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Impact of Different Greenspace Metrics on Cardiovascular Disease Incidence in 1 

Urban Settings: A Comparative Analysis 2 

Abstract 3 

Cardiovascular diseases (CVDs) are the leading cause of global mortality, and urban 4 

greenspace can reduce CVDs risk. However, the evidence relating various greenspace 5 

metrics to CVDs risk is inconclusive. To enhance the understanding of the correlation 6 

between greenspace and CVDs, we compared three greenspace indicators – Street 7 

View-based Greenspace (SVG), Normalized Difference Vegetation Index (NDVI), and 8 

Green Cover Rate (GCR). We used a large sample of 36,504 CVDs hospitalization 9 

records with precise residential addresses from 2017 to 2022 in Jingzhou, China. 10 

Employing the Geographically Weighted Regression (GWR) model, we investigated 11 

the association between greenspace and CVDs incidence at the population level. We 12 

found significant negative associations between NDVI/SVG and CVDs incidence 13 

(SVG: β = -1.64; 95% CI: [-2.12, -1.15]; NDVI: β = -8.57; 95% CI: [-9.81, -7.33]), with 14 

NDVI exhibiting a more substantial protective effect. However, no significant 15 

relationship was found in GCR (p = 0.161). The impacts varied by age, but not by 16 

gender, with younger individuals benefiting more than the elderly, and SVG showed no 17 

significant relationship with CVDs incidence in individuals over 65 years. Our findings 18 

suggested the importance of the presence of greenspace in CVDs prevention. 19 

Consequently, in urban greenspace planning, priority should be given to the vegetation 20 

quantity in residential areas over the size of greenspace facilities located distant from 21 

residences. 22 

 23 
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1 Introduction 26 

Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide, 27 

accounting for over 18 million fatalities each year 1. In China, both prevalence and 28 

mortality rates of CVDs are on the rise 2. Therefore, making effective efforts to reduce 29 

CVDs incidence is of paramount importance. CVDs are widely recognized as the result 30 

of complex interplay between genetic predisposition and environmental factors. All 31 

personal, social, and natural domains of environment collectively affect CVDs risk 3. 32 

Urban environment represents a modifiable determinant with a profound impact on 33 

CVDs, and thus its optimization serves as a cost-effective strategy to accrue widespread 34 

gains against CVDs. Researchers have shown a long-standing interest in the association 35 

between greenspace and human health 4,5. “Green space”, a specific concept of the built 36 

environment, usually refers to undeveloped open land covered with vegetation like 37 

grass and trees, and further includes parks, public spaces, and residential vegetation 6. 38 

Urban greenspace encourages physical activity, and reduces air pollution, noise, and 39 

heat, all of which are well-known risk factors for CVDs 1. 40 

Some natural experimental studies have indicated that residents of greener areas 41 

exhibit a lower risk of CVDs 7,8. In addition, some epidemiological studies have found 42 

a negative correlation between greenspace quantity and CVDs risk 9,10. These studies 43 

utilized land use or remote sensing data to measure greenspace, which reflected macro-44 

level greenspace exposure. More recently, there have also been studies employing 45 

Street View Images (SVI) to investigate the impact of ground-level greenspace on 46 

CVDs, yielding positive results 11. While many studies indicated a protective effect of 47 

greenspace on CVDs risk, some others reported invalid results 12–14. Current evidence 48 

remains limited and inconclusive, and these discrepancies may stem from the lack of 49 

standard definitions and measurements of greenspace 15. Normalized Difference 50 

Vegetation Index (NDVI), Green Cover Rate (GCR), and Street view-based greenness 51 

(SVG), are three mostly used greenspace indicators in studies, which are used in most 52 

of the studies mentioned before. Different indicators may reflect different aspects of 53 



greenspace, and there is a need to clarify the differential impacts of various greenspace 54 

indicators on CVDs incidence, and whether they influence human health. In addition, 55 

different demographic groups may have varying levels of access to greenspace and use 56 

space differently, and demographic factors could modify the relationship between 57 

greenspace and CVDs risks 16. 58 

This study aimed to elucidate the associations between greenspace and CVDs 59 

incidence at the population level by applying three greenspace indicators (SVG, NDVI, 60 

and GCR) to measure greenspace. It aimed to refine the understanding of greenspace 61 

impacts on CVDs, thereby helping better reduce urban CVDs burden through 62 

greenspace planning efforts. To address this issue, our study is guided by the following 63 

questions: (1) To what extent do different greenspace indicators agree on the presence 64 

of greenspace? (2) Will the correlation between greenspace and CVDs differ across 65 

different indicators? (3) Are the associations modified by gender or age? 66 

2 Methods and materials 67 

2.1 Study settings 68 

This study was conducted in Jingzhou District and Shashi District, located in the 69 

heart of the principal urban expanse of Jingzhou City, China (36°20´ N, 112°14´ E). We 70 

used a large sample of CVDs hospitalization data collected from local hospitals, which 71 

included the date of admission, primary diagnosis, sex, age, and residential address. 72 

The primary diagnosis was coded according to the International Statistical 73 

Classification of Diseases and Related Health Problems, 10th Revision (ICD-10). We 74 

extracted records with ICD-10 codes (I05-I52) from 2017 to 2021 as CVDs cases. Out 75 

of the 37640 records that had residential address information available; 1136 addresses 76 

could not be geocoded, leaving us with a final sample of 36,504 records. Personal 77 

information was treated confidentially in strict adherence to the Personal Information 78 

Protection Law of China. 79 



There are unavoidable deviations in the geocoding of patient addresses given 80 

privacy concerns, the geocoding results utilized in this study are sufficiently detailed to 81 

ascertain accurate point density information for our analysis. We used the Kernel 82 

Density Estimation (KDE) method to estimate the CVDs incidence of each 500m grid 83 

to ensure spatial comparability across all other datasets. KDE is a widely used spatial 84 

interpolation technique that estimates the density of a specific variable across a 85 

continuous surface. This method is based on kernel smoothing, where a kernel function 86 

(typically Gaussian) assigns weights to observations within a defined radius, and can 87 

better avoid the mutation problem at boundaries as well as the homogenization problem 88 

inside the grid 17. We obtained the population distribution grid map from WorldPop 89 

(www.worldpop.org), which provides high-resolution population estimates based on a 90 

combination of census data, satellite imagery, and various geospatial datasets. 91 

Combined with the population distribution grid map, CVDs incidence was expressed 92 

as ratio-based statistics and normalized to a population size of 100,000, the calculation 93 

formula for CVDs incidence is as follows: 94 
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Where Incidence(x, y) is the incidence at location (x, y); Pop(x, y) represents the 96 

population at location (x, y); K(xi, yi) is the kernel density estimation result of each point 97 

inside the grid of location(x, y). Fig. 1 shows the total workflow diagram of this study. 98 

http://www.worldpop.org/


 99 

Fig. 1. Total workflow diagram of this study. 100 

2.2 Greenspace indicators 101 

We selected three frequently used greenspace indicators: SVG, NDVI, and GCR 102 

for analysis. Table 1 delineates the characteristics of these indicators. 103 

Table 1 Characteristics of greenspace metrics. 

 SVG NDVI GCR 

Full Name Street view-based 
greenspace 

Normalized difference 
vegetation index 

Green cover Rate 

Description Percentage of vegetation 
pixels of street view image 

Using satellite images to 
calculate the vegetation 
index 

Percentage of trees and 
flooded vegetation land 
cover 

Type of Data Primary data Secondary data Secondary data 

Data Source Street view image Landsat satellite Landcover dataset 

Characteristic On-the-ground perspective 
for greenspace, capturing 
people's perception of 
greenspace more accurately 

Quantifies the density of 
photosynthetically active 
greenspace, without 
biophysical meaning 

Quantifies the extent of 
vegetation, yet could not 
reflect the density of 
vegetation. 

Raw Resolution single images 30 meters 10 meters 

We extracted SVG from street view images, in line with methods used in previous 104 

studies 18,19. First, we sampled points at 100m intervals along the road network obtained 105 



from the Open Street Map, and created a 500m grid over the main urban area of 106 

Jingzhou, with four uniformly distributed points per grid. For each point, we obtained 107 

a street panorama from the Baidu Map API, then applied the DeeplabV3 model 20, 108 

which was pre-trained on the cityscapes dataset 21, to segment images and calculate 109 

vegetation pixels percentage as the SVG value, ranging from 0 to 1. The mean SVG of 110 

four points represented the grid’s greenness. Since street view images lack full 111 

historical records, contemporaneous data were used for all greenspace metrics and 112 

covariates to ensure consistency and comparability. 113 

NDVI is a satellite-derived vegetation index indicating the density of vegetation, 114 

based on the surface reflectance at visible red and near-infrared (NIR) wavelengths. It 115 

ranges from -1 to 1, with higher values indicating a higher density of greenness, and 116 

has been approved by WHO as an indicator for greenspace availability measurement. 117 

We obtained the maximum NDVI each year from the National Ecosystem Science Data 118 

Center, National Science & Technology Infrastructure of China 22. It’s derived from 119 

Landsat 5/7/8/9 at 30m × 30m resolution, and the average value represented the grid’s 120 

NDVI value. 121 

GCR represents the size of land covered by plants, rather than the amount of 122 

vegetation on the green land. The ESRI Sentinel-2 10m-resolution Land Cover dataset 123 

was the third source of greenspace. It provides land cover derived from ESA Sentinel-124 

2 imagery from 2017 to 2021, classifying land cover into 10 categories: water, trees, 125 

flooded vegetation, crops, built area, bare ground, snow/ice, clouds, and rangeland. The 126 

dataset was generated from Impact Observatory’s AI model, trained by a dataset of 127 

massive human-labeled pixels. We calculated the percentage of trees in each 500m grid 128 

as the Green Cover Rate. 129 

2.3 Covariates 130 

Multiple factors have been proven to contribute to CVDs including socioeconomic 131 

status, built environment, diets, humidity, temperature, etc. 6 These factors can be 132 

summarized as social and natural environments. Following previous studies, we added 133 



the following covariates to adjust the model: Gross Domestic Product (GDP), building 134 

density, snack bar and dessert shop density, precipitation, annual lowest temperature, 135 

and annual highest temperature. Due to the lack of neighborhood-level socioeconomic 136 

status data in the study area, we used the spatial distribution of GDP as a proxy indicator 137 

to reflect the general economic conditions. We followed the method using nightlight 138 

images, population distribution, and regional statistics to estimate the neighborhood-139 

level GDP, which was interpolated to a 500m × 500m grid, consistent with study units. 140 

Specifically, we utilized NPP-VIRS nightlight images, population distribution raster 141 

from WorldPop, and regional statics from the Chinese City Statistical Yearbook 23,24. 142 

Building density refers to the percentage of built area in the grid, and snack bar and 143 

dessert shop density is estimated using the KDE method. Temperature and precipitation 144 

datasets from 2017-2021 were sourced from the National Tibetan Plateau / Third Pole 145 

Environment Data Center (https://data.tpdc.ac.cn), with a spatial resolution of 1 km 25–146 

27. All raster data was transformed and resampled to a uniform 500m resolution using 147 

ArcGIS 10.8. 148 

2.4 Statistical analysis 149 

Pearson correlation coefficients (r) were calculated to investigate the differences 150 

and relationships among three greenspace indicators and CVDs incidence. 151 

Subsequently, we used the Lagrange Multiplier (LM) test to detect the spatial effect. 152 

The results of Moran’s I and LM were significantly positive at the 1% significance level 153 

(Table 2), indicating a spatial effect in this study. The inclusion of spatial model is 154 

critical due to spatial autocorrelation and non-independence of the data, necessitating 155 

their inclusion for accurate analysis. We compared Ordinary Least Squares (OLS) and 156 

3 spatial models: the Spatial Lagged Model (SLM), Spatial Error Model (SEM), and 157 

Geographically Weighted Regression (GWR). GWR turned out to be the best choice 158 

(Table 3), thus we employed the GWR model to investigate the correlation between 159 

greenspace and CVDs incidence. 160 



GWR is a regression model tailored to address spatial heterogeneities in the 161 

“response to predictor variable” relationships 28. Residents are influenced not only by 162 

environmental factors within their grid, but also by those in surrounding areas. By 163 

accounting for the influence of neighboring areas, GWR enhances the interpretability 164 

and validity of the results. 165 

Table 2 Result of the LM test 
Test Statistic df p-value 

Spatial error:    

Moran's I 27.10*** 1 0 

Lagrange multiplier 673.06*** 1 0 

Robust Lagrange multiplier 19.13*** 1 0 

Spatial lag:    

Lagrange multiplier 724.72*** 1 0 

Robust Lagrange multiplier 70.79*** 1 0 

 

Table 3 Model comparison results 

Model R-squared RMSE (Sigma) Log Likelihood AIC 

OLS 0.217 70.95 -6720.7 13463.4 

SLM 0.364 63.65 -6597.7 13221.5 

SEM 0.093 63.42 -6593.4 13212.7 

GWR 0.796 40.824 -5925.6 12371.3 

Note: OLS: ordinary least squares; SLM: spatial lagged model; SEM: spatial error model; 
GWR: geographically weighted regression. 

3 Results 166 

3.1 Descriptive statistics 167 

Table 4 presents the characteristics of CVDs cases and the greenspace indicators. 168 

The mean annual incidence of CVDs is 47.17 (per 100,000 population). Males 169 

constitute the majority of cases (58.99%). Approximately half of the cases are found in 170 

the age group above 65 years old (50.15%), slightly fewer cases are between 15 and 65 171 

years old (36.81%), and 0-15 years old cases only account for 13.04%.  172 



Fig. 2 (a) shows the spatial distribution of CVDs incidence. Hotspots of CVDs 173 

cases are mainly distributed in the north and the south-west, and there is also a 174 

significant concentration of incidence in the central area. The mean SVG, NDIV, and 175 

GCR levels are 0.158, 0.445, and 0.038 respectively. Fig. 2 (b, c, d) illustrates spatial 176 

differences between greenspace measurements. The map shows an agreement between 177 

NDVI and GCR, but GCR indicates a lower level of greenspace. NDVI and GCR show 178 

higher levels in the periphery, whereas SVG value is higher in the center. 179 

Table 4 Descriptive statistics of the study 

Variable  Mean (SD) / Numbers (%) 
CVDs cases:  

 All cases 36504 (100) 
 Male 21533 (58.99) 
 Female 14917 (41.01) 
 <15 years old 4760 (13.04) 
 15-65 years old 13438 (36.81) 
 >65 years old 18306 (50.15) 
NDVI 0.445 (0.101) 
SVG 0.158 (0.109) 
GCR (%) 0.038 (0.104) 
GDP (million yuan) 206.244 (308.406) 
Building density (%) 0.878 (0.191) 
Snack bar and dessert density  4.498 (2.307) 
Precipitation (mm) 916.879 (119.183) 
Temperature minimal (℃) 17.766 (12.147) 
Temperature maximal (℃) 339.220 (4.724) 
CVDs incidence (per 100,000) 47.17 (79.798) 
Note: Categorical variables are presented as count (%) and continuous variables as mean 
(standard deviation, SD). NDVI refers to Normalized Difference Vegetation Index, SVG 
refers to Street View-based Greenness, and GCR is Green Cover Rate. 



 180 

Fig. 2. Spatial distribution of average cardiovascular diseases (CVDs) incidence, SVG (Street 181 

View-based Greenness), NDVI (Normalized Difference Vegetation Index), and GCR (Green 182 

Cover Rate) in Jingzhou, China, during the study period. 183 

3.2 Correlations 184 

Fig. 3 presents the correlations between all variables and CVDs incidence. NDVI 185 

and GCR show a moderate correlation (α = 0.49, p < 0.01). No significant correlations 186 

are observed between SVG and NDVI (α = 0.02, p =0.44) or GCR (α = -0.04, p = 0.16). 187 

Both NDVI and SVG present significant negative correlations with CVDs incidence, 188 

with NDVI showing a stronger correlation (NDVI: α = -0.16, p < 0.01; SVG: α = -0.08, 189 

p < 0.01). GCR is not correlated with CVDs incidence (p = 0.57). Furthermore, all 190 

variables have Variance Inflation Factors (VIFs) below 5, indicating no 191 



multicollinearity in this study. Therefore, we included all these variables in the 192 

regression models to assess the effect of three greenspace indicators on CVDs incidence. 193 

 194 

Fig. 3. Association between control variables for the incidence and greenspace exposure indicators.  195 

Note: *p < 0.10, **p < 0.05, ***p < 0.01.  196 

Covariates: Gross Domestic Product (GDP), Building Density (BD), Snack and Dessert shop 197 

Density (Snack), Precipitation (Pre), Temperature Minimum (Tmn), Temperature Maximum (Tmx) 198 

3.3 Relations between greenspace indicators and CVDs incidence 199 

Table 5 presents the estimates for three greenspace indicators in association with 200 

CVDs incidence. The adjustments were accomplished through four models: Model 1 201 

was unadjusted, Model 2 adjusted for socioeconomic factors, Model 3 additionally 202 



adjusted for natural environmental factors, and Model 4 included both socioeconomic 203 

and natural environmental covariates for full adjustment. Unadjusted analysis (Model 204 

1) shows a consistent inverse association of SVG and NDVI with CVDs incidence. A 205 

1% increase in SVG and NDVI are respectively related to a 5.46% (95% CI: [-6.19, -206 

4.72]) and 8.45% (95% CI: [-10.12, 6.79]) average decrease in CVDs incidence. 207 

Conversely, GCR shows a positive but less significant association with CVDs incidence 208 

(p =0.015). After being adjusted by social environmental covariates (Model 2), the 209 

association between SVG and CVDs incidence weakened (β = -0.28; 95% CI: [-0.67, 210 

0.11]), while that of NDVI strengthened (β = -10.79; 95%CI: [-12.35, -8.62]). The 211 

correlation between GCR and CVDs incidence also weakened, but with lower 212 

significance (β = 2.12; p = 0.024). Model 3 is adjusted for the natural environment 213 

variables, and it suggests a weaker negative effect of SVG and NDVI on CVDs 214 

incidence than Model 1 (SVG: β = -3.63; 95%CI: [-4.17, -3.09]; NDVI: β = -5.45; 215 

95%CI: [-6.69, -4.22]). The correlation between GCR and CVDs incidence remains 216 

positive in Model 3, and is at a low significance level (β = 6.94; p= 0.061). In the fully 217 

adjusted model (Model 4), the inverse correlations of SVG and NDVI with CVDs 218 

incidence persist (SVG: β = -1.64; 95% CI: [-2.12, -1.15]; NDVI: β = -8.57; 95% CI: 219 

[-9.81, -7.33]). The effect of SVG on CVDs incidence becomes much weaker and less 220 

significant (p = 0.079), while the effect of NDVI remains largely consistent and highly 221 

significant (p < 0.01). Additionally, GCR shows no significant association with CVDs 222 

incidence after being fully adjusted (p = 0.161). 223 

The fully adjusted model (Model 4) performed the best in terms of model 224 

evaluation criteria such as AIC and Log Likelihood. Therefore, we conducted further 225 

in-depth research using all covariates. The results of the fully adjusted GWR model are 226 

listed in Table 6, which explains 79.6% of the prevalence of CVDs in the grid (R2 = 227 

0.796). NDVI has a more beneficial effect on alleviating CVDs compared to SVG, 228 

while the effect of GCR is insignificant. As for covariates, an increase in GDP, building 229 

density, and precipitation resulted in less CVDs incidence in the region, and the rising 230 



density of snack and dessert shops and maximum temperature would increase CVDs 231 

incidence. Additionally, no significant relationship between annual minimum 232 

temperature and CVDs incidence is observed. 233 

Table 5 Cross-sectional associations of greenspace indicator and CVDs incidence 

 Model 1  Model 2  Model 3  Model 4 

 Estimate 
(95% CI) 

p value  Estimate 
(95% CI) 

p value  Estimate 
(95% CI) 

p value  Estimate 
(95% CI) 

p value 

SVG -5.46 

(-6.19, 
-4.72) 

<0.01  -0.28 

(-0.67, 
0.11) 

0.013  -3.63 

(-4.17, 
-3.09) 

0.074  -1.64 

(-2.12, 
-1.15) 

0.079 

NDVI -8.45 

(-10.12, 
-6.79) 

<0.01  -10.79 

(-12.35, 
-8.62) 

<0.01  -5.45 

(-6.69, 
-4.22) 

<0.01  -8.57 

(-9.81, 
-7.33) 

<0.01 

GCR 9.53 

(5.47, 
13.59) 

0.015  2.12 

(-2.73, 
6.98) 

0.024  6.94 

(2.26, 
11.61) 

0.061  2.84 

(-2.57, 
8.19) 

0.161 

AIC 13018.22  12717.36  12554.15  12371.3 

Log Likelihood -6398.71  -6194.65  -6070.01  -5925.64 

RMSE 56.478  48.769  44.852  40.824 

R-square 0.545  0.678  0.739  0.796 

Model 1: Unadjusted model. 
Model 2: Adjusted for social covariates (GDP, Building density, Snack shop density). 
Model 3: Adjusted for natural environment covariates (Precipitation, Min/Max Temperature). 
Model 4: Adjusted for all covariates above. 

Table 6 Adjusted estimates from the GWR model predicting CVDs incidence 

Variable Coefficient 95% CI [low, high] p-value VIF 

SVG -1.64* [-2.12, -1.15] 0.079 1.086 

NDVI -8.57*** [-9.81, -7.73] 0 1.663 

GCR 2.84 [-2.52, 8.19] 0.161 1.865 

GDP -40.03*** [-42.99, -37.07] 0 1.487 

BD -8.98*** [-10.26, -7.70] 0 1.704 

Snack 13.92*** [11.63, 16.20] 0 1.653 

Pre -8.77*** [-10.07, -7.46] 0 2.3 

Tmn -3.68 [-4.71, -2.65] 0.217 2.381 

Tmx 8.22*** [5.63, 10.81] 0 4.324 

Note: *p < 0.10, **p < 0.05, ***p < 0.01. 



3.4 Relations in subgroups 234 

Fig. 4 presents the associations between environmental variables and CVDs 235 

incidence stratified for gender. We do not observe notable sex differences in the impact 236 

of NDVI and SVG on CVDs incidence in the region. The effect of SVG in reducing 237 

incidence in female cases is slightly stronger than in male cases (Female: β = -0.967; 238 

95% CI: [-1.29, -0.64]; Male: β = -0.78; 95% CI: [-1.23, -0.44]). For both genders, the 239 

effect of NDVI is stronger than SVG (Female: β = -9.07; 95% CI: [-10.44, -7.70]; Male: 240 

β = -9.25; 95% CI: [-10.54, -7.95]), while GCR exhibits no significant relationship with 241 

CVDs incidence (Female: p = 0.974; Male: p =0.616). All covariates, except for 242 

minimum temperature, show a significant correlation with CVDs incidence, with 243 

minimal difference across gender strata. The snack and dessert shop density has a 244 

stronger positive relationship with the male CVDs incidence, while the increase in 245 

maximum temperature is observed to be more associated with CVDs incidence in 246 

females. 247 

In the age-stratified analyses, we observed a stronger association between 248 

SVG/NDVI and CVDs incidence in the 0-15 age group compared to other age groups, 249 

as shown in Fig. 5. The effect of SVG in reducing CVDs incidence in the 0-15 age 250 

group (β = -6.21; 95% CI: [-7.84, -4.58]) is much stronger than in the 15-65 age group 251 

(β = -2.33; 95% CI: [-2.94, -1.73]), but it does not show a clear effect on CVDs 252 

incidence in those over 65 (95% CI: [-4.16, 0.17]). NDVI shows significant inverse 253 

associations with CVDs incidence in all age groups, with the smallest associations in 254 

cases over 65 (0-15: β = -15.59; 95% CI: [-19.08, -12.10]; 15-65: β = -13.16; 95% CI: 255 

[-15.43, -10.90]; over 65: β = -8.34; 95% CI: [-9.49, -7.18]). There is still no significant 256 

correlation between GCR and CVDs incidence among all age groups (0-15: p = 0.733; 257 

15-65: p = 0.659; over 65: p = 0.404). Notable differences in covariates are also 258 

observed across age groups. The inverse association between GDP and CVDs incidence 259 

is statistically significant for cases under 65, but not for those over 65. The density of 260 

snack and dessert shops has a much smaller effect on CVDs incidence in the 15-65 age 261 



group than others. Notably, the correlation between the minimum temperature and 262 

CVDs incidence is significant only in the 0-15 age group, albeit at a low significant 263 

level.  264 

 265 

Fig. 4. Gender-stratified associations between variables and CVDs incidence. The red points and 266 

bars represent associations for females, while the blue points and bars represent associations for 267 

males. Error bars denote 95% confidence intervals. 268 

Note: *p < 0.10, **p < 0.05, ***p < 0.01.  269 



 270 

Fig. 5. Age-stratified associations between variables and CVDs incidence. The green points and 271 

bars represent associations for the 0–15 years group, the orange points and bars represent the 15–272 

65 years group, and the red points and bars represent the 65+ years group. Error bars denote 95% 273 

confidence intervals. 274 

Note: *p < 0.10, **p < 0.05, ***p < 0.01. 275 

4 Discussion 276 

This study intended to assess the consistency of three greenspace indicators 277 

measured from different aspects, and to investigate their different effects on regional 278 

CVDs incidence using a spatial model (GWR). The results indicated that higher values 279 

of SVG and NDVI are associated with less CVDs incidence, but no such relationship 280 



was found in GCR. The association did not vary by sex, but we observed notable 281 

differences across various age groups. 282 

4.1 Comparison among greenspace indicators 283 

Three indicators measured different aspects of greenspace in this study. The most 284 

commonly used greenspace metrics in health research are greenspace coverage and 285 

vegetation level 29, which are represented by GCR and NDVI in this study. While both 286 

metrics are useful for assessing the overall amount of greenspace, they do not 287 

distinguish between different forms and public availability. NDVI is a satellite-derived 288 

vegetation index measuring greenspace from a top-down perspective. It calculates the 289 

level of greenspace based on the different reflection capabilities of plants for NIR and 290 

red light, indicating the density of vegetation. However, it lacks specific concrete 291 

biophysical meaning. GCR also measures top-down greenspace and has actual physical 292 

significance, representing the size of land covered by plants, rather than the amount of 293 

vegetation on the green land. Although over-head greenspace has been proven to be 294 

important for health, eye-level greenspace may better reflect people’s perceptions of 295 

greenness on the ground. The combination of street-view images and deep learning 296 

provides a unique approach to estimating natural features from a ground perspective. 297 

SVG measures human-scale greenspace, mainly street plants at eye level. Compared to 298 

the other two indicators, SVG offers a more subjective measurement of greenspace, 299 

reflecting people’s perceptions of greenspace 30. 300 

We found that SVG levels in the inner city were slightly higher compared to the 301 

suburbs. Conversely, NDVI was relatively more abundant in the suburbs and less in the 302 

inner city, which is consistent with previous research conducted in the United States 303 

31,32. Similarly, previous studies suggested that there is no evidence that NDVI is related 304 

to street-level greenness 33. A possible explanation is that the inner city of China is 305 

dominated by commercial and residential areas, with few large green facilities. Due to 306 

the limited space, urban greenspaces mainly consist of scattered street plants like street 307 

trees and flower beds, which can be more easily perceived by pedestrians 34. NDVI 308 



measures greenspace from the top down, and it does not reflect street plants. This results 309 

in an overall lower vegetation density in the inner city, but a slightly higher level of 310 

visible greenspace. The trend of GCR was consistent with NDVI, but its value in the 311 

inner-city was far lower. This may be due to the inherent flaws in land cover data, as 312 

land cover measurement only allows for a single land use per pixel. Despite the 313 

relatively high resolution of the land cover data, there may still be multiple land uses 314 

within one pixel, and small greenspace would be overlooked. Urban greenspace is 315 

known to be heterogeneous and highly fragmented, characterized by a relatively small 316 

number of large green spaces and amounts of dispersed small patches of vegetation 35,36. 317 

Medium-resolution data cannot detect most of these small patches, resulting in a 318 

significant underestimation of green cover. Additionally, land cover data has been 319 

proven to underestimate tree canopies, especially in developed areas 37. 320 

To summarize, NDVI and GCR measure the quantity of vegetation, with NDVI 321 

emphasizing the vegetation density and GCR revealing the size of green land. Notably, 322 

when using land cover data with lower resolution to measure GCR, the level of 323 

greenspace could be underestimated, posing limitations in the study. On the other hand, 324 

SVG measures the greenspace exposure at eye level and has no significant correlation 325 

with the actual amount of vegetation. The three indicators capture different aspects of 326 

greenspace, and the optimal measurement depends on the research topic. Empirical 327 

research is needed to explore the relationship between three greenspace indicators and 328 

CVDs incidence. 329 

4.2 Relationships between greenspace and CVDs 330 

We observed protective associations of SVG and NDVI with CVDs incidence, 331 

while GCR did not show such effect. With further adjustments of social and natural 332 

environmental covariates, the protective effect and significance of SVG weakened, 333 

whereas the effect of NDVI remained almost unchanged and highly significant. This 334 

finding underscored the significance of appropriately addressing covariates in studies 335 

of greenspace and health, and inconsistencies in confounders may explain differences 336 



in previous studies 38. In the fully adjusted model, NDVI was crucial for the reduction 337 

of CVDs incidence, SVG was marginally significantly associated with the decrease of 338 

CVDs incidence, while GCR showed no significant association. 339 

Our study focused on the contemporaneous association between greenspace and 340 

CVD hospitalization rates. While chronic exposure to greenspace likely confers 341 

cumulative health benefits, our approach aimed to capture the immediate or short-term 342 

effects of the environment on acute health outcomes. This is particularly relevant given 343 

that hospitalization rates reflect acute events that are plausibly influenced by current 344 

environmental conditions. Similar approaches have been adopted in prior studies, 345 

providing precedent for using contemporaneous data to assess health impacts 11,39. In 346 

our study, the effect of NDVI is more substantial than SVG, indicating that the actual 347 

quantity of vegetation may have a more pronounced impact than the visual presence of 348 

greenness in reducing CVDs incidence. Our findings lined up with previous studies that 349 

found associations between greenspace and reduced CVDs incidence. Most studies 350 

using NDVI as an exposure metric have found a significant association between 351 

greenspace and CVDs incidence 40–42, which is consistent with our findings. Few 352 

researchers used SVG to investigate the relationship between greenspace and CVDs 353 

incidence 11,39, all of which confirmed a significant protective effect of SVG on CVDs, 354 

supporting our findings. However, one research claimed that SVG had a greater 355 

beneficial effect on CVDs than objective measures of vegetative cover at the individual 356 

level, which conflicted with our results 39. Our population-level study showed a weaker 357 

impact of SVG on CVDs incidence compared to NDVI, and it may lead to statistical 358 

bias from individual studies due to discrepancies in study units and scales 43,44. The 359 

green cover rate has been widely used in studies of greenspace and CVDs, but there is 360 

still wide variation within these studies. Most ecological studies, whether using 30m, 361 

10m, or 2m resolution land cover data, have not found a statistically significant 362 

association between GCR and CVDs 42,45,46. However, most individual-level studies 363 

have found an association between GCR and reduced risk of CVDs 47,48. The lack of 364 



correlation between GCR and CVDs may be attributed to the underestimation of 365 

greenspace and the ambiguity of the amount of vegetation. The differences caused by 366 

research units and scales are also worth further investigation. In addition, given that our 367 

study area experiences relatively stable greenspace throughout the year, the findings 368 

may not fully apply to regions with greater seasonal variability. Future studies should 369 

explore these effects in diverse climatic contexts. 370 

4.3 Possible mechanisms 371 

Different greenspace indicators may influence health through various pathways, 372 

which contributed to part of the variations in their effects on CVDs. NDVI and GCR 373 

reflect the greenspace that individuals are more automatically exposed to when 374 

spending time around home. Mechanistically, they provide myriad ecosystem services 375 

49, such as regulating climate, alleviating urban heat island effect, improving air quality, 376 

conserving biodiversity, etc. And these mechanisms can be very effective at the 377 

population level. In urban environments, greenspace coverage also provides shielding 378 

and buffering effects. It alleviates physiological and psychological burdens by reducing 379 

environmental noise, traffic pollution, and heat stress 50. In addition, the presence of 380 

greenspace around residences has been proven to have positive impacts on health 381 

through immune responses 6 and improved sleep 51. These combined effects may help 382 

reduce allostatic load 52 and avoid mechanisms that increase the risk of CVDs, including 383 

macrovascular damage, elevated blood pressure, changes in heart rate variability and 384 

cardiac output, chronic low-grade inflammation, fat accumulation and redistribution, 385 

poor glycemic control and disturbances in lipid metabolism 53. Greenspace coverage 386 

and vegetation levels are both useful indicators of the overall density of greenspace, but 387 

they fail to distinguish different forms and public availability and therefore have limited 388 

impact through promoting physical activities 54. 389 

SVG primarily reflects people’s subjective exposure to greenspace, and has been 390 

shown to effectively alleviate stress and protect mental health 33. Contact with nature is 391 

recognized as a basic human need, feelings in connection with nature contribute to 392 



higher well-being, and short-term exposure to greenness improves stress-related 393 

physiological indicators such as blood pressure and heart rate 55. Stress reduction theory 394 

explains this mechanism. Greener surroundings would foster physiological recovery, 395 

manifested by reduced muscle tension, skin conductance, and lower pulse rate and 396 

blood pressure. Meanwhile, it evokes an emotional response that increases positive 397 

feelings and decreases negative thoughts 56. An exploratory study in Scotland 398 

examining salivary cortisol secretion patterns as a biomarker of stress levels found a 399 

significant relationship between visiting or viewing greenspace and stress relief 57. 400 

Furthermore, street greenspace is widely believed to be associated with promoting 401 

health-related physical activities, such as exercise 58 and exposure to sunlight 59. Several 402 

studies suggested that streets are the most popular places for walking, cycling, and other 403 

leisure sports activities 60, which have been proven to increase endorphin levels and 404 

inhibit activation of the hypothalamic-pituitary-adrenal axis, thereby promoting 405 

physical and mental health 61. Overall, mechanisms of greenspace visibility are more 406 

effective for mental health outcomes, but in terms of physical health, the mechanism of 407 

greenspace quantity may play a more important role. This may also explain our findings 408 

to some extent. 409 

4.4 Stratified analysis 410 

When the analyses were stratified by sex, we observed no differences in the 411 

association between greenspace and CVDs incidence, but we did find significant 412 

disparities across age groups. Our sex-stratified analyses showed that SVG and NDVI 413 

significantly reduced CVDs incidence both in male and female cases, with minimal 414 

difference in the effects. This finding aligns with some cross-sectional studies 8,48, and 415 

a study from Sweden also showed no difference in greenspace use between men and 416 

women 51. However, there are studies suggesting that the protective effect is statistically 417 

significant only for men, but not for women 7,46. Some researchers believe that this 418 

gender difference may be related to safety issues 62. For example, studies from North 419 

America pointed out that areas with high tree density may be related to a higher risk of 420 



crime 63, and that women have less access to urban greenspace than men 16. China 421 

maintains a relatively high level of public safety and mitigates such concerns, 422 

suggesting no gender disparities. 423 

Our age-stratified analyses showed that NDVI had a significant reducing effect on 424 

CVDs incidence for all ages, with the greatest impact on the 0-15 age group, and the 425 

least on the elderly over 65 years. Additionally, although SVG showed significant 426 

negative associations with CVDs incidence in 0-15 and 15-65 age groups, there was no 427 

evidence to support such associations in the elderly over 65, which is in line with 428 

existing studies 8,39. One of the main pathways through which street greenness improves 429 

health outcomes is by promoting physical activity, and the influence of individual 430 

characteristics on physical activity levels is greater than that of built environments 16. 431 

Older people have lower activity levels than young people and therefore benefit less 432 

from street greenness. In addition, human basal metabolic levels generally decrease 433 

with age, especially after the age of 60 64, making the elderly less likely to obtain 434 

physiological benefits from greenspace around their homes, such as microbes that 435 

benefit the immune system. 436 

4.5 Strengths and limitations 437 

Strengths of our study include a comprehensive comparison of greenspace 438 

indicators measured from the ground, over-head perspective, and land use assessments, 439 

enabling us to gain an in-depth understanding of multiple aspects of greenspace. Also, 440 

our study presented a comparative analysis of the relationships across populations with 441 

different demographic characteristics, allowing for a more precise evaluation of the 442 

impact of greenspace on CVDs outcomes. In addition, the large CVDs sample with 443 

accurate addresses allowed for zip code level measurement of environmental factors, 444 

thereby improving the accuracy of exposure measurement. Finally, spatial effects play 445 

a crucial role in environmental health studies, as the location of greenspaces and their 446 

proximity to individuals can significantly impact health outcomes. Traditional 447 

statistical models assume independence of observations, an assumption that is often 448 



violated when dealing with spatial data. Our study accounted for spatial effects and 449 

provided more accurate and reliable results. 450 

Despite these contributions, several limitations should be noted. This study did not 451 

account for greenspace accessibility indicators, such as Euclidean distance and network 452 

distance to parks. Secondly, spatial analyses rely on spatial scales and units, which may 453 

lead to imperfect definitions of the environment. Furthermore, we only measured the 454 

greenspace around homes without taking human mobility into account, which may lead 455 

to a bias in actual exposure. As a regional study, our findings are meaningful at the 456 

population level, but cannot be transferred to individuals. The residual confounding by 457 

socioeconomic status (SES) may also be a potential limitation. While we adjusted for 458 

GDP as a proxy indicator of economic conditions, it may still result in incomplete 459 

adjustment for individual SES factors. Future research should prioritize the collection 460 

and inclusion of individual- or neighborhood-level SES data to better disentangle the 461 

relationship between greenspace and CVDs risk. More comprehensive suite of 462 

greenspace indicators should also be considered, including greenspace accessibility, for 463 

comparison. Future work should also incorporate longitudinal hospitalization data and 464 

long-term-health revisit data to better understand the temporal dynamics of greenspace-465 

health associations. 466 

5 Conclusion 467 

This study contributes to the quantitative relationship between cardiovascular 468 

diseases (CVDs) and urban greenspace exposure. We found that higher levels of NDVI 469 

and SVG were associated with reduced CVDs incidence, but no such association was 470 

found in GCR. The protective effect of NDVI was stronger than that of SVG. This 471 

finding highlighted the importance of the mere greenspace presence in the living 472 

environment. In urban greenspace planning, priority should be given to increasing 473 

vegetation density in proximity to residents, rather than focusing only on large 474 

greenspace facilities away from residential areas. The impacts varied by age, but not by 475 

sex. The youngest demographic derives the most substantial benefit from greenspace. 476 



This suggests that early exposure to greenspace may have enduring health advantages, 477 

underscoring the importance of integrating greenery into settings frequented by youth 478 

such as schools. Also, tailored strategies, such as the development of more accessible 479 

and safer green areas that cater to the physical capabilities of the older population, 480 

should be devised. 481 
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