation logs.

2 Firstly, I have examined the design specification:

// ... Spec. analysis details omitted ...

3 Next, I will scrutinise the design code for structural and logical correctness:

// ... Module code analysis details omitted ...

4 The compilation logs are crucial to identify any syntax errors or warnings:

// ... Compilation log analysis details omitted ...

5 The simulation logs provide insights into the behavior of the design:

// ... Simulation log analysis details omitted ...

6 Based on the analysis of the design documents, here are my suggested modifications and

the updated design file.

// ... Updated module details omitted ...

Figure 4: Reply of the LLM.With self-planning technique, the

LLM provides a set of steps for RTL analysis and debugging.

Prompting techniques. To further improve the performance of

the LLMs in code generation and debugging, we utilised advanced

prompt engineering techniques, e.g., self-planning and role prompt-

ing as described in [18, 25]. The use of self-planning helps the LLMs

to break down a complex task into several planned steps and the

use of role prompting enables more relevant and contextually appro-

priate responses, allowing structured and relevant LLM responses.

We captured snapshots of our prompts when fine-tuning the

LLM, as shown in Figure 3. The response of the LLM, as presented

in Figure 4, provides a clear outline of the five structured steps (i.e.,

from line 2-6). It suggests that the specification is analysed first,

followed by the analysis of the design code, the compliance logs

and the simulation logs. Finally, it suggests the RTL modifications.

3.3 Toolchain, Compilation, and Simulation

We employed a toolchain to verify RTL code compliancewith design

requirements by evaluating compilation and simulation results.

As mentioned in Section 3.1, syntax errors can be directly de-

tected during the compilation and detailed in the compilation logs,

while function errors often go undetected during compilation and

result in unexpected outputs during simulation. Hence, building

test cases is crucial for automatically identifying and correcting

function errors, ensuring that the output meets expectations.

For Verilog, function errors are typically identified using two

common methods: testbenches and assertions. Because the test-

benches and assertions provide different granularity of error infor-

mation, we integrated both methods in MEIC.

Testbench-based detection. The testbench serves as a reference

model, continuously providing stimulus to the DUT and verifying

its outputs against the expected results. To mitigate common-cause

errors between the DUT and the testbench, we developed the test

cases in the testbench using Python. Specifically, we employed

Random library to generate input data and wrote the corresponding

functionality given in the specification. With that, we developed an

automated script shown in Fig 5 that translates the reference model

into Verilog syntax, maintaining alignment with the standards. The

$display() function is used to report the results (Figure 6(a)).

Assertion-based detection. To provide more traceable error feed-

back, assertions are employed in the conventional debugging ap-

proach. The original Verilog code is transformed into SystemVerilog

code, and assertions are incorporated into the code for error-prone

areas. If the function at the assertion is erroneous at simulation,

the simulation will be terminated directly, and logs will be dis-

played (Figure 6(b)). Different from the testbench-based detection,

which only records comparisons between inputs and outputs, the

assertion-based approach offers more precise about the errors.
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Following the acquisition of the RTL code and different detection

techniques, ModelSim is used for local simulation. To ensure the

smooth operation of the entire framework, the simulation process

is automated to reduce the needs for manual intervention. This

is achieved through CMD commands that automate the simulation

while generating compilation and simulation logs.

Other detection techniques.We acknowledged that alternative

detection techniques are being explored within the community. For

instance, references [3, 16, 25] demonstrate the use of LLMs to gen-

erate testbenches. As outlined in Section 2, MEIC is designed to be

versatile, supporting a broad ranges of error detection approaches,

including those based on LLMs. This compatibility only requires

that these techniques supply formalised simulation logs, which are

then used as input for the framework.

3.4 Debug Agent

The LLM agent functions as an expert in RTL debugging, expecting

four inputs: specification, Verilog code, compilation logs, and sim-

ulation logs. The specification includes a design description that

outlines the code’s functionality as well as its inputs and outputs.

Following the RTL simulation, both compilation and simulation

logs are generated (Section 3.3). Using these logs, it is expected

that the debug agent can locate the error and leverage its expan-

sive knowledge base (Section 3.1 and 3.2), giving suggestions for

modifications and providing an updated version of the code.

Debug iteration(s).Based on the knowledge outlined in Section 3.2,

the debug agent then returns the modified design file. However,

in most cases, neither human engineers nor LLM agents can get

the code right on the first attempt. Therefore, we followed the

debugging process of human engineers and introduced an iterative

process. If the agent does not generate the correct code in the

current iteration, the next iteration will be performed using the

highest-scored code from the previous iterations.

Furthermore, the type of error encountered dictates the error

messages generated. For example, syntax errors only result in the

generation of compilation logs, as simulation logs are generated

when the syntax is correct. Therefore we need to perform format

control based on these two situations. The key prompts for the

debug agent are shown in Figure 7.

Formalising agent’s outputs. It is often observed that LLM’s

response often containing irrelevant information to code debugging

e.g., the LLM’s debugging reasoning process or explanations of the

code. Based on our observation, the LLM’s code outputs typically

follow a specific format, as shown in Figure 8. To prevent noisy

inputs from being used in subsequent iterations, we systematically

clean and extract the LLM’s responses to ensure that only the



1 ’timescale 1ns/1ps
2 module tb ();
3 //... Module Instantiation ...

4 initial begin
5 ...
6 if(error!=0) begin
7 $display (”The testbench inputs are: var1 = m’H% h,

var2 = n’H% h,... . But the actual results are: rslt1 = a’H% h,
rslt2 = b’H% h,...”, var1, var2, ..., rslt1, rslt2...);

8 end
9 ...
10 if(error==0) begin
11 $ display(”=====Your Design Passed=====”);
12 end
13 $finish
14 end
15 //... Test cases ...

16 endmodule

(a) Testbench.

1 module div 16bit (
2 input wire [15:0] A,
3 input wire [7:0] B,
4 output wire [15:0] result,
5 output wire [15:0] odd ) ;
6 ...
7 always@(*) begin
8 for (i = 0; i <16; i = i + 1) begin
9 tmp a prev = tmp a;
10 tmp a = tmp a >>1; //Logic error here
11 tmp result = tmp result <<1;
12

13 assert (tmp a[31:16] == {tmp a prev[30:16], tmp a prev[15]})
14 else $error (”Shift left operation failed”); //Assertion here
15 end
16 end
17 ...
18 endmodule

(b) Assertion.

Figure 6: Methods for function errors’ detection, which pro-

vides different granularity of error information.
// Prompts in runtime, emphasising not changing the code structure to avoid new problems.

1 #You are an expert in the field of IC design, proficient in Verilog. I will provide you with
the design Spec., design code, as well as the compilation logs and simulation logs.
Please modify the design code based on this information. Do not drastically change
the structure of code.
// Modify code according to comments.

2 #If there are comments in the code, modify the code with reference to the comments
and retain these comments after modification.
// Processed on a case-by-case basis depending on whether compilation passes.

3 #If the Compile fails, I will provide you with the compilation logs, please modify the
corresponding lines of design code based on the information in the logs.

4 #If the Compile passes, I will only provide you with the simulation logs.
The simulation logs contain error information during simulation.
Based on the information, please modify the design code to make it functionally right.
// Determine output format.

5 #Offer corrected Verilog design code omitting testbench. Please fix the error(s)
according to the design specification and logs.

Figure 7: System prompts in runtime for the debug agent.

essential parts (i.e., the code as shaded in Figure 8) are carried

forward for use in the next iteration.

1 ... LLM Description ...

2 “‘{language} #In our application, the language is Verilog.

3 module {module name}
4 ... Code Details ...

5 endmodule

6 “‘

7 ... LLM Description ...

Figure 8: Code output format from the LLM.

3.5 Scorer Agent and Exception Handling
While employing the LLMs, unexpected situations may arise, also

known as łhallucinationž [2, 6, 14, 17]. For example, the LLM may

return incomplete code. If subsequent iterations are based on these

flawed outputs, the quality of the results may be compromised.

Also, the LLM can inadvertently modify both erroneous and correct

portions of the code, leading to a situation where most of the itera-

tions are spent addressing new errors introduced by the LLM itself.

Two common łexceptionsž are shown in Figure 9. To avoid these

exceptions, we introduce Scorer agent and Rollback mechanism as

the exception handling mechanisms in MEIC.

1 module traffic light (
2 input wire rst n,
3 input wire clk,
4 input wire pass request,
5 output wire [7:0] clock,
6 output wire red,
7 output wire yellow,
8 output wire green ) ;
9

10 // Code is missing.

11

12 endmodule

(a) Code missing.

1 module traffic light (
2 input wire rst n,
3 input wire clk,
4 input wire pass request,
5 output wire [7:0] clock,
6 output wire red,
7 output wire yellow,
8 output wire green ) ;
9 ...
10 // State transition logic

11 always @( posedge clk or negedge rst n) begin
12 if (!rst n) state <= idle;
13 else case (state)
14 ...
15 s1 red: if (cnt == 0) state <= s3 green; else state <= s1 red;
16 // Here should be ’cnt==’d3’, which is correct in the original code.

17 ...
18 endcase
19 end
20 ...
21 endmodule

(b) New error generated.

Figure 9: Exceptions should be handled by the scorer agent.

Scorer agent.We introduced a scorer agent to detect unexpected

cases. During the debugging process, modifications should aim to

minimise the change to the original code. After the debug agent

proposes corrections, the modified code is compared to the version

from the previous iteration. The scorer agent then evaluates the

code based on its completeness and overall quality. If the assessed

score falls below a predefined threshold, a rollback mechanism is

activated to revert the design code to the most recent comparable

and simulatable version. To improve the reliability of the scoring,

the scorer agent is prompted with a variety of metrics:

• Readability: The clarity of the code that can be understood.

• Maintainability: The ease with which the code can be

updated or altered.

• Robustness: The capacity to handle errors and anomalies.

• Standards Compliance: The alignment of the code with

established Verilog coding standards.

Although these metrics are qualitative, the scoring process re-

mains effective because all RTL codes are evaluated using the same

scorer, ensuring consistency between assessments. In addition, the

MEIC only interests the relative scores between the iterations. To

further mitigate the uncertainty of the qualitative scoring, a low

temperature3 is configured to the scorer agent.

3A hyper-parameter in GPT models that controls the randomness of GPT’s responses.
A lower value is associated with less randomness in their responses



Rollback mechanism.Within the scorer agent, we introduced a

mechanism to support possible rollback. This is achieved by sav-

ing each version of the Verilog code, along with its corresponding

compilation and simulation logs from each iteration, in a desig-

nated location. This mechanism not only enables rollback but also

enhances traceability as the iteration evolves.
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Figure 10: Flow of Exception Handling and Rollback (EHR).

The rollback mechanism is primarily triggered based on the com-

pleteness of the code produced by the LLM and the score provided

by the scorer agent. We assume that the completeness is indicated

by the number of lines in the code. If a significant reduction in lines

or missing code is observed, we trigger the rollback mechanism

regardless of the scorer agent. Otherwise, rollback occurs when the

code scored below a predetermined threshold in the scorer agent.

Once triggered, the highest-scored code from the previous iteration

is used for the next iteration, rather than themost recently produced

code. This handling of exception is illustrated in Figure 10.

3.6 Error Dataset
Different modules may exhibit diverse error distributions. To eval-

uate the debugging capabilities of MEIC, we used an open-source

dataset [25] and intentionally introduced a variety of common er-

rors to construct a specialised dataset tailored for debugging. Our

goal is to comprehensively represent the spectrum of prevalent

Verilog errors by selecting a representative sample of designs.

Because our dataset is developed based on RTLLM [25], some

error types might not be generated in certain modules, such as

the infinite loop construct in the loop-free modules. Therefore,

this error dataset primarily includes the errors that are prevalent

across most modules (summarised in Table 2), such as premature

termination, undefined variable, etc.

Table 2: Verilog error dataset.

Module type

Error type
Syntax Function Total

Arithmetic 57 38 95

Logic 50 33 83

Total 107 71 178

Random error generation. Given that the majority of the errors

introduced are common errors, we also implemented an automatic

error generationmethod, which could be used for more compressive

evaluation. For simpler error types (e.g., misuse of assignments),

we devised a set of bug-pattern lists, using regular expressions to

identify segments suitable for random error insertion. For more

complex function errors (e.g., infinite loop), error generation is

facilitated through GPT-4 or manual insertion, followed by a data

cleansing process. The final dataset size could potentially expand

to 200 times the original data size.

4 Evaluation

This section presents our experimental setup, research questions,

evaluation metrics and results to answer the questions.

Setup. In our experiment, the LLM agents powered by the Ope-

nAI website interface were utilised. Unless otherwise stated, we

used the GPT-4 Turbo model as our default LLM agent for both

debugging and scoring. We set the temperature of the agent, which

controls the randomness of the LLM’s output, to 0.7 for the debug

agent as deemed optimal in our evaluation of RQ1, and 0.1 for the

scorer agent to minimise the randomness of each scoring process

as discussed in Section 3.5. We then developed test cases containing

various Verilog design scenarios using ModelSim SE 10.7 simulation

environment. We set the threshold of iterations to 10, as based on

our experiences, the improvement is hardly observed after that.

4.1 Research Questions

We carried out the experiments to evaluate our framework against

five key Research Questions (RQs):

RQ1 (Sensitivity): How does temperature in GPT-4 setting

impact the performance ofMEIC in terms of FR? This research

question explores the effect of LLM’s temperature which controls

randomness and lowering the temperature results in less random

completions. It seeks to understand how the randomness of LLM’s

output impact the dubugging performance4.

RQ2 (Effectiveness): Can MEIC correct different types of er-

rors across various modules? This research question investigates

the performance of the MEIC system in terms of its ability to fix er-

rors across a variety of code modules, focusing on both syntax and

function errors. It seeks to understand how the system’s debugging

effectiveness varies depending on the complexity of the code and

the type of error encountered.

RQ3 (Impactability): How do various LLM-based configu-

rations and integration impact debugging performance in

terms of fix rate? This research question explores the potential

improvements in error correction capabilities through both fine-

tuning the models and integrating them with the MEIC framework.

It aims to evaluate whether the proposed MEIC framework can

significantly enhance RTL debugging performance.

RQ4 (Usability): How does MEIC work with different LLM

agents? This research question aims to compare the effectiveness

of integrating different LLM models in MEIC, specifically GPT-3.5

and GPT-4, in debugging code. It seeks to understand how different

LLM models influence the performance of MEIC, quantifying their

usability for RTL debugging.

RQ5 (Performability): How does MEIC compare with human

experts in debugging performance? This research question eval-

uates how the MEIC debugging performance compares to that of

human experts. It seeks to determine whether the framework, when

4We focused on the debug agent because we argued that the debug agent plays a more
important role in debugging workflow than the scorer agent.



Table 3: The syntax and function error debugging with different LLMs. The highest FR of each module is marked.

Types
GPT-3.5 GPT-4 GPT-3.5+Knowledge GPT-4+Knowledge GPT-3.5+MEIC GPT-4+MEIC

Syntax Func. Syntax Func. Syntax Func. Syntax Func. Syntax Func. Syntax Func.

accu 57.14% 36.67% 28.57% 60.00% 47.61% 33.33% 66.67% 40.00% 42.86% 33.33% 74.29% 50.00%

adder_8bit 62.50% 58.33% 91.67% 91.67% 50.00% 58.33% 100.00% 100.00% 66.67% 91.67% 100.00% 100.00%

adder_32bit 62.96% 46.67% 85.19% 66.67% 51.85% 33.33% 88.89% 73.33% 77.78% 46.67% 97.14% 94.00%

adder_pipe_64bit 23.81% 40.00% 33.33% 26.67% 23.81% 40.00% 95.24% 86.67% 42.86% 60.00% 94.29% 90.00%

div_16bit 20.00% 0.00% 27.78% 40.00% 16.67% 20.00% 72.22% 26.67% 16.67% 20.00% 81.67% 62.00%

multi_booth_8bit 100.00% 26.67% 75.00% 33.33% 100.00% 46.67% 100.00% 80.00% 100.00% 60.00% 100.00% 77.50%

multi_pipe_8bit 9.52% 33.33% 80.95% 73.33% 28.57% 46.67% 100.00% 60.00% 28.57% 42.86% 100.00% 80.00%

radix2_div 74.07% 61.11% 11.11% 50.00% 66.67% 55.56% 70.83% 55.56% 75.00% 61.11% 66.25% 46.00%

alu 28.57% 60.00% 61.90% 86.67% 66.67% 66.67% 90.48% 93.33% 85.71% 73.33% 97.14% 97.50%

asyn_fifo 37.50% 37.50% 83.33% 54.16% 25.00% 33.33% 91.67% 62.50% 41.67% 33.33% 89.29% 78.57%

freq_div 100.00% 83.33% 100.00% 100.00% 95.24% 83.33% 100.00% 83.33% 100.00% 94.44% 100.00% 100.00%

parallel2serial 45.83% 50.00% 75.00% 75.00% 66.67% 91.67% 91.67% 100.00% 66.67% 100.00% 95.00% 100.00%

serial2parallel 75.00% 26.67% 79.17% 40.00% 75.00% 20.00% 100.00% 26.67% 79.17% 20.00% 98.75% 58.75%

traffic_light 19.04% 20.00% 0.00% 40.00% 9.52% 46.67% 90.48% 40.00% 28.57% 40.00% 95.71% 44.00%

width_8to16 73.33% 74.44% 100.00% 100.00% 100.00% 80.00% 100.00% 80.00% 100.00% 100.00% 100.00% 97.50%

FR 54.28% 45.73% 62.83% 61.96% 55.26% 49.57% 90.69% 66.24% 64.26% 56.90% 92.68% 78.39%

integrated with LLM models, can achieve comparable or superior

results to human experts in identifying and fixing errors in code.

4.2 Evaluation Metrics
Fix Rate (FR). In recent work, such as [5, 10], the use of pass@k

metrics to assess function correctness was mentioned. For each

problem in the problem set, k code samples are generated at a time,

and the problem is considered solved if any of the k samples pass

the simulation test (without syntax and function errors).

Specifically, we used Fix Rate (FR) to quantify the debug ability

of the debugging framework[37]. For an error code 𝜃𝑖 and its fixed

version 𝜃∗𝑖 , we had a corresponding set of test cases in testbench
(
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𝑖
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𝑖

)

,
(
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𝜃∗𝑖 , it should produce the correct output 𝑦
𝑗
𝑖
when applied to the in-

put data 𝑥
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from the test cases. That is, 𝑎𝜃 ∗

𝑖

(

𝑥
𝑗
𝑖

)

= 𝑦
𝑗
𝑖
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can be regarded as passing. Whether the error is success-

fully fixed can be described as
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, an aggregate

result of all test cases. The FR that represents the test result on the

bug instances are defined as:

FR =
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× 100% (1)

It is worth noting that all FR presented in this paper are calculated

based on the average of 10 repeated experiments.

Execution time. This paper also considers the execution time of

the framework as an important indicator of the performance, which

is determined as the time elapsed between when the MEIC receives

the initial design files and MEIC outputs the final modified code.

4.3 Results and Discussions

RQ1 (Sensitivity). Figure 11(a) illustrates the impact of temper-

ature on the FR of syntax errors and function errors. The results
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Figure 11: FR against the temperature of the debug agent.

indicate that within the temperature range of the experiment, higher

temperatures result in higher function error FR and lower syntax

error FR. The function and syntax error FR reach their highest point

of 80% and 95% respectively with temperature settings being 0.9

and 0.5 respectively. This may be attributed to the fact that syntax

error is relatively straightforward, whereas function error is more

complex. While attempting to rectify a syntax error, the agent with

a higher temperature may inadvertently introduce alterations that

result in the generation of new errors. Such errors were rarely cor-

rected by the debug agent in the subsequent iterations according to

our observation. In the case of function errors, the higher degree

of randomness allowed LLM to to avoid modifying the same error

all the time. Based on Figure 11(a), we calculated an average FR of

all our test cases as shown in Figure 11(b). The overall FR reached

the best case (87.30%) when the temperature was 0.7.

RQ2 (Effectiveness). Figure 12 shows the MEIC’s FR for 8 syntax

errors and 7 function errors across 15 common hardware modules.

The FR was calculated based on Equation 1, and the values were

colouring-coded for readability. The results suggest that the FR var-

ied significantly depending on module complexity and error types.

For instance, for modules with straightforward logic and shorter

lengths such as the adder_8bit module, MEIC consistently achieved

a high FR, indicating its effectiveness in correcting all error types.

Conversely, for more intricate modules like accu, the FR diminished,

highlighting the challenge of debugging such code. Regarding error
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Figure 12: Heatmap result for FR. The symbol X represents

an error that could not be imposed due to the limitations

of the specific module structure. Syntax_Average and Func-

tion_Average represent the arithmetic mean of the FR for

syntax errors and function errors, respectively.

types, while syntax errors exhibited a higher (10% higher) overall

FR than function errors, the latter posed greater difficulty in cor-

rection, particularly in complex modules. On average, the MEIC

achieved FR of 93% for syntax errors and 78% for function errors,

demonstrating a greater effectiveness than existing practices. By

contrast, the average FR achieved by RTLFixer [38] stood at 16%.

RQ3 (Impactability). Table 3 compares the FR of both syntax and

function errors achieved by two LLM models (GPT-3.5 and GPT-

4) in their standard forms, after incorporating external domain-

specific knowledge and with the integration of MEIC. Results in-

dicate that, for the same core GPT models, the models integrating

MEIC achieved the highest FR of both syntax and function errors,

followed by the models incorporating knowledge only. The stan-

dard form models exhibited the lowest FR.

Furthermore, when comparing the best performance (colouring-

coded) across all LLMs and their variants, the models with MEIC

accounted for 80% of the best results, whereas the models with

knowledge and standard-form models only scored 16% and 4%,

respectively. It is worth noting that standard models benefited

significantly from adding knowledge for identifying and correcting

syntax errors, but this was less effective for function errors. With

the integration ofMEIC, while improvements were observed in both

syntax and function error debugging, the performance gap is more

favourable for function errors, as GPT-4 withMEIC improved the FR

to 78.30% from 66.24% for GPT-4 with knowledge, representing an

improvement of over 12%. This result suggested that the integration

of MEIC could indeed enhance the performance of standard models,

surpassing those with incorporating knowledge.

RQ4 (Usability). According to Table 3, GPT-4 consistently outper-

formed GPT-3.5 across their standard forms. After incorporating

external knowledge, the performance of GPT-3.5 still failed to meet

the standard form of GPT-4. This demonstrated differences in the

debugging capabilities of the models themselves. However, after

Table 4: Execution time of MEIC against human (s: syntax

error; f: function error; "Total" is calculated in seconds).

Types
GPT-4+MEIC Human

Speedup
Simu. Debug Score Trans. Total Total

accu s 4.4% 88.0% 5.6% 2.1% 116.0 382 3.29x

adder_8bit s 8.0% 82.6% 6.0% 3.4% 30.6 136 4.44x

adder_32bit s 2.4% 93.4% 2.4% 1.9% 130.3 402 3.09x

adder_pipe_64bit s 1.8% 94.4% 2.5% 1.4% 169.4 575 3.39x

div_16bit s 6.9% 82.9% 8.5% 1.7% 63.6 249 3.91x

multi_booth_8bit s 9.5% 77.6% 9.0% 3.9% 23.6 272 11.53x

multi_pipe_8bit s 4.2% 90.1% 3.9% 1.8% 53.2 775 14.56x

radix2_div s 3.0% 89.1% 4.1% 3.8% 219.9 620 2.82x

alu s 3.4% 90.5% 3.5% 2.6% 80.6 318 3.95x

asyn_fifo s 2.2% 93.4% 3.0% 1.4% 146.6 827 5.64x

freq_div s 8.3% 81.3% 6.9% 3.5% 25.9 197 7.60x

parallel2serial s 8.2% 80.6% 8.6% 2.6% 32.9 239 7.26x

serial2parallel s 8.8% 79.2% 8.1% 3.8% 25.5 268 10.49x

traffic_light s 3.9% 77.9% 3.9% 14.4% 68.3 284 4.16x

width_8to16 s 8.8% 80.3% 7.5% 3.3% 24.3 232 9.56x

accu f 4.6% 87.5% 5.9% 2.0% 223.4 1578 7.06x

adder_8bit f 9.1% 81.9% 6.3% 2.7% 28.8 293 10.17x

adder_32bit f 2.1% 92.8% 2.4% 2.8% 168.7 871 5.16x

adder_pipe_64bit f 1.9% 94.1% 2.3% 1.7% 205.1 1814 8.84x

div_16bit f 5.3% 83.1% 7.6% 4.0% 145.3 1482 10.20x

multi_booth_8bit f 5.9% 83.2% 8.4% 2.5% 97.9 816 8.33x

multi_pipe_8bit f 3.0% 92.1% 3.6% 1.4% 204.1 915 4.48x

radix2_div f 2.9% 92.0% 4.3% 0.8% 427.5 1650 3.86x

alu f 3.7% 91.5% 3.6% 1.2% 85.8 939 10.94x

asyn_fifo f 1.7% 92.5% 3.1% 2.7% 331.7 1746 5.26x

freq_div f 8.6% 81.9% 6.8% 2.7% 31.8 1527 48.00x

parallel2serial f 11.9% 75.0% 9.4% 3.7% 22.0 677 30.80x

serial2parallel f 5.6% 77.7% 7.6% 9.1% 183.7 993 5.41x

traffic_light f 2.8% 84.6% 4.0% 8.6% 497.3 1869 3.76x

width_8to16 f 9.1% 79.6% 8.4% 2.9% 34.1 912 26.74x

Average 3.6% 88.4% 4.5% 3.5% 129.9 795 6.12x

integrating MEIC, GPT-3.5 achieved FR of 64% for syntax errors and

56% for function errors, the performance was comparable to or even

exceeds the standard form of GPT-4, highlighting the framework’s

effectiveness in directing LLM models’ debugging capability.

RQ5 (Performability). To assess the proposed framework’s effec-

tiveness compared to human experts, we compared their debugging

performance across various modules and error types as shown in

Table 4. While human experts are experienced in debugging, the

framework demonstrated competitive performance in addressing

syntax errors and modules with simple logic. For example, in the

multi_pipe_8bit module, MEIC had a 14.56x speedup. This perfor-

mance gap was further increased for more complex function errors

as MEIC demonstrated up to 48x speedup of the human expert. This

result illustrated the significant enhancement in the debugging ca-

pabilities with greater automation and improved efficiency.



5 Related Work
Recent advances in LLMs have significantly transformed hard-

ware design, primarily through enhanced efficiency and automa-

tion [3, 9, 23, 36]. A key application of these models is in RTL debug-

ging, which represents a substantial portion of total design costs.

In response, various approaches, such as RTLFixer [38], SBF [1],

LLM4SecHW [13], HDLdebugger [46], and AssertLLM [11], have

been developed to reduce costs and increase efficiency in this area.

These existing approaches have focused mainly on refining LLM

models’ performance by employing techniques like prompt engi-

neering [30, 43], model tuning [4, 23], and model training [15, 22].

Although these efforts have led to some improvements, they have

not yet successfully addressed applications to correcting function

errors [37] nor achieved sufficient performance as measured by the

pass@k rates [38]. In contrast, our approach adopts a collabora-

tive process, by utilising two LLM models iteratively, to enhance

debugging effectiveness for syntax and function errors.

6 Conclusion
In this work, a systematical automated debugging framework,MEIC,

is introduced. The framework demonstrates that it is feasible to

employ the LLMs for the purpose of debugging Verilog code, encom-

passing both syntax and function errors. The utilisation of prompt

engineering and feedback engineering leads to an improvement

in the debug capability of the LLMs, achieving fix rate of 93% for

syntax errors and 78% for function errors. In comparison to human

engineers, debugging with our framework has the potential to save

up to 48 times the time overhead. Our work not only rethinks the

Verilog code debugging process with the LLMs, but also paves the

way for more efficient hardware design.

Lessons we learnt. Throughout this study, we observed consid-

erable variations in performance of the different LLMs when it

comes to debugging RTL code. In line with findings from existing

literature, it is clear that no single model can effectively manage

all debugging scenarios. In addition, despite prompt engineering,

model tuning, and model training bringing overall improvement to

the model performance, decreased performance was observed in

certain tests compared to the models in their standard forms. This

observation highlights the need for setting up realistic expectations

before LLM deployment and for understanding their operational

limits, both of which remain an open challenge.
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