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Abstract

Misconceptions about programming concepts can block learners’

progress. Automated feedback for misconceptions is appealing be-

cause providing feedback while learners work may help them get

unstuck faster. However, a key challenge for automating miscon-

ception feedback is that the underlying cause of code patterns

suggestive of a misconception can vary greatly by learner, meaning

that different learners will have different feedback needs. Existing

approaches to automated feedback for task-independent miscon-

ceptions favour succinct messages that do not overload users with

excessive explanation. Although this approach may work well for

learners with relatively shallow misconceptions, it also leaves out

learners with deeper conceptual issues who arguably have greater

need for additional support. We conducted a qualitative study to

investigate how learners perceive misconception indicators and

how they make sense of feedback. We find that individual learners

can view the same issue very differently and face markedly different

challenges in making use of feedback. These findings can be used to

inform the design of automated feedback that accounts for learners’

varying knowledge and skills.

CCS Concepts

· Applied computing→ Education; · Human-centered com-

puting → User studies.
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1 Introduction

Feedback is critical for learning in any context [16]. Error messages

are an important source of feedback during programming, and

progress has been made to make them more useful to novices [4, 10,
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11]. However, compiler errors do not fully encapsulate the range

of errors that novices make. Style issues may stem from deeper

conceptual problems [9] and permissive languages like Python and

JavaScript bring their own challenges for novices [17]. Extending

IDE support for errors to include potential misconceptions may

help learners progress faster. A challenge for feedback in standard

IDEs is that the experience and skill level of a user is unknown.

In standard IDEs, error messages are written for experienced

programmers. Guidelines for the design of learner-friendly error

messages state that messages should be concise and free of jargon

to improve readability and reduce cognitive load [4]. Because it is

not possible to know the exact cause of an error from code alone

[9, 19], some argue that messaging should avoid trying to scaffold

users’ understanding so as not to overwhelm them [10].

Although we agree it is important not to overload learners with

excessive information, concise messaging may not help learners

with more significant misconceptions. Error messages fall under

Hattie and Timperley’s category of task feedback, also known as

corrective feedback [16]. Hattie and Timperley state that corrective

feedback is important but caution that it "is more powerful when it is

about faulty interpretations, not lack of information. If students lack

necessary knowledge, further instruction is more powerful than

feedback information" [16, p. 91]. This implies that a differentiated

approach to automated feedback may be useful, in which learners

with different needs can access different forms of feedback, such

as succinct guidance for learners with faulty interpretations and

further instruction in the case of deeper issues.

In this work, we focus on how learners interpret misconception

indicatorsÐcode patterns that may suggest an underlying concep-

tual issueÐand the challenges they encounter in making use of

misconception-focused feedback. Our goal is to map the design

space that differentiated misconception feedback will need to ad-

dress. We are guided by the following research questions:

RQ1 How do learners perceive misconception indicators?

RQ2 How do learners interpret indicator feedback?

To explore these questions, we asked learners to respond to code

samples containing misconception indicators with and without

the assistance of feedback. We were interested in understanding

variation among learners rather than commonalities. We found

that learners perceive the same indicators in different ways with

sometimes contradictory implications for feedback design. Learners

with strong conceptual knowledge were able to make use of brief

messages while those with more significant challenges benefitted

from extra guidance.

The contributions of this work are qualitative insights into the

variations in learner understanding of misconception indicators
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and feedback needs. Our findings will be of interest to designers of

automated feedback and educators of mixed-experience cohorts.

2 Related Work

De Ruvo et al. [9] describe statement-level code patterns that com-

pile but are typically avoided by more experienced programmers as

semantic indicators, which may point to shaky conceptual knowl-

edge. Our term misconception indicator includes these semantic

indicators but we use a broader term because we aim to provide

feedback on potential misconceptions that may also lead to errors.

Priorwork has documented and describedmisconceptions through

extensive inventories [6, 13, 24]. Chiodini et al. [7] maintain a web-

site with detailed misconception descriptions and suggestions for

how teachers can tackle these misconceptions with students. SIDE-

lib [12] is a library rather than an inventory but it provides detection

of a set of Python misconception indicators.

Inventories describe how a particular misconception can mani-

fest in code. However, we cannot know for sure that an indicator

represents a misunderstanding rather than some other issue [9].

Misconception indicators generally feature undesirable code pat-

terns so feedback is likely useful in any case, but learners with

different causes may need different forms of feedback [16]. There-

fore, we shift the focus from analysing the indicators themselves to

analysing learners’ views of those indicators to inform a nuanced

approach to feedback design. In contrast to prior work such as

Albrecht and Grabowski [1] and Bayman and Mayer [3], in which

mistakes are categorized by experts into fixed, exclusive categories

such as syntactic or conceptual, we look for themes in how learners

describe indicators in order to shape differentiated feedback.

Much of the prior work on automated feedback for misconcep-

tions requires knowledge of the learner’s task or an expert solution

(e.g. [15, 23]). These approaches can tackle strategic and logic is-

sues as well as programming language misconceptions but they are

constrained to specific tasks and are therefore out of scope for this

summary. One exception is Pedal [14], a Python library for auto

graders, including built-in feedback for misconception indicators

in the form of concise messages.

Prior work on the design of effective error messages is relevant

to the design of misconception indicator feedback [4, 10, 11]. Becker

et al. [4] reviewed the literature on compiler error messages and

the challenges they pose for learners, including terse and confusing

language, poor localization, and lack of guidance on how to resolve

the error. They developed 10 design guidelines such as increase

readability by using lay language and reduce cognitive load by pro-

viding just enough information to resolve the issue. Error messages

designed according to these guidelines have been shown to be more

effective than standard messages [10]. This prior work has evalu-

ated redesigned error messages by aggregating students’ views and

actions. We take a different approach and look for differences in

how individuals respond to the same feedback in order to better

understand their needs, preferences, and challenges.

Large Language Models (LLMs) such as ChatGPT and Codex

can generate contextualized feedback and provide explanations

for errors. The quality of LLM feedback has improved rapidly but

they are still prone to giving incorrect explanations and providing

direct solutions rather than guiding learners to develop their own

understanding. As such, researchers and educators remain wary

of recommending them for use without careful scaffolding [2, 8].

Additionally, learners may not know how to prompt an LLM effec-

tively [20] and can struggle to interpret its output [20, 22]. Some

interventions have avoided these drawbacks by scaffolding learners’

interactions with the models, for example by pre-prompting the

LLM to communicate in a particular manner [8, 18], or by providing

it with additional contextual information such as failed unit tests

[21]. We do not use LLMs in our feedback prototype because our

research goals demand more control over what the participants

interact with. However, we expect our findings may be useful to

those designing scaffolded AI tools for educational use.

3 Methods

We conducted semi-structured interviews with 15 participants from

our university in the United Kingdom. All activities were reviewed

and approved by our departmental ethics committee.

12 participants were Computer Science BSc students taking an

introductory programming module at the time of the interviews.

The module teaches programming fundamentals using Python and

assumes no prior experience. However, nine had studied computer

science in high school, two were self-taught, and only one had no

prior experience. Seven of the students identified as male, four as

female, and one did not specify. All of these participants reported

using standard IDEs, primarily VSCode and Pycharm.

Three participants were scientists learning Python to support

data analysis and other aspects of their work. These participants

were recruited to reflect the diversity of what it means to be a

learner programmerÐnot all learners are engaged in formal educa-

tion. All of the scientists had experience with other languages used

in scientific computing (R, Stata, and Praat) but described them-

selves as beginners with respect to Python and programming. Two

scientists identified as female and one as male. The IDs of scientist

participants have the suffix sci, all others are CS students. Two of

the scientists reported using standard IDEs and one did not specify.

During the interview, participants were asked to respond to

preselected code samples. We did not ask participants to write code

themselves because the occurrence of misconception indicators is

hard to predict. Samples were selected from a public dataset [23] of

Python code written by students in an introductory programming

course. This dataset was chosen because the code snapshots it

contains are brief (roughly 5 - 10 lines of code).

To select samples, we first chose a set of misconception indicators

detected by SIDE-lib [12] that were present in the dataset, covered a

range of concepts, and had varying impact on program output. The

indicators are described in Table 1. The selected code samples con-

tained at least one indicator, responded to a range of task prompts,

and represented a mix of correct and incorrect program output.

A web interface was created for the study1. The code sample

was displayed in a functional code editor. The description of the

programming task was shown above the editor. SIDE-lib[12] was

used to detect misconception indicators. For simplicity, we only

implemented feedback for indicators in Table 1. Feedback was gen-

erated at every keystroke, updating if edits introduced or removed

1https://supportive-ide.hosted.york.ac.uk/details/feedback-evaluation1.html
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Table 1: The misconception indicators. Names of misconceptions documented in [9, 13] have been changed to follow the

convention used in [7, 12]. The Theme column lists categorising themes (Table 2) in participants’ comments. Understanding #

shows the count of participants who appeared to understand an indicator pre- vs. post-feedback. N/A means no understanding.

Understanding #

Indicator Themes Pre Post N/A

CompareMultipleWithOr : Tests equality of multiple values in the form var == val1 or val2 [12] 1, 2, 3 2 8 0

ConditionalIsSequence: A sequence of if statements is the same as if-elif-else [7] 1, 4a 4 3 0

DeferredReturn: Believes code after a return statement will still execute [7] 1, 3 7 3 0

FunctionCallsNoParentheses: Parentheses omitted from a function call [12] 2, 3a 2 7 1

LocalVariablesAreGlobal: Attempts to access a local variable in global scope [13] 1 10 2 1

MapToBooleanWithIf : if-else must be used to map a boolean expression to a boolean value [7, 9] 1, 4a, 4c 0 8 1

ParamMustBeAssignedInFunction: Passed in value of a parameter is immediately overwritten [13] 1, 4b 5 1 0

TypeMustBeSpecified: A value with guaranteed type (e.g. a literal) is cast to the same type [9, 12] 1, 3, 3a, 4a 1 9 0

UnusedReturn: The value returned by a function is not saved or used [13] 1, 3a 8 4 1

indicators. The interviewer could toggle feedback on and off and

change the sample in the participant’s view via a separate webpage.

The Becker et al. [4] error message readability guidelines in-

formed the feedback design. The entry point to the feedback is a

highlight in the code, following the provide context guideline. Hov-

ering over the highlight opens a popover. The popover provides

the minimum amount of information required to address the issue

(reduce cognitive load). If more information is needed, clicking the

popover opens extended guidance below the editor. The extended

guidance begins with a short explanation, drawing on the user’s

own code (provide context) and showing examples. A longer instruc-

tional section walks through the underlying concept in more depth

to provide scaffolding for users that need it. Text is broken up with

runnable examples. We do not show solutions to the user’s prob-

lem directly but do suggest generic solutions via the interactive

examples. All text was written to use a positive tone and increase

readability by using lay language as much as possible.

Interviews were conducted on Zoom and lasted between 30 min-

utes and 1 hour depending on the participant’s pace. The interview

began with questions about experience and motivation to learn

programming. Next, we introduced the prototype. Samples were

presented one at a time in random order. The participant was asked

to review the code and identify anything they thought should be

changed. Each sample was initially presented without feedback. If

the participant did not find the indicator independently, feedback

was enabled and the participant was given time to interact with it

to find out how they used it and if they were able to fix the indicator

as a result. If the participant was still unable to fix the indicator, the

interviewer followed up to try to understand their thought process.

Participants were told to take as long as they wanted on each code

sample and were asked if they wished to continue after each sample

past 30 minutes. Nine code samples were available but we expected

that most would complete fewer.

3.1 Data Analysis

The interview data was analysed using Reflexive Thematic Analysis

(RTA) [5], a widely used qualitative method to identify themes in

data. We chose RTA over other methods because of its flexibility

in allowing deductive and inductive analysis. RTA is distinct from

other forms of thematic analysis in its acknowledgment of the

researcher’s perspective as an integral part of the analysis and

a resource rather than a source of bias. RTA does not use inter-

rater reliability or develop a code book, but instead requires the

researcher’s identity and perspective to be surfaced and reflected

upon in the context of the data throughout the analysis, which is

systematic and iterative. Reliability is gained through the cyclical

analysis process.

Neither of the authors have been involved in the delivery of the

module that most of our participants were recruited from but both

have substantial experience of teaching introductory programming.

The first author created the prototype and conducted the interviews.

Although RTA recommends that analysis is typically carried out by

one person [5], both authors were involved in the analysis. Given

the prototype’s role as a probe, we felt it important to include the

perspective of someone removed from its design (second author).

We followed the six steps of RTA outlined in [5]. The first author

familiarised herself with the data by reading the transcripts and

rewatching videos of participants’ interactions with the prototype.

The first author carried out two iterations of inductive and deductive

coding usingNVivo andMiro. These codeswere then discussedwith

the second author, who conducted a third iteration of coding after

familiarising himself with the data. The first author then undertook

iterative theme generation and development, followed by theme

refinement through the writing process, drawing together insights

from both researchers.

4 Results

The computer science students completed six samples on average

(std. dev. = 1.28). The scientists completed fewerÐone completed

two samples and the others completed three. Table 1 (Understanding

#) shows the number of participants who saw each indicator by

when it was apparent they understood it, including four cases where

unplanned indicators arose.

In the sections below,we discuss our themes by research question.

RTA is a "big Q" qualitative method and requires that themes are

not quantified [5]. To qualify as a theme in this analysis, relevant

codes were observed in multiple interviews.
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4.1 RQ1: Perception of Indicators

The themes and sub-themes developed in response to RQ1 are

shown in Table 2, themes 1-4.

4.1.1 Indicator categorisation. Participants were not prompted to

categorise indicators in terms of their nature or cause but their

explanations often suggested implicit categorisation, represented

by themes 1-3 in Table 2, which are drawn from the error categories

in [1], plus a fourth inductive theme, practice. Not all participants

categorised indicators, but among those that did, we observed diver-

gent perspectives for all but one indicator, (LocalVariablesAreGlobal,

which was consistently described in conceptual terms).

The largest divergence among individual participants was ob-

served for DeferredReturn. P05 reported a genuine misconception

after reading the feedback: łI didn’t actually know that it would exit

a function off the return.ž In contrast, P08 describes this indicator

as sloppiness: łif you were to encounter a mistake like this, and it

would probably just be a mistake, like a typo, or something.ž

Sloppiness is closely related to the conceptual and syntactic themes;

the primary difference being understanding. Conceptual and syn-

tactic errors happen when there is something you don’t know or

don’t understand whereas sloppiness occurs when you forget or

overlook something you do know. As demonstrated by the Deferre-

dReturn example, something that is clearly a typo to someone who

understands the underlying concept may be more significant to

someone who is not at the same level of understanding.

Sometimes participants went further than acknowledging an

oversight and spoke about how a concept could be known so well

it makes related errors almost invisible:

łI didn’t spot that because that’s one of those tiny

mistakes that I think are very difficult to actually spot,

simply because you either do them by habit or once

you don’t do it you don’t realize, because it’s such a

habit. You just wouldn’t think that you’d miss some-

thing like that.ž P05, FunctionCallsNoParentheses

The conceptual theme arose from participants’ descriptions of cer-

tain concepts as particularly challenging, as well as cases of actual

misconceptions, such as P05’s belief that code following a return

would still execute. The syntactic theme was most often observed

in comments about switching to Python from other languages. An

interesting finding was that two of the scientists described the syn-

tax of programming as harder than the semantics and logic. For

example, P10sci said, "Conceptually, a lot of it makes sense, you

know, for loops, if statements, that kind of thing...The thing I’m yet

to overcome is just getting used to the syntax."

The deductive categories drawn from Albrecht and Grabowski

[1] describe participants’ views of the cause of an issue. The practice

theme is better described as the relevance of an indicatorÐthe

reason given for correcting it. Although relevance is semantically

different from cause, participants’ comments suggested they viewed

it as a distinct categoryÐthings you should do rather than things

you must do. This theme arose from analysis of indicators which

don’t produce error messages and rarely cause incorrect output,

and are therefore perhaps less urgent than others.

ConditionalIsSequence was often described as a practice issue.

The sample code contained a sequence of if statements which were

not mutually exclusive. Although some participants described it

as a conceptual issue, the sub-theme optimization arose multiple

times. For example, P06 simply stated "efficiency" when asked why

she would change some ifs to elifs. P04 noted "you can optimize

the code with else if statements".

Another sub-theme of practice is code style. This sub-theme arose

in discussion of MapToBooleanWithIf. The sample code is correct

but contains an if-else that simply returns True/False, meaning

it can be replaced with a single statement returning the boolean

expression. None of the participants spotted this indicator on their

own but after reading the extended guidance, some brought up style.

For example, P11 rejected the idea of shortening the conditional: łI

like the structure, like seeing the indentation.ž In contrast, P09sci

had a genuine misconception, declaring łI’m learning a lot today!ž

after reading the guidance.

4.2 RQ2: Use of Feedback

Themes 5 and 6 in Table 2 were developed in response to RQ2.

4.2.1 Information needs. The information needs theme captures

participants’ comments about what they liked about the feedback

or what they would have preferred to have seen.

Some participants wanted to see an actionable solution first, with

any additional explanation laterÐthey wanted the feedback to help

them fix the code quickly and move on:

łI like the different colours where you have what

was missing...I think it makes like a more immediate,

almost action point...You know immediately what you

have to do to fix it.ž P12

In contrast, other participants thought feedback should hide the

solution at least at first. For example, P07 suggested, łI think get at

the problem first rather than solutions and then they can maybe

try it themselves again.ž

The varying needs of beginner vs. experienced users was often

brought up by participants with solid conceptual understanding of

an issue. In particular, participants noted that the extended feedback

might benefit those with conceptual issues but would be unneces-

sary for those with good understanding:

łThe examples aren’t really necessary, because I know

why the brackets are necessary but I think for some-

one who doesn’t know why those brackets would

need to be, these would be really good.ž P05, Func-

tionCallsNoParentheses

On the other hand, some participants felt that the extra guidance

could be useful for experienced users, particularly in the case of

sloppiness. The key difference between the two groups was that

experienced participants could handle (and preferred) much shorter

and more succinct explanations.

4.2.2 Feedback effect. For participants who missed an indicator

due to sloppiness, the feedback served as a simple reminder or con-

firmation of what they already knew. For these participants, the

brief explanation in the popover was often enough although some

did proceed to the extended feedback before showing that they

understood the issue.

Several participants commented that extended feedback pro-

vided learning opportunities for less experienced coders and others
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Table 2: Themes and sub-themes. The first three themes are adapted from Albrecht and Grabowski [1]. Themes 1-4 apply to

both RQs but primarily RQ1. Themes 5 and 6 apply to RQ2.

Theme Definition

1. Conceptual An indicator is attributed to a misunderstanding of a programming concept, independent of syntax.

2. Syntactic An indicator is attributed to incorrect knowledge of syntax. The underlying concept is understood.

3. Sloppiness An unintended oversight or typo. The underlying concept is understood and correct syntax is known.

a) Invisibility
A code detail that is such a habit it is easily overlooked when forgotten, such as

remembering to call a function or type parentheses. A reason given for sloppiness.

4. Practice Matters of coding practice rather than correctness or error-free code.

a) Optimization An indicator affects code efficiency or is described as a more general optimization.

b) Style An indicator is a matter of code style, which may be a formal requirement or personal preference.

5. Information needs What participants wanted from the feedback, or thought it should provide.

a) Solution first Understanding how to fix an issue is prioritised over understanding why.

b) Hide solution Explain the problem and hide the solution so the user can attempt to fix it on their own.

c) Beginner vs.

experienced

Users at different stages may benefit from different amounts and styles of information, with users who

understand a concept needing far less.

6. Feedback effect How the feedback helped participants recognise and understand an indicator.

a) Reminder The feedback is a reminder of something the participant already knows.

b) Learning The feedback helps to fill in small gaps in knowledge or provide motivation.

c) Partial understanding Participant understood aspects of the indicator but not enough to address it.

directly stated that they had learned from it. Some noted that it

addressed the challenge of trying to find external resources when

there was no error message:

łI wouldn’t know what to search up for, like what

I’ve done wrong...because, well, in the log, it wouldn’t

really, you know, say, there was an error here or any-

thing before... This would save me, probably like an

hour, if not more. ž P13, CompareMultipleWithOr

When extended feedback was needed, examples were often more

useful for learning than accompanying text. The interactive exam-

ples in the extended feedback was typically structured as a before

and after in order to demonstrate the effects of an issue, which

proved popular with participants who had genuine conceptual

issues. P09sci, who did not understand the TypeMustBeSpecified

indicator until after working through the interactive examples,

highlighted the value of seeing them alongside text explanation:

łIt’s nice to have this kind of explanation and then a

really clear comparison, as well, between what hap-

pens in the first example, when you don’t [type cast],

and then a visual comparison as well between the

code and the output of both examples.ž P09sci

There were four cases where the extended feedback helped par-

ticipants with genuine misconceptions reach only partial under-

standing. One of these participants was the true beginner among

the CS students, P14, who was unable to apply the generic example

solutions in the UnusedReturn feedback to the indicator in the code

sample. The other cases of partial understanding occurred with two

of the scientists. Both of these participants had extremely fragile or

missing knowledge of concepts used in the code samples, which

may be due to the very different way in which they learn and use

programming in comparison to the computer science students. For

example, P10sci reported learning concepts out of the typical or-

der, skipping certain fundamentals in order to solve an immediate

problem. He also noted that, "there are certain things that you do

so infrequently that it’s very easy to forget."

5 Discussion

The themes outlined above show considerable variation among

participants in terms of how they viewed individual misconception

indicators and what they wanted or needed from the feedback. In

this section, we discuss the takeaways from these findings for the

design of automated feedback for misconception indicators.

5.1 Misconception indicator feedback is useful

All participants were enthusiastic about the provision of IDE-based

feedback for misconception indicators, especially when the affected

code would not cause an error message. In most cases, participants

who did not spot an indicator did not hold an associated miscon-

ception but they were still appreciative of the reminder, typically

citing time saved or cleaner code.

We also note that two indicators (ConditionalIsSequence and

MapToBooleanWithIf ) proved controversial with some participants

who viewed them as practice issues and thought they should be

communicated differently. Other participants saw these indicators

as conceptual with one case of a genuine misconception which, in

our view, is good reason to provide feedback. Future work should

consider how the UX of a feedback system can prioritise and com-

municate differences between indicators.

5.2 Beware of dismissing mistakes as sloppiness

The category of sloppinesswas introduced byAlbrecht andGrabowski

[1] who describe it as a distinct category, separate from conceptual,

syntactic, and other mistakes. One of the main takeaways from
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this work is that sloppiness may be a progression from other cate-

goriesÐto be sloppy, a learner must have reached a certain level of

mastery of the concept or syntax. We saw a stark example of this in

discussion of the DeferredReturn indicator, where one participant

held a genuine misconception while others viewed it as a sloppy

mistake. As shown in Table 1, there were several other indicators

that some participants described as sloppiness while others saw

conceptual or syntactic issues.

Divergence in terms of how participants categorised indicators

or experienced genuine misconceptions adds further support for the

idea of differentiated feedback that enables those who have made

simple mistakes to quickly correct them and move on while at the

same time helps those with more significant conceptual issues to

fill in the gaps in their knowledge. This finding relates to Becker et

al.’s error message guidelines [4], specifically reduce cognitive load,

which our findings suggest looks different for participants with and

without conceptual issues.

5.3 Learners with solid conceptual knowledge
want short and sweet feedback

Feedback served as a reminder for those who did not have con-

ceptual issues relating to an indicator. These participants often

expressed a preference for succinct messaging that enabled them

to quickly understand the issue and find a fix. For these learners,

reduce cognitive load means keep messaging brief and actionable,

as we have seen in prior research [4, 11]. While many participants

in this group appreciated having the option to dig deeper into an

issue via the extended feedback and acknowledged that it was easy

to ignore if they didn’t need it, they also described it as being for

coders less experienced than themselves (beginner vs. experienced).

In our ongoing design work on differentiated feedback for miscon-

ception indicators, we will continue to refine the initial message

that users see (e.g. the popover in our prototype) to target users

who have simply overlooked something.

5.4 Learners with conceptual issues may benefit
from more explanation

The true measure of success for feedback on misconception indica-

tors is whether or not it supports learning for those with genuine

misconceptions. Where conceptual issues were evident, the brief

message in the popover was not enough. The instructional com-

ponent of the extended feedback was helpful for many, with some

participants explicitly stating they had learned something new.

The participants found the interactive examples particularly useful,

which aligns with the Becker et al. guidelines show examples and

provide scaffolding for users [4]. Our findings lend initial support

to the idea that learners with conceptual issues may need more

explanation, which was one of the initial motivations for this work.

Some participants were not able to reach sufficient levels of

understanding to act on an indicator based on the feedback. It

is notable that these participants were also arguably the weakest

coders: one participant who was only a few months in to learning

to code, and two of the scientists who had gaps in their knowledge

relating to the sample code. Our initial thinking about these cases

is that the learners simply did not have sufficient base knowledge

to make sense of the guidance as it was presented. While we may

be able to address some of their challenges through further design

iterations of the prototype, it is likely that more research focused

specifically on the needs of learners with knowledge gaps is needed

to develop a deeper understanding of how automated systems can

best support them. The scientists’ struggles also serve as a reminder

that learner programmers are not only found in computer science

courses.

5.5 Implications for automated feedback design

For pre-programmed tools such as our prototype, the primary impli-

cations and challenges are for the UX design. We suggest providing

the shortest, most direct, and actionable feedback first, then allow-

ing those who need it to dig deeper into the underlying concepts.

A significant UX challenge is how to present the deeper layers of

guidance in a way that invites engagement from those who need

it without overwhelming those who don’t. Our goal is to embed

differentiated feedback in a standard IDE, therefore one approach

may be to allow users to customise feedback presentation through

IDE settings. For example, users could have the option to turn off

extended guidance.

An interesting avenue for future work would be to explore if

LLM-driven feedback could provide differentiation, for example, by

learning a user’s experience level through dialogue. Users could

also be encouraged to treat their interactions with an LLM as a

discussion rather than a means to a quick solution.

5.6 Limitations

The main limitation of this work is that participants were respond-

ing to code samples rather than writing their own code, which

means that the indicators were presented in a somewhat artificial

manner and participants were sometimes faced with code that did

not resemble how they would solve the given task. A longitudinal

deployment is planned for the next iteration of the prototype in

order to capture what happens when indicators arise naturally and

to measure the effectiveness of misconception indicator feedback

for learning, which could not be captured in this study.

Although the design of the prototype used in this study was

informed by established error message guidelines, it was apparent

that refinements were needed in some places. Evaluation of the

prototype was not the main purpose of this work but participants

provided us with feedback on what would have made it more us-

able and accessible from a learning point of view, which will be

incorporated into future iterations of the prototype.

6 Conclusion

We have presented a qualitative study of how learners of varying

skill levels perceive task-independent misconception indicators and

automated feedback for these indicators. Our findings provide evi-

dence that it is useful to give feedback for these indicators but that

learners can have divergent views of what an indicator represents

and why it matters depending on their skill level and the context.

We also find that adding an instructive component to feedback may

be useful to those who have conceptual misunderstanding of an

indicator but further work is needed to explore how automated

feedback can best support these learners at the same time as those

with stronger conceptual knowledge.



How Do Learners With Varying Skills Perceive Misconception Indicators and Feedback? ITiCSE 2025, June 27-July 2, 2025, Nijmegen, Netherlands

References
[1] Ella Albrecht and Jens Grabowski. 2020. Sometimes It’s Just Sloppiness - Studying

Students’ Programming Errors and Misconceptions. In Proceedings of the 51st
ACM Technical Symposium on Computer Science Education. ACM, Portland OR
USA, 340ś345. https://doi.org/10.1145/3328778.3366862

[2] Imen Azaiz, Natalie Kiesler, and Sven Strickroth. 2024. Feedback-Generation for
Programming Exercises With GPT-4. In Proceedings of the 2024 on Innovation
and Technology in Computer Science Education V. 1. ACM, Milan Italy, 31ś37.
https://doi.org/10.1145/3649217.3653594

[3] Piraye Bayman and Richard E Mayer. 1988. Using Conceptual Models to Teach
BASIC Computer Programming. Journal of Educational Psychology 80, 3 (1988),
291ś298.

[4] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bouvier,
Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-Michael
Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error Messages Con-
sidered Unhelpful: The Landscape of Text-Based Programming Error Message
Research. In Proceedings of the Working Group Reports on Innovation and Tech-
nology in Computer Science Education. ACM, Aberdeen, Scotland, UK, 177ś210.
https://doi.org/10.1145/3344429.3372508

[5] Virginia Braun and Victoria Clarke. 2022. Thematic Analysis: A Practical Guide.
Sage, London.

[6] Ricardo Caceffo, Breno de França, Guilherme Gama, Raysa Benatti, Tales Apare-
cida, Tania Caldas, and Rodolfo Azevedo. 2017. An Antipattern Documentation
About Misconceptions Related To An Introductory Programming Course In C. Tech-
nical Report. Universidade Estadual De Campinas.

[7] Luca Chiodini, IgorMoreno Santos, Andrea Gallidabino, Anya Tafliovich, André L.
Santos, and Matthias Hauswirth. 2021. A Curated Inventory of Programming
Language Misconceptions. In Proceedings of the 26th ACM Conference on Inno-
vation and Technology in Computer Science Education V. 1. ACM, Virtual Event
Germany, 380ś386. https://doi.org/10.1145/3430665.3456343

[8] Veronica Cucuiat and Jane Waite. 2024. Feedback Literacy: Holistic Analysis of
Secondary Educators’ Views of LLM Explanations of Program Error Messages.
In Proceedings of the 2024 on Innovation and Technology in Computer Science
Education V. 1. ACM, Milan Italy, 192ś198. https://doi.org/10.1145/3649217.
3653595

[9] Giuseppe De Ruvo, Ewan Tempero, Andrew Luxton-Reilly, Gerard B. Rowe, and
Nasser Giacaman. 2018. Understanding Semantic Style by Analysing Student
Code. In Proceedings of the 20th Australasian Computing Education Conference.
ACM, Brisbane Queensland Australia, 73ś82. https://doi.org/10.1145/3160489.
3160500

[10] Paul Denny, James Prather, and Brett A. Becker. 2020. Error Message Readability
and Novice Debugging Performance. In Proceedings of the 2020 ACM Conference
on Innovation and Technology in Computer Science Education. ACM, Trondheim
Norway, 480ś486. https://doi.org/10.1145/3341525.3387384

[11] Paul Denny, James Prather, Brett A. Becker, Catherine Mooney, John Homer,
Zachary C Albrecht, and Garrett B. Powell. 2021. On Designing Programming
Error Messages for Novices: Readability and its Constituent Factors. In Proceed-
ings of the 2021 CHI Conference on Human Factors in Computing Systems. ACM,
Yokohama Japan, 1ś15. https://doi.org/10.1145/3411764.3445696

[12] Abigail Evans, Jieren Liu, Zihan Wang, and Mingming Zheng. 2023. SIDE-lib:
A Library for Detecting Symptoms of Python Programming Misconceptions. In
Proceedings of the 2023 Conference on Innovation and Technology in Computer
Science Education V. 1 (ITiCSE 2023). ACM Press, Turku, Finland. https://doi.org/
10.1145/3587102.3588838

[13] Guilherme Gama, Ricardo Caceffo, Renan Souza, Raysa Benatti, Tales Apare-
cida, Islene Garcia, and Rodolfo Azevedo. 2018. An Antipattern Documentation
About Misconceptions Related To An Introductory Programming Course In Python.
Technical Report. Universidade Estadual De Campinas. 106 pages.

[14] Luke Gusukuma, Austin Cory Bart, and Dennis Kafura. 2020. Pedal: An Infrastruc-
ture for Automated Feedback Systems. In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education. ACM, Portland OR USA, 1061ś1067.
https://doi.org/10.1145/3328778.3366913

[15] Luke Gusukuma, Austin Cory Bart, Dennis Kafura, and Jeremy Ernst. 2018.
Misconception-Driven Feedback: Results from an Experimental Study. In Proceed-
ings of the 2018 ACM Conference on International Computing Education Research.
ACM, Espoo Finland, 160ś168. https://doi.org/10.1145/3230977.3231002

[16] John Hattie and Helen Timperley. 2007. The Power of Feedback. Review
of Educational Research 77, 1 (March 2007), 81ś112. https://doi.org/10.3102/
003465430298487

[17] David Liu and Andrew Petersen. 2019. Static Analyses in Python Programming
Courses. In Proceedings of the 50th ACM Technical Symposium on Computer
Science Education. ACM, Minneapolis MN USA, 666ś671. https://doi.org/10.
1145/3287324.3287503

[18] Rongxin Liu, Carter Zenke, Charlie Liu, Andrew Holmes, Patrick Thornton, and
David J. Malan. 2024. Teaching CS50 with AI: Leveraging Generative Artificial
Intelligence in Computer Science Education. In Proceedings of the 55th ACM
Technical Symposium on Computer Science Education V. 1. ACM, Portland OR

USA, 750ś756. https://doi.org/10.1145/3626252.3630938
[19] Davin McCall and Michael Kölling. 2019. A New Look at Novice Programmer

Errors. ACM Transactions on Computing Education 19, 4 (Dec. 2019), 1ś30. https:
//doi.org/10.1145/3335814

[20] Sydney Nguyen, Hannah McLean Babe, Yangtian Zi, Arjun Guha, Carolyn Jane
Anderson, and Molly Q Feldman. 2024. How Beginning Programmers and Code
LLMs (Mis)read Each Other. In Proceedings of the CHI Conference on Human
Factors in Computing Systems. ACM, Honolulu HI USA, 1ś26. https://doi.org/10.
1145/3613904.3642706

[21] Tung Phung, Victor-Alexandru Pădurean, Anjali Singh, Christopher Brooks, José
Cambronero, Sumit Gulwani, Adish Singla, andGustavo Soares. 2024. Automating
Human Tutor-Style Programming Feedback: Leveraging GPT-4 Tutor Model for
Hint Generation and GPT-3.5 Student Model for Hint Validation. In Proceedings
of the 14th Learning Analytics and Knowledge Conference. ACM, Kyoto Japan,
12ś23. https://doi.org/10.1145/3636555.3636846

[22] James Prather, Brent N. Reeves, Paul Denny, Brett A. Becker, Juho Leinonen,
Andrew Luxton-Reilly, Garrett Powell, James Finnie-Ansley, and Eddie Antonio
Santos. 2024. łIt’s Weird That it Knows What I Wantž: Usability and Interactions
with Copilot for Novice Programmers. ACM Transactions on Computer-Human
Interaction 31, 1 (Feb. 2024), 1ś31. https://doi.org/10.1145/3617367

[23] Kelly Rivers, Erik Harpstead, and Ken Koedinger. 2016. Learning Curve Analysis
for Programming: Which Concepts do Students Struggle With?. In Proceedings of
the 2016 ACM Conference on International Computing Education Research. ACM,
Melbourne VIC Australia, 143ś151. https://doi.org/10.1145/2960310.2960333

[24] Renan Souza, Ricardo Caceffo, Pablo Frank-Bolton, and Rodolfo Azevedo. 2018. An
Antipattern Documentation About Possible Misconceptions Related To Introductory
Programming Courses (CS1) In Java. Technical Report. Universidade Estadual De
Campinas, Brazil.


	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Data Analysis

	4 Results
	4.1 RQ1: Perception of Indicators
	4.2 RQ2: Use of Feedback

	5 Discussion
	5.1 Misconception indicator feedback is useful
	5.2 Beware of dismissing mistakes as sloppiness
	5.3 Learners with solid conceptual knowledge want short and sweet feedback
	5.4 Learners with conceptual issues may benefit from more explanation
	5.5 Implications for automated feedback design
	5.6 Limitations

	6 Conclusion
	References

