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Abstract 

Early mathematical skills lay an important foundation for later academic success. Substantial 

variation in mathematical skills can be observed in young children and these differences have been 

related to family socioeconomic circumstances (SEC). The type and frequency with which parents 

engage in home mathematical activities (HMA’s) with their children has been suggested as a key 

mechanism explaining inequalities in early mathematical skills, they may also be a potential target to 

narrow attainment gaps. However, evidence for the relation between HMA’s and mathematical skills, 

and whether there is an SEC gradient in HMA engagement, remains mixed. In the present, pre-

registered study, we conducted harmonisation and latent profile analyses on nine UK-based datasets 

(containing n= 969 dyads; mean child age= 46.83 (SD= 5.41) months; child age range 35-69 months). 

These analyses identified three profiles based on the frequency of engaging in HMA’s (i.e., low, 

intermediate, high). Children in the high HMA category had significantly higher mathematical skills 

than those in the intermediate and low categories. While SEC correlated with mathematical skills, no 

SEC differences were found in engagement with HMA’s. This suggests that families that engage in a 

higher frequency of HMA’s have children that tend to have higher mathematical skills, but SEC does 

not predict engagement with HMA’s. We discuss the implications of these findings for narrowing 

early attainment gaps and how to best measure and capture the home mathematical learning 

environment.  

Public significance statement 

Findings suggest that there is an association between the frequency that families (with children aged 

3-5 years) engage with home mathematics activities and their children's maths skills. Secondly, 

contrary to previous research, families experiencing lower socioeconomic circumstances did not 

engage less often in home mathematics activities with their children. Our study suggests that 

engagement with home mathematics activities may be a useful target for intervention and that lower 

parental education levels may not be a barrier. 
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Introduction 

Mathematical skills in the early school years have been shown to be a powerful predictor of later 

academic achievement, over and above other important school-related factors, such as reading skills 

and attention (Duncan et al., 2007). Furthermore, mathematical skills are related to later health, 

income, and quality of life (National Numeracy, 2015; Ritchie & Bates, 2013; Wagstaff et al., 2001). 

There is substantial variation in children’s mathematical skills prior to starting school (Manolitsis et al., 

2013; Sirin, 2005), with children who start schooling with low mathematical skills tending to fall behind 

academically (Aubrey et al., 2006; Cahoon et al., 2021). These differences in mathematical skills are 

associated with a child’s socioeconomic circumstances (SEC) from as young as age three (Sarama & 

Clements, 2009; James-Brabham et al., 2023; Blakey et al. 2020). Given that disparities in mathematical 

development begin forming prior to the start of formal education, and have lasting implications on 

performance, it is important to understand how to best support foundational mathematical skills.  

Early mathematics learning is shaped by contextual factors that can influence children’s development 

from birth. These factors include, families’ material and economic resources, their practices, and 

cultural capital (e.g., home learning environment; LeFevre et al., 2010), as well as individual-child level 

factors (e.g., genetics, vocabulary, cognitive skills; Ribner et al., 2018; Ruthsatz et al., 2014). One factor 

that has received much recent attention is the home mathematics environment (HME). The HME 

encompasses the type and range of activities that parents and children undertake that involves 

mathematics learning, parental beliefs and confidence in mathematics, and maths talk (Anders et al., 

2012; Ayala et al., 2024; Blevins-Knabe & Musun-Miller, 1996). The HME is thought to support the 

development of children’s early mathematical skills and lays crucial foundations for future 

mathematical skill development (Anders et al., 2012; Byrnes & Wasik, 2009; Elliott & Bachman, 2018; 

LeFevre et al., 2010). Researchers have recently shown that this aspect of the home environment may 

be modifiable and therefore may be a factor that could feasibly be an intervention target to improve 

early mathematical skills (Galindo & Sheldon, 2012) and potentially reduce SEC disparities. The HME 
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is comprised of multiple factors such as parent beliefs, thoughts, and confidence about mathematics 

and general learning (Zippert & Rittle-Johnson, 2020), as well as the degree to which maths-related 

language is used in the home (e.g., Maths talk; Levine et al., 2010). Whilst engagement with maths 

activities only provides a partial view of the HME, the majority of studies have investigated the use of 

activities in the home and have consequently operationalised this construct as the frequency of 

activities that parents and children engage in that involve mathematical skills or content (see Elliot & 

Bachman, 2018; Daucourt et al., 2021). These activities are subsequently referred to as “Home 

Mathematics Activities” (HMA’s).  

Recent systematic reviews have found that there is an overall small, positive relation between 

engagement with HMA’s and children’s mathematical skills (r= .13), both when taking a broader 

approach to the measurement of the HME (e.g., observations, parental attitudes/ beliefs scales; 

Daucourt et al., 2021), and when examining only studies that include frequency-based engagement 

scales (James-Brabham et al., 2024). It should be noted that there is wide variation between individual 

studies, with some studies reporting positive relations between frequency of engagement with HMA’s 

and children’s outcomes (Lefevre et al., 2009; Skwarchuk et al., 2014), some reporting no relation  

(James-Brabham et al., 2023; Missall et al., 2015; Zhou et al., 2006), and some even reporting a 

negative relation between these variables (Blevins-Knabe et al., 2000; Ciping et al., 2015). However, a 

recent multi-country (n=54) study containing secondary data analyses of the Trends in Mathematics 

and Science Study (TIMSS) dataset established a weak, positive correlation between engagement with 

HMA’s and mathematical attainment across the included countries (r=.15, Ellis et al., 2023). This study 

was important, as it suggests that an underlying level of consistency exists.   

Although there is overarching consistency in the relation between the frequency of engagement with 

HMA’s and mathematics skills, there is an emerging body of evidence that suggests that there may 

be subtle differences in how different families engage with HMA’s. Past research has highlighted how 

children from lower SEC families tend to, on average, start school with lower mathematical skills 
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compared to their peers from higher SEC families. These disparities in mathematical skills not only 

remain but widen throughout school (Caro et al., 2009; Sarama & Clements, 2009). HMA’s have been 

proposed as a mechanism through which SEC disparities in early mathematics skills may develop 

(Elliott & Bachman, 2018). Differences in mathematical skills related to SEC are likely influenced by a 

range of proximal and distal factors, as well as structural inequalities that may restrict support and 

opportunities available to families experiencing lower SEC (Golinkoff et al., 2019). Various SEC 

indicators may differentially influence mathematical outcomes, for instance income levels may 

influence parent stress and material resources available; whereas education level may influence 

parent beliefs about the importance of mathematics, as well as confidence in mathematics itself (see 

Davis-Kean et al., 2021). One influential model of SEC-related differences that attempts to 

consolidate these indicators in explaining childhood cognitive outcomes is the Family Investment 

Model (e.g., Conger & Donnellan, 2007; Davis-Kean, 2005; Duncan et al., 2014). This model proposes 

that parents from higher SEC’s are able to invest more in their children due to a greater access to 

resources and capital. In the context of the HME, higher SEC parents may have more time and 

resources to engage in HMA’s with their children (Blevins-Knabe & Musun-Miller, 1996; Muñez et al., 

2021). Indeed, some evidence suggests that SEC is associated with the frequency of HMA’s that 

parents do with their children (Galindo & Sonnenschein, 2015), their complexity (Saxe et al., 1987), 

as well as the range and consistency of activities (DeFlorio & Beliakoff, 2015; Stipek et al., 1992). 

However, the literature is mixed, with some studies finding no relation between HMA frequency and 

SEC (e.g., DeFlorio & Beliakoff, 2015; James-Brabham et al., 2023; Pan et al., 2018). Overall, it 

remains uncertain whether HMA frequency does vary according to family SEC. Before cost and time 

intensive interventions are implemented focusing on HMA frequency, it is essential we better 

understand whether HMA frequency is related to mathematical skills and family SEC.  

As already mentioned, the frequency with which HMA’s are undertaken by parents has been the focus 

of correlational research, where parents are asked to complete a questionnaire detailing the frequency 

with which they engage in a pre-determined list of mathematical activities (Daucourt et al., 2021). 
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Total frequency scores are then calculated, or factors derived, and then researchers test whether these 

total scores or factors are related to children’s mathematical skills. It is plausible that these frequency 

measures of HMA’s, where scores for the frequency of engaging in specific activities are summed or 

condensed using data driven approaches, may fall short of adequately representing the breadth of 

parental engagement in mathematics at home. For example, parents may undertake mathematical 

activities with their children which are not captured by the pre-determined list (Andrews et al., 2022). 

Equally, frequency is only one way to capture mathematical activities, and variables such as the range 

of activities or type of activities may be equally important to consider, but have largely been neglected 

to date within this literature (Hornberg et al., 2021). Moreover, consolidating the frequency of various 

activities into a single score can overlook the nuanced relation between specific mathematical skills 

and corresponding activities. For instance, not all mathematical activities may equally contribute to 

the development of specific mathematical competencies: for example, activities focused on shapes 

and spatial reasoning may not enhance children's counting abilities. In a critique of the use of 

quantitative methods to condense mathematics activities into arbitrary variables (such as direct vs. 

indirect activities), Andrews et al. (2022) suggested that this approach may have exacerbated the lack 

of consensus for a likely positive relation between HMA’s and children’s mathematics skills. Hence, 

rather than grouping HMA’s arbitrarily, it might prove advantageous to categorise them based on the 

specific skills they aim to foster (Andrews et al., 2022).  

Another factor that may affect the reporting of HMA’s is related to how activities are viewed by 

parents compared to researchers. Given that the items on the scales rarely provide context to ground 

the activity, it could be that parents doing an activity do not consider it focused on mathematical 

learning. For example, parents may be playing with shapes, but the focus of the task is to learn 

colours rather than learning the names of shapes per se. This mismatch, between how researchers 

and parents consider (and classify) an activity, is likely to introduce uncertainty into the 

measurement and interpretation of HMA frequency. This uncertainty may be reflected in the findings 

on the relation between certain parent-child interaction constructs and SEC (DeFlorio & Beliakoff, 
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2015; Muñez et al., 2021). Whilst this issue would not be straightforward to counter, and may require 

a new approach to studying HMA’s altogether, increasing the power of the statistical model by 

bolstering the sample size, as we have done in this study, may help to some degree (Mascha & Vetter, 

2018). 

In addition to this, the focus of scales of HMA-related caregiver support tends to be on early numeracy 

and may exclude other important concepts such as spatial and pattern understanding (Zippert & Rittle-

Johnson, 2020). Indeed, a principal components analysis conducted by Lefevre et al. (2009) found that 

statistically derived categories of items, such as shape, size, and colour, had a stronger association with 

number skills than categories including printing numbers and identifying the names of written 

numbers. Interestingly, the former activities were found to be employed in the home less frequently 

than the latter two activities. Therefore, the type of HMA’s parents choose to engage in appears to be 

important where later mathematical skills are concerned (DeFlorio & Beliakoff, 2015). This therefore 

underlines the importance of ensuring that any grouping of HMA items makes conceptual as well as 

statistical sense.  

One issue that should be addressed, is that research that has focused on the association between 

frequency of HMA’s and family SEC has tended to consist of underpowered studies, suggesting a 

need for high powered studies to confirm these initial findings. One cost and time effective solution 

would be to conduct secondary analyses on harmonised datasets obtained from existing studies on 

HMA’s and mathematics skills.  

Data harmonisation refers to the combining of data from multiple sources in a manner that makes 

them appropriate for comparison (Adhikari et al., 2021). To achieve this, statistical procedures are 

typically employed to calibrate similar, rather than identical, measures across studies, so that 

quantitative analytical techniques can be performed on larger datasets comprised of smaller ones 

collected in different contexts (Vonk et al., 2022). This procedure provides researchers with the 

opportunity to conduct analyses on larger, more demographically heterogeneous datasets, which 
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would strengthen confidence in the interpretation of findings (Cohen, 2013). Although some 

important exceptions exist (e.g., Vasilyeva et al., 2018), previous research on HMA’s has tended to 

rely on factor analysis models to identify clusters of activities, with subsequent analyses typically 

conducted on these clusters (Andrews et al., 2022). In contrast, latent profile analysis (LPA) is a 

person-centred statistical technique that aims to identify underlying, latent subpopulations of 

participants, by grouping individuals based on the probability that they possess common attributes 

(Grunschel et al., 2013; Spurk et al., 2020). The fundamental difference between the two approaches 

is that factor analyses operate by clustering variables into factors, whereas LPA models group 

individuals into distinct categories (Gomez & Vance, 2014). In the context of HMA’s, LPA has the 

advantage of being able to identify homogenous subgroups of dyads who engage in certain types of 

mathematical activities undertaken in the home (Hickendorff et al., 2018). This approach can lend 

unique insights into the way in which indicator behaviours (e.g., SEC) relate to latent categories of 

individuals. For instance, latent models that have identified subgroups of patients with eating 

disorders have been found to possess better rates of predictive validity of mortality than DSM-IV 

based classifications (Crow et al., 2012).  

To date, a small number of studies have applied this approach to understanding mathematical 

development. For example, Cahoon et al. (2021) used a latent longitudinal model to examine 

learning pathways over time, and Jordan et al. (2007) assessed number sense development (a 

composite variable measuring numerical skills such as counting and calculation) over six time points 

from kindergarten to the middle of the first year of schooling. In both studies, subtypes of individuals 

were discerned from similar patterns of behaviour, which enabled identification of precursor skills 

that lead to more complex mathematical skills, which variable-focused models (such as factor 

analysis) are not typically designed to do.  

The current study 
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The principal aim of the current project was to investigate the types, range, and frequency of HMA’s 

that relate to children’s mathematical skills and family SEC. To this end, we collated nine datasets 

obtained from previous, similar studies conducted in the UK on HMA’s and mathematical skills of 3-

to-5-year-olds. Daucourt et al. (2021) identified 64 studies focused on the relation between HMA’s 

and mathematical skills, only one of which was conducted in the UK. Therefore, we had an 

opportunity to synthesise several unique, recent studies using UK samples within this study.  

To proceed with analyses, the HMA measures were placed into five higher order categories (e.g., 

operations), based on the measures’ conceptual likenesses (the process is described in further detail 

below). Previous research has tended to place a focus on numeracy (Blevins-Knabe et al., 2000), 

although there are several other important mathematical domains (Ehrman et al., 2023) for this age 

group. Therefore, the present study took a more comprehensive approach to measurement of 

engagement with HMA’s by including concepts representative of wider mathematical skills such as 

understanding of shape and pattern, for example, in addition to the more frequently explored 

concept of numeracy. Confirmatory Factor Analysis (CFA) was then conducted to verify that the 

conceptual categories were a good fit for the data, before employing these in an LPA. The LPA was 

then used to explore underlying subgroups of HMA engagement, as we were interested in exploring 

whether subgroups of HMA engagement were characterised by the content of HMA’s (e.g., shape vs. 

number), the breadth of their experience, or frequency of HMA’s undertaken. Finally, we explored 

the extent to which these latent subgroups were associated with SEC and children’s mathematical 

skills using ordinal regression analysis.  

Due to the exploratory nature of this secondary data analysis, no specific, directional hypotheses were 

proposed regarding children’s membership of HMA profiles. However, we wished to explore whether 

there were SEC differences in HMA engagement and expected both SEC and mathematical skills to be 

significantly associated with LPA profile membership. 
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Method 

 

This study, including the study design and analysis plan, was pre-registered on Open Science 

Framework (OSF; for more details on the primary data collection procedures see Hunt, B. W., 

Cahoon, A., Blakey, E., James-Brabham, E., Matthews, D., & Simms, V. (2025, April 3). Data 

Harmonisation and Secondary Analyses of how Home Mathematical Activities (HMA) Associate with 

Children’s Mathematical Outcomes: UK based Datasets. https://doi.org/10.17605/OSF.IO/7TJCR).  

Data acquisition 

An advertisement was posted across different lab social media channels, and targeted mathematics-

development focused conference channels. The request stipulated the inclusion criteria for the study, 

that all data sets should (a) have been collected in the UK, (b) focus on children between the age of 3-

5 years old, (c) include a parent-report measure HMA engagement frequency, (d) include a direct 

measure of children’s mathematics skills and (e) preferably include a measure of SEC1. The datasets 

were collected over a span of one month, starting from 24th of August 2023, when the advertisement 

was posted, until 22nd of September 2023 when the final dataset was received. Researchers who 

believed their dataset aligned with our research aim contacted our team, and we followed up with 

them. Additionally, the research team directly contacted researchers who we knew may have a dataset 

that met our aims. In total we collated nine datasets that met our inclusion criteria.  

Participants 

Out of a potential total of 1358 participants across nine datasets, only those who provided both 

mathematical outcomes (i.e., child data) and HMA activities (i.e., parent data) were included in the 

study. Therefore, a total of 969 dyads (i.e., parent-child participants) were included in the current 

analysis. Of these 969 dyads, 921 provided SEC data in the form of parents’ highest educational 

qualification.  

 
1 Due to the nature of the study (i.e., secondary data analysis) access to materials should be sought from the 
originating labs.   
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Parent participants were found to have an overall mean age of 35.33 (SD= 5.51) years. The mean age 

of the child participants was 46.83 months (SD= 5.41; range 35-69). Table 1 shows the gender-age 

distribution for child participants and Table 2 shows descriptive statistics for SEC.  

 

Table 1. Summary statistics of the gender-age distribution across the nine datasets for the child 

participants (in months), according to dataset 

Dataset  n  Mean (SD)  Minimum  Maximum  

Cahoon (Ulster)  M= 58  

F= 70  

48.67 (3.57)  

48.40 (3.13)  

43  

43  

54  

54  

James-Brabham 1 (Sheffield)  M= 37  

F= 32  

43.43 (3.91)  

45.22 (4.31)  

36  

37  

50  

52  

James-Brabham 2 (Sheffield)  M=47  

F= 57  

45.11 (3.99)  

45.35 (4.04)  

38  

37  

52  

52  

Van Herwegen (UCL)  M= 46  

F= 33  

43.93 (5.19)  

45.21 (5.27)  

36  

36  

57  

56  

Bennett (Loughborough)  M= 34  

F= 34  

46.81 (6.43)  

48.12 (7.06)  

35  

37  

59  

59  

Trickett (Loughborough)  M= 87  

F= 78  

43.09 (5.92)  

44.78 (6.05)  

36  

36  

59  

64  

Duncan (Ulster)  M= 20  

F= 20  

54.90 (6.65)  

53.05 (6.07)  

44  

44  

69  

67  

Simmons (LJM)  M= 128  

F=146  

48.46 (3.42)  

48.18 (3.81)  

41  

41  

54  

55  

Chang (Queens)  M= 20  

F= 19  

47.55 (7.72)  

49.84 (6.52)  

37  

37  

57  

57  
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Total  

  

M= 477  

F= 489  

46.46 (5.62)  

47.20 (5.18)  

35  

36  

69  

67  

Note: M = Male, F = Female 

 

As can be seen in Table 1, an approximately equal split between male and female child participants 

was observed in this sample that ranged in age from 35 to 69 months.  

Variables 

The key variables from each data set were extracted (see https://doi.org/10.17605/OSF.IO/7TJCR 

for more details on the key variables extracted from the nine datasets). These variables were 1) HMA 

activities with the question, items and response answers extracted; 2) the child outcome measure with 

the standardised and/or unstandardised items extracted and 3) all available SEC variables. Across all 

datasets the most frequently used measure of SEC was maternal education. The extracted variables 

were then harmonised (see supplementary materials for details on the harmonisation process) across 

datasets (see below). 

Socio-economic circumstances (SEC) 

Parents highest educational qualification was used to index SEC. There were 6 categories (no 

qualifications, GCSE, A levels, undergraduate degree, master’s degree, PhD; see Supplementary 

Materials Table [Data Dictionary] for more information). In one of the datasets, master's and PhD levels 

had been combined into a single response. However, this was only a small number of participants 

(n=19), thus, the decision was made to code these participants as having a master’s degree. The SEC 

variable was treated as a continuous variable in statistical analyses.  

 

Table 2. Descriptive statistics for SEC according to dataset and overall. 

Dataset  Mean (SD)  Minimum  Maximum 
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Cahoon (Ulster)  2.44 (1.37) 0 5 

James-Brabham 1 (Sheffield)  2.04 (1.52) 0 5 

James-Brabham 2 (Sheffield)  2.04 (1.28) 0 4 

Van Herwegen (UCL)  2.89 (1.17) 0 5 

Bennett (Loughborough)  2.93 (1.34) 0 5 

Trickett (Loughborough)  2.83 (1.04) 0 5 

Duncan (Ulster)  3.51 (1.03) 1 5 

Simmons (LJM)  2.65 (1.07) 0 5 

Chang (Queens)  2.72 (1.34) 1 5 

Total  2.72 (1.24) 0 5 

 

As shown in Table 2, SEC data spanned the range of the socioeconomic spectrum across all nine 

datasets. Figure 1 shows the distribution of Parents’ highest education level (our proxy for SEC) 

according to the six response options (see Data dictionary in Supplementary materials for possible 

response options). SEC data was found to be normally distributed.    

 

 

Figure 1. Distribution of Parents’ highest education level (SEC). 
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Home Mathematics Activities (HMA): Data harmonisation of HMA items 

A total of 208 items from the HMA measures across the nine datasets were eligible for harmonisation. 

Initially, two authors (AC and BH) harmonised a practice item (i.e., “counting objects”). Subsequently, 

for validity purposes, (AC) independently harmonised the items across the nine datasets. The Duncan 

dataset was used as a baseline for harmonising items across datasets since the HMA scale in this study 

contained the most items. Any unmatched items across the datasets were then matched to ensure 

that “every item would find a home”. Items that did not align with any other item in another dataset 

remained unmatched and were thus excluded (n= 29 out of a total of n=208; 13.9%; reasons for 

exclusion are summarised in Supplementary Materials Table 3. The HMA questions differed across the 

different datasets in terms of how they asked about the frequency of engagement. Some 

questionnaires used scale metrics “In the past month...” while others stated, “In an average week...” 

(see Supplementary materials Table 2 for all 9 questions). Although this discrepancy was identified, 

the primary issue during data harmonisation was reconciling the units of time within the response 

Likert scale. Regarding units of HMA measurement, Likert responses were adjusted so that data from 

measures capturing the frequency of HMA engagement on a weekly basis (e.g., 3 times per week) 

were multiplied by four to give a corresponding value that equated to an approximate monthly 

frequency (e.g., 12 times per month). See supplementary materials Table 2 for a table of harmonised 

frequencies. After having completed the harmonisation process, the original 179 items were mapped 

onto 36 variables for further analyses.  

Mathematics skills 

Each dataset contained either a standardised measure of mathematics skills (i.e., British Ability Scale; 

Early Number Concepts, TEMA-3 or Wechsler Preschool and Primary Scale of Intelligence (WPPSI) 

Mathematics measure) or a combination of domain-specific mathematics skills (i.e., an unstandardised 

measure). For datasets with a combination of experimental domain-specific mathematics skills, 
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accuracy scores were used to calculate a mathematics skills outcome score (see the harmonised 

variables Excel for more detail on what variables were used). In cases where a dataset contained both 

standardised and unstandardised mathematics measures, the standardised measure was selected for 

inclusion in the final dataset.  

The anonymised dataset and other files (key harmonised variables) are available on OSF and can be 

found at https://doi.org/10.17605/OSF.IO/7TJCR. 

Data preparation 

All analyses were conducted using R (version 4.3.2). Only dyads who had data for both parent-reported 

HMA frequency engagement and children’s mathematics skill outcome measure were included in the 

final combined dataset. To be included, participants had to meet a missing data threshold, which was 

calculated as follows: participants who responded to >90% of the HMA items and completed >90% of 

the mathematical outcomes were included in the analyses. 

Justification of variables 

By harmonising across the 9 datasets, 36 HMA variables were generated. After close scrutiny of the 

literature - specifically Gilmore (2023), Purpura et al. (2013), and Milburn et al. (2019), as well as 

early years curriculum guidance (CEA Curricular Guidance for Pre-school Education, 2018) the HMA 

engagement variables were initially classified into 6 conceptual categories (early number, shape and 

space, relationships, pattern, sequencing and time, and size and quantity). VS and EJB independently 

classified each of the 36 variables into one of the categories, then the two researchers met to discuss 

any discrepancies and to reach consensus. Through this process it was identified that the majority of 

variables fell into the conceptual category of “Early number”, there was a clear divide in these 

variables, with some focusing on written number and others focusing on counting and cardinality. 

Thus, this conceptual category was split to generate two separate categories: “Early number: Written 

number and Early number: Counting and cardinality. In addition, there were relatively few items that 

contributed to the “Shape and space” and “Patterning” conceptual categories. Therefore, these 

categories were merged to form one category: “Pattern, shape and space”.   
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Following this, only those variables that matched across the majority of datasets (i.e. 5 or more) 

were used in the following analyses. This led to 16 variables being selected for inclusion for the 

further analyses. The 14 variables that were excluded had between 70.1% to 87.8% missing data. 

One other variable that had above 70% missing data was identified and was also removed, 

specifically, “Arithmetic games (using technology and non-technology)”. “Time terminology” was the 

only variable in the “Sequencing and time” conceptual category, therefore this variable was removed 

to run the factor analyses. Table 3 shows the final variables that were included within the conceptual 

categories. 

 

Table 3. Variables included in each conceptual category. 

Conceptual Categories Variable names No. of included 

variables 

Early number: Written number Identifying names of written numbers; 

Write numbers; Board games; 

Mathematics activities books 4 

Early number: Counting and 

cardinality  

Verbal counting; Counting objects; 

Using fingers to count; Rhyming related 

to numbers 4 

Pattern, shape, and space Sorting objects; Building blocks 

 2 

Operations Scenarios number games; Practice 

simple sums 2 

Size and quantity Measurements; Discussing quantities 

with everyday objects 2 

 

Measurement invariance 
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We aimed to conduct an LPA on the harmonised dataset, and to then determine the extent to which 

the identified subpopulations were related to mathematical skills outcomes and SEC. This process 

involved comparing mean differences of latent variables from across datasets. One challenge 

associated with using data collated from multiple sources is the potential lack of measurement 

invariance across groups (i.e., datasets) (Chen & West, 2008; Millsap & Olivera-Aguilar, 2012). 

Therefore, we checked whether the measures that were employed across the studies measured the 

same underlying construct (Eremenco et al., 2005). 

Initially, one-factor and five-factor CFA models were performed in R (using the lavaan package 

(Rosseel, 2012) with full information maximum likelihood (FIML) applied. The FIML function is widely 

used in CFA models when data are missing (Enders, 2008). Of the two models, the five-factor model 

(comprising the latent variables: Early number: Written number; Early number: Counting and 

cardinality; Pattern, shape, and space; Operations; and Size & quantity) was found to be a better fit 

for the data. The selection of the most appropriate model was based upon goodness of fit statistics 

(e.g., Chi-square (X2), comparative fit index (CFI), Tucker Lewis index (TLI), root mean square error of 

approximation (RMSEA), standardised root mean square residual (SRMR); see Table 4), and their 

corresponding cutoff values outlined by Hu and Bentler (1999).  

To test for measurement invariance, we followed recommendations outlined by Widaman and Reise 

(1997) by applying increasing levels of constraint (i.e., to factor loadings, intercepts, then residuals) 

to the five-factor CFA model, whilst also employing a grouping variable. This method determines 

whether factor structure remains consistent across the nine datasets. The increasingly stringent 

levels of measurement invariance are referred to as configural, metric, scalar, and strict (i.e., residual) 

invariance. To compare mean differences of latent variables on the nine collated datasets, partial 

scalar invariance was required (Vandenberg & Lance, 2000). This suggests that mean differences in 

the latent variables capture all mean differences in the shared variance of at least two of the 

observed (indicator) variables (Putnick & Bornstein, 2016).   
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Both full configural and metric invariance was achieved, as both models met the cutoff criteria on the 

comparative fit index (CFI; >0.9 suggests satisfactory fit; Awang, 2012; Hair et al., 2010), Tucker-Lewis 

index (TLI; >0.9 suggests satisfactory fit; Awang, 2012; Forza & Filippini, 1998) and root mean square 

error of approximation (RMSEA; <.05; Awang, 2012; Hair et al., 2010). Further, the two models did 

not significantly differ on a test of Chi-square difference (Van De Schoot et al., 2012; see 

supplementary materials Table 1). To obtain partial scalar invariance, the intercepts of four variables 

(HMAID, HMAWN, HMABG, and HMAVC) were allowed to be freely estimated across the datasets. 

These variables were selected for this purpose as they were found to be the most influential in the 

model. Again, the partially invariant scalar model met the cutoff criteria on the CFI, TLI, and RMSEA, 

and was not found to differ significantly from the metric model (see supplementary materials Table 

1). Finally, we tested for strict (i.e., residual) invariance, however, this was not achieved. Despite not 

achieving strict invariance, we nevertheless concluded that there was clear evidence for partial scalar 

invariance, which was sufficient for our purpose of testing mean differences across the latent 

variables on the nine collated datasets, between these and both mathematical skills outcomes and 

SEC. 
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Model one proposed a one-factor model and model two proposed a five-factor model. 

 

Table 4. Model fit statistics for the alternative models of HMA variables 

Model 

no. 

Model explained χ2(p) df CFI TLI RMSEA (90% CI) p SRMR AIC BIC Sample-Size 

Adjusted BIC 

1 One-factor model 264.385 

(<.001) 

71 .906 .880 .053 (.047 - .060) .194 .066 25966.435 

 

26199.646 

 

26047.200 

 

2 Five-factor model 123.703 (<.001) 

 

61 .970 .955 .033 (.024 - .041) 1.00 .046 25845.754 

 

26127.551 

 

25943.345 

 

Note: N = 136; Estimator = MLR; n = 136; χ2 = Chi-square Goodness of Fit statistic; df = degrees of freedom; p = Statistical significance; CFI = Comparative Fit 

Index; TLI = Tucker Lewis Index; RMSEA (90% CI) = Root-Mean-Square Error of Approximation with 90% confidence intervals; BIC = Bayesian Information 

Criterion; AIC = Akaike information criterion. 
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Results 

Relations between HMA, mathematics outcomes and SEC 

After the factor analysis, but before completing the LPA, we explored the correlational relations 

between the HMA variables, children’s mathematics skills and SEC. 

 

Table 5. Correlational relations between HMA conceptual categories, child mathematical outcome 

score, and SEC. 

 1 2 3 4 5 6 

1. Child maths skills score -      

2. SEC .19*** -     

3. ENWN .20*** .001 -    

4. ENCC .01 -.01 .41*** -   

5. PSS -.08 .01 .37*** .47*** -  

6. O .23*** .02 .51*** .28*** .29*** - 

7. SQ .04 .12*** .40*** .37*** .37*** .42*** 

 Note: *** p<.001. ENWN, Early number: Written number; ENCC, Early number: Counting and 

cardinality; PSS, Pattern, shape, and space; O, operations; SQ, Size and quantity.  

 

The five conceptual HMA categories, mathematical outcome score, and SEC were entered into a 

correlational analysis. As can be seen in Table 5, significant associations were observed between 

mathematical outcome scores and SEC, “Early number: Written number”, and” Operations”. SEC was 

also associated with “Size and Quantity” variables. Several significant associations were observed 

between the HMA conceptual categories.  
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Latent profile analysis (LPA) 

Mean scores for each conceptual category were created by calculating the mean score for all variables within a category. 

Table 6. LPA with conceptual categories (14 variables) 

Note: Bold column indicates the chosen solution class. Values on top row refer to number of profiles for each solution. 

 

 

 

 

 

 

 

 

 

 

 

 

Fit criterion        

 1 2 3 4 5 6 7 

Akaike information criterion 

(AIC) 

14104.73 

 

13197.25 

 

12967.66 

 

12883.71 

 

12860.30 

 

12820.62 

 

12808.48 

 

Consistent AIC 14172.74 13297.97 13083.80 13028.93 13015.89 13017.28 13028.54 

Bayesian information 

criterion (BIC) 

14153.49 

 

13275.27 

 

13074.94 

 

13020.24 

 

13026.09  

 

13015.67 

 

13032.79 

 

Sample size - adjusted BIC 14130.98 13231.16 12991.93 12912.00 12873.90 12850.24 12836.45 

Entropy  0.74 0.72 0.66 0.65 0.70 0.68 

Vuong-Lo-Mendell  0.001 0.001 0.001 0.001 0.001 0.001 

Parametric bootstrapped   0.01 0.01 0.01 0.01 0.01 0.01 
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An LPA was performed and the model fit indices for 1 to 7 profile solutions were extracted in order to 

evaluate the model that best fit the data (see Table 6 for profile solutions). The three information 

criteria (IC) indices that were used for model selection were Akaike’s information criterion (AIC), the 

Bayesian information criterion (BIC) and the sample size - adjusted BIC (aBIC), where lower values 

indicate the best fitting model. The model with the smallest IC values was selected. Following 

recommendations made by Nylund-Gibson et al. (2014) the elbow of the BIC value (the last large 

decrease in the BIC value) was used as a guide (Fryer, 2017) and a three-profile model was supported. 

This was also supported by the entropy value settling at a relatively high amount (s= 0.72) for this 

model, suggesting satisfactory separation of the profiles (Fryer, 2017; Nylund-Gibson et al., 2014). This 

finding suggests that dyads could be meaningfully grouped into three separate subgroups based on 

HMA engagement level. 

The model identified 405 dyads in Profile 1, 418 in Profile 2, and 146 in Profile 3. The profiles were 

designated as being high, medium, and low HMA engagement, due to their respective values for HMA 

frequency: Profile 1 was named high HMA engagement as dyads in this profile had the highest scores 

in each of the five conceptual categories. The dyads in Profiles 2 and 3 had the second highest and 

lowest scores in each of the five categories respectively. See Figure 2 for HMA engagement profile 

membership according to the five conceptual categories.  
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Figure 2. Estimated means for the conceptual categories according to high, intermediate, and low 

HMA engagement profiles. 

 

As shown in Figure 2, dyads identified as having high levels of HMA engagement had relatively high 

scores across all five conceptual categories, with the reverse being true for dyads with low levels of 

engagement. Interestingly, dyads with intermediate levels of engagement had relatively high scores 

for Counting and cardinality (comparable with high HMA engagement), but relatively low scores for 

Operations (comparable with low HMA engagement).   

Ordinal regression 

An ordinal logistic regression model was performed in R (R Core Team, 2022) using the ‘Ordinal’ 

package (Christensen, 2023) to assess the bivariate relations between both children’s mathematics 

skills and SEC, on the likelihood of being in the high, intermediate, or low HMA engagement profile. 

The model was significant X2(6)= 113.59, p<.001, and met the assumption of parallel lines 
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(proportional odds). Further, the model correctly identified 49% of cases and explained 13% of the 

variance in HMA engagement profile membership (Nagelkerke pseudo R2= .133). Dyads with higher 

children’s mathematics skills were found to be 29% more likely to be in a higher engagement profile 

(B= .26; SE= .07; 95% CI= .13 to .39; OR= 1.29; 95% CI= 1.14 to 1.45; p<.001). SEC was not found to be 

related to engagement profile membership (B= .002; SE= .05; 95% CI= -.10 to .10; OR= 1.00; 95% CI= 

.90 to 1.10; p=.961). 

With regards to differences between engagement profiles, when holding SEC constant, dyads with 

higher children’s mathematics skills were approximately 83% more likely to be in the high 

engagement profile compared to the intermediate and low profiles combined (OR= 0.169).  

 

Discussion 

In this study, we aimed to better understand how HMA’s relate to children’s mathematics skills, and 

whether family SEC relates to the learning activities families do at home. To examine these questions, 

we adopted a person-centred statistical approach in a large data set. We conducted secondary data 

analyses on nine datasets (n= 969) obtained from studies conducted in the UK that investigated the 

association between children’s mathematics skills and HMA engagement. We then employed LPA, 

which is a latent variable approach that takes a person-centred approach to clustering participants 

into homogenous subgroups based on their continuous scores on an outcome (Gomez & Vance, 

2014). The purpose of the LPA was to identify whether there are subgroups of individuals who 

engaged in different types of mathematics learning at home. These subgroups could have been 

distinguished by the content the activities focused on, such as shape or name, or the breadth of their 

experience. Instead, the analysis established that the best fitting model was one where parent-child 

dyads were grouped into high, intermediate, and low engagement profiles based on their degree of 

HMA engagement, as this was the most salient characteristic among these participants.  

We found that children’s mathematics skills were significantly, positively associated with LPA profile 

membership, such that, as mathematics skills increased, dyads were significantly more likely to be in 
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a higher profile of HMA engagement. These results align with previous research indicating a positive 

relation between frequency of engagement with HMA’s and children’s mathematical skills. For 

instance, LeFevre et al. (2009) found parent reported frequency of engagement in mathematical 

games to be a significant predictor of mathematics knowledge and fluency, as measured by 

numeration and operations skills. Similarly, Skwarchuk et al. (2014) found frequency of engagement 

with formal (e.g., practising simple sums) and informal (e.g. exposure to games with numerical 

content) home numeracy activities to be associated with children’s symbolic and non-symbolic skills 

respectively.  

Importantly, while the previous studies focused on home numeracy activities, the present study 

deliberately extended the conceptualisation of HMA’s to include broader mathematical concepts, 

such as shape and size. This extension is important, as these significant aspects of mathematics 

cognition have been relatively underexplored compared to numerical skills (Zippert & Rittle-Johnson, 

2020). Further, our conceptualising the HMA variables into higher order categories based on their 

conceptual likenesses was a novel approach, and allowed us to avoid the pitfall of relying on factor 

analyses to group activities into higher order categories arbitrarily (Andrews et al., 2022). It will be 

interesting to explore the use of conceptual categorisation further. At present, there is little causal 

evidence linking HMA frequency to children’s mathematical skills. Furthermore, there is undoubtedly 

variation among families whereby some families engage in more HMA’s because their child is good at 

mathematics and likes maths, and some families engaging in HMA’s because their child might be 

struggling. Two important next steps would be to identify whether there is a causal relation, and to 

explore inter-family differences in their approach to undertaking HMA’s.  

One important finding from the present study was that SEC was significantly correlated with 

children’s mathematical skills, supporting previous work highlighting early socioeconomic attainment 

gaps in mathematics (Blakey et al., 2020, James-Brabham et al. 2023). Interestingly, HMA 

engagement was not related to a families’ SEC. Previous empirical evidence regarding this association 

is mixed. For example, studies have reported a positive relation between HMA frequency and SEC 
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(Galindo & Sonnenschein, 2015; Muñez et al., 2021), with others reporting no association (Pan et al., 

2018), the latter with which our findings are consistent. Our current findings are important, because 

they suggest – using a well powered sample – that frequency of engagement with HMA’s may not be 

responsible for driving attainment gaps in early mathematical skills. Instead, there may be other 

influential factors at play.  

It is clear that there is a lot more work that needs to be done to understand why early attainment 

gaps arise and our work offers a clear avenue for future research. Specifically, researchers may want 

to explore how the quality of mathematical interactions between parents and children play a role, 

perhaps in terms of mathematical language, the resources available, or scaffolding that parents are 

able to engage in. However, for now, it is conceivable that families in our sample, living in low SEC are 

doing just as much as families living in high SEC, which is particularly noteworthy as these families 

are likely to be under more constraint. The findings also offer caution to interventions that solely 

focus on boosting the quantity of HMA’s between parents and children. Our findings suggest that 

such interventions may not necessarily help narrow attainment gaps.  

The results of this study also add to a growing body of literature showing early attainment gaps in 

mathematical skills related to family SEC (e.g. Muñez et al. 2021, Zadeh et al. 2010, and James-

Brabham et al. (2023)). For instance, Blakey et al. (2020) found attainment gaps in mathematical skills 

in children from as young as age 3. Together, this body of research suggests we need to urgently 

understand why these early attainment gaps arise. Our results suggest that focusing on frequency to 

narrow attainment gaps would not be effective.  

It remains possible that there are other features of the wider home learning environment that vary 

according to family SEC and explain differences in early mathematical skills. Discussion has tended to 

focus on frequency of HMA’s, proposing that parents from higher SEC’s may be better prepared to 

teach educational skills (Blevins-Knabe & Musun-Miller, 1996). While it might be intuitive to expect 

higher levels of parental SEC to be related to higher levels of engagement with HMA’s, the home 

learning environment is multifaceted (Skwarchuk et al., 2014). Thus, assessments solely focused on 
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measuring the frequency with which HMA’s take place may fail to capture other SEC-related aspects 

of the home learning environment that play an important role in children’s mathematics learning 

(Zippert & Rittle-Johnson, 2020), such as the quality of HMA interactions between caregivers and 

children.  

When considering the quality of parent-child interaction, research on parental scaffolding may 

provide important insights. Mothers with higher levels of education have been shown to engage in 

more ‘scaffolding’ behaviour with their children. Scaffolding involves providing support during tasks 

that are too challenging for the child to accomplish alone, but can be completed with support (Lowe 

et al., 2013). In the context of HMA’s, this higher quality provision of support for fewer mathematics 

activities might therefore be more beneficial – and more strongly related to mathematics skills – than 

higher levels of overall engagement in HMA’s with little parental scaffolding. Moreover, the degree to 

which the home learning environment provides cognitive stimulation – a concept that refers to 

opportunities for play and learning and the provision of developmentally appropriate learning 

materials (Bradley & Caldwell, 1984; Lurie et al., 2021) – has been found to vary according to SEC, 

with children who experience more stimulating home environments being found to have higher 

mathematics scores at 4-11 years-old (Crosnoe et al., 2010). Provision of cognitively stimulating 

materials is in turn associated with both parent education and income (Christensen et al., 2014; 

Hackman et al., 2015). 

Taken together, these findings suggest that quality of HMA’s, rather than quantity (which frequency-

based measures tap into [Andrews et al., 2022]) is likely to be critical for mathematics skills in young 

children, and that the relation between mathematics skills and quality of HMA’s is perhaps mediated 

by parental SEC. Whilst the possibility of higher quality mathematics activities being more beneficial 

than frequently employed but poorer quality activities has previously been acknowledged (Daucourt 

et al., 2021; Zippert & Rittle-Johnson, 2020), this specific area of mathematical cognition research is 

notably lacking. Future research may wish to explore the association between mathematics skills and 

the interplay between frequency and quality of HMA’s.  
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There were a number of strengths associated with this study. Firstly, we tested a novel hypothesis in 

an innovative way using LPA. While LPA is increasingly being used in developmental science to take a 

person-centred approach, very few studies have applied it to understanding home learning. While 

our resulting finding replicates and extends recent findings, namely, that there is a small relation 

between HMA’s and children’s mathematical skills, by using this approach we were able to test 

alternative models. Specifically, we were able to assess if HMA’s should be best considered as being 

grouped by activity type profiles. It is plausible that the groups identified through the LPA could have 

been related to activity type profiles e.g., parents doing lots of counting and less patterning 

compared to parents doing a range of activities across domains. Instead, we found that grouping the 

profiles around levels of engagement was the best characterisation of the data. In addition to 

clarifying this, we were able to investigate the role of SEC. Prior work that brings together studies 

(e.g., in meta-analyses) have been limited in their approach to understanding the relation between 

home learning and SEC, because the measures of SEC used in the included studies have varied so 

much due to measurement differences or differences in geographical areas making comparisons less 

meaningful (e.g., see James-Brabham et al., 2024). In this study, we were able to test the relation in a 

large sample across studies using the same measure. We found that SEC was positively related to 

children’s mathematical skills but not frequency of HMA’s. This is an important finding as it suggests 

that aiming to narrow attainment gaps by increasing the frequency of HMA’s may not be effective. 

A further strength of the present project was using data harmonisation to bring to together and 

analyse nine UK based studies. The measures that were obtained also included wider mathematical 

concepts, rather than numeracy alone. Finally, the obtained data contained dyads representing the 

entire SEC spectrum. This is a strength compared to many previous studies which, likely for 

practicality reasons, have tended to recruit samples from one or two areas of the spectrum (e.g., low 

versus high or exclusively middle SEC; see DeFlorio & Beliakoff, 2015; Manolitsis et al., 2013).  

It is important to note that the obtained data was limited to HMA engagement frequency. As 

previously mentioned, frequency of take up of HMA’s may overlook other important aspects of the 
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home mathematics environment, such as quality of HMA’s over quantity undertaken. Further, the 

obtained data did not contain variables relating to domain-general constructs such as executive 

function and language abilities, which have been shown to mediate the relation between SEC and 

mathematical skills (Blakey et al., 2020; James-Brabham et al., 2023). Therefore, we were unable to 

control for these factors in the analyses. Due to the nature of the design of the present study, it was 

not possible to infer the directionality of the relation between HMA frequency and children’s 

mathematical skills. We conducted our analyses on a sample with dramatically increased power as a 

result of the harmonisation, enabling us to run sophisticated statistical analyses to answer unique 

research questions. However, investigating the association between frequency of engagement with 

HMA’s and children’s mathematical skills at a single time point poses an issue, as any observed effect 

may be the result of other factors, such as the environment or genetic effects. We of course 

recognise that our data remains correlational, and therefore, does not provide causal insights into 

the relation between HMA’s and children’s mathematics skills. Longitudinal research, or even better, 

randomised control trials would allow us to better understand whether HMA frequency and early 

mathematical skills are causally related (Cahoon et al., 2023).   

We acknowledge that a potential limitation of harmonisation approaches is that it is necessary to 

exclude some items as they do not conceptually relate to other items in different original data sets. 

There may be concerns that this means that the resulting data set that may not reflect the intended 

construct in terms of validity. However, in the case of our analyses, 29 items (13.9%) were excluded 

as they could not be harmonised across datasets. Thus, this reflects minimal exclusion of items, and 

of course, any of these items that were excluded were infrequently measured in original datasets. 

A key finding from the present results is that family SEC does not relate to frequency of HMA’s. 

Whilst caution should be exercised when extrapolating from a null result, based on the present 

findings, policies that encourage lower SEC parents to engage in additional mathematics activities in 

the home in a bid to reduce the mathematics attainment gap may thus be ineffective. In answer to 

the question posed in the title of this paper, it appears that there is an association between HMA 
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engagement and children’s mathematics skills, in keeping with the meta-analysis of HMA’s and 

mathematics skills conducted by Daucourt et al. (2021). Importantly, this relation appears not to 

depend on SEC, despite some authors arguing that lower SEC parents do not engage in as much 

home learning as higher SEC parents (e.g., Muñez et al., 2021), which is an important implication of 

the present work.  

In summary, the present study used LPA to establish that children’s mathematical skills were found to 

positively predict HMA profile engagement, such that dyads with higher children’s mathematics 

scores were more likely to be in a higher profile of engagement. SEC was not related to frequency of 

HMA engagement, despite being correlated with children’s mathematics skills. Therefore, this study, 

utilising large-scale harmonised data, supports previous research suggesting parents that are lower in 

SEC’s are not necessarily engaging in fewer mathematical activities with their children. Instead, 

interventions may be more effective if they address factors such as access to resources or the quality 

of parent-child interactions during mathematical activities in the home.  
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