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Abstract

Supervisory Control and Data Acquisition (SCADA) system collects massive operation and environment information which directly or

indirectly affects the output power in wind farms. Therefore, it becomes an imperious demand to analyze the underlying information from

SCADA data for improving the performance of short-term wind power prediction. In this paper, an effective deep learning framework for

short-term wind power forecasting based on SCADA data analysis is proposed. A data denoising scheme is designed based on wavelet

decomposition. In this method, all SCADA signals (except the wind power signal itself) are decomposed into low-frequency component A and

high-frequency component D respectively by the wavelet transform. Then, the maximum information coefficient (MIC) method is applied to

choose features that have strong correlation with wind power. Finally, all the selected features and wind power are defined as input vector that

are used to train long short-term memory networks. The simulation results based on real data extracted from a SCADA system installed in wind

farm indicate that the designed deep learning framework can significantly improve the accuracy of short-term wind power prediction.

Keywords: Deep learning, long short-term memory networks, maximum information coefficient, SCADA, short-term wind power prediction,

wavelet transform.

1. Introduction

The installed capacity of wind turbines and the grid connected capacity of wind power have increased year by year. Due to the

characteristics of fluctuation and uncertainty of wind, the power grid fluctuates when large-scale wind power is connected to the

grid, which may lead to safety accidents and affect the operation stability of the power grid (Pujari, Miriyala, Mittal, & Mitra,

2023). Short-term wind power forecasting is regard as a significant and effective technique for better carrying out power grid

dispatching and decision-making, stabilizing the power grid, and applying wind energy efficiently (Guan, Wang, Liu, Gao, Xu,

& Kan, 2024). Short-term wind power prediction with prediction horizons of less than 6 hours is usually considered by analyzing

the historical data related to a wind power (Safari, Chung, & Price, 2018). Data preprocessing (e.g., feature selection, denosing,

feature extraction) plays an important role in improving short-term wind power forecasting performance (Cheng, Zang, Xu, Wei,

& Sun, 2021, Du, 2019, Wang, Zhu, Cheng, Zhou, Zhang, Xu, & Liu., 2023).

Many wind power prediction methods have been developed recently, which can be roughly divided into two categories: 1)

physical methods, and 2) data-driven methods (Akhtar, Kirmani, Ahmad, & Ahmad, 2021). Physical methods, such as numerical

weather prediction, predict the meteorological change trend of a region by building the corresponding physical model, adopting

the information of topography environment and meteorological phenomena as the modeling data (Zjavka & Mišák, 2018). Ye et

al. (Ye, Zhao, Zeng,& Zhang, 2017) developed a physical model based on the spatial correlation for wind turbines of wind farm

and calculated the wind speed by solving the constructed differential equation. Finally, the wind power was estimated according

to a power curve model. Commonly, the physical methods generate the rough prediction and are applicative for medium and

long-term prediction (Miao, Li, Wang, & Li, 2021).

With the development of data acquisition equipment and the operation of wind farm, a wealth of wind power data have been

collected. Therefore, data-driven methods provide an effective alternative solution. The typical data-driven methods mainly

include traditional time series modelling methods, Kalman filtering method, and artificial intelligence methods. Time series

methods use statistical analysis to extract the development trend of time series with time and extrapolate the possible future

values (Yu, Ma, Ma, & Zhang, 2022). Typical time series methods include autoregressive (AR) model, AR moving average

(ARMA) model, and AR integrated moving average (ARIMA) model (Meng, Chen, Ou, Ding, Zhou, Fan, & Yin, 2022). Jiang et

al. (Jiang, Chen, Yu, & Liao, 2017) incorporated a boosting algorithm into the ARMA model to improve the ability for multi-

step ahead wind power prediction. However, these methods require to assume that the time series to be modelled are linear and

stationary, which are not suitable for nonlinear and nonstationary processes, such as wind power data (Hossain, Chakrabortty,

Elsawah, Gray, & Ryan, 2021). Kalman filtering methods are a recursive filtering approach, employing a two stage scheme, that



is, prediction and correction, to estimate the variation of wind power. Zhang et al. (Zhang, Yue, Dou, Li, & Hancke, 2022)

utilized a Kalman filtering algorithm to perform the rough wind power prediction in long time scale, and used a reinforcement

learning algorithm to correct the prediction results in short time scale. However, it was observed that it is difficult to estimate the

noise of wind power series using Kalman filtering methods (Zhang, Liu, Zhang, Yan, Zang, Wu, Hua, & Wang, 2019).

With the in-depth development of artificial intelligence technology, many machine learning methods have now been applied

to perform the wind power prediction tasks (Yin et al., 2021, Li et al., 2022). Li et al. (Li, Lin, Xu, Liu, & Liu, 2018) presented a

wavelet decomposition and support vector machine (SVM) method based on an atomic search algorithm to predict the

decomposed components of wind power. Xue et al. (Xue, Jia, Wen, & Farkoush, 2020) tested the prediction ability of an

improved Gaussian process (GP) approach for both probabilistic and deterministic prediction of wind power from different

perspectives. Different from SVM and GP, artificial neural networks (ANN) have adaptive and self-organizing ability to learn

latent features from the input and output data (Xiong, Lou, Meng, Wang, Ma, & Wang, 2022). Tan et al. (Tan, Han, & Zhang,

2020) built an extreme learning machine (ELM) to predict the wind power, and Salp swarm algorithm was introduced to search

the parameters of ELM. An et al. (An, Yin, Wu, She, & Chen, 2021) adopted the weighted naive Bayes technique to analyze the

wind speeds from three different numerical weather prediction (NWP) organizations, and build a back propagation neural

network (BPNN) to learn the relationship of wind power and wind speed. Abedinia et al. (Abedinia, Lotfi, Bagheri, Sobhani,

Shafie-khah, & Catalão, 2020) used an improved empirical mode decomposition (EMD) algorithm to process the wind data and a

bagging neural network was built to perform the prediction task, where chaotic binary shark smell optimization was utilized to

optimize the bagging neural network and obtained more accurate wind power prediction results. Although ANNs have been

applied to solve wind power prediction problem, simple ANNs cannot adequately mine useful information from complex wind

power data (Zhou, Wang, Lu, & Zhao, 2022).

Deep learning due to its powerful self-learning ability, has been developed to perform wind power prediction tasks recently

(Wang, Tao, Hu, & Zeng, 2021). For example, Peng et al. (Peng et al., 2021) designed a wind power prediction model based on

convolutional neural network (CNN), where the NWP and wind power data were decomposed by wavelet transform (WT) first,

and then the decomposed components were rearranged according to their frequencies. Chen et al. (Chen, Zhu, Li, Zhu, Shi, Li,

Duan, & Liu, 2020) designed a complex stacked autoencoder framework to learn the heterogeneous features related to wind

power and achieve higher prediction accuracy than other compared methods. Compared with other deep learning techniques,

long short-term memory (LSTM) network can remember information of a time series for a period of time, and has been

extensively applied to predict wind power (Wang, Zhu, Zhang, Cheng, & Zhou, 2023). Ye et al. (Ye, Dai, Pei, Lu, Zhao, Chen,

& Wang, 2022) designed a sequence prediction model LSTM to perform wind power prediction based on intraday NWP data. In

their model, a wave-oriented scheme and a modified fuzzy-C means algorithm were used to select the appropriate input data. Ko

et al. (Ko, Lee, Kim, Hong, Dong, & Hur, 2021) introduced a multi-level residual network into the bi-directional LSTM

networks (BLSTM) to void the over-fitting problem in wind power prediction task, which fused the long and short BLSTM

networks to learn the change of peak values. As a version of LSTM, the gate recurrent unit (GRU) network has more simplified

gate units (Wang, Li, Fu, & Tang, 2020). Han and Wu (Yan & Wu, 2020) used empirical WT to decompose the raw wind power

data. Then, a GRU network model was used to predict the components with low sample entropy values, and kernel ELM was

adopted to process the components with high sample entropy values.

The aforementioned methods have achieved good results by digging up the latent features of the signals used at a certain

extent. Signals used in these methods mainly include wind power, wind speed, wind direction, temperature, atmospheric pressure,

NWP data, etc. However, the output power of wind turbine depends not only on environmental factors, but also on the historical

operation state of wind turbine (Lin & Liu, 2020). Supervisory Control and Data Acquisition (SCADA) system is a widely used



real-time monitoring system in wind farms; it collects a large number of environmental and operation data of wind turbine

(Morrison, Liu, & Lin, 2022). Therefore, it is essential to dig up SCADA data effectively for improving the prediction

performance of wind power. Liu et al. (Liu, Yang, & Zhang, 2021) analyzed the SCADA data from three dimensions (i.e., space,

time, and physical meaning), where the spatial and physical information was extracted by combining K-means, K-shape, and

CNN, and the temporal information was learned by GRU networks. In addition, the preprocessing for SCADA data, such as

outlier detection and resampling, has also been investigated in the literature. For example, Lin et al. (Lin, Liu, & Collu, 2020)

introduced an isolation forest algorithm to detect outliers of SCADA data first and deep learning neural networks were then

established to mapping corrected SCADA data to wind power. Kisvari et al. (Kisvari, Lin, & Liu, 2021) preprocessed the

SCADA data to remove the outliers by using an isolation forest algorithm, and then compared the wind power prediction

performance of GRU and LSTM after performing feature engineering.

Although there have been many studies on wind power prediction at present, achieving more accurate wind power prediction

still faces the following challenges: 1) Raw SCADA data contains plenty of complex information, even noise information. Many

methods mentioned previously directly learn latent features from SCADA data to train a prediction model, and do not fully

consider the effect of the ‘hidden’ information (e.g., noise) when design the prediction model, which may affect the prediction

performance of the model; 2) SCADA data contains a large number of monitoring parameters, which are not all helpful in

improving the accuracy of wind power prediction. Using these parameters without filtering for wind power prediction may even

reduce the accuracy of the prediction. Therefore, it is necessary to design a more efficient and practical correlation analysis

method to screen parameters that contribute to prediction tasks.

To further exploit the hidden information in SCADA data and the strong learning ability of LSTM for time series modelling

and wind power forecasting, this paper proposes an effective deep learning framework for short-term wind power forecasting

based on LSTM networks and SCADA data denoising. In many methods, raw SCADA data are directly used to drive the

prediction model. However, as mentioned earlier, SCADA system records plenty of complex information from wind turbine,

even the information about the SCADA system itself. These SCADA data contain a wealth of noise information, which makes it

difficult to well capture the real relationships between wind power and other related signals using whatever prediction models.

Therefore, in this proposed framework, a SCADA data denoising method based on WT is designed, where the other features

potentially related to wind power are decomposed and reconstructed by WT, so that the SCADA data are holistically denoised.

Then, a feature selection process based on the maximum information coefficient (MIC) method is performed to choose more

relevant features. Finally, a multi-feature prediction model based on LSTM networks are established to represent the relationship

between the other features and wind power; the model is then used to realize the wind power forecasting. The main contributions

of this study are as follows:

1) An effective deep learning prediction framework is proposed. The framework integrates data denoising and feature

selection, and adopts the deep learning algorithm for LSTM networks to autonomously dig up the latent features and perform

wind power prediction task.

2) A reliable SCADA data denoising method based on WT is designed. The method denoises the SCADA data as a whole,

making them easier to learn by the prediction model.

3) A MIC based method is integrated to calculate the correlation between the relevant features and wind power, and then the

multi-feature LSTM networks are built to capture the latent relationship between the selected features and wind power.

The rest of this study is organized as follows. The characteristics of SCADA data are analyzed in Section 2. The proposed

deep learning framework based on LSTM networks and SCADA data denoising for wind power forecasting are introduced in

Section 3. The case studies and experimental results are presented in Section 4, and the work is concluded in Section 5.



2. Analysis for the characteristics of SCADA data

2.1. Basic framework of SCADA system

As an important module of wind farms, SCADA system aims to monitor the operating status of wind turbines in real time by

using sensors installed in various systems of wind turbines, ensuring that these wind turbines can operate normally under harsh

conditions. As shown in Fig. 1, SCADA system mainly consists of on-site monitoring system, central monitoring center, and

remote monitoring center. The on-site monitoring system of wind turbines is generally deployed in the tower control cabinet of

each wind turbine to achieve the wind turbine monitoring and control and real-time collection and transmission of operating data

for wind turbine. The central monitoring center is arranged in control room of wind farm. The on-site personnel can understand

the operation of wind turbines at any time and carry out control based on the operation data of wind turbines. The remote

monitoring center can communicate with the monitoring center of wind farm through the remote communication network, and

implement unified management and data analysis for all wind farms. SCADA system can collect a large amount of operating

data from wind turbines, and the SCADA data mainly includes the following types of information: 1) Environmental information,

such as wind speed, wind direction, and ambient temperature; 2) Transmission information, such as rotor speed and generator

speed; 3) Electrical information, such as currents, voltages, grid frequency, power, and power factor; 4) Perceived information,

such as temperature and vibration signals of various components, and 5) other information, such as yaw position and hydraulic

system pressure (Udo & Muhammad, 2021).

Fig. 1. Basic framework of the SCADA system in wind farm.

2.2. Characteristics of SCADA data

The environment in which wind turbines operate is constantly changing, resulting in varying operating conditions of wind

turbines and increased sensor errors. In addition, the wind turbines themselves have complex structures, leading to the SCADA

system needing to monitor a large number of parameters. Therefore, SCADA data also presents the following characteristics: 1)

Strong randomness. As a major source of energy for wind power generation, wind resource has a certain degree of randomness

and volatility, and changes in wind resources directly lead to changes in the parameter information of the internal components of

the entire wind turbine, and the parameter information of each component in the system also has randomness and volatility. 2)

Excessive noise. The SCADA system records signals such as temperature and vibration signals of wind turbines, which are

easily affected by external environments. Additionally, the performance of the sensors themselves is also easy to change, leading

to the integration of various noise information into the monitored data. 3) There are differences in the correlation between



different parameters. The SCADA system measures dozens to hundreds of parameters, but wind turbines are a huge nonlinear

operating system built from multiple subsystems. The correlation between various system parameters is not completely

consistent. 4) Temporal correlation: When the wind turbine operates continuously, the actions of the wind turbines are constantly

changing, so the generated operating data has strong temporal correlation (Zhang, Li, & Zhao, 2023).

SCADA data contains a large amount of feature information about the state of wind turbines, which can be used for various

analysis tasks such as power prediction and fault diagnosis. However, due to some of the above characteristics and difficulties,

the analysis of SCADA data lacks an efficient and reliable framework and system. Taking into account the characteristics of

SCADA data, this paper proposes an effective deep learning framework for short term wind power forecasting based on LSTM

networks and SCADA data denoising to effectively perform power prediction tasks. This method improves the accuracy of

power prediction by globally denoising SCADA data, mining important information, and analyzing the correlation between

parameters. The specific details are presented in section 3.

3. Proposed deep learning framework

3.1. The structure of the proposed method

The structure of the proposed method is depicted in Fig. 2, which includes three parts: 1) SCADA data denoising based on

WT algorithm, 2) feature selection based on MIC, and 3) multi-feature prediction model based on LSTM networks. In the

denoising process, one-level WT algorithm is performed to decompose each of the relevant features into low-frequency

component A and high-frequency component D. Only the component A is used to reconstruct the feature data; the component D,

which contains complex noise information, will be discarded. The MIC values between the relevant features and the wind power

are calculated, and the features with high correlation with wind power signal are selected as the input data of the multi-feature

LSTM networks. The details of the proposed framework are further explained in the following sections.

Fig. 2. Basic framework of the proposed method.

3.2. SCADA data denoising using WT

The SCADA system comprehensively records wind turbine signals and meteorological environment data. SCADA data are

noisy and contain redundant information, which make it difficult to find best models for wind power prediction no matter what

model structures and what training approaches are employed. Therefore, it is important to properly denoise SCADA data. This

work proposes an effective SCADA data denoising method based on WT.

Compared to Fourier transform, WT provides an adaptive analysis method in both time and frequency domains. It decomposes

the original time series to low-frequency and high-frequency components, and further decomposes the low-frequency component

to another level of lower-frequency components; in this way, the signal is decomposed to many levels (Chui, 1992). The high-



frequency components usually contain the noise information. In this way, WT can filter out noise at different scales.

For a wavelet basis function  t and an original signal S(t), the continuous WT is defined as:
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In this designed denoising method, one-level WT algorithm is used to decompose all SCADA signals (except historical wind

power data) to obtain low-frequency component A and high-frequency component D. The component D contains the noise

information of original feature data, and thus only the component A is reconstructed to obtain new denoised feature data. The

feature denoising process is shown in panel I of Fig. 2. It can be seen that the data of the features (e.g., rotor speed, wind speed,

and generator power) are decomposed by the designed denoising method and the denoised data are obtained. Through this

process, most high frequency noise can be removed. Note that the target, i.e., the wind power time series, is not preprocessed but

directly used to train prediction models.

3.3. Feature selection based on MIC method

In the operation of wind turbines, a large number of parameters recorded by SCADA system change over time. However, not

all these features are useful for wind power prediction, some of which are redundant and make no contribution to help improving

wind power prediction performance. In addition, too many input features will also increase the running time of the program.

Therefore, it is necessary to select important features, from SCADA data, that are highly correlated to wind power, so as to

improve the prediction accuracy. In this paper, MIC is used for feature selection.

The MIC is developed from mutual information (MI) theory. When MI calculates the correlation between variables, it needs to

discretize the variables, and it is deeply affected by the discretization effect. In addition, the results of MI has a lower limit of 0,

but no upper limit, so it cannot be normalized. It is difficult to compare the dependence of between different variables according

to a certain threshold. MIC, however, not only can characterize the linear and nonlinear relationships between variables, but also

has good robustness and low complexity. The basic calculation process of MIC is as follows (Reshef et al., 2011):

1) Compose variables M and N into a two-dimensional data 1{( , )}Ti i im n  , where T represents the total number of data points.

2) Select the I and J and form different grid schemes G, where I and J represent dividing the two-dimensional space into I

rows and J columns, respectively. The data points in 1{( , )}Ti i im n  are located in different small grids.

3) Calculate the probability distribution of data in each small grid to obtain the corresponding MI values:
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where g G , and P(i, j) represents the probability of data points in the grid of row x and column y.

4) Calculate the MIC values in all grids G:
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g G

MI I J I I J


 (5)

5) The maximum mutual information obtained from (5) is normalized into [0, 1]:
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6) Calculate the MIC value for the grids when I and J are different:
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where B(T) is a function of T, usually taken as:

0.6( ) ( )B T T (8)

By calculating the MIC values between other SCADA feature data and wind power data, the features with high MIC value are

selected as the input features.

3.4. Prediction model based on LSTM networks with multi-features

Assuming that there are  samples in total in the SCADA data set after feature selection, and each sample includes f relevant

features and a wind power value, the data set X is as follows:
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where iX represents the ith sample, ix denotes the relevant features of ith sample, ip represents the ith wind power value, and

ijx represents the jth relevant feature value of ith sample.

The wind power prediction task is to forecast the value of wind power at the future time instant t+l by using the past t samples.

The input and output data can be written as follows:

1 21

2 2 3 1

1 1 +2

, , ,

, , ,
_

, , ,

t

t

t l t l t l l

X X XIX

IX X X X
INPUT X

IX X X X   



        

  
  
      
  

      

(10)

1 21

2 2 3 1

1 1 2

, , ,

, , ,
_

, , ,

t t t l

t t t l

t l t l t l

p p pOY

OY p p p
OUTPUT Y

OY p p p   

  

   

        

  
  
      
  

      

(11)

According to (10) and (11), when l = 1, the prediction task is single-step prediction; when l ≥ 2, the prediction task is multi-

step prediction.

Then, these data are formatted according to the input and output shapes of the prediction model. In the time series prediction

task, each sample has f+1 features. This study designs multi-feature LSTM networks to process the time relationship in the

SCADA data.

LSTM network (Fig. 3) is a classic recurrent neural network (RNN), which is typically composed of a memory unit consisting



of a forgetting gate F(t), an input gate I(t), an output gate O(t), and a state element ( )t to control information selection, thus

achieving the function of forgetting or memory. It effectively solves the long-term dependency problem of RNN and avoids the

problem of gradient vanishing or exploding (Lu, Liu, Wei, Chen, Zhang, & Li, 2021) The specific calculation process of LSTM

network is as follows:

( ) ( ( 1) ( ) )FH FX FF t U H t U X t B    (12)

( ) ( ( 1) ( ) )IH IX II t U H t U X t B    (13)

( ) tanh( ( 1) ( ) )H Xt U H t U X t B       (14)

( ) ( ) ( 1) ( ) ( )t F t t I t t       (15)

( ) ( ( 1) ( ) )OH OX OO t U H t U X t B    (16)

( ) ( ) tanh( ( ))H t O t t  (17)

where U and B are the corresponding weights and biases, respectively. H(t) is the hidden state in the moment t, X(t) is the input

data, and ( )t and ( )t are the candidate state and the cell state, respectively. () and tanh() are the activation functions.

Fig. 3. LSTM network with multiple feature inputs.

From Fig. 3, X(t) as the feature vector in the moment t, contains multiple features, and the concatenation operation

concatenates the hidden state in the moment t-1 H(t-1) with X(t) to obtain a new vector. The new vector integrates the past

information of multiple features and is fed into the LSTM network for further deep fusion, thereby obtaining deeper information

of multiple features.

Take the first input
1IX of INPUT_X as an example (see the panel III of Fig. 2). Through the LSTM layer, the latent features

of
1IX are mined, and the prediction results are calculated in the output layer. The multi-feature LSTM networks can integrate the

input features at an abstract level and analyze the temporal relationship hidden in the time series.

3.5. Procedure of the proposed framework

According to the above descriptions, the procedure of the proposed wind power prediction method is summarized as follows:

Step 1: Data collection and preprocessing of SCADA data.



Step 2: Denoise the SCADA data. Use the proposed SCADA data denoising algorithm to decompose each feature of SCADA

data (except wind power signal itself) to obtain two groups of components (low-frequency component A and high-frequency

component D). The component A is reconstructed to obtain the denoised feature data.

Step 3: Feature selection. After denoising, the SCADA data are divided into training and test sets. The MIC values between

relevant features and wind power are calculated on the train set, and then the required features are selected according to the

correlation strength.

Step 4: Wind power prediction. The selected features and the historical wind power data are integrated as the input data to

feed into multi-feature LSTM prediction model, and the prediction performance can be verified on the test set.

4. Case studies and discussions

4.1. Data description

To examine the performance of the proposed wind power prediction method, a real-world data set from a wind farm is

considered. The wind farm is located in the south of China, where SCADA system is installed to collect data, with a sampling

period of 15 minutes. In this study, the data for a total of 54 parameters from the real-world SCADA data set are selected to

validate the proposed method. These parameters cover various key components of the turbines, including pitch system, nacelle

system, generator system, yaw system, etc. All the parameters and their units are listed in Table 1. The active power is chosen to

be the target signal for representing the wind power.

Table 1. Parameters selected from SCADA data set in this case studies

Parameter Unit Parameter Unit Parameter Unit

Rotor speed r/min
Generator stator temperature

1/2/3/4/5/6
℃ Twist angle 1/2 turns

Rotor angle ° Generator air temperature 1/2 ℃
Yaw brake hydraulic

pressure
bar

Angle of blade 1/2/3 ° Generator current A Wind speed m/s

Current of pitch motor 1/2/3 A Temperature of INU ℃ Wind direction °

Speed detection value of overspeed

sensor
r/min Temperature of ISU ℃ Air pressure atm

Hub temperature ℃ Temperature of INU RMIO ℃
Current on grid side of the

converter
A

Hub cabinet temperature ℃ Estimated power of pitch motor 1/2/3 W
Voltage on grid side of

the converter
V

Acceleration in x/y direction m/s2
Temperature of converter box of blade

1/2/3
℃

Reactive power on grid

side of the converter
kVar

Nacelle temperature ℃ Cooling liquid inlet/outlet temperature ℃
Power on generator side

of the converter
kW

Main bearing Temperature 1/2 ℃ Generator torque kNm Ambient temperature ℃

Nacelle cabinet temperature ℃ Cooling pump inlet/outlet pressure bar Generator frequency Hz

Yaw alignment value ° Active power kW

4.2. Parameter settings and benchmarking models

The determination of parameters of LSTM network models is important. In wind power forecasting task, the active power at

the current moment is related to historical data of a period of time. In this study, the historical data from the past 24 hours were

selected as the input of the model, i.e., the time steps of the LSTM model are 96. Then, the number of neurons in the hidden



layers of the LSTM prediction model needs to be determined. According to the trial and error method, the number of neurons in

the hidden layer is selected from 5 to 50, with an interval of 5.

For better evaluating the superiority of this proposed method, the comparison is carried out by choosing some existing

prediction algorithms, including SVM, BPNN, CNN-LSTM (Zhang, Zhao, & Du, 2021), GRU-LSTM (Hossain, Chakrabortty,

Elsawah, & Ryan, 2020), gradient boosting regressor (GBR) (Sobolewski, Tchakorom, & Couturier, 2023), and deep

concatenated residual networks (DRNets) (Ko et al.,, 2021), and the parameters are determined by following the best prediction

results. For SVM method, the radial basis function is selected as the kernel function, and the epsilon value is selected from

0.0001 to 0.1. For BPNN method, the number of neurons in the hidden layer is selected from 5 to 50, with an interval of 5. For

CNN-LSTM method, one-dimensional CNN is used, and the number of neurons in the hidden layer of LSTM networks is

selected from 5 to 50, with an interval of 5. For GRU-LSTM method, the output of the GRU networks is used as the input of the

LSTM networks. For GBR method, the number of boosting stages to be performed is 50 and the learning rate is chosen to be 0.1.

For DRNets method, the multi-level residual network is introduced in the bidirectional LSTM networks and the number of the

layers in the bidirectional LSTM networks is 2. The number of iterations for all the deep learning methods is 50, and the batch

size is 16.

4.3. Evaluation metrics

In order to reasonably evaluate the performance of the proposed method, normalized root mean square error (NRMSE) and

normalized mean absolute error (NMAE) are used as the evaluation metrics, which can be expressed as

2

1

1 1 ˆ( ) 100%
m

i i

iinstall

NRMSE P P
P m 

   (18)

1

1 1 ˆ| | 100%
m

i i

iinstall

NMAE P P
P m 

   (19)

where
installP represents the installed capacity of a wind turbine.

iP and ˆ
iP represent the ith actual and predicted values of wind

power, respectively. m is the number of wind power data.

4.4. Case I: single-step prediction

1) Comparative experiments and analysis: To test the prediction ability of the proposed method, the single-step wind power

prediction experiments are conducted based on the SCADA data, i.e., using the historical data to predict the value of the next

moment. In this case, the original SCADA data contain a large amount of noise data. The proposed SCADA data denoising

algorithm based on WT can effectively denoise the SCADA data. Following procedure described in the section 3.2, all the

monitored parameters (except the active power signal itself) are decomposed using the one-level WT. Then the low-frequency

components are reconstructed to new data. The denoised data set is divided into 12 data sets by month, and thus a total of 12

comparison tasks are divided based on the 12 data sets. In each task, the data of the last two days of the corresponding data set

are used as the test set, and the other data of the month are used as the training set. Then, the feature selection process is

performed to reduce the feature dimensions for each task. The MIC values between the active power and the monitored

parameters are calculated. The monitored parameters with a MIC value greater than or equal to 0.5, along with the active power,

are chosen to be the input features. As an example, the selected monitored parameters of the first task (1 month) are given in

Table 2, and the number of the selected monitored parameters based on the 12 data sets is recorded in Table 3. It can be clearly

seen that in different data sets, the number of the selected monitored parameters is different, which means that the correlation

between these parameters and active power is not constant, and the feature selection is necessary in different prediction tasks.



Table 2. Selected monitored parameters of the first task (1 month)

Monitored parameters MIC Monitored parameters MIC

Rotor speed 0.9157 Current of pitch motor 2 0.8464

Speed detection value of overspeed sensor 0.9156 Current of pitch motor 1 0.8314

Generator frequency 0.9130 Estimated power of pitch motor 1 0.6934

Power on generator side of the converter 0.9096 Estimated power of pitch motor 3 0.6929

Generator current 0.9090 Estimated power of pitch motor 2 0.6721

Temperature of INU 0.9089 Angle of blade 1 0.6627

Generator torque 0.9031 Angle of blade 2 0.6621

Wind speed 0.8795 Angle of blade 3 0.6583

Current of pitch motor 3 0.8791 Main bearing temperature 2 0.6136

Temperature of ISU 0.8779 Main bearing temperature 1 0.6082

Table 3. Number of the selected monitored parameters based on the 12 monthly data sets

Month 1 2 3 4 5 6 7 8 9 10 11 12

Number of the selected

monitored parameters
21 30 25 20 27 28 28 24 17 29 30 32

Table 4. Single-step prediction results of all the methods based on the data sets of 12 monthly (%)

Methods Metrics
Month

Mean
1 2 3 4 5 6 7 8 9 10 11 12

SVM
NRMSE 4.0235 3.3029 9.3407 1.8508 3.7908 10.0172 7.0459 6.7849 3.7073 10.3091 8.3375 10.3836 6.5745

NMAE 2.8050 2.8775 8.5910 1.5465 2.8978 8.0671 5.6923 5.3580 2.3101 7.6035 6.3492 8.4855 5.2153

BPNN
NRMSE 4.2794 3.1092 3.8685 2.2609 3.8888 8.6696 6.3281 6.0956 3.7390 10.0748 8.8198 11.3627 6.0414

NMAE 3.0707 2.2522 2.8999 1.8149 2.9555 7.1183 5.1692 4.8462 2.3471 7.7577 6.9975 9.2664 4.7080

CNN-LSTM
NRMSE 3.6822 2.4239 3.2983 1.3612 3.1236 7.6914 5.4618 6.1697 3.6675 10.051 7.9031 10.1185 5.4127

NMAE 2.5923 1.5755 2.1784 1.0836 2.1010 6.0905 4.2736 4.7779 2.2343 7.5010 6.0697 8.0261 4.0420

GRU-LSTM
NRMSE 3.7850 2.2095 3.0422 1.3205 3.1611 7.6548 5.6648 6.0259 3.7258 9.9692 7.6156 10.0256 5.3500

NMAE 2.6442 1.5302 1.9680 1.0181 2.1312 6.0378 4.5717 4.6871 2.2640 7.3920 5.7926 7.8636 3.9917

GBR
NRMSE 3.8756 2.2703 3.3215 1.6109 3.1196 7.6040 6.2891 6.1964 3.9110 10.0085 8.0298 10.1038 5.5284

NMAE 2.7361 1.6313 2.1097 1.3560 2.1864 6.1816 5.1831 4.7565 2.4854 7.4162 6.4025 8.0622 4.2089

DRNets
NRMSE 3.7247 2.3035 3.1526 1.3258 3.1346 7.5053 5.7820 6.1398 3.6863 9.8046 7.8352 9.8931 5.3573

NMAE 2.6736 1.5370 2.0341 1.0240 2.1527 6.0390 4.5936 4.7135 2.2751 7.3846 5.8103 7.9347 4.0144

Proposed

method

NRMSE 2.4750 2.1901 2.5583 1.0852 2.1038 5.2969 3.8134 3.7438 2.0608 9.0128 4.8817 5.6471 3.7391

NMAE 1.7737 1.3469 1.8755 0.8378 1.5697 4.1321 2.9486 2.7652 1.4071 5.7790 3.6237 4.4069 2.7055

(a) (b)

Fig. 4. Prediction results of all the methods based on the 12 monthly data sets. (a) NRMSE values. (b) NMAE values.



All the methods are compared under the same conditions. The best results based on the metrics, NRMSE and NMAE, are

given in Table 4, where the “Mean” column represents the mean values of the corresponding metric in 12 tasks. Fig. 4 shows a

graphical illustration of the overall performance of the seven methods for the 12 tasks.

As can be seen from Table 4 and Fig. 4, the prediction performance of the proposed method outperforms all the six compared

methods for all the 12 tasks. Compared with the simple machine learning methods, SVM and BPNN, the proposed method shows

much better performance. For the 12 tasks, the NRMSE and NMAE values of the proposed method are around 12.57% and

24.00% (10 month) less than that of SVM, respectively. Similarly, the two metrics values of the proposed methods are around

10.54% and 25.51% (10 month) less than that of BP, respectively. From Fig. 4, it is obvious that in 3 month, SVM has the largest

NRMSE and NMAE values, which are 265.11% and 358.06% larger than that of the proposed method. In most tasks, the

proposed method can achieve significantly better results, such as 5 month, 9 month, and 12 month. This may be explained that

for simple machine learning methods do not have time memory capabilities, and their ability to mine deep features of time series

is relatively poor, making them difficult to store and transmit time information in SCADA data effectively. Different from the

simple machine learning methods, the GBR method, as an integration algorithm, can integrate a bunch of poor prediction

algorithms and obtain better prediction results. It can be seen from Table 4 that the mean values of the NRMSE and NMAE

metrics for GBR method are 5.5284% and 4.2089%, respectively, which are smaller than those of SVM and BP.

The CNN-LSTM, GRU-LSTM, DRNets, and the proposed method are designed based on deep learning techniques, and can

obtain better performance than the simple machine learning methods. As can be seen from Table 4, the mean values of the

NRMSE metric of the these methods in 12 tasks are 5.4127%, 5.3500%, 5.3573%, and 3.7391%, respectively, which are smaller

than that of SVM (6.5745%) and BP (6.0414%). Correspondingly, the mean values of the NMAE metric of these methods in 12

tasks are 4.0420%, 3.9917%, 4.0144%, and 2.7055%, which are also smaller than that of SVM (5.2153%) and BP (4.7080%). In

addition, compared to the other deep learning methods, the proposed method shows better performance in terms of the two

evaluation metrics. For example, the NRMSE values of the proposed method are around 9.65% (2 month), 0.88% (2 month), and

4.92% (2 month) smaller than that of CNN-LSTM, GRU-LSTM, and DRNets methods, respectively. Correspondingly, the

NMAE values of the proposed method are around 13.90% (3 month), 4.70% (3 month), and 7.80% (3 month) smaller than those

of other three methods, respectively. The improvement in the prediction performance can be attributed to the introduction of the

data denoising method and the capability of LSTM for processing and modelling multi-variate time series.

2) Result evaluation of the proposed SCADA data denoising algorithm based on WT: In order to more intuitively evaluate the

impact of the proposed SCADA data denoising algorithm based on WT on the model training process, by considering whether to

use this proposed SCADA data denoising algorithm, the loss changes of the proposed method during the training process based

on four data sets (1 month, 4 month, 7 month, and 11 month) are plotted in Fig. 5, where “Without using the proposed data

denoising algorithm” represents the proposed method without using the proposed data denoising algorithm, and “Using the

proposed data denoising algorithm” represents the proposed method using the proposed data denoising algorithm. In these

experiments, all other conditions are completely consistent. From Fig. 5, it can been clearly seen that the use of the proposed

SCADA data denoising method based on WT can significantly accelerate the convergence of the proposed method. For example,

from Fig. 5(a), the loss value of the proposed method using the proposed SCADA data denoising algorithm is significantly lower

than that of the proposed method without using the proposed SCADA data denoising algorithm when the number of iterations

reaches 10. When the number of iterations reaches 50, the gap is even greater. Similar changes can also be observed in Fig. 5(b)-

(d). The proposed SCADA data denoising algorithm based on WT can effectively filter out noise information in SCADA data

and reduce data complexity, which is beneficial for the model to learn more useful information and achieve better prediction

performance.



(a) (b)

(c) (d)

Fig. 5. Loss changes of the proposed method during the training process based on four monthly data sets by considering whether to use this proposed SCADA

data denoising algorithm. (a) 1 month. (b) 4 month. (c) 7 month. (d) 11 month.

4.5. Case II: multi-step prediction

To further examine the performance of the proposed method, multi-step prediction experiments, with the prediction horizons

of 15, 30, 45, and 60 minutes, are carried out. For comparison purposes, four methods, namely, CNN-LSTM, GRU-LSTM, GBR,

and DRNets, are applied to solve the same prediction tasks on four data sets measured in the following four periods of 2020, that

is, 01/01–31/03, 01/04–30/06, 01/07-30/09, and 01/10-31/12, respectively. The four data sets are named D1, D2, D3, and D4,

respectively. In each data set, the data of the last seven days are used as for model test, and other data are used for model training.

The denoising and the feature selection processes are the same as described for one-step ahead predictions. The NRMSE and

NMAE values predicted by all methods are shown in Table 5, and the corresponding mean values are also calculated in this table.

From Table 5, it can be seen that the proposed method also outperforms other compared methods in most multi-step

prediction tasks. Take data set D1 as an example. Compared with the DRNets method, the NRMSE values of the proposed

method are around 38.04% (from 6.9341% to 4.2963%) smaller at the 15 minute prediction horizon, and are around 13.69%



Table 5. Multi-step prediction results of all the methods based on the data sets of four data sets (%)

Data sets
Prediction

horizons

Methods

CNN-LSTM GRU-LSTM GBR DRNets Proposed method

NRMSE NMAE NRMSE NMAE NRMSE NMAE NRMSE NMAE NRMSE NMAE

D1

15 minutes 7.6558 5.1466 7.1132 4.4753 7.4091 4.6192 6.9341 4.6070 4.2963 2.7541

30 minutes 9.0078 6.1180 8.4335 5.3050 10.5078 6.2659 9.6233 6.2354 7.2061 4.5565

45 minutes 9.9199 6.7652 9.3415 5.8247 11.8902 6.8728 10.6833 7.0363 8.9248 5.7993

60 minutes 10.6265 7.3437 10.0818 6.2720 11.0262 6.7109 11.2350 7.5120 9.6967 6.3888

D2

15 minutes 7.3995 5.8197 7.1194 5.4006 7.0935 5.2487 7.6759 5.0813 4.9473 3.6473

30 minutes 8.9420 6.9667 8.9557 6.8247 9.1200 6.9314 10.5986 6.7854 7.6804 5.8197

45 minutes 9.8180 7.6808 9.9368 7.7081 9.9682 7.8149 11.7003 7.5549 9.5425 7.3554

60 minutes 10.3579 8.2165 10.5723 8.3303 10.5733 8.4042 13.1282 8.4371 10.2430 7.9831

D3

15 minutes 5.1211 3.2515 5.0583 3.1569 5.2745 3.4939 5.2801 3.3812 3.2907 2.0346

30 minutes 5.8343 3.7937 5.8374 3.8248 5.9455 4.2059 6.2578 4.1922 5.0231 3.1716

45 minutes 6.0201 3.9336 6.1000 3.9353 6.0327 4.0771 6.9198 4.7147 5.8939 3.8481

60 minutes 6.2307 4.2382 6.3205 4.2324 6.6267 4.8812 7.4841 5.3792 6.0935 4.0403

D4

15 minutes 7.6582 5.2120 7.9189 5.3868 7.9663 5.4943 8.0404 5.4054 4.9148 3.4286

30 minutes 9.3795 6.3679 9.6167 6.5789 9.9670 6.9612 9.8555 6.7676 8.2126 5.6947

45 minutes 10.4428 7.1343 10.5141 7.2594 10.9013 7.6230 11.3317 7.7278 10.2419 7.1900

60 minutes 11.6638 8.0336 11.6161 7.9764 12.0494 8.5058 12.4723 8.4311 11.3155 8.0415

Mean 8.5049 6.0014 8.4085 5.7807 8.8970 6.1319 9.3263 6.2030 7.3452 5.1096

(from 11.2350% to 9.6967%) smaller at the 60 minute prediction horizon; the NMAE values are around 40.22% (from 4.6070%

to 2.7541%) smaller at the 15 minute prediction horizon, and are around 14.95% (from 7.5120% to 6.3888%) smaller at the 60

minute predicted horizon. Compared with the CNN-LSTM method, the NRMSE values of the proposed method are around

43.88% (from 7.6558% to 4.2963%) smaller at the 15 minute prediction horizon, and are around 8.75% (from 10.6265% to

9.6967%) smaller at the 60 minute prediction horizon; the NMAE values are around 46.49% (from 5.1466% to 2.7541%) smaller

at the 15 minute predicted horizon, and are around 13.00% (from 7.3437% to 6.3888%) smaller at the 60 minute predicted

horizon.

In all the prediction tasks, the metric, NRMSE, has smaller values for the proposed method. The rate of change of the

NRMSE metric is calculated for each task, and the NRMSE values of the proposed method are at least 30.26% (15 minutes),

12.44% (30 minutes), 1.92% (45 minutes), and 1.11% (60 minutes) smaller than that of other methods in different prediction

horizons, respectively. On the other hand, the metric, NMAE, has similar characteristics for the proposed method. The NMAE

values of the proposed method are at least 8.22% (15 minutes) and 10.57% (30 minutes) smaller than that of other methods in

prediction horizons, 15 and 30 minutes, respectively. In prediction horizons, 45 and 60 minutes, the NMAE values of the

proposed method are 0.10%-1.86% larger than that of some methods in three tasks. However, overall, the proposed method

performs well.

The mean values in Table 5 show that the proposed method has smaller prediction error in two evaluation metrics. For

example, the NRMSE values of the proposed method are at least 12.65% smaller than that of other methods, and correspondingly,

the NMAE values of the proposed method are at least 11.61% smaller than that of other methods. As can be seen from the above,

the proposed method can achieve higher prediction accuracy than ordinary models. This is mainly because the proposed method

denoises SCADA feature data through the designed SCADA data denoising algorithm, resulting in a more pronounced trend of

new feature data with less noise information, which is more conducive to model learning.

Furthermore, it can be seen from this table that as the prediction horizon increases, the prediction performance of all methods



decreases. This is because the longer the prediction horizon, the more uncertainty is involved in the prediction. However, the

proposed method can maintain higher prediction accuracy than other models at various prediction horizons, indicating that using

the proposed deep learning models, joined by the designed SCADA data noising algorithm to is applicable for wind power

prediction tasks.

5. Conclusion

With the large-scale integration of wind power into the power grid, the prediction of wind power has increasingly become an

important issue. In this paper, an effective deep learning model based on LSTM networks and data denoising scheme is proposed

for improving the short-term wind power forecasting. The denoising method can effectively filter out noise from the SCADA

data. Based on the denoised data, the feature selection process is performed by utilizing the MIC algorithm. According to the

results of the feature selection, an input vector is defined and used to train the prediction model. Both single-step and multi-step

prediction experiments are conducted, and the proposed method is compared with seven existing methods, namely, SVM, BPNN,

CNN-LSTM, GRU-LSTM, GBR, and DRNets. The results show that the proposed method can improve the wind power

prediction ability based on the SCADA data. In our work, only up to 60-minute ahead predictions are considered. In fact, it may

be necessary to predict the changes in wind power over the next few hours in practical applications. Therefore, exploring the

application of the proposed method in many hours ahead wind power predictions will be of great significance in the future work.

In addition, this work focuses on the application of SCADA data in power prediction, without paying too much attention to the

problem of gradient vanishing or exploding in LSTM networks. In future work, we will pay more attention to this issue to

achieve better performance.
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