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Abstract

Subtractive manufacturing is undergoing a transformative shift towards sustainability and zero-defect manufacturing. This

shift is driving the need for more efficient machining strategies such as dynamic milling. The real-time implementation of

dynamic milling toolpaths, composed of circular and cycloidal curve patterns, is challenging due to the kinematic constraints

in computer numerically controlled machine tools. Resulting from a rigorous analytical analysis of kinematics, the limitations

of current approaches to finite impulse response (FIR) interpolation of circular arc (G02/G03) motion are addressed. A novel

hybrid FIR interpolation method is presented which modifies the interpolation style depending on the fundamental geometry

of commanded circular motion. The method globally satisfies kinematic constraints and tool centre point position tolerances

during circular motion and allows consideration of machine dynamics (i.e., resonant frequencies) within the interpolation

strategy. The proposed method outperformed current state-of-the-art methods during benchmarking tests which included a

high-performance machine tool and two commercial controllers. Reductions of up to 38% in manufacturing cycle times were

demonstrated when interpolating high-speed trochoidal toolpaths with the proposed method.

Keywords Motion control · Circular interpolation · FIR filtering · Vibration suppression · Trochoidal milling

1 Introduction

Subtractive manufacturing, and in particular high-speed

machining (HSM), is undergoing a paradigm shift, with a

focus on sustainability and zero-defect manufacturing. With

this conceptual shift, machining toolpaths are becoming more

complex in nature with an increased industrial uptake in using

dynamic milling strategies such as trochoidal milling [1],

in which circular and elliptical toolpath patterns are being
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used over traditional rectilinear motion. The dynamic tool-

paths offer a range of advantages such as increasing material

removal rates [2] and extending tool life [3].

These modern toolpath geometries lead to challenges in

numerical controller (NC) interpolation, which is the genera-

tion of smooth position reference signals for the machine tool

control system. To generate these signals, computer-aided

manufacturing (CAM) software first outputs the complex

toolpaths in G-code (ISO-6983) either as highly discretised

point-to-point linear G01 commands or circular G02/G03

commands [4] followed by interpolation by the NC kernels

(or interpolators). The interpolators compute these two types

of commands very differently, and the resulting interpolation

and its effect on machine tool response when using G02/G03

commands vs. G01 commands to program tool motion are

not widely understood in academia or industry.

Trochoidal toolpath patterns are often generated in the

CAM stage as quasi-trochoids with a linear stepover, rather

than a cycloid curve [5]. Quasi-trochoidal curves can simply

be approximated as a series of circles that are connected by

a linear motion with a fixed stepover distance, as illustrated

in Fig. 1. Whilst these approaches help design trochoidal
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Fig. 1 Quasi-trochoidal toolpath consisting of circular segments connected with a linear stepover, with corresponding NC code in HEIDENHAIN

code format

toolpath patterns in the CAD/CAM stage, there is little con-

sideration of the implementation of these toolpaths, thus

ignoring the effects of NC interpolation on the accuracy of

the machine tool motion along the trochoidal path.

CNC interpolation is a mature research field with two

main approaches. The first is the traditional spline-based

[6] and parametric curve [7] approach. These methods fit

piecewise polynomials to the discrete cutter locations (CL)

commanded in the part program (G-code) to create the

smooth tool centre point (TCP) position signals. The most

common are B-splines [8, 9] and NURBS [10–12], and solv-

ing these is computationally expensive—especially for large

part programs [13]. The second, more recently addressed

method is the filtering approach to linear interpolation using

finite impulse response (FIR) filters [14, 15]. The filtering

approach overcomes the computational burden of spline-

based methods and is easily real-time implementable, due

to FIR interpolation requiring a single step to generate the

toolpath [14]—unlike spline-based and parametric curve

methods, meaning that both the TCP position and feedrate

signals are generated simultaneously [15]. Numerical con-

troller manufacturers are now shifting to and adopting FIR

technology [16, 17].

Another advantage of FIR filters is the capability to

explicit control the frequency spectrum of the generated

signals. Previous interpolation methods relied on general

jerk-limited acceleration profiles to mitigate unwanted vibra-

tions [6], whereas utilising FIR filters allows direct tuning

of the frequency spectra of interpolated toolpaths [14],

thus avoiding ill-effects of structural vibrations on the part

such as increased surface roughness leading to part non-

conformance.

Toolpath trajectory generation can be broken down into

two main smoothing types: local and global corner smooth-

ing, with the former being applied when CL points are

sufficiently distanced from one another such that the first

does not impact the second kinematically [14, 15, 18]. Global

smoothing, on the other hand, is applied in the opposite situa-

tion wherein one tool motion command does directly impact

another kinematically, with cornering error arising due to the

overlapping of prior and posterior motion commands. The

discretisation of circular toolpaths into small-segmented G01

commands warrants the use of global smoothing approaches.

Such discretisations occur in the CAM stage during the

generation of trochoidal toolpaths. With global smoothing,

lookahead functions are often required to allow the NC inter-

polator to consider upcoming toolpath segments and adjust

the feedrate to meet TCP tolerance. Multiple methods exist

for such lookahead, including spline curve-based methods

[19] and sliding mode control-inspired methods [20], with

the latter allowing the incorporation of dynamic constraints

within the toolpath smoothing stage.

Only a few seminal papers have addressed the global

smoothing of G01 commands using FIR interpolation, with

results showing that FIR interpolation of short-segment

motion warrants a reduction in feedrate to control interpo-

lation error during the global corner [21, 22]. The research

by Tajima and Sencer constrained interpolation error only at

the corners between linear segments and not along globally

smoothed G01 paths, and thus cannot be applied to circular

toolpaths discretised as G01 commands which require con-

straining of both path deviations and cornering error. Instead

of discretising trochoidal paths into short linear segments,

one can utilise longer-segment G02 arc paths and counteract

the ill-effects of FIR interpolated short-segment motion.

Tajima et al. addressed FIR filter-based interpolation of

G01 and G02/G03 commands [14] and developed a novel

FIR interpolation method that considered TCP position and

tool orientation tolerances whilst satisfying machine tool

kinematic constraints. A key finding of this research is the

frequency-dependent effects of filtering circular toolpath tra-

jectories. As the FIR filter acts as a low-pass filter, the
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sinusoidal signals (i.e. the velocity profiles of the axis feed

drives during circular paths) undergo both phase shift and

attenuation, with the attenuation of the axial velocity pro-

files introducing interpolation error when moving through

the circular motion. To circumvent this issue, the authors

proposed a feedrate override factor α that reduces the com-

manded G02/G03 feedrate F to ensure that user-defined

TCP position tolerance constraints are satisfied. Similarly,

feedrate modulation using blending pulses has been used

to control the contour error (or blending error) of G01 to

G01 transitions in local smoothing [15], and therefore, such

an approach is clearly viable for accurate interpolation of

circular motion, however reducing feedrate increases the

cycle time. The trade-off between toolpath accuracy and

speed has been heavily researched and has formal interna-

tional standards governing the standardisation of accuracy

and interpolation of both linear and circular motion (see

ISO 10791-6:2014 [23] and ISO 230-4:2022 [24]). Otsuki

et al. proposed a two-dimensional method for evaluating the

speed-accuracy trade-off in linear and rotary-axis systems

[25], demonstrating the necessity for toolpath smoothing

(AAI/ABI) and feedrate reduction in circular paths to meet

tolerance requirements.

To avoid the necessity of reducing commanded feedrate

during circular motion, Huang et al. [26] applied FIR filtering

to circular toolpaths in a parametric space, named as paramet-

ric acceleration/deceleration for interpolation (PADI). The

proposed algorithm first mapped circular motion onto a rota-

tional coordinate frame, rather than performing interpolation

in the Cartesian frame (referred to in their paper as accel-

eration/deceleration after interpolation (ADAI)). Applying

FIR filters in a parametric mapping of the original toolpath

completely removes the steady-state error introduced by the

low-pass characteristics of the FIR filter [14]. The results

of [26] showed that the proposed PADI algorithm resulted

in cycle time reductions compared with the Cartesian axial-

level FIR filtering method introduced by Tajima et al. [14],

along with zero contour error. However, the optimal selection

of the smoothing method based on the toolpath geometry was

not wholly discussed, and there was no consideration of the

frequency-domain effects of the resultant toolpath motion,

opening up the possibility for excitation of machine resonant

modes.

Ishizaki and Shamoto proposed a method of radius scaling

to mitigate the error induced through FIR interpolation of cir-

cular arcs [27], in which the authors analysed the magnitude

and phase changes caused by smoothing of circle motions of

different angular frequencies. This method was successful in

removing the error induced by the FIR filter; however, there

was no consideration of kinematic constraints (acceleration

and jerk) through the application of this method. Li et al. [7]

proposed a method of FIR-filtered circular arc motions in the

Cartesian coordinate system. Whilst their proposed methods

are successful in allowing error-controlled blending of con-

secutive linear and arc segments, there still exists the need

for a means of analytically defining and constraining axial

and tangential acceleration and jerk during circular motions.

Traditionally, quasi-trochoidal toolpaths have been gener-

ated using discretised motion for both the linear and circular

sections of the toolpath [28]. In the research by Rauch et al.,

the circular trochoidal path was discretised into 0.1 mm

segments. Whilst this is clearly feasible for real-time imple-

mentation, the effects of global FIR interpolation of such

short-segment toolpaths may lead to exceeding error toler-

ances [22]. More recently, research has been conducted in

applying polynomial curves to generated trochoidal toolpaths

[29], which allow the generation of both 3-axis and 5-axis

circular trochoidal toolpaths through highly discretised lin-

ear G01 motion. For non-circular trochoidal paths, the use of

NURBS curves has proven to be successful [30]; however,

this requires the incorporation of nonlinear optimisation tech-

niques during smoothing of the toolpath and thus may not

be suitable for real-time implementation. This method also

discretised the trochoidal motion into short segments before

performing interpolation and smoothing.

In summary, there is a clear gap in research literature

investigating the efficacy of utilising G02/G03 commands

for the generation of trochoidal toolpaths. Overcoming this,

this paper presents a detailed analysis of smoothed G02/G03-

interpolated trochoidal motion, specifically tackling the

issues surrounding kinematics-constrained generation of cir-

cular toolpath trajectories.

The authors present the following contributions: (1) a

complete derivation of FIR-smoothed circular motion with

filtering being applied in the Cartesian axial directions,

(2) a novel kinematics-constrained zero interpolation error

path-level FIR interpolation method that considers machine

dynamics, and (3) a hybrid axial/path-level FIR method for

time-optimised kinematics-constrained G02/G03 interpola-

tion.

The proposed hybrid method uses only a single FIR filter

to generate smooth error-controlled circular motion thereby

simplifying the method for real-time on-the-fly interpola-

tion. The frequency content of the signal can be adaptively

controlled throughout the whole toolpath, and the method

does not require feedrate reduction thereby demonstrating a

reduction in cycle times compared to previous methods.

The paper is presented as follows: first, the authors present

a brief introduction to FIR filtering, followed by addressing

the shortcomings in both methods of FIR interpolation at the

Cartesian axial level. An analysis of path-level FIR filtering is

then performed, in which low pass FIR filtering is applied in
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the feed direction, discussing the benefits of such an approach

in eliminating interpolation error.

The Cartesian axial-level and path-level FIR interpolation

methods are then combined to form a hybrid FIR interpola-

tion method that modifies the interpolation style depending

on the fundamental geometric limits of the motion. Finally,

the proposed method is then benchmarked against a high-

performance machine tool with a commercial controller and

validated through experimental testing on a 5-axis machine

tool.

2 Circular interpolation within axis drive
limits

This section will introduce the FIR interpolation of circular

motion and address the kinematic constraints during circular

motion. First, a short refresher of linear interpolation of G01

motion commands is presented, before deriving the analyt-

ical forms for ADAI FIR filter-based smoothing of circular

motion in the Cartesian coordinate system.

2.1 Real-time interpolation using FIR low pass
filtering

Previous research introduced methods of linear interpolation

using FIR filtering [14, 15, 18]. Therefore, only a short précis

of FIR filtering-based linear interpolation is included here for

completeness.

The transfer function of a first-order FIR filter is defined

in the Laplace domain as follows:

Mi (s) =
1

Ti

1 − e−sTi

s
, i = 1 . . . N (1)

where s is a complex number, and Ti is the time constant of

the i th filter. The area under the curve is maintained at unity

due to the filter gain being set to 1/Ti , and therefore, no area

scaling occurs when convolving the filter with a signal. In

the frequency domain, the FIR filter Mi ( jω) is represented

by the following:

Mi ( jω) =
1

Ti

1 − e− jωTi

jω
, (2)

and the time domain representation is given by the following:

mi (t) = L
−1 {Mi (s)} =

u(t) − u (t − Ti )

Ti

(3)

u =
{

1, t ≥ 0

0, t < 0
(4)

where mi (t) the impulse response of the FIR filter and L is

the Laplace operator.

Convolution between a velocity pulse v(t) and mi (t) (in

either the time or frequency domain) will increase the order

of the convolved signal (as shown in Fig. 2) and results in a

smoother interpolated signal,

v′(t) = v(t) ∗ mi (t), (5)

where v′(t) represents the interpolated velocity signal. Fur-

ther convolution with FIR filters increases the order of the

signal and is used to generate higher-order interpolated

motion control trajectories for NC operations. The next sec-

tion will show the interpolation method applied to G01

commands.

2.2 Linear interpolation of point-to-point motion

The start and end positions of a linear G01 command in 3

axes can be represented by Ps and Pe, respectively, with

P =
[

Px , Py, Pz

]T
being the TCP positions in Cartesian

coordinates. The tool displacement L is calculated from the

Euclidean norm of the vector between the two commanded

positions, L = ‖Pe − Ps‖2. The velocity pulses of each axis
(

vx , vy, vz

)

are calculated by multiplying the feed pulse v(t)

Fig. 2 Signal smoothing via FIR filtering
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by the unit velocity vector u = (Pe − Ps)/‖Pe − Ps‖2:

dP(t)

dt
= Ṗ(t) = v(t)u =

⎡

⎣

vx (t)

vy(t)

vz(t)

⎤

⎦ , (6)

where Ṗ(t) represents the time derivative of the linear dis-

placement. Convolving the impulse response of the FIR filter

with the axis velocity pulses (vx , vy , vz) generates interpo-

lated axis velocity profiles:

dP
′(t)

dt
= Ṗ

′(t) =

⎡

⎣

vx
′(t)

vy
′(t)

vz
′(t)

⎤

⎦ = Ṗ(t) ∗ mi (t), (7)

where (v′
x ,v′

y ,v′
z) with the prime notation represent the filtered

(and thereby smoothed) axis velocity commands. Integrating

the filtered axis velocity commands yields the interpolated

position commands:

P
′(t) =

⎡

⎣

sx
′(t)

sy
′(t)

sz
′(t)

⎤

⎦ =
∫ t

0

⎡

⎣

vx
′(τ )

vy
′(τ )

vz
′(τ )

⎤

⎦ dτ + Ps . (8)

where si
′(t) represents the smoothed axial displacement sig-

nal of the i th axis, and Ps represents the initial starting point

of the motion. The kinematic profiles (velocity, acceleration,

and jerk) can be derived analytically by evaluating the convo-

lution integral between the velocity pulse and the rectangular

impulse response of the FIR filter. The maximum accelera-

tion Amax and jerk Jmax are derived from their analytical

forms. In the case of using 2 identical FIR filters for smooth-

ing, the FIR time constant T1 can be selected based on the

closed-form analytical smoothed motion profiles [15] to meet

the kinematic constraints as follows:

T1 = max

{

�F

Amax
,

√

�F

Jmax

}

. (9)

The following section will show selection of the linear motion

(G01) time constant does not universally hold across all types

of toolpaths and may lead to exceeding machine kinematic

limits and TCP position tolerances especially in circular and

trochoidal toolpaths.

2.3 Real-time interpolation of circular motion

In NC operations, circular motion can be commanded either

from multiple G01 commands forming a highly discretised

circle which is generated and defined entirely in the CAM

stage, or directly as G02/G03 commands. This section will

focus on FIR interpolation for G02/G03 commands.

During circular motion, the displacement L the tool travels

around the arc of the circular path is calculated as L = R�θ

where R is the arc radius defined by the G02/G03 command

and �θ = θe − θs is the angular displacement between start

and end commanded angular positions, θs and θe respectively.

The feed pulse F is broken down in Cartesian axial velocity

components vx (t) and vy(t), and the circular motion com-

mands are generated at the rotational (circular) frequency ωc,

where ωc = F/R as follows:

sx (t) = xc + R cos (ωct + θs) , (10a)

sy(t) = yc + R sin (ωct + θs) , (10b)

where si represents the displacement profile of the i th axis

of motion where i ∈ (x, y), and Pc = [xc, yc]T represent the

arc centre coordinates seen in Fig. 3.

An important distinction must be made here between lin-

ear and circular motion when interpolating using FIR filters.

The time constants Ti in linear motion are selected based

upon their analytically defined acceleration and jerk profiles

using Eq. 9. However, the kinematic behaviour of circular

motion is fundamentally different from linear motion. In

linear motion, only the tangential velocity, tangential accel-

eration, and/or tangential jerk are required to calculate the

time constant that satisfies the kinematic constraints. In cir-

cular motion, as will be shown in the following section, both

tangential and normal, and thereby centripetal kinematics,

must be taken into consideration.

2.4 Kinematics of circular interpolation with FIR
filtering in Cartesian axes

This section will analytically evaluate smoothing of G02/G03

commands where each Cartesian axis is individually filtered

Fig. 3 Smoothed G03 circular motion, with non-zero start angle
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and address the TCP position error and kinematic constraints.

The current state of the art in FIR interpolation focuses on

smoothing velocity pulses through convolution of axial feed

pulses with two to three cascading FIR filters [18]. A min-

imum of two FIR filters is required to allow the generation

of jerk-limited acceleration profiles (JLAP) in the smooth-

ing of linear G01 motions, which leads to velocity signals of

C2 parametric continuity. However, in circular motion, the

derivatives of motion (displacement, velocity, acceleration,

jerk, snap, and so forth) are continuous and thus have C∞

continuity, and as such, the requirement of utilising at mini-

mum two FIR filters is negated. Therefore, in this proposed

method, a single FIR filter (1FIR) will be used for deriving

motion profiles (Fig. 4).

To begin, the unfiltered axial displacement profiles (i.e.

the commanded toolpath) can be expressed as

sx (t) = R cos θ(t), (11a)

sy(t) = R sin θ(t). (11b)

Taking the derivative of the displacement profiles with

respect to time leads to the axial velocity profiles (as shown

by the dotted lines in Fig. 5b):

vx (t) = −ωc R sin θ(t), (12a)

vy(t) = ωc R cos θ(t), (12b)

where ωc = θ̇ (t) = F/R is the constant angular frequency

of the circle (circular frequency) that is dependent on com-

manded feedrate F and radius R of the G02/G03 command.

This is equivalent to decomposing the feed pulse v(t) into

axial components prior to filtering. To aid in simplifying the

analysis, one can represent the angle θ(t) as a function of the

circular frequency ωc:

θ(t) =
∫ t

ωc dt = ωct + θs, (13)

where θs = θ(t) at t = 0, defined as the initial angle at the

beginning of the circular motion thereby allowing represen-

tation of the axial velocity profiles in Eq. 12a as

vx (t) = −ωc R sin (ωct + θs) , (14a)

vy(t) = ωc R cos (ωct + θs) . (14b)

To obtain the smoothed Cartesian axial velocity profiles,

Eqs. 14a and 14b are each convolved with the single FIR

filter, vi
′(t) = vi (t) ∗ m1F I R(t) where i ∈ (x, y), result-

ing in the smoothed velocity profiles vx
′(t) and vy

′(t) as

defined in Eqs. 15 and 16, respectively. Equations 15 and 16

are important. From these equations, the smoothed axis dis-

placement profiles can be derived along with the acceleration

and jerk profiles. Integrating Eqs. (15) and (16) and adding

the initial θs-dependent conditions results in the smoothed

axis displacement profiles sx
′(t) and sy

′(t), which can be

found at Eqs. A1 and A2, respectively. The remainder of the

derivation will focus on the x-axis profiles. The reader may

wish to verify that the same relationships hold when filtering

is applied on the Cartesian y-axis kinematic profiles, noting

that the derivation is universally applicable on any planar

Fig. 4 Cartesian-FIR

interpolation of single G03

command
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circular motion in a three-axis system, with the modification

of the initial angle θs .

vx
′(t) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

R
T1

cos (ωct + θs) − R
T1

cos (θs) 0 ≤ t < T1,

2R
T1

sin
(

ωcT1
2

)

cos (ωct + φ) T1 ≤ t < Tv,

R

T1
cos (ωcTv + θs) −

R

T1
cos (ωc(t − T1) + θs) Tv ≤ t < Tv + T1,

0 Tv + T1 ≤ t,

(15)

vy
′(t) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

R
T1

sin (ωct + θs) − R
T1

sin (θs) 0 ≤ t < T1,

2R
T1

sin
(

ωcT1
2

)

sin (ωct + φ) T1 ≤ t < Tv,

R

T1
sin (ωcTv + θs) −

R

T1
sin (ωc(t − T1) + θs) Tv ≤ t < Tv + T1,

0 Tv + T1 ≤ t,

(16)

where φ = θs + atan2
(

sin (ωcT1) , 1 − cos (ωcT1)
)

.

It must be observed that, whilst the unfiltered x-axis and

y-axis displacement profiles take the form cos( f (t)) and

sin( f (t)), respectively, the smoothed profiles contain time-

varying sinusoidal terms of form t sin( f (t)), which adds

complexity to analysing and constraining TCP error due to

the functions not being periodic.

Differentiating Eqs. (15) and (16) permits the maximum

axial acceleration to be calculated which includes the addi-

tional centripetal terms. In particular, the analysis highlights

the toolpath design parameters that lead to breaching of the

machine tool kinematic limits. The axial acceleration pro-

file, Ax (t), can be seen in Eq. 18. Subsequent differentiation

of the axial acceleration profile Eq. (18) leads to the inter-

polated jerk profile Jx (t) of Eq. 19. It must be noted that,

depending on the value of ωcT1 and initial condition θs , the

maximum acceleration and jerk for each axis may fall in

either the first (0 ≤ t < T1, ), second (T1 ≤ t < Tv), or

third (Tv ≤ t < Tv + T1) piecewise profile. Therefore, the

derivation of maximum jerk and acceleration during circular

motion must also be performed in a piecewise manner. Tak-

ing the maximum of each piecewise function and expressing

ωc as F/R, the maximum instantaneous axial acceleration

and jerk can be expressed as follows:

Ax,y,max = max

{
F

T1
,

2F

T1
sin

(
ωcT1

2

)}

, (17a)

Jx,y,max = max

{
F2

T1 R
,

2F2

T1 R
sin

(
ωcT1

2

)}

. (17b)

In the case that
∣
∣ sin(ωcT1/2)

∣
∣ > 1/2, axial acceleration

and jerk will reach a maximum during the steady-state

period of circular motion, in which t ∈ [T1, Tv), whereas

if
∣
∣ sin(ωcT1/2)

∣
∣ < 1/2, the maximum acceleration and jerk

will occur in the filter acceleration/deceleration period.

Ax
′(t)=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

−ωc R
T1

sin (ωct + θs) 0≤ t <T1,

− 2ωc R
T1

sin
(

ωcT1
2

)

sin (ωct + φ) T1 ≤ t <Tv,

ωc R
T1

sin (ωc(t − T1) + θs) Tv ≤ t <Tv + T1,

0 Tv + T1 ≤ t,

(18)

Jx
′(t)=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

−ωc
2 R

T1
cos (ωct + θs) 0 ≤ t < T1,

− 2ωc
2 R

T1
sin
(

ωcT1
2

)

cos (ωct + φ) T1 ≤ t < Tv,

ωc
2 R

T1
cos (ωc(t − T1) + θs) Tv ≤ t < Tv + T1,

0 Tv + T1 ≤ t,

(19)

To summarise, this section demonstrated that choosing

the FIR filter time constant T1 based on FIR interpolation of

linear G01 commands (i.e., solely considering acceleration

between 0 ≤ t < T1) may breach acceleration limits during

the steady-state period of circular motion. Hence, designing

T1 using the analytical method for G01 interpolation (as in

Eq. 9) does not universally satisfy the kinematic constraints
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across all toolpath conditions. The next section addresses

this and proposes a method to select T1 which satisfies all

kinematic constraints.

2.4.1 FIR filter parameter selection with respect to drive

limits

It has been demonstrated (see Eq. 17) that maximum axial and

tangential acceleration is a function of commanded feedrate

F and the circular radius R. Maximum acceleration can either

occur in the transient (filter acceleration/deceleration) period

or in steady-state circular motion, dependent on the value

of sin (ωcT1/2). Therefore, to ensure maximum acceleration

is within constraints in both the transient and steady-state

period, the FIR filter time constant T1 must be constrained

for both conditions,

F

T1
︸︷︷︸

transient

≤ Amax ∩
2F

T1
sin

(
ωcT1

2

)

︸ ︷︷ ︸

steady-state

≤ Amax. (20)

This constraint is nonlinearly dependent on T1. Employing

a Taylor series expansion of sin(ωcT1/2) (up to the cubic

term), substituting ωc = F/R, and rearranging for T1, the

constraint on T1 due to acceleration limits (i.e., T1,acc) can

be expressed as

T1,Acc ≥ max

{

F

Amax
,

2
√

6R

F2

√

F2 − Amax R

}

. (21)

It must be noted that the second constraint only has a real

solution if F2/R ≥ Amax, i.e., if the centripetal acceleration

does not exceed the acceleration limits. If Amax > F2/R,

then all positive T1 values hold, resulting in the following

decision of T1 for acceleration,

T1,Acc ≥

⎧

⎨

⎩

max
{

F
Amax

, α

}

if Amax < F2

R
,

F
Amax

otherwise.

(22)

where α = 2
√

6R
F2

√

F2 − Amax R. Similarly, linearising

Eq. 17 using Taylor series expansion leads to the following

jerk-limited (T1, jerk) constraint for choosing the FIR time

constant,

T1,Jerk ≥

⎧

⎨

⎩

max
{

F2

Jmax R
, β

}

if Jmax < F3

R2 ,

F2

Jmax R
otherwise,

(23)

where β = 2
√

6R
F2

√

(F3 − Jmax R2)/F . The T1 selection is

therefore conditional on whether maximum allowable jerk

Jmax is within the centripetal jerk F3/R2. It must be noted

that the Taylor series approximations used are all approxi-

mations of the function sin (ωcT1/2) and serve as suitable

approximations when ωcT1 < 2.

Thus far, the analysis has addressed the kinematic con-

straints. The following section will propose a method to

control the TCP position error.

2.4.2 Interpolation error control

This section will analyse Cartesian-FIR-filtered circular

motion in terms of resultant TCP position error, and it can

be defined as the Euclidean distance between the smoothed

circular profile and the commanded profile [14]. As the entire

ideal toolpath motion is a circle with radius R and centroid

(xc, yc), the ideal tangential TCP motion can be defined as

the magnitude of the axial motion profiles [14], and hence,

the TCP error can be defined as

εT C P (t) = R −
√

sx
′(t)2 + sy

′(t)2, (24)

where sx
′(t) and sy

′(t) are the smoothed time-varying axial

displacement profiles described in Eqs. A1 and A2. Substi-

tuting the profiles during the steady-state period, where error

is maximum, leads to

εmax = R −
2R

ωcT1
sin

(
ωcT1

2

)

. (25)

Using the Taylor series expansion of sin(ωcT1/2) up to the

cubic term allows the approximation of maximum error as

εmax ≈
F2T1

2

24R
. (26)

This maximum error εmax reached during the steady-state

period must be within the user-defined TCP position error

tolerance εT ol ,

F2T1
2

24R
≤ εT ol . (27)

Using Eq. 27, the FIR filter time constant T1 can be tuned

to attain the desired TCP tolerance εT ol . Using the Taylor

series expansion of sin(ωcT1/2) up to the cubic term and

rearranging Eq. 27 for T1 results in

T1 ≤
2
√

6

F

√

εT ol R. (28)

By tuning T1 in Eq. 28, one guarantees that the interpolated

profile will not exceed user-defined TCP position tolerances.

123



The International Journal of Advanced Manufacturing Technology

The final piece of the puzzle is to address the structural

modes of the machine tool. Therefore, in addition to the

acceleration, jerk, and TCP position tolerance constraints,

the frequency content of generated trajectories must also be

taken into consideration to ensure no excitement of struc-

tural dynamic modes occurs. The FIR filter can be tuned to

dampen the resonant frequencies of the motion system by

selection of T1 [14] through

T1 =
2π

ωr

≥
1

fr
, (29)

where ωr is the frequency of the first structural dynamic mode

of the machine tool in rad/s, and fr is the frequency in hertz.

At this value of T1, maximum attenuation of the signal occurs;

however, setting this condition as a lower bound for the FIR

filter time constant allows avoidance of exciting dynamic

modes, albeit not total attenuation at the resonant frequency

fr . Therefore, the conditions that determine the feasibility

of the toolpath generation can be derived through evaluating

the overall inequality

max

{
1

fr

, T1,Acc, T1,Jerk

}

≤ T1 ≤
2
√

6

F

√

εT ol R
︸ ︷︷ ︸

TCP tolerance

, (30)

where T1,Acc and T1,Jerk are chosen from Eqs. 22 and 23,

respectively.

If inequality Eq. 30 does not hold, then Cartesian axial-

level FIR interpolation cannot be applied for generating

error-constrained circular motion, and one must either resort

to changing the toolpath in the CAM stage, or utilising the

path-level FIR interpolation method introduced in the next

section. Based on inequality Eq. 30, one can also observe

that setting the FIR time constant based on solely the lin-

ear motion design criteria, as in [14] is not sufficient for

ensuring that the resultant circular motion is both error-

constrained and acceleration/jerk-constrained. In the case

that the inequality does not hold, the manufacturing engi-

neer must redesign the toolpath through either altering the

feedrate F or increasing the G02/G03 command circle radius

R in the CAM stage.

It should be noted that there is also an upper bound on

the precision of generated toolpaths when utilising Cartesian

axial-level FIR interpolation. Based on the inequality Eq. 30,

one can derive a limit εL I M on TCP tolerance that is still fea-

sible through the Cartesian axial-level FIR filtering method,

εL I M =
F2T1,max

2

24R
, (31)

where T1,max = max
{

1
fr

, T1,Acc, T1,Jerk

}

. For example,

with a modest feedrate of 3000 mm/min, a circle radius

of 10 mm, a resonant frequency of 10 Hz, and maximum

acceleration and jerk of 2 ms−2 and 10 ms−3, respectively,

the minimum achievable TCP tolerance is calculated as 104.2

μm.

2.4.3 Illustrative example

Figure 5 shows the results of Cartesian axial-level FIR filter-

ing of circular motion where radius R = 4.5 mm, F = 3000

mm/min, εT ol = 500 μm and Amax = 0.5 ms−2. Selecting

T1 based on Eq. 30 ensures the TCP position tolerance and

acceleration constraints are met as shown in Fig. 5 a, c and

d respectively.

Figure 5a shows the non-zero steady-state interpolation

error that arises due to applying FIR filtering in the Cartesian

frame. This is further evidenced by the difference between

the pre-filtered and filtered velocity profiles in Fig. 5b, which

shows the amplitude attenuation and the phase shift induced

through FIR filtering. The nonlinearity of the piecewise

acceleration profile can be observed in Fig. 5c, which shows

the difference in peak acceleration in the transient filter period

(t = 0 to 0.15 s) and the steady-state circular motion. Paral-

lels can be observed between the tangential and centripetal

acceleration and the axial components of acceleration, show-

ing that the fluctuations in the axial components are due to

changes in both tangential and centripetal acceleration during

the transient filter period.

This section has addressed the shortcomings in Cartesian

axial-level FIR filtering of circular motions. However, to cir-

cumvent the frequency-domain attenuation one may instead,

as will be proposed in the following section, apply path-level

filtering on the tangential toolpath motion by prior transfor-

mation of the toolpath into the angular domain.

3 Kinematics of circular interpolation
with FIR filtering in the feed direction

As discussed in Section 2.4.2, performing circular inter-

polation in the Cartesian coordinate system results in a

steady-state error (see Fig. 5d) that fluctuates around the cir-

cle arc, warranting either a reduction in feedrate or increase in

FIR filter time constant—both of which increase total cycle

time. However, transforming the problem from the Carte-

sian coordinate system into the rotational motion frame and

applying FIR interpolation in the feed direction removes
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Fig. 5 Cartesian axial-level FIR interpolated motion

the filtering-induced error, thereby eliminating the need to

reduce feedrate during circular motion.

This section introduces a parametric mapping of circular

interpolation that formulates the trajectory generation prob-

lem as a function of angular displacement and velocity along

the circular arc G02/G03 command, which will from herein

be referred to as path-level FIR. The analyses presented

within this section will alternate between Cartesian and angu-

lar coordinate systems. The mappings between Cartesian

axial displacements sx (t) and sy(t), and angular displace-

ment θ(t), and between tangential velocity v(t) and angular

velocity ω(t) are as follows:

sx (t) = xc + R cos (ω(t) t) , (32a)

sy(t) = yc + R sin (ω(t) t) , (32b)

ω(t) = θ̇ (t) =
v(t)

R
. (32c)

In steady state, the angular velocity ω(t) is equal to the tan-

gential velocity (i.e., commanded feedrate F) divided by the

circle radius, ωc = F/R. FIR filter-based smoothing can then

be performed on the angular velocity pulse ω(t) through con-

volution with the single FIR filter profile m1F I R(t) as in

Eq. 4,

ω′(t) = ω(t) ∗ m1F I R(t), (33)

where ω(t) is the angular velocity pulse, defined as

ω(t) =
{

ωc 0 ≤ t < Tv,

0 Tv ≤ t .
(34)
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Evaluating the convolution integral Eq. 33 results in the

smoothed angular velocity profile ω′(t),

ω′(t) =

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

ωc

T1
t 0 ≤ t < T1,

ωc T1 ≤ t < Tv,

−ωc

T1
τ(t) Tv ≤ t < Tv + T1,

0 Tv + T1 ≤ t,

(35)

where τ(t) = t − (Tv + T1).

As seen in Fig. 6, the angular velocity pulse increases in

duration by Td , where here Td = T1. Due to the FIR filter

having a unity area, the total area under the curve (being the

angular displacement �θ ) remains unchanged, with the dis-

placement in the full circular rotation being �θ = 2π in the

clockwise direction for a complete circular G02 motion. The

smoothed angular displacement θ ′(t) is piecewise defined

by integrating the smoothed angular velocity profile ω′(t) of

Eq. 35,

θ ′(t) =
∫ t

ω′(t) dt

=

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

ωc

2T1
t2 0 ≤ t < T1,

ωct − ωcT1
2

T1 ≤ t < Tv,

− ωc

2T1
τ(t)2 + ωcTv Tv ≤ t < Tv + T1,

ωcTv Tv + T1 ≤ t .

(36)

State-of-the-art approaches to FIR filter-based toolpath smo-

othing would, at this point, require an additional FIR filter to

result in a C2-continuous velocity profile to allow the con-

straining of higher derivatives of motion (acceleration and

jerk) in line with machine tool kinematic limits. Instead, at

this point, the remainder of the analysis will be presented in

Cartesian form, thereby utilising the sinusoidal motion pro-

files of the xy-axes Eq. 10 thus providing the C∞ continuity

required for constraining higher derivatives of motion.

To obtain smoothed Cartesian axial displacement profiles

sx
′(t) and sy

′(t), the smoothed angular displacement profile

θ ′(t) can then be substituted into the Cartesian axial profiles

sx (t) and sy(t) as in Eq. 32,

sx
′(t) = xc + R cos

(

θ ′(t) + θs

)

, (37a)

sy
′(t) = yc + R sin

(

θ ′(t) + θs

)

. (37b)

The smoothed angular displacement θ ′(t) is piecewise-

defined Eq. 36; therefore, it follows that the resulting

Cartesian axial motion profiles are piecewise-defined, as seen

in Eq. 38. Taking the time derivative of the smoothed x-axis

displacement profile results in the smoothed x-axis velocity,

seen in Eq. 39. To allow analysis and constraining of maxi-

mum axial acceleration and jerk, one can take the derivative

and second derivative of Eq. 39, which leads to the axial

acceleration profile Ax
′(t) of Eq. 40 and jerk profile Jx

′(t),
which can be seen in Eq. 41. The analytical axial acceleration

Eq. 40 and jerk profiles Eq. 41 will be used in the following

Fig. 6 Path-level FIR filtering for circular motion
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section to ensure the constraints are satisfied during G02/G03

circular motion.

sx
′(t) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

xc + R cos
(

ωc

2T1
t2 + θs

)

0 ≤ t < T1,

xc + R cos
(

ωct − ωcT1
2

+ θs

)

T1 ≤ t < Tv,

xc + R cos
(

− ωc

2T1
τ(t)2 − ωcTv + θs

)

Tv ≤ t < Tv + T1,

xc + R cos (ωcTv + θs) Tv + T1 ≤ t .

(38)

vx
′(t) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

−ωc R
T1

t sin
(

ωc

2T1
t2 + θs

)

0 ≤ t < T1,

−ωc R sin
(

ωct − ωcT1
2

+ θs

)

T1 ≤ t < Tv,

ωc R
T1

τ(t) sin
(

− ωc

2T1
τ(t)2 − ωcTv + θs

)

Tv ≤ t < Tv + T1,

0 Tv + T1 ≤ t .

(39)

Ax
′(t) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

−
ωc R

T1
sin
(

θ1
′(t) + θs

)

−
ωc

2 R

T1
2

t2 cos
(

θ1
′(t) + θs

)

0 ≤ t < T1,

−ωc
2 R cos

(

θ2
′(t) + θs

)

T1 ≤ t < Tv,

ωc R

T1
sin
(

θ3
′(t) + θs

)

−
ωc

2 R

T1
2

τ(t)2 cos
(

θ3
′(t) + θs

)

Tv ≤ t < Tv + T1,

0 Tv + T1 ≤ t,

(40)

Jx
′(t) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

−
3ωc

2 R

T1
2

t cos
(

θ1
′(t) + θs

)

+
ωc

3 R

T1
3

t3 sin
(

θ1
′(t) + θs

)

0 ≤ t < T1,

ωc
3 R sin

(

θ2
′(t) + θs

)

T1 ≤ t < Tv,

−
3ωc

2 R

T1
2

τ(t) cos
(

θ3
′(t) + θs

)

−
ωc

3 R

T1
3

τ(t)3 sin
(

θ3
′(t) + θs

)

Tv ≤ t < Tv + T1,

0 Tv + T1 ≤ t,

(41)

(42)

where θ1
′(t) =

ωc

2T1
t2, θ2

′(t) = ωct −
ωcT1

2
, and θ3

′(t) = −
ωc

2T1
τ(t)2 − ωcTv.

3.1 Path-level FIR generation of acceleration
and jerk-limited circular motion

CNC machine tool manufacturers set acceleration limits

based on the physical limits of the feed drives. Therefore,

generated toolpath motions must ensure that the resul-

tant motion is within each axis’ kinematic constraints. As

Eq. 43 shows, by constraining the resultant motion, one

automatically constrains axial motion, where the resultant

TCP acceleration Ar is defined as

Ar =
√

Ax
2 + Ay

2 =
√

At
2 + Ac

2, (43)

and is composed of both tangential acceleration At and cen-

tripetal acceleration Ac.

The acceleration profiles have local maxima/minima in

each of the piecewise functions. However, when considering
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axial kinematic limits, one must ensure that all local maxi-

ma/minima are within constraints, i.e., the global maximum

and minimum points must be within the axial acceleration

constraint

max
∣
∣Ai

′(t)
∣
∣ ≤ max

∣
∣Ar

′(t)
∣
∣ ≤ Amax, (44)

where i = x, y. To verify this, one must first derive the maxi-

mum acceleration in each piecewise function of the smoothed

Cartesian axial acceleration segments of Eq. 40. Substituting

the smoothed axial acceleration Eq. 40 and the equivalent

derived y-axis profile into Eq. 43 results in the following

piecewise resultant acceleration profile:

Ar
′(t) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

√

ωc
2 R2

(

T1
2+ωc

2t4
)

T1
4 0 ≤ t < T1,

ωc
2 R T1 ≤ t < Tv,

√

ωc
2 R2

(

T1
2+ωc

2τ(t)4
)

T1
4 Tv ≤ t < Tv + T1,

0 Tv + T1 ≤ t .

(45)

The resultant acceleration is continuously increasing in the

first segment as time progresses (due to the positive t4 term—

see Fig. 7c), and therefore, the maximum can be evaluated at

the upper boundary of the first function’s time interval t = T1.

Fig. 7 Path-level FIR interpolated motion
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The second resultant acceleration profile is the steady-state

circular motion portion, which has a magnitude independent

of the path-level FIR filter time constant T1 and can be seen

to be constant across the time interval T1 ≤ t < Tv .

The third piecewise resultant acceleration profile is a

mirror image of the first piecewise resultant acceleration

profile, mirrored about time t = (Tv + T1)/2, and thus

has the same absolute maximum value. Therefore, the max-

imum smoothed resultant acceleration can occur either in

the transient (filter acceleration/deceleration period) or the

steady-state circular motion. Upon evaluating the maximum

function, one can observe that the first term is always larger

than the second term (as both ωc > 0 and T1 > 0):

Ar
′
max = max

⎧

⎪
⎪
⎨

⎪
⎪
⎩

ωc R

T1

√

ωc
2T 2

1 + 1

︸ ︷︷ ︸

transient

, ωc
2 R

︸ ︷︷ ︸

steady-state

⎫

⎪
⎪
⎬

⎪
⎪
⎭

(46)

⇒ Ar
′
max =

ωc R

T1

√

ωc
2T 2

1 + 1. (47)

The resultant jerk Jr
′ is achieved in a similar manner, i.e.,

substituting the axial jerk Eq. 41 (and the equivalent y-axis

derived profile) into the following:

Jr =
√

Jx
2 + Jy

2 =
√

Jt
2 + Jc

2 (48)

which yields the following piecewise resultant jerk:

Jr
′(t)=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

√

ωc
4t2 R2

(

9T1
2+ωc

2t4
)

T1
6 0 ≤ t < T1,

ωc
3 R T1 ≤ t < Tv,

√

ωc
4 R2τ(t)2

(

9T1
2+ωc

2τ(t)4
)

T1
6 Tv ≤ t < Tv + T1,

0 Tv + T1 ≤ t .

(49)

From the smoothed resultant jerk profile Eq. 49, one can

observe that, like the resultant acceleration Eq. 45, the first

piecewise function is continuously increasing as time pro-

gresses (due to the positive t2 and t4 terms), and therefore,

the maximum can also be evaluated at the upper boundary

of the first function’s time interval t = T1. One can observe

that the maximum of the first piecewise function is always

larger than the second function, and therefore, the maximum

smoothed resultant jerk is as follows:

Jr
′
max = max

⎧

⎪
⎪
⎨

⎪
⎪
⎩

ωc
2 R

T1

√

ωc
2T 2

1 + 9

︸ ︷︷ ︸

transient

, ωc
3 R

︸ ︷︷ ︸

steady-state

⎫

⎪
⎪
⎬

⎪
⎪
⎭

(50)

⇒ Jr
′
max =

ωc
2 R

T1

√

ωc
2T 2

1 + 9. (51)

Equation 50 showcases that if the maximum jerk is con-

strained in the transient period such that Jr
′(t)max ≤ Jmax,

then the steady-state circular motion is automatically jerk-

constrained, and within kinematic limits.

3.2 Path-level FIR filter parameter selection with
respect to drive limits

Based on the analysis in the previous section, the FIR filter

time constant can now be calculated for the various constraint

conditions. From the maximum resultant acceleration Eq. 46

and jerk Eq. 50, one can choose the FIR filter time constant

T1 to ensure that circular motion during the filter accelera-

tion and deceleration periods is within kinematic constraints.

Starting with the resultant acceleration Eq. 46 and solving the

transient solution for T1 leads to the following:

T1,Acc ≥ F R

√

1

Amax
2 R2 − F4

. (52)

where the subscript Acc represents the T1 value for satisfying

acceleration constraints. This only has a valid solution when

F2/R < Amax. Solving Eq. 50 for T1 (i.e., T1 = T1,Jerk)

results in the following:

T1,Jerk ≥ 3F2 R

√

1

Jmax
2 R4 − F6

, (53)

which has a valid solution only if F3/R2 < Jmax. FIR filters

must also be tuned to satisfy frequency-domain constraints,

that is, the FIR filter frequency f1 = 1/T1 should be tuned to

attenuate any signals at the resonant frequency of the machine

fr , which can be achieved through ensuring that f1 is lower

than the machine’s first resonant mode fr :

f1 ≤ fr ⇒
1

fr
≤ T1. (54)

The overall time constant T1 can then be set to constrain

acceleration, jerk, and resonate modes through taking the

maximum of the acceleration, jerk, and resonant frequency

T1 criteria:

1

fr

≤ max
{

T1,Acc, T1,Jerk

}

≤ T1, (55)

resulting in the overall T1 selection criteria in Eq. 56. As a

guideline, CAM engineers should design toolpaths to ensure

that G02/G03 commands are achievable given a desired

machine’s kinematic limits—regardless of the interpolation
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method. Therefore, the following conditions for circular

motion should be satisfied in the design stage:

F2

R
≤ Amax ∩

F3

R2
≤ Jmax.

This condition also applies to quasi-trochoidal toolpaths pro-

grammed as G02/G03 commands.

3.3 Hybrid axial/path-level FIR interpolation

To summarise thus far, two novel methods for designing

FIR filters for interpolation of circular motion have been

presented. The two methods complement one another; the

Cartesian axial-level FIR method allows interpolation of

G02/G03 commands with centripetal acceleration/jerk larger

than the respective kinematic limits, but has a limit in terms

of achievable TCP error tolerance, whereas the path-level

FIR method induces zero TCP error, but can only be used

when centripetal acceleration and jerk are within permitted

limits. Therefore, one can utilise both methods dependent on

the circular command being interpolated, as depicted in the

flow chart in Fig. 8.

This hybrid approach allows the application of FIR inter-

polation to a wider range of circular toolpaths; in cases

where path-level FIR interpolation is infeasible (due to

centripetal acceleration and/or jerk exceeding kinematic lim-

its), the Cartesian axial-level FIR algorithm can be applied

(Appendix).
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(56)

In most cases, where both axial-level and path-level FIR

interpolation can be applied, one can calculate the shortest

time constant T1 = min{T1,axial , T1,path} and ensure faster

overall cycle time whilst keeping within kinematic and geo-

metric constraints.

The next section will experimentally validate the hybrid

axial/path-level FIR method and benchmark the performance

improvements with the proposed method against both the

state-of-the-art methods in FIR interpolation (as introduced

by [14]), as well as against high-performance 5-axis machin-

ing centres with integrated commercial-off-the-shelf CNC

interpolator units.

Fig. 8 Proposed hybrid axial/path-level FIR interpolation method for

G01 and G02/G03 commands

4 Experimental validation

This section will first benchmark the proposed hybrid Carte-

sian axial-level/path-level FIR filtering method against a

leading commercial controller and then validate the proposed

method through experimental trials. The proposed method

will be compared against the conventional FIR filtering meth-

ods introduced by Tajima et al. [14], which will be referred
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Table 1 TNC640 interpolator parameters for case study #1

Parameter Value

NC interpolator sample frequency 1000 Hz

Maximum axial acceleration 3.1 ms−2

Maximum axial jerk 157 ms−3

to as the “linear-FIR” method. The linear-FIR approach uses

two FIR filters for generating jerk-limited motion, with filter

time constant T1 selection based on Eq. 9. The key perfor-

mance indicators that will be benchmarked are the cycle time

and the satisfaction of constraints—TCP tolerance, acceler-

ation, and jerk limits.

4.1 Case study #1: G02/G03 Trochoidal Toolpath

The first case study benchmarks the proposed hybrid axial-

level/path-level FIR interpolation method. This study involved

a circular trochoidal motion toolpath with different feedrates,

radii, and TCP tolerances, as seen in Table 2. The proposed

axial/path-level FIR is compared against both the linear-FIR

from [14] as well as a commercially available NC interpo-

lator, being the Heidenhain TNC640 [31]. The interpolator

parameters in Table 1 have been retrieved from the TNC640

archive file and were used across all tests to provide a fair

comparison of the interpolator performance. Machine tool

operators may configure the CYCLE32 cycle definition [32]

to establish the TCP tolerance settings and enable high-speed

cutting (HSC) mode. The CYCLE32 command in this trial

has been configured for 100-μm tolerance and with HSC

mode enabled. The NC program header with the specified

interpolation parameters may be found at Listing 1.

The path was designed in continuous motion and utilised

numerical methods to calculate the optimal overlap time Tk

between G01 and G02/G03 motion commands to ensure

blended motion was error-constrained and limited in max-

imum acceleration and jerk. It must be noted that the overlap

time calculation in [14] does not hold in the presence of

jerk and acceleration constraints, for it has been proven that

acceleration and jerk during the transient circular motion are

not monotonically increasing/decreasing (see Eqs. 17, 46,

and 50), and thus, overlapping G01 and G02 commands may

lead to exceeding jerk constraints—despite satisfying TCP

tolerance requirements.

The resulting kinematics are presented in Fig. 9 a and b,

and the key performance indicators are compared in Table 2.

Across all experiments, the TNC640 and the proposed

hybrid axial/path-FIR algorithm met TCP tolerance con-

straints and did not exceed kinematic limits (as defined in

Table 1), whereas the linear-FIR algorithm exceeded jerk

limits in two of the experiments. This is as expected, for the

G02 interpolation strategy used in the linear-FIR algorithm

focuses on constraining TCP error, rather than constraining

maximum acceleration and jerk around the circular motion.

This is further evidenced in the fifth and seventh results,

which show that under stricter TCP tolerance constraints,

the linear-FIR algorithm has drastically worse performance,

resulting in a maximum of 258% greater cycle time com-

pared to the proposed axial/path-FIR in the 6000 mm/min,

Fig. 9 Case study #1 results

with a the circular trochoidal

path used, with radius R = 5

mm, feedrate F = 3000

mm/min, and TCP tolerance

εT ol = 100 μm, and b the

resulting feedrate after

interpolation for each

interpolator with c the resultant

TCP position error after

interpolation
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Table 2 Results for case study #1

TNC640 Linear-FIR Axial/path-FIR

# Feedrate

(mm/min)

Radius

(mm)

TCP Tolerance

(μm)

Limits

breached

Cycle time

(s)

Limits

breached

Cycle time

(s)

Limits

breached

Cycle time

(s)

1 3000 5 10 − 3.43 − 4.14 − 3.44

2 3000 5 100 − 3.43 Jmax 3.66 − 3.44

3 3000 10 10 − 6.77 Jmax 7.00 − 6.78

4 3000 10 100 − 6.77 − 7.00 − 6.78

5 6000 5 10 − 3.22 − 7.12 − 1.99

6 6000 5 100 − 1.94 − 2.90 − 1.99

7 6000 10 10 − 4.64 − 9.83 − 3.57

8 6000 10 100 − 3.68 − 3.98 − 3.57

5 mm, and 10 μm experiment. This is due to the linear-

FIR algorithm using a feedrate reduction factor to satisfy

TCP constraints. The proposed hybrid axial/path-level FIR

method outperformed the commercial controller and the

linear-FIR algorithm in six of the eight conducted experi-

ments and at worst caused a cycle time elongation of 0.29%.

The greatest reduction in cycle time through using the hybrid

axial/path-level FIR interpolator can be seen in experiment

#5, showing a cycle time reduction of 38.2% compared to

that of the TNC640 controller.

The results also show that the proposed hybrid axial/path-

FIR outperformed both the commercial and the baseline

linear-FIR interpolator in the higher feedrate trials, and most

notably in the high-feedrate, low-radius cases, being the tests

where feedrate was 6000 mm/min and circle radius was 5

mm. This test has the largest circular frequency (with circu-

lar frequency defined as ωc = F/R). The proposed hybrid

axial/path-level FIR method is therefore better suited for the

smoothing of high-speed, low-radius circular toolpaths, akin

to toolpaths used in dynamic milling.

In summary, this case study has evidenced the efficacy of

the proposed hybrid Cartesian axial/path-level FIR interpo-

lation algorithm for the interpolation of circular trochoidal

toolpaths, showing consistent improvements in performance

across experiments. The other notable finding from this

case study is the success of programming trochoidal tool-

paths using G02 circular arc motions, as all trial toolpaths

interpolated with both the industrial interpolator and the

FIR interpolation algorithms did not exceed defined TCP

tolerance constraints. Furthermore, one can clearly see in

Fig. 9b that the linear and axial/path-FIR methods have a

very large reduction in feedrate during the transition between

linear and circular motions, especially when compared to the

TNC640 performance. This is due to the lack of a NC inter-

polator lookahead function within the proposed algorithm,

akin to methods seen in [20, 33]. Should such methods be

incorporated in future work, then one may observe further

reductions in cycle time for smoothed circular toolpaths.

4.2 Case study #2: G01 vs. G02/G03 trochoidal
toolpath

The second case study validates the proposed hybrid axial/

path-level FIR method against two commercial NC inter-

polators: the Siemens 840D controller, and the Heidenhain

TNC640. This case study also compared the programming

of circular trochoidal motion using G01 commands vs.

G02/G03 circular arc motion (Fig. 10).

The 840D experimental trials were conducted on a Hermle

C52 5-axis machining centre [34] with a Siemens SINU-

MERIK 840D SL controller [35]. Machine tool operators

have limited control over the interpolation strategy used

within the NC kernel, but can call a CYCLE832 command

[36] to prioritise machining speed over accuracy, and vice

versa. The CYCLE832 command in this trial has been con-

figured for maximum speed and may be found at Listing 2.

The TNC640 trials were performed on a Virtual NC using the

Heidenhain TNC640 programming station with tolerances

configured through the CYCLE32 special cycle (with HSC

mode set to 1). Further details on the CYCLE32 configura-

tion may be found at Listing 3. The Hermle C52 was fitted

with a SINUMERIK Edge device for high-speed monitoring

Fig. 10 Hermle C52 machining centre [34] with 840D SL controller

[35]
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Fig. 11 Trochoidal toolpath consisting of circular and linear motion

segments displayed a in CATIA and b in plan view of the truncated

path used for case study #2

to record the TCP position signals at 500 Hz, with an excerpt

of the machine specifications defined in Table 3.

The baseline toolpath is shown in Fig. 11. This trochoidal

toolpath was coded in linear motion form for the 840D tests

and in linear/circular output form for the TNC640, after

which the novel circular FIR interpolation method was vali-

dated on a linear/circular motion trochoidal toolpath.

The resulting kinematics from the highlighted section in

Fig. 11b are presented in Fig. 12 a and d, and the key perfor-

mance indicators are compared in Table 4.

The trends in the first case study are matched in the results

of case study 2. The proposed hybrid axial/path-level FIR

algorithm outperformed both the 840D and the TNC640

algorithm in the high circular frequency tests (6000 mm/min,

10 mm tests), showcasing at minimum a 5.54% reduction in

cycle time whilst ensuring interpolated toolpath motion was

constrained in both TCP error and acceleration and jerk.

The G01-interpolated trochoidal toolpath (performed

using the 840D interpolator) resulted in a breaching of TCP

tolerance, whilst the G01-G02/G03 toolpath interpolated

with the TNC640 exceeded jerk limits, but only in the high

Table 3 Interpolator parameters for case study #2

Controller Sampling

period (ms)

Max. axial

acceleration (ms−2)

Max. Axial jerk

(ms−3)

840D 2 3 145

TNC640 3 3 50

circular frequency tests. Utilising circular G02/G03 com-

mands with the proposed axial/path-level FIR algorithms

resulted in faster cycle times across three out of four tri-

als, with the assurance that the interpolated toolpaths were

constrained in both TCP error and kinematics. The proposed

hybrid axial/path-level FIR algorithm showed the greatest

performance improvement in experiment #3, with a cycle

time reduction of 11.5% against the 840D interpolated path,

and a reduction of 16.36% compared to the TNC640 nomi-

nal path. These results exemplify the implementation issues

of using short-segmented G01 motion for circular trochoidal

toolpaths.

4.3 Validation summary

The two case studies demonstrated that the proposed hybrid

Cartesian axial/path-level FIR algorithm generates faster and

more accurate circular toolpath motion, especially in the

presence of strict axial kinematic limits. Improvements in

performance are most notable when circular frequency is

high, i.e., when feedrate is high and circle radius is small,

which is preferential in generating high-speed trochoidal

milling toolpaths. These experiments also highlight the

implementation issues with programming trochoidal milling

using linear (G01) motion. To circumvent the issues caused

by the interpolation of highly discretised trochoidal motion,

manufacturing engineers should aim to program circular

trochoidal motion using circular arc (G02/G03) commands

where possible, if constraining both TCP tolerance and axial

jerk is a priority.

5 Conclusions

This paper makes important contributions to the field of

numerical control interpolation. The contributions can be

summarised as follows:

1. The limitations of FIR interpolation for generating circu-

lar toolpaths have been addressed analytically. A novel

method of globally satisfying kinematic constraints and

TCP position errors during G02/G03 circular motions is

presented.

2. The conditions in which FIR interpolation cannot be

utilised for Cartesian axial-level smoothing in the pres-

ence of kinematic and user-defined error tolerance con-

straints have been established. These have been overcome

by introducing a novel path-level FIR interpolation

method that smooths the toolpath in the feed direction

with zero interpolation error.

3. A hybrid Cartesian axial/path-level FIR interpolation

algorithm has been presented, which optimises the tool-

path interpolation strategy based on the fundamental

geometry of commanded circular motion.
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Table 4 Results for case study #2

840D TNC640 Hybrid FIR

# Feedrate

(mm/min)

Radius

(mm)

TCP tolerance

(μm)

Limits

breached

Cycle time

(s)

Limits

breached

Cycle time

(s)

Limits

breached

Cycle

time (s)

1 3000 10 10 εT ol 7.82 − 8.58 − 7.90

2 3000 10 100 εT ol 7.95 − 8.43 − 7.90

3 6000 10 50 εT ol , Jmax 4.62 Jmax 4.89 − 4.09

4 6000 10 100 εT ol , Jmax 4.33 Jmax 4.84 − 4.09

4. The proposed hybrid axial/path-level FIR algorithm was

successfully benchmarked against a commercial CNC

controller, showing improved performance during inter-

polation of a circular trochoidal toolpath composed of

G02 commands, with a maximum cycle time reduction

of 38.2%.

5. The hybrid axial/path-level FIR interpolation algorithm

was validated against a high-performance 5-axis machine

tool, demonstrating G02-programmed circular trochoidal

motion is superior to G01-coded trochoidal motion with

respect to TCP tolerance constraint satisfaction, with a

maximum cycle time reduction of 11.5%.

The analyses completed as part of this research focused on

circular and trochoidal motion where both the feedrate, circu-

lar frequency ωc = F/R, where the time constant remained

constant throughout the toolpath. Further work will expand

the analytical solutions to handle toolpaths with non-constant

filter parameters and to allow the embedding of the solutions

within mixed-feature toolpaths that consist of both linear

(G01) and circular (G02/G03) motions.

Appendix A: Cartesian axial-level FIR circular
motion analysis
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Appendix B: Path-level FIR interpolated
Cartesian axial motion profiles - y-axis
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Appendix C: Case study data

0 BEGIN PGM TROCHOID_R5_FR3000 MM

1 CYCL DEF 32.0 TOLERANCE

2 CYCL DEF 32.1 T0.1

3 CYCL DEF 32.2 HSC−MODE:1

4 M3

5 L X+0 Y+0 Z+0 F3000

6 CYCL DEF 9.0 DWELL TIME

7 CYCL DEF 9.1 DWELL2

... <MAIN PROGRAM>

Listing 1 TNC640 NC code header for case study #1

;O0001 Gcode_Circle_Trochoidal_Path

N1 G17 G40 G71 G94

N2 T="20MM ENDMILL"

N3 M6

N4 ORIWKS ORIC

N5 CYCLE800()

N6 G75 Z=1

N7 G0 G54 A0

N8 G0 C0

N9 G500

N10 TRAORI

CYCLE832(0.05,_ORI_ROUGH,1)

N11 G54 G64

N12 G1 X0. Y0. Z+200. A0. C0. F6000

N13 G4 F3.

... <MAIN PROGRAM>

Listing 2 840D NC code header for case study #2

0 BEGIN PGM TROCHOID_R10_FR6000 MM

1 CYCL DEF 32.0 TOLERANCE

2 CYCL DEF 32.1 T0.05

3 CYCL DEF 32.2 HSC−MODE:1

4 M3

5 L X+0 Y+0 Z+0 F6000

6 CYCL DEF 9.0 DWELL TIME

7 CYCL DEF 9.1 DWELL2

... <MAIN PROGRAM>

Listing 3 TNC640 NC code header for case study #2
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Fig. 12 Case study #2 results for trochoidal path with radius R = 10 mm, feedrate F = 6000 mm/min, and TCP tolerance εT ol = 50 μm
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