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systems under uncertainty
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• A new data driven sensitivity method to reduce simulation and measurement discrepancy

• Fisher information based regional sensitivity analysis that captures complex parameter
interactions

• One-sample approach where sensitivity analysis comes at no additional cost to uncer-
tainty analysis
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Abstract

Sensitivity analysis is becoming an essential part of simulation based engineering design, but
few sensitivity methods can directly consider measurement data for design verification. Here
we present a new data-driven method, based on the truncated Fisher Information Matrix
(tFIM), to identify the key drivers of the discrepancy between simulated and measured
frequency response function and to guide the design verification process. We found tFIM is
as effective as the more commonly used Monte Carlo Filtering (MCF) for design verification,
but offers additional insights to sensitivity information from parameter interactions and
from within the truncated region. To overcome the non-desirable issue of a fixed truncation,
we discuss the augmentation of the input parameters by random truncation thresholds.
Application of tFIM to the dynamics verification of a model floating wind turbine successfully
identifies the most important parameter out of 15 input random variables, and the sensitivity
guided design update is parsimonious and interpretable. Thanks to its efficiency as a
one-sample approach, we expect the new tFIM method to complement global uncertainty
and sensitivity analysis and become an integral part of design verification for the dynamic
performance of mechanical systems under uncertainties.

Keywords: regional sensitivity analysis, frequency response, model updating, wave tank
testing, offshore wind turbine

1. Introduction

This research is motivated by applications of global sensitivity analysis (GSA) towards
design, development and verification of mechanical systems. The importance of sensitivity
analysis for simulation based engineering design has long been recognized, particularly in
the presence of uncertainties. The input data for the simulation models are often uncertain
as they could be from multiple sources and of different levels of relevance. The uncertain
inputs induce output uncertainties in the design quantities of interest. Sensitivity analysis
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can examine the input-output relationship and identify the influential inputs, thus becoming
an integral part of the engineering design process.

A widely applied category of GSA is the variance-based approach [1]. Variance-based
methods, also called Sobol’ indices, decompose the function output into a linear combination
of input and interaction of increasing dimensionality, and estimate the contribution of each
input factor to the variance of the output [2]. However, the estimation of Sobol’ indices
can become expensive in terms of the number of model evaluations. For example, the
computational cost using sampling based estimation for variance-based indices is N(d+1) [2],
where N is the base sample number and d is the input dimension. Large values of N , normally
in the order of thousands or tenths of thousands, are needed for more accurate estimate,
and the computational cost has been noted as one of the main drawbacks of variance-based
sensitivity indices [2].

To mitigate the computational issues, for engineering problems, surrogate models such as
polynomial and Kriging models are often employed. Efficient analytical techniques based on
metamodels have been developed for variance-based sensitivity analysis of simulation based
design [3]. A variant of the variance based methods, called distributional sensitivity analysis,
has been applied to simulation based design [4]. This method regards the amount of variance
reduction of inputs as random variables, which relaxes the assumption of conventional
variance-based methods that the uncertainty can be completely reduced as that assumption
is rarely possible in engineering design.

Despite its wide application, the variance-based methods are inherently limited to the
second moment of the model output. This limitation can be overcome by examining the
sensitivity of the probability density function (PDF) of the model outputs.

This approach has been studied for engineering design using the divergence between two
PDFs corresponding to before and after uncertainty reduction of the random variable of
interest [5]. This utilizes the concept of omission sensitivity, where a random variable is made
deterministic to eliminate its uncertainty. Different from [5], the design tailored sensitivity
metric [6] utilises the Fisher Information Matrix (FIM) to examine the impact on the joint
PDFs of the design outputs, from a simultaneous variation of the input uncertain variables.
Other distance measures have also been used for sensitivity analysis, including the mutual
information [7], relative entropy and the Hellinger distance [8]. A review of distribution-based
sensitivity methods can be found in [9].

Much of the aforementioned work has focused on developing sensitivity metrics for the
global design space. To link the design space and the design requirements, Monte Carlo
Filtering (MCF) is commonly used. For example, MCF-based sensitivity analysis has been
applied to the design verification of nuclear turbosets [10], where the specific verification
criteria can be taken into account. In the process design of chemical engineering [11], Sobol’
method is first used to eliminate non-influential input variables, and with reduced dimension,
MCF is then used for determining and adjusting critical variables to achieve acceptable
performance of the output. In building design [12], the Morris method [13] is first used
to screen insignificant design inputs at the early building design stage to assess energy
demand, thermal comfort, and daylight, and MCF is then used to link the design space to
the requirements and design choices.
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MCF is widely applied due to its easy implementation, where only a single set of
Monte Carlo samples is required (one-sample approach), and its straightforward filtering
interpretation to target verification requirements. However, compared with many global
sensitivity analysis methods, MCF is not effective at revealing complex structures of parameter
interactions and the contribution from products of parameters that might compensate.

Inspired by the effectiveness of filtering to target a specific design region of interest, in
this paper, we present a new regional sensitivity analysis method for design verification. The
key idea here is to combine the Fisher information with the truncated probability distribution
that is conditional on the measured verification data. The newly formed truncated Fisher
Information Matrix (tFIM) is shown to identify the key drivers of the discrepancy between
simulation and measurement in the presence of uncertainties. tFIM performs similarly
to MCF, but is more effective for complex parameter interaction structures and provides
additional insights to sensitivity information within the truncated region. And that is the
main contribution of this paper.

To overcome the non-desirable issue of truncation or filtering with fixed bounds, we discuss
the augmentation of the input parameters by random truncation thresholds. Application of
tFIM to the design verification of a model floating wind turbine demonstrates that the key
drivers of discrepancy tend to have strong interactions with the random thresholds, and that
provides a more robust strategy as no arbitrary fixed bound is assumed for the truncation.

We note that the truncated probability distribution measures the degree of misfit between
the measured data and simulations and plays the role of approximating the likelihood function.
Sensitivity analysis using tFIM thus adopts similar principle as the GSA-GLUE approach
[14], where GSA is applied to the likelihood measure so that the sensitivity analysis is
conditioned on observed data. However, unlike GSA-GLUE which uses generalised likelihood
values [15], tFIM makes no assumption of the form of the likelihood function. tFIM instead
makes approximations using a distance function via simulations, similar to rejection based
Approximate Bayesian Computation (ABC) methods (see e.g. ABC tutorial [16]). In addition,
GSA-GLUE is based on Sobol’ indices, while tFIM utilises Fisher information that is not
limited to the second moment and is applicable for a more diverse type of data distribution.

Note that sensitivity analysis have often been used to select a subset of parameters for
the purpose of model updating. tFIM proposed in this paper can be used similarly to identify
parameter subsets for model updating in a lower dimensional parameter space. Different
from many local [17] or global SA [18] methods used for model updating with a Gaussian
error assumption, however, tFIM utilises regional SA methods with ABC type of truncations
to take into account multiple sources of uncertainty in the design verification process. More
importantly, tFIM examines the parameter interactions between the truncation and model
parameters, thus helping the designers and engineers with an improved understanding for
the causes of the discrepancy.

In what follows, we first define the design verification problem for the dynamic performance
of a mechanical system and explain the research motivation in Section 2. A new data driven
approach using truncated Fisher information is introduced in Section 3. In Section 4, we
conduct numerical benchmarks to validate the proposed method. In Section 5, the application
of sensitivity analysis to guide the design verification is presented in detail using a case study
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of model floating wind turbine design. And concluding remarks are given in Section 6.

2. Problem setting and motivation

2.1. Problem setting

Modelling and simulation is playing an ever growing role in the process of design verifica-
tion, to ensure the mechanical design meets its specifications and intended purpose. This
research aims to utilise sensitivity analysis to guide designers and engineers towards design,
development and verification of mechanical systems.

In this paper, we focus on the design verification for the dynamic performance of a
mechanical system. In this setting, the behaviour of a mechanical system, at a particular
frequency ω, is most commonly described by its frequency response as:

φ(ω,x) = H(ω,x)f(ω) (1)

where x is the design parameter vector that we use to describe the system of interest and
f(ω) is the excitation vector at frequency ω.

H ∈ Cµ×µ is the frequency response function (FRF) matrix, which for a linear system
can be found as the inverse of the dynamic stiffness matrix:

H(ω,x) =
[

−ω2M(x) + iωC(x) +K(x)
]

−1
(2)

where M(x) is the mass matrix, C(x) is the damping matrix, and K(x) is the stiffness
matrix.

During design verification, one of the main objectives is to reduce the discrepancy yd

between our model simulation and the measurement:

yd(ω,x) = φ(ω,x)−φm(ω) (3)

where the subscript m indicates measured outputs.
A typical approach at this stage is to adjust the parameters in the computational model,

using methods such as model updating [19], to improve agreement with the measured data. In
the presence of uncertainties, not only the nominal values, but also the statistical variabilities
of the design parameters need to be considered. A drawback of this approach for design
verification is that there is little insight into the root causes of the discrepancy.

2.2. Motivation for sensitivity guided verification

As an alternative to adjusting the entire set of parameters to reduce the discrepancies, a
subset of parameters can be targeted to update our numerical model [17]. In the presence of
uncertainties, GSA methods can be used. For example, for model updating, a composite
Sobol’ sensitivity index has been proposed to discriminate parameters with correctly modelled
statistics from the erroneous ones under Gaussian noise assumption [18]. The identified
parameter subsets can then be used improve the model simulation in a lower dimensional
parameter space.
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More importantly for design verification, GSA can help the designers and engineers with
an improved understanding for the causes of the discrepancy. For example, in the case study
described in Section 5, a mismatch between the proposed design and the physical set up has
been successfully identified as the key driver for the simulation measurement discrepancy,
thanks to a sensitivity guided analysis.

However, most of the existing GSA methods cannot be used directly to target the
discrepancy reduction, because they are based purely on simulated data.

For example, it is clear from Eq.3 that ∂yd
∂x

= ∂ϕ

∂x
, since ϕm(ω) is not a function of the

model parameters, i.e. a constant with respect to variations of x. In addition, as the variance
of an uncertain variable is translation invariant, i.e. V ar(yd) = V ar(ϕ), there is no effect of
the measured data ϕm in the estimation of the Sobol’ sensitivity indices.

Regionalised sensitivity analysis (RSA), on the other hand, examines which input param-
eter is most important for a specified region of the output [2]. RSA is thus well positioned
to link the design space and the design requirements for design verification, and the most
intuitive and widely used method is the Monte Carlo Filtering (MCF) method as discussed
in the introduction.

In Monte Carlo Filtering (MCF), a categorization is defined for each Monte Carlo
realization based on whether the outputs fall into the target region B. One obtains two
subsets of samples, Xi|B and Xi|B̄. The two-sample Kolmogorov-Smirnov (K-S) test can be
performed to quantify the difference between the distributions of the two subsets of samples:

KS(Xi) = sup|Pn(Xi|B)− Pn̄(Xi|B̄)| (4)

where Pn(Xi|B) and Pn̄(Xi|B̄) are the empirical distribution functions of the two subsets
of samples. The bigger KS(Xi), the more important Xi is for the regionalised output. In
addition, the p-value of K-S test quantifies the significance level of the null hypothesis, i.e.
the two subsets of samples are from the same distribution.

Regional sensitivity analysis methods like MCF can be used to target the discrepancy.
MCF is widely applied due to its easy implementation, where only a single set of Monte
Carlo samples is required, and its straightforward filtering interpretation. However, compared
with many global sensitivity analysis methods, MCF is not effective at revealing complex
structures of parameter interactions and the contribution from products of parameters that
might compensate [2]. Furthermore, as the K-S test from Eq.4 only quantifies the difference
between the filtered and remaining samples, MCF cannot identify influential parameters
within the target region.

Motivated by the effectiveness of filtering to target a specific region of interest, and the
ability of global sensitivity analysis to identify influential parameters in a complex interaction
structure, we propose a new regional sensitivity analysis approach that is a combination of
the global Fisher information and the truncated distribution conditional on the measurement
data.
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3. Data driven sensitivity analysis using truncated Fisher information

In this section, we introduce the truncated Fisher Information Matrix (tFIM) to target
directly the discrepancy. tFIM provides regional sensitivity information as the MCF. Never-
theless, a comparison between MCF and tFIM shows that parameter interactions can be
better handled with the Fisher information metric. This will be illustrated numerically in
Section 4 below.

3.1. Truncated Fisher Sensitivity Analysis

Consider a general vector function y = h(x) : Rd → Rm, the probabilistic sensitivity
analysis characterise the uncertainties of the output y that is induced by the random input
x. When the input can be described by parametric probability density functions (PDF), i.e.,
x ∼ p(x|b), the Fisher Information Matrix (FIM) can then be estimated as the covariance
matrix of the gradient vector of the joint PDF ∂ ln p(y|b)/∂b, with the jkth entry of the
FIM as [20]:

Fjk =

∫

∂p(y|b)
∂bj

∂p(y|b)
∂bk

1

p(y|b)dy = EY

[

∂ ln p

∂bj

∂ ln p

∂bk

]

(5)

where the quantity of interest (QoI) in our study could be the discrepancy between simulation
and measurement, i.e. y = yd(x) from Eq.3. Note that the PDF of the QoI can be high
dimensional, for example a frequency response with 100 frequency points would leads to a
100 dimensional joint PDF p(y). Although high dimensional QoIs is not an issue in theory,
estimation of its joint PDF is prohibitively inefficient for as low as 10 dimensions [21]. It is
thus more tractable to consider a lower dimensional summary and this is discussed in Section
3.5.

In contrast to variance-based approaches which implicitly assume that output variance is
a sensible measure of the output uncertainty, FIM can examine the perturbation of the entire
joint PDF of the outputs. This is closely linked to the relative entropy between the PDF of
the outputs and its perturbation due to an infinitesimal variation of the input distributions
[22, 23].

Nevertheless, Fisher information based sensitivity analysis using Eq.5 cannot be used
directly to target the discrepancy reduction, because the measured data does not depend on
the parametrization of the simulation model. The dependency of the discrepancy term on
the design parameters solely come from the simulated data.

Here we propose a data driven sensitivity analysis using truncated FIM (tFIM). The
key insight here is that as the occurrence of the response is known to be within a specified
range, via the observation of the measured data, truncated distributions can be utilised
for sensitivity analysis targeting the discrepancy. The truncated distribution, which is a
conditional distribution, can be expressed as:

p(yT) = p(y|α ≤ y ≤ β) =
1

Z
p(y)I [α ≤ y ≤ β] (6)

where α ≤ y ≤ β indicates {αn ≤ yn ≤ βn, n = 1, 2, . . . ,m}, and I is the indicator function.

Z =
∫ βm

αm
· · ·
∫ β1

α1

p(y)dy is the normalisation constant.
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The truncation region is dependent on the measured data, i.e. α = α(φ
m
) and β =

β(φ
m
). The truncation thus directly targets the discrepancy yd between our model simulation

and the measurement.
The simulation function y = h(x) can be seen as a transformation from the input random

variables x to the output random variables y. Therefore, the truncated distribution from
Eq.6 can be further expressed as:

p(yT|b) =
1

Z

∫

∏

n

δ [yn − hn(x)] I (αn ≤ hn(x) ≤ βn) p(x|b)dx (7)

where δ(·) is the Dirac delta function. b are the distribution parameters of input design
parameters. In cases the inputs x ∈ Rd are described by Gaussian distributions, b ∈ R2d

represent the mean and standard deviation of the distributions.
In our case, the quantity of interest is the discrepancy between simulation and measured

data, i.e. yd = h(x). Therefore, the indicator function rejects simulations that have a
large distance from the measured data, and plays the role of approximating the likelihood
function. Eq.7 thus has the intuitive interpretation of a marginal likelihood, where the
input uncertainties over x have been marginalised. As a result, sensitivity analysis using
the truncated distribution p(yT) can help to identify the main uncertainties to improve the
agreement between the simulation and measurement.

It is noted in passing that the formulation in Eq.7 bears similarity to rejection based
Approximate Bayesian Computation (ABC) methods (see e.g. [16]), where the likelihood
is approximated using a distance function via simulations. However, while ABC aims to
estimate the posterior distributions of the uncertain parameters in a Bayesian framework,
our goal is to identify the dominant uncertainties for the discrepancy via sensitivity analysis.
As mentioned, the advantage of sensitivity guided design verification over a direct updating
is the potential to help the designers and engineers with an improved understanding of the
causes of the discrepancies.

From the truncated distribution, which is conditional on the measurement data, the
truncated Fisher information can be obtained similarly to Eq.5:

FTjk
=

∫

∂p(yT)

∂bj

∂p(yT)

∂bk

1

∂p(yT)
dyT (8)

We follow a Monte Carlo (MC) based sampling approach to estimate the tFIM, where
the components of the FIM can be estimated efficiently using the Likelihood Ratio method
[24, 22]. More specifically, the truncated density function and its gradient with respect to
the distribution parameters can be expressed as:

p(yT) =
1

Z

∫

∏

n

δ [yn − hn(x)] I (αn ≤ hn(x) ≤ βn) p(x|b)dx

≈ 1

NZ

∑

i

∏

n

δ [yn − hn(xi)] I (αn ≤ hn(xi) ≤ βn)

(9)
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∂p(yT)

∂b
=

1

Z

∫

∏

n

δ [yn − hn(x)] I (αn ≤ hn(x) ≤ βn)
∂p(x|b)

∂b

p(x|b)
p(x|b)dx

≈ 1

NZ

∑

i

∏

n

δ [yn − hn(xi)] I (αn ≤ hn(xi) ≤ βn)
∂ ln p(xi|b)

∂b

(10)

The efficiency comes from the fact that both p(yT) and ∂p(yT)/∂b can be estimated at the
same time, because the term ∂p(x|b)/∂b is often known analytically. It is also clear from
Eq.9 and 10 that, just as the MCF method, the derivatives of the function h(x) are not
required for the sensitivity analysis. Note that the normalisation constant does not affect
the relative sensitivity results so it is not required for the numerical estimation.

The tFIM can therefore be estimated similarly to the original FIM using the Likelihood
Ratio method described above for sensitivity analysis [6]. Better still, the same set of
simulated MC samples that have been used for uncertainty and sensitivity analysis can be
used to form the tFIM without additional model runs. While this is efficient, the truncation,
without additional model runs, inevitably results in a relative small number of valid samples.
MCF has the same issue. In the next section, we will utilise the unique structure of the tFIM
and apply a random truncation to mitigate this issue.

3.2. Truncation with a random threshold

Successful implementation of the tFIM, same as MCF, depends on the choice of the
truncation region. Typically, choice of truncation involves a trade-off, where a larger region
reduces estimation variability thanks to a larger sample size, but also increases misfit between
the simulation and the measured data. Although this has to be treated on a case by case
basis, setting a hard bound is rarely satisfactory as we don’t wish to be over-confident in
an inaccurate truncation. This issue can be overcome by a random truncation, as a form
of uncertainty inflation that is often used in Bayesian inverse problems [25], to incorporate
additional uncertainties due to a lack of confidence in the truncation model.

The unique structure of the tFIM allows a straightforward incorporation of a random
truncation threshold. Assuming the truncation thresholds can be described by parametric
probability distributions, i.e. ϵ ∼ p(ϵ|bϵ), we can then augment the input uncertain parameters
as [x, ϵ] and form the new conditional truncation distribution as:

p(yT) =
1

Z

∫

∏

n

δ [yn − hn(x)] I (αn(ϵ) ≤ hn(x) ≤ βn(ϵ)) p(x|b)p(ϵ|bϵ)dxdϵ (11)

where the estimation of the distribution gradient follows similarly from Eqs.9 and 10.
The truncated FIM is then augmented with extra dimensions that correspond to the

uncertain truncation thresholds. The advantage of this approach is that the random thresholds
are in the same space as the uncertain design parameters. The Fisher matrix then provides
information of the interdependency between design parameters and the truncation thresholds,
where a higher interaction would indicate greater influence of the corresponding design
parameters for the truncated results.

Unlike the input design parameters of which the distributions are elicited and/or based
on data collected, the distribution for the truncation thresholds can be specified based on
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the knowledge of the measured data and the preference for the truncation. In the case
study presented in Section 5, an exponential distribution is used to truncate the discrepancy
between simulated and measured data, giving preference to parameter values that agree
better with measurement.

3.3. Fisher information based sensitivity indices

The sensitivity information from tFIM can be obtained similarly to the original FIM. For
example, we know that a real symmetric FIM matrix F can be diagonalized by orthogonal
matrices:

Q−1FQ = Λ (12)

where Q is the orthogonal eigenvector matrix, i.e. QT = Q−1, and Λ = diag(λ1, λ2, . . . )
contains the real eigenvalues. And the solution to Eq.12 can be solved using the standard
eigenvalue equation:

FQ = QΛ, with det(F− λI) = 0 (13)

The eigenvalues of the FIM represent the magnitudes of the sensitivities with respect to
simultaneous variations of the parameters b, and the relative magnitudes and directions of
the variations are given by the corresponding eigenvectors [6].

In addition to the eigenvectors from the FIM, additional insights can be obtained using
a Pythagorean view to estimate the contributions. In analogy to the principal compo-
nent analysis, the contribution from the ith parameter can be estimated across different
eigenvectors:

si =
n
∑

j

q2ijλj/
∑

λj (14)

where qij is the ith element of the eigenvector qj, and the contribution has been normalised
by the sum of eigenvalues.

Although the FIM sensitivity indices based on eigenvalues and eigenvectors are funda-
mentally different from Sobol’ indices, Eq.14 can be used for parameter rankings so that
different sensitivity methods can be directly compared as shown in [23]. Examples will be
given in the numerical cases in Section 4 and the design case study in Section 5, in which we
will not only show parameter rankings that use the complete set of eigenvectors, but also the
results using only the dominant eigenvectors.

The contributions from different parameters of the same variables can be further aggre-
gated for the corresponding variables, assuming the perturbations are independent. For
example, if (bj, bk) are the mean and standard deviation of the variable xm, then the sensitiv-
ity to the variable xm can be obtained by adding the contributions of the parameters bj and
bk.

As sensitivity analysis is often conducted following the uncertainty analysis, both FIM
and tFIM can be estimated using the same set of Monte Carlo samples, i.e. one-sample set
for both global and regional sensitivity analysis. This is same as MCF, but different from
Sobol’ where additional model runs are required.
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3.4. Sensitivity with respect to the mean and standard deviation

tFIM needs to be normalised for sensitivity analysis. This is because the partial derivative
vector ∂ ln p/∂bj provides the relative effect on the perturbations for an infinitesimal change
of bj . However, these raw partial derivatives are not directly comparable when the parameters,
bj and bk, are of different units. In addition, the FIM tends to be ill-conditioned without
scaling because the parameters could be of many orders of magnitude different.

Different types of normalisation would suit different applications, but the standard
deviation has been recommended as the normalisation constant for engineering design
problems [6], implying the allowable range of parameter mean values is limited to the local
region as quantified by the standard deviations.

To look at sensitivities with respect to the mean and standard deviation, the FIM and
tFIM need to be re-parametrized. Suppose bj = gj(θi), i = 1, 2, . . . , s, then the FIM with
respect to the parameter θ is [26]:

F(θ) = J
TF(b)J (15)

where J is the Jacobian matrix with Jji = ∂bj/∂θi. The Jacobian parametrization matrices
used in this paper are given in Appendix A.

Eq.15 can be used to transform the Fisher-based sensitivity analysis to a new set of
parameters. For example, in the design case study in Section 5, we re-parametrize the
sensitivities from the distribution parameters of Gumbel and Lognormal distributions to the
means and standard deviations of the uncertain inputs.

3.5. Quantity of interest

Both the simulated response φ(ω,x) and the discrepancy yd(ω,x) become random vectors
due to the presence of uncertainties in the parameters x. As a result, the response at different
frequencies tend to be correlated. For example, a change of damping would change the
response at multiple frequencies at the same time. Therefore, looking at the probabilistic
response at individual frequency points might be misleading.

In theory, it is possible to examine the joint PDF of the frequency response function.
However, the joint PDF can be high dimensional, for example a frequency response with
1000 frequency points would leads to a 1000 dimensional joint PDF p(y). Although high
dimensional QoIs is not an issue in theory, estimation of its joint PDF is prohibitively
inefficient [21]. A transformation of the frequency responses in Eq.1 to the modal coordinates
can reduce the dimension if the modes are well separated, but it requires the damping
being negligible or proportional. This high dimensional issue tends to get worse as it is
common to measure the response at multiple spatial positions of a mechanical system where
yd = yd(ω, ξ,x), with ξ indicating the measurement position.

Considering the complex nature of the frequency responses, in this case study, we
average the frequency responses over frequencies and measurement positions, for the response
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magnitude (mag) and phase (pha) respectively:

ymag

d (x) =
1

MN

M
∑

i

N
∑

j

∣

∣

∣
yξid (ωj,x)

∣

∣

∣

ypha

d (x) =
1

MN

M
∑

i

N
∑

j

∣

∣

∣
∠yξid (ωj,x)

∣

∣

∣

(16)

where ωj are the frequencies of interest and ξi are response positions. This allows us to form
the 2-dimensional output quantity of interest below, irrespective of the number of frequency
points and measurement positions:

y(x) =
[

ymag

d (x) ypha

d (x)
]

(17)

The metric for the QoI in Eq.16 uses the mean absolute difference between simulation
and measurement, which emphasizes the proportional contributions at each frequency and
measurement point. This provides a good representation of the overall differences, and it is
preferred in this case over the (root) mean square difference which tends to be dominated by
a few large differences.

Figure 1: From global to regional sensitivity analysis to target design discrepancies between
simulation and measurement. The development of the new truncated Fisher information is
highlighted. Numerical demonstrations with Sobol’, original FIM and MCF methods will be
shown in comparison. Neither tFIM nor MCF require additional model runs.

An overview of the process from the global uncertainty and sensitivity analysis to the
regional analysis to target the verification discrepancy is shown in Figure 1. As the estimation
of both Sobol’ and the Fisher information for global sensitivity analysis is Monte Carlo based,
the regional sensitivity analysis using tFIM or MCF can then be estimated using the same
set of samples at negligible additional computational costs.
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In this paper, the TEDS toolbox [6] is utilised and modified for the estimation of tFIM,
while the Sobol’ indices have been calculated using the SAFE sensitivity toolbox [27]. For
the vector QoI given in Eq.17, the aggregated Sobol’ indices introduced in [28] are used:

GSi =

∑

j V ar(Yj)S
j
i

∑

j V ar(Yj)
GSTi

=

∑

j V ar(Yj)S
j
Ti

∑

j V ar(Yj)
(18)

where the Sj
i and Sj

Ti
are the 1st order and total order Sobol’ indices for the jth output

with respect to the ith input parameter. In our two-dimensional output case, j = 1, 2
corresponding to the magnitude and phase response respectively. V ar(Y ) indicate the
variance of outputs.

4. Numerical benchmark

As mentioned in the introduction, Sobol’ indices are the benchmarks for global sensitivity
analysis, while a commonly used approach for design verification is MCF. In this section, we
will use two numerical examples to benchmark the proposed FIM based regional sensitivity
indices against Sobol’ and MCF. Two tractable examples are chosen. Despite its simplicity,
these examples help to highlight the drawbacks of MCF and how the truncated FIM (tFIM)
could help resolve these issues.

The two examples are listed in Table 1. Note that while Gaussian inputs are assumed in
this section, a variety of distribution types, including Gumbel and Lognormal distributions,
are considered in the design case study in Section 5.

Table 1: Distributions and target output regions for the two numerical benchmark cases.
Gaussian distributions assumed for all inputs.

Input distribution Target output region

Case-1
y = x1x2

x1 ∼ N(0, 0.152)
y ≥ 0

x2 ∼ N(0, 0.152)

Case-2
y = x1 + x2 + x3

x1 ∼ N(2, 12)
−0.25 ≤ y ≤ 0.25x2 ∼ N(−2, 12)

x3 ∼ N(0, 0.252)

Case-1 considers the product function y = x1x2 with a target region of y ≥ 0. In the
design verification context, the target region is typically based on the measured data which
would indicate non-negative outputs in this case. As the contributions to the target output
from the two inputs tend to compensate for each other, as seen in Figure 2a from the scatter
plot, MCF is expected to be challenged to identify their relative importance.

The results for Case-1 are shown in Figure 3, where it is clear that MCF fails to identify
either of the two inputs as expected. In comparison, the proposed tFIM successfully identifies
both x1 and x2 as influential and their equal importance.
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(a) case-1 (b) case-2

Figure 2: Example of input samples. (a) scatter plot of the input samples after truncation
using y ≥ 0; (b) histogram of the three inputs, highlighting the concentration of x3 in the
target region of −0.25 ≤ y ≤ 0.25.

(a) global (b) regional

Figure 3: Sensitivity results for Case-1 y = x1x2. (a) global SA with FIM and Sobol’;
(b) regional SA with target region y ≥ 0, using truncated FIM (tFIM) and Monte Carlo
Filtering (MCF). Error bars indicate bootstrapping standard deviations: smaller the standard
deviation, better convergence.

Case-2 considers a linear combination of three parameters, y = x1 + x2 + x3, where the
target output region is −0.25 ≤ y ≤ 0.25. In this case, as the presence of x3 concentrates
in the target region as seen in Figure 2b from the histogram plot, its effect in driving the
outputs into the target region is minimal. As a result, x3 will not be identified as important
from MCF analysis, and this is clear from the sensitivity results shown in Figure 4b.

Nevertheless, within the target region, the contribution of x3 is not negligible. Ideally the
regional sensitivity analysis should also identify the effect of x3 within the target region. It
can be seen from Figure 4b that the tFIM results is different from MCF in this case. x3 is
not negligible according to tFIM, although its importance is relatively lower than x1 and x2.

In addition to overall parameter ranking, the decomposition of the tFIM matrix can
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(a) global (b) regional

Figure 4: Sensitivity results for Case-2 y = x1 + x2 + x3 and target output region is
−0.25 ≤ y ≤ 0.25, same key as Figure 3.

provide additional sensitivity insights. The results for Case-2 is presented in Figure 5. The
1st eigenvector identifies high influence of the standard deviation (std dev) parameters of
x1 and x2, while the 2nd eigenvector highlights the distinctive effect of x3. It is therefore
plausible to interpret that, the 1st eigenvector points to the directions in driving the output
into the target region, while the 2nd eigenvector provide sensitivity information within the
target region.

Figure 5: Case-2: decomposition of tFIM sensitivity results using eigenvalues and eigenvectors.
(1) tFIM eigenvalues; (2) 1st eigenvector; (3) 2nd eigenvector.

Also shown in Figure 3a and Figure 4a are the global sensitivity results from Sobol’ and
FIM. The Sobol’s total effect is given for Case-1 for this product function as the Sobol’s
main effect is zero, and vice versa for the sum function for Case-2. It can be seen that both
methods have successfully identified the equal importance of x1 and x2 in both cases, and
the negligible effect of x3 for Case-2.

To check the convergence of the sensitivity indices, the bootstrapping method [29] is used.
In bootstrapping, the input-output base samples are resampled randomly with replacement.
For regional sensitivity analysis, bootstrapping might become unreliable due to small sample
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sizes [30], where low variation of un-influential parameters might be a false indicator of
convergence. Although this is less a concern in our study, as the main objective is to identify
influential design parameters, care should be taken when interpreting the absolute values of
the bootstrapping uncertainties. The biggest advantage of bootstrapping is its efficiency, as
no additional model runs are required. Throughout the numerical examples in this paper,
1000 bootstrappings are conducted and the resulting bootstrapping standard deviations are
shown as error bars for each sensitivity indices.

5. Design verification of a model floating wind turbine tower

In this section, we apply the proposed tFIM to the design and testing of a model floating
wind turbine. We first introduce the design verification problem in Section 5.1, where a
floating column is designed representing a substructure of floating offshore wind turbines.
In Section 5.2, we focus on the discrepancy between simulation and experiment, and make
use of tFIM to identify the most influential parameters that are causing the discrepancy.
In Section 5.3, the input parameters are augmented with random truncation thresholds
for tFIM. This allows us to examine the interactions between the random parameters and
identify the key discrepancy drivers with uncertain truncations. We demonstrate the design
verification results in Section 5.4.

The simulation model for our case study has been developed using the CHAOS hydro-
dynamic code [31] which uses the semi-empirical Morison’s equation [32] to estimate wave
forces.

5.1. Design and testing

A design verification problem using a model floating column is studied, which represents
a substructure of floating offshore wind turbines. As the floating configuration enables
economic offshore wind electricity generation in deep waters, where fixed foundation turbines
are not feasible, the chosen example is therefore pertinent to the renewable energy drive. In
addition, due to the non-linear wave/structure interaction and the random wave environment,
a simulation model is almost always required in the design of offshore structures.

Note that in this case study we have assumed the model structure in the wave tank is our
full size design and have thus ignored any scalability issues. This is based on the consideration
that the model used in simulation based design is typically full size. Nevertheless, the resulting
model structure has its first natural frequency out of the wave frequency range, which is the
same as typical offshore structures.

In this case study, a tethered model floating column is designed as shown in the schematic
in Figure 6a and this is called the proposed design. The designed column is hollow and made
of acrylic, as shown in Figure 6b. The metal ring corresponds to the ‘Ballast ’indicated in
Figure 6a, and the final developed design that is used for testing is shown in Figure 6c.

During the testing phase, we have conducted experiments for the wave response of the
floating column in a wave tank that is 12 meter long and 0.5 meter wide. The waves were
assumed to be one-dimensional in the wave tank. Both harmonic design waves, ranging
from 0.5 Hz to 1.1 Hz, and random waves with Jonswap spectrum have been tested. The
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(a) Proposed design (b) Column format (c) Developed design

Figure 6: Design for the case study. (a) proposed design of the rig, consisting of a floating
column in a wave tank; (b) picture of the designed acrylic column, 1 m length, 90 mm
diameter, 2 mm wall thickness. It is tethered to the base of the tank and has removable
metal rings, ’ballast’, to alter the centre of gravity; (c) Developed design in wave tank for
the testing. The three measurement positions are also indicated.

discussions in this paper will focus on the results from harmonic wave excitations, while
future work will use the random wave data to explore the interaction between uncertain
parameters and the stochastic wave states.

One of the challenges for the testing is to capture the motion of the floating structure. The
application of conventional set up for fixed structures, such as the wired inertial measurement
units, might interfere with the motion of the floating column. In this study, a non-intrusive
image tracking system has been developed instead as shown in Figure 6c. Three different
positions along the column have been tracked during wave excitation, with a sampling
frequency of 40 Hz, to provide a good spatial coverage of the structural response. The
coordinates of the three positions have been marked in Figure 6c. In addition, the wave
heights on either side of the structure have also been monitored and that allows us to estimate
the phase information of the harmonic wave responses (c.f. Figure 6c). The captured images,
with Figure 6c showing one example frame, were then post-processed using the Lucas and
Kanade algorithm [33] to extract the time history motion of the tracked positions. The data
acquisition and the image post-processing has been set up using Labview from National
Instruments.

5.2. Uncertainty and global sensitivity analysis

In the design verification problem of the model floating column, there are 15 input
variables and their nominal design values are listed in Table 2. The uncertainties of the input
parameters are obtained via elicitation and reference to the literature. For example, we use
Gumbel distributions for the inertial and drag coefficients with coefficient of variation (CoV)
of 0.1 for wind turbine design, and choose Lognormal and small CoV of 0.02 for many of
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Table 2: Distributions for the input random variables of the floating column design, including
Lognormal, Normal and Gumbel distributions. Nominal values and the Coefficient of Variation
(CoV) of the parameters are also given.

Material
density

Water
density

Water
depth

Mass
coefficient

Drag
coefficient

Column
length

Ballast
mass

Ballast
position

ρ [kg/m3] ρf [kg/m3] d [m] Ca [-] Cd [-] L [m] mb [kg] Lb [m]

Distribution Normal Normal Normal Gumbel Gumbel Normal Normal Lognormal
Nominal 1600 1025 1 1 1 1.05 1.8 0.07

CoV 0.05 0.05 0.05 0.1 0.1 0.02 0.05 0.1

TopCap
mass

TopCap
position

BottomCap
mass

BottomCap
position

Tether
length

Column
radius

Column
thickness

mtc [kg] Ltc [m] mbc [kg] Lbc [m] Ls [m] r [m] t [m]

Distribution Normal Normal Normal Lognormal Lognormal Lognormal Lognormal
Nominal 0.41 1.05 0.41 0.01 0.2 4.5e-2 2e-3

CoV 0.05 0.05 0.05 0.05 0.1 0.02 0.02

well specified dimensions like L, r and t [34].
With the input data given in Table 2, we first conduct global sensitivity analysis using

the standard Fisher Information Matrix with 10000 MC samples. The results for param-
eter ranking are show in Figure 7, where the FIM results are compared to Sobol’. 1000
bootstrapping are used to verify the convergence of the resulting sensitivity indices.

From Figure 7, it can be seen that Sobol’ total index (Sobol-Total) and FIM with all
eigenvectors (All FIM-EigV) provide similar sensitivity results, by identifying the water
depth d, water density ρf , tether length Ls and column radius r as the more influential
design parameters. Similarly, Sobol’ first order or main effect index (Sobol-Main) and FIM
with the 1st eigenvector (1st FIM-EigV) provide similar sensitivity results, except that d is
seen as the dominant from these two sensitivity indices.

The biggest issue with Sobol’ is the heavy computational requirement. In this case, 10,000
samples are used for FIM. For Sobol’, the same 10000 samples is used as the base. Since
Sobol’ indices are proportional to the input dimension, a total of 10000× (15 + 1) is required
in this case where 15 is dimension of input parameters.

Despite the large number of samples required, the Sobol’ results haven’t completely
converged, evidenced by the larger bootstrapping standard deviation and negative sensitivity
values for some of the parameters. It should be noted that however that Sobol’ indices are
more quantitative which can be desirable in cases where the exact uncertainty reduction is
required.

Results from Figure 7 help identify the most influential parameters of the design under
uncertainties. This global information can guide the design and development to reduce
uncertainties and improve the design. However, with testing data for design verification, a
more targeted sensitivity analysis can be conducted using tFIM and MCF methods. As both
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Figure 7: Global sensitivity parameter ranking for the model floating column design, with
inputs from Table 2, from FIM and Sobol’ methods. Relative ranking is shown here where
the largest values from different methods are normalised, as absolute values of the results
from FIM and Sobol’ are not directly comparable. For FIM, two cases are considered where
one case uses only the 1st eigenvector and the other case uses all eigenvectors.

methods can make use of existing samples, there is no additional computational cost but
additional insights to reduce the discrepancy between the simulation and experiment may be
obtained.

5.3. Discrepancy sensitivity analysis

The global sensitivity results from Figure 7 help identify the most influential parameters
of the design, and guide the design and development to reduce uncertainties. With testing
data for design verification, however, a more targeted sensitivity analysis can be conducted
using tFIM and MCF methods. As both methods can make use of existing samples, there is
no additional computational cost but additional insights to reduce the discrepancy between
the simulation and experiment may be obtained.

In Figure 8, the simulated response is compared with the measured data at each of the
three positions. The amplitude of the measured frequency response is extracted from the
peak value of 20 cycles time history data at each wave frequency. The dashed line describing
the amplitudes in Figure 8 then indicate the mean value from the 20 cycles and the error
bars provide the corresponding standard deviations.

The measured amplitudes were found to be consistent as evident from the small error
bars, which reflects the validity of the image tracking system described in Section 5.1. The
phase information of the measured frequency response is based on the phase of the cross
power spectral density, between the time history data at the three positions and the measured
wave height. The averaged value of the data from the two wave tracking positions, shown in
Figure 6c, is used. The measured phase information is not as reliable as the corresponding
amplitudes because the wave height tracking was found to fluctuate. This might have caused
the oscillations for the phase data shown in Figure 8, which nevertheless provides valuable
validation for the simulation.
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Figure 8: Comparison between measurement and simulation with the nominal input data at
the 3 measurement positions. Top row shows the magnitude of the response and the bottom
rows for the phase information.

The regional sensitivity results using the discrepancy between simulated and measured
data are shown in Figure 9. Both tFIM and MCF results depend on the window of truncation.
For smaller truncation windows, the experimental data is more accurately targeted but the
statistical power is reduced for sensitivity analysis as fewer samples are chosen. For bigger
windows, the effect is reversed.

Bootstrapping can help to verify the convergence of the results and 1000 bootstrapping
resampling has been used for the results in Figure 9. We follow the ABC literature [35] and
use a quantile based based strategy for setting the tolerance value. We use 5% of the total
samples (500 samples) that are nearest to the experimental observation as the truncated .
The same truncation data is used for both for tFIM and MCF estimations. One example of
the simulated spectrum from the truncated samples is shown in Figure 10.

From Figure 9, similar sensitivity results are obtained from both MCF and tFIM. Recall
that tFIM can potentially provide additional information about parameter interactions
and the sensitivity within the truncated region, and this helps to explain the difference in
terms of some of the parameters, such as Ca and Cd which also have contributions to the
output uncertainty as seen from Sobol’ total indices in Figure 7. In addition, for tFIM, the
overall parameter ranking can be decomposed and sensitivity information from its dominant
eigenvectors provides additional insight about the influential parameters and their interactions.
For example, in this case, the water depth d dominates the 1st eigenvector and that is for
both the mean and std of d.

5.4. tFIM with random truncation thresholds

The regional sensitivity results depend on the window of truncation. Setting the bounds
requires a trial and error approach and the resulting truncation can greatly impact the
sensitivity results from both MCF and tFIM methods described in the previous section. In

19



Figure 9: Sensitivity analysis for simulation measurement discrepancy using tFIM. (1) The
eigenvalues of tFIM, where the 1st eigenvalue dominates; (2) 1st eigenvector of tFIM with
respect to the mean and standard deviation (std dev) of the input parameters; (3) Parameter
ranking using tFIM and MCF, where the biggest values from different methods are normalised
to one. For tFIM, two cases are considered where one case uses only the 1st eigenvector and
the other case uses all eigenvectors. The results are from 1000 bootstrapping, where the bars
indicate the averaged results and the errorbars are for the bootstrapping standard deviations.

Figure 10: Indication of the simulated spectrum after truncation, compared with measured
data. 5% of the total samples, 500 samples in this case, that are nearest to the experimental
data are used for truncation. This is the same for tFIM and MCF methods.

this section, we augment the input random parameters and conduct tFIM sensitivity analysis
with random truncation thresholds.

Exponential distributions are assigned for the truncation thresholds, of which the rate
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Figure 11: Histograms of the discrepancies between simulation and measurement, and the
fitted Exponential Distributions for the random truncation thresholds. Two different rate
parameters are considered for the random truncation, with the larger one 3 times bigger. (1)
Magnitude discrepancy; (2) Phase discrepancy.

parameters are obtained by fitting exponential distributions to the discrepancy distributions
for the magnitude and phase responses separately, as shown in Figure 11. Using exponential
distributions for the truncation reflects our preference to the simulation results close to
the measured data. The rate of decay controls the level of preference. Two different rate
parameters are considered for the random truncation, with the larger one 3 times bigger.

Figure 12: tFIM sensitivity analysis with random truncation. The input parameters are
augmented with ϵ1, the random threshold for magnitude, and ϵ2, the random threshold for
phase response. The 1st tFIM eigenvector shows the most influential interactions among the
parameters. The results here are for the exponential distribution with a small rate parameter.
Results for a larger rate are shown in Figure 13

The sensitivity results from tFIM with the augmented inputs is shown in Figure 12. In
this case, the 1st eigenvalue dominates the sensitivity results and it is clear that the rate
parameters of the random thresholds are most influential as expected. More importantly, the
results provide an indication of the interaction structure between the truncation thresholds
and the uncertain parameters for the design. In this case, it is clear that the water depth d
has the strongest interaction with truncation thresholds.
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Figure 13: same key as Figure 12, but for the exponential distributed random thresholds
with bigger rate parameters from Figure 11

The directly fitted exponential distribution has a relatively small rate parameter. This
might result in negligible truncation effect. To investigate this further, we increase the
original rate parameter by a factor of 3, resulting in a much concentrated truncation as shown
in Figure 11. The corresponding tFIM result is shown in Figure 13. Similar conclusions can
be drawn where the random truncation thresholds interact most strongly with the water
depth d.

5.5. Summary

The magnitudes of the simulated response with nominal input values shown in Figure
8 are in reasonable agreement with the measurement. However, the phase results clearly
deviates from the measured response even ignoring the oscillations. A common approach
to improve the agreement is to tune the simulation parameters until the model matches
the measurement better. In the presence of uncertainties, a Bayesian updating can be
conducted, where the posterior distributions of the design parameters are obtained given the
measurement data.

Utilising existing MC samples from uncertainty analysis, the samples that minimise the
discrepancy could be identified and this would represent a point estimate for the nominal
values of the uncertain design parameters. This best-fit, whose spectrum simulation is shown
in Figure 14, involves updating a large subset of the design parameters as shown in Figure
15. In addition to potential over-fitting, more importantly, it provides little insight into the
cause of the discrepancy, which is critical for design verification.

With the sensitivity information to the uncertainties of the model parameters, what could
be done instead is to re-examine the discrepancies between the model and the design before
model updating. For example, through the global and regional sensitivity analysis using the
FIM, the water depth d has been identified as the most influential parameter. Sensitivity
guided (SA guided) analysis significantly improves the agreement as shown in Figure 14, for
both the amplitude and phase at all three positions. Importantly, the SA guided update is
parsimonious, as shown in Figure 15, and provides explainable cause for the discrepancies.

The sensitivity analysis from the proposed tFIM provides us with guidance to focus on a
subset of all parameters to reduce the discrepancy. In this case, tFIM analysis highlights the
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Figure 14: Comparison between measured and simulated response. Three different simulated
results. Nominal result uses the nominal values of the inputs listed in Table 2; Best fit uses
the sample, out of 10000 model evaluations, that minimise the discrepancy. The relative
change of the nominal values is shown in Figure 15; SA guided result is based on 6% change
of the water depth, as guided by the sensitivity analysis described in the previous sections.

Figure 15: Percentage change of the nominal values of the input parameters.

distinctive importance of the water depth, using either fixed or random truncation. After
re-examination of the design, it was found that the equivalent water depth in the water tank
was shallower, for 0.06 m or 6% of the nominal depth, because of the presence of the tether
fixture baseplate at the bottom of the wave tank as can be seen in Figure 6c.

The mismatches in the design or development set up can be a major source of uncertainty.
Various types of mismatches between simulation and design set up can be easily overlooked
in practice due to different focus of view between the simulation team and the design team
[36]. For example, in this case study the base offset due to the installation of the tether
fixture, as shown in Figure 6c, has been neglected in our initial examination of the developed
design. This is because the base plate fixture does not affect the fixed boundary condition
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of the proposed design, and it was deemed negligible, based on engineering judgement by
the design team. Sensitivity analysis using tFIM helps to focus on this small offset, which
otherwise could have a significant (confounding) effect on the dynamic response.

Note that the comparison in Figure 15 only considers the nominal values, assuming the
dispersion of the design parameters are unchanged. Following the sensitivity-guided reduction
of discrepancy, a natural next step is to estimate the posterior distributions of the design
parameters, using techniques such as Bayeisan updating. However, that further step is not
considered in this paper, as our main purpose is to highlight the potential benefits of using
sensitivity analysis, at no additional cost following a Monte Carlo based uncertainty analysis,
to examine and reduce the discrepancies.

6. Conclusions

We present a new data-driven sensitivity analysis method based on the truncated Fisher
Information Matrix (tFIM) to identify the key drivers of the discrepancy between simulation
and measured data in the presence of uncertainties. Application of tFIM to the design
verification of a model floating wind turbine successfully identified the single most important
parameter out of 15 input random variables, and the sensitivity guided update is parsimonious
and has clear physical interpretation.

tFIM is as efficient as the Monte Carlo Filtering (MCF), where the same set of samples
from the preceding uncertainty analysis can be re-used. This is different from Sobol’ indices
where additional model runs are required in addition to the base samples. The one-sample
approach means both tFIM and MCF essentially provide free regional sensitivity information
targeting the verification data. The results from tFIM are found to be similar to MCF for
the model floating column case study. Nevertheless, numerical examples show that tFIM
can handle more complex parameter interaction structures and can additionally identify the
influential parameters within the truncated region.

Both MCF and tFIM suffer from a small sample size due to the truncation. Although a
larger number of base samples can potentially mitigate this issue, there is no guarantee of
improvement if the model or experiment is biased. The structure of tFIM allows a natural
incorporation of random truncations where the input parameters are augmented with the
random truncation thresholds. Results show that the key drivers of discrepancy tend to have
strong interactions with the random thresholds, and that provides a more robust strategy as
no arbitrary fixed bound is assumed for the truncation.

Likelihood function is a widely used and principled way to combine a model and data,
assessing how well the model fits the data. In cases the likelihood function is intractable
or too expensive to compute but simulating data from the model is feasible, ABC-type
methods can be used. tFIM does not assume the form of the likelihood function, as it
makes approximations using a distance function via simulations, similar to rejection based
ABC methods. However, truncation with a fixed bound discard data outside the specified
range, which can lead to bias and misrepresentation. Using a random truncation in tFIM
can mitigate this issue, though the need for a probabilistic model to define the truncation
may introduce additional bias. Since random truncation in tFIM serves a role similar to
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probabilistic kernels in ABC, a promising direction for future research is to explore kernel-
based approaches to examine the fundamental properties of tFIM and expand sensitivity
analysis across a broader range of random truncation strategies.

The Fisher sensitivity is based on a joint PDF of the potentially multidimensional
quantities of interest. This allows us to identify the influential variables that are important to
the multidimensional responses simultaneously. In this paper, we have limited the analysis to
a 2-dimensional output, namely the magnitude and phase of the complex frequency responses.
This can have general applicability for the design of mechanical systems, but information at
multiple frequency points and measurement positions have to be compressed. A future step
is to explore options to examine a higher dimensional joint PDF for a more explicit analysis
of the frequency response functions.
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Appendix A Parameter re-parametrization examples

The FIM and tFIM can be re-parametrised using Eq.15. In the numerical examples, the
sensitivity results have been re-parameterised with respect to the (arithmetic) means (µ) and
standard deviations (σ) of the inputs. In this case, we need to find ∂bj/∂µj and ∂bj/∂σj for
each bj . Below, we demonstrate how to find the Jacobian transformation matrix for Gumbel
and Lognormal distributions used in this paper.

• Gumbel distribution

Assume the input follows a Gumbel distrbution, with x ∼ Gum(b1, b2) where b1 is the
location and b2 is the scale. Then the two parameters can be expressed using its mean
ad standard deviation as:

b1 = µ−
√
6γ/πσ; b2 =

√
6πσ (A.1)

where γ is the Euler–Mascheroni constant. From Eq.A.1, the Jacobian matrix for
re-parameterization can be formed as:

J =

[

∂b1
∂µ

∂b1
∂σ

∂b2
∂µ

∂b2
∂σ

]

=

[

1 −
√
6γ/π

0
√
6/π

]

(A.2)
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• Lognormal distribution

Assume the input follows a Lognormal distrbution, with x ∼ LN(b1, b2) where b1 is the
log mean and b2 is the log stand deviation. Then the two parameters can be expressed
using its mean ad standard deviation as:

b1 = ln

(

µ2

√

µ2 + σ2

)

; b2 =

√

ln

(

1 +
σ2

µ2

)

(A.3)

from which, the Jacobian matrix for re-parameterization can be formed as:

J =

[

2
µ
− µ

µ2+σ2 − σ
µ2+σ2

1
b2

−σ2

(µ2+σ2)µ
1
b2

−σ
(µ2+σ2)

]

(A.4)
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