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Abstract

The performance of a constraint model can often be improved by converting a sub-
problem into a single table constraint (referred to as tabulation). Finding subproblems to
tabulate is traditionally a manual and time-intensive process, even for expert modellers.
This paper presents TabID, an entirely automated method to identify promising subprob-
lems for tabulation in constraint programming. We introduce a diverse set of heuristics
designed to identify promising candidates for tabulation, aiming to improve solver per-
formance. These heuristics are intended to encapsulate various factors that contribute to
useful tabulation. We also present additional checks to limit the potential drawbacks of
suboptimal tabulation.

We comprehensively evaluate our approach using benchmark problems from existing lit-
erature that previously relied on manual identification by constraint programming experts
of constraints to tabulate. We demonstrate that our automated identification and tabu-
lation process achieves comparable, and in some cases improved results. We empirically
evaluate the efficacy of our approach on a variety of solvers, including standard CP (Minion
and Gecode), clause-learning CP (Chuffed and OR-Tools) and SAT solvers (Kissat).

©2025 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.
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Our findings highlight the substantial potential of fully automated tabulation, suggest-
ing its integration into automated model reformulation tools.

1. Introduction

Constraint programming provides an efficient means of solving complex combinatorial prob-
lems across a wide variety of disciplines, such as scheduling, planning, routing, and config-
uration (Rossi et al., 2006). In order to solve a problem using the constraint programming
paradigm, it must first be modelled in a format suitable for input to a constraint solver. This
involves determining the set of decision variables that represent the choices that must be
made to solve the problem, and formulating a set of constraints over the variables so as to
allow only valid combinations of decisions. For example, in a scheduling scenario we might
employ a decision variable per task to represent the start time of that task, with constraints
to disallow a number of simultaneous tasks that would exceed the resources available.

Once a model has been chosen, a constraint solver automatically searches for a solution:
a complete assignment of values to the decision variables that satisfies all of the constraints.
Search is interleaved with inference known as constraint propagation, where deductions are
made based on the constraints and the current set of assignments made via search. These
deductions serve to narrow down the choices for the variables as yet unassigned by search,
and therefore reduce the search required. Generally, there are many ways in which a given
problem may be modelled, and the model chosen has a significant effect on the performance of
the constraint solver in searching for solutions. Therefore, automated methods for improving
constraint models are valuable (Leo & Tack, 2015; Nightingale et al., 2017).

In order to improve the performance of a constraint model, a common step is to re-
formulate the expression of a subset of the problem constraints, either to strengthen the
inferences made during search by the constraint solver by increasing constraint propagation,
or to maintain the level of propagation while reducing the cost of propagating the con-
straints. One such method is tabulation, the aggregation of a set of constraint expressions
into a single table constraint (Mohr & Masini, 1988). Such a table constraint explicitly lists
the allowed tuples of values for the decision variables involved. This allows us to exploit effi-
cient table constraint propagators that enforce generalised arc consistency (GAC) (Bessiere,
2006), typically a stronger level of inference than is achieved for a logically equivalent collec-
tion of separate constraints. Successful examples of this approach where the reformulation
has been performed by hand include Black Hole patience (Gent, Jefferson, Kelsey, Lynce,
Miguel, Nightingale, Smith, & Tarim, 2007) and Steel Mill Slab Design (Gargani & Refalo,
2007).

Dekker et al. (2017) presented a method for the automation of tabulation (there called
‘auto-tabling’). In their approach a predicate (a Boolean function) expressed in the MiniZinc
language (Nethercote et al., 2007) may be annotated. Such an annotation requests that the
predicate be converted into a table constraint. While called ‘auto-tabling’, note that the
choice of predicate to be tabulated is done manually by the modeller. IBM ILOG CPLEX
Optimization Studio (IBM, 2024) and ECLiPSe (Le Provost & Wallace, 1992) have similar
facilities to generate table constraints, while other approaches target alternatives such as
Multi-valued Decision Diagrams (MDDs) and regular constraints (de Uña et al., 2018; Löffler
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et al., 2020). In all of these approaches, the crucial first step of identifying promising parts
of a given model for tabulation is left to the human modeller.

In this work we present an entirely automatic tabulation method, TabID, situated in
the constraint modelling tool Savile Row (Nightingale et al., 2017). The core function
of Savile Row is to translate the constraint modelling language Essence Prime (Nightin-
gale, 2024) into the input languages of solvers, including constraint programming (CP) and
Boolean satisfiability (SAT) solvers. A set of heuristics is employed to identify in an Essence
Prime model some candidate sets of constraints for tabulation, which are then tabulated au-
tomatically. Resource limits are applied to this process, ensuring that only the most useful
candidate sets of constraints are tabulated. In order to demonstrate the effectiveness of our
approach, we first examine the same four case studies that were used by Dekker et al. (2017)
to showcase the utility of tabulation from explicit model annotations. We show that our
automated approach can identify the same opportunities to improve the models by tabula-
tion. We also study nine additional problem classes that show that TabID is effective on a
wider range of problems. This paper builds on (and entirely includes) an earlier conference
publication (Akgün et al., 2018).

1.1 Contributions

The primary contribution of TabID is the automation of a hitherto difficult manual task:
the recognition of opportunities to tabulate parts of a constraint model in order to increase
constraint propagation and therefore reduce search. In support of this primary contribution,
we contribute the following:

• A set of heuristics to identify common tabulation opportunities, such as expressions
that will propagate weakly.

• A caching system to avoid tabulating equivalent subproblems multiple times.

• A system of progress checks and work limits for the situation where a heuristic identifies
a constraint that is too large to be tabulated.

• An empirical study across several solvers of the frequency with which our heuristics
identify effective tabulation opportunities.

1.2 Motivating Examples

We consider two motivating examples from the literature: Black Hole and Knight’s Tour.
Black Hole is a single-player card game (variously termed ‘patience’ or ‘solitaire’ depend-

ing on the variety of English spoken) where cards are played one by one into the ‘black hole’
from seventeen face-up fans of three cards. All cards can be seen at all times. A card may be
played into the black hole if it is adjacent in rank to the previous card. Figure 1 shows part
of a Black Hole game, illustrating the rank adjacency condition. Black Hole was modelled
for a variety of solvers by Gent, Jefferson, Kelsey, Lynce, Miguel, Nightingale, Smith, and
Tarim (2007) and a table constraint was used in the CP model.

A constraint model of Black Hole is presented in Figure 2. We use the simplest and most
declarative model of Dekker et al. (2017) where two variables a and b (with cards coded
as integers {0 . . . 51}) represent adjacent cards iff |a-b| % 13 in {1,12} (the adjacency
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♞

Figure 1: Left: illustration of part of a Black Hole patience setup, showing only 3 (of 17)
fans and the ‘black hole’ (Ace of Spades) at the beginning of the game. The King
of Hearts and the 2 of Clubs may be played onto the black hole at this point,
because they are rank-adjacent to the card on top of the black hole. The 2 of
Hearts cannot be played because it is covered. Right: illustration of the moves
available for a knight in chess.

constraint). The model in the figure uses the available arithmetic and logical operators in
the language to capture the rank adjacent condition in the game. The cards in each fan
must be played in order. This constraint is captured by ordering variables in the cardSeq

matrix which represents the time step that each card is played.

The adjacency constraint is a relatively complex expression containing sum, modulo,
and absolute value operators. Typically this constraint will propagate weakly because some
solvers implement modulo and absolute value poorly, and also (depending on the solver
used) the sum operator may implement bound consistency.

Dekker et al. (2017) show that manually tabulating this constraint significantly improves
the solving performance. This problem is therefore a good candidate for evaluating our
work and indeed we will see that the tabulation opportunities present in this model can be
identified and exploited automatically by TabID.

Our second motivating example is Knight’s Tour, a classic puzzle studied by Euler (1759).
More recently, Schwenk (1991) determined the set of board sizes (including rectangular
boards) that have a knight’s tour. Given a natural number n and a starting square on an
n × n chess board, the task is to find a sequence of moves for the knight visiting each of
the remaining squares of the board exactly once. The moves of a knight are illustrated in
Figure 1. We use the Hamiltonian path version of Knight’s Tour: the last square visited is
not required to be a knight’s move from the starting square.

A constraint model of the Knight’s Tour is presented in Figure 3. We will refer to this
as the sequence model to distinguish it from an alternative presented in Section 5.2.4. The
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given initialStacks : matrix [int(0..50)] of int(1..51)

find blackHole : matrix [int(0..51)] of int(0..51)

find cardSeq : matrix [int(0..51)] of int(0..51)

such that

blackHole[0] = 0, cardSeq[0] = 0,

allDiff(cardSeq),

allDiff(blackHole),

forAll step : int(1..51).

(|blackHole[step-1] - blackHole[step]| % 13 in {1,12}),

forAll card : int(0..50). (card % 3 != 2) ->

(cardSeq[initialStacks[card]] < cardSeq[initialStacks[card+1]]),

forAll step : int(0..51). forAll card : int(0..51).

(blackHole[step] = card) <-> (cardSeq[card] = step)

Figure 2: A model of Black Hole in the constraint modelling language Essence Prime
(Nightingale, 2024). The parameters to the model (the initial layout of the cards,
named initialStacks) are introduced with the keyword given. The decision
variables (the single-dimensional matrices blackHole and cardSeq) are intro-
duced with the keyword find. Playing cards are numbered 0 . . . 51, with spades
in the range 0 . . . 12, followed by hearts, clubs, and diamonds.

model in the figure is a formulation of the problem from the 2008 CSP solver competition1,
investigated experimentally by Rendl et al. (2009) using the available arithmetic and logical
operators in the language to capture the legal moves of the knight. However, its performance
in terms of constraint propagation is weak, as we will discuss below.

The location of the knight is encoded as a single integer (nx + y) where (x, y) are
the coordinates of the knight on the board (from 0). The sequence model simply has a
one-dimensional matrix of variables (tour), with tour[i] representing the location of the
knight at timestep i. The constraints enforce that initially the knight is at the given location,
the moves are all different, and each adjacent pair tour[i] and tour[i+1] corresponds
to a knight’s move. As presented in the figure, the knight’s move constraint contains two
location variables and is naturally expressed using integer division and modulo to obtain the
x and y coordinates. The constraint states that the absolute difference in the y coordinates
is 1, and for x coordinates is 2, or vice versa.

The knight’s move constraint is a relatively complex expression: a disjunction of conjunc-
tions of reified arithmetic expressions, in which the absolute value of the difference between
scaled adjacent tour variables is compared with a constant. Typically this constraint will
propagate poorly for two different reasons. Firstly, some solvers implement modulo and
absolute value poorly. Secondly, the constraint as a whole will propagate poorly, as most
solvers will wait until the value of one side of the disjunct is known before propagating the
other.

1. Archived as of 28 July 2009 at https://web.archive.org/web/20090728111748/http://www.
cril.univ-artois.fr/~lecoutre/research/benchmarks/benchmarks.html
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given n: int

given startCol,startRow : int(0..n-1)

find tour : matrix indexed by [int(0..n*n-1)] of int(0..n*n-1)

such that

allDiff(tour),

tour[0] = startCol + (startRow)*n,

forAll i : int(0..n*n-2) .

((|tour[i]%n-tour[i+1]%n| = 1) /\ (|tour[i]/n-tour[i+1]/n| = 2)) \/

((|tour[i]%n-tour[i+1]%n| = 2) /\ (|tour[i]/n-tour[i+1]/n| = 1))

Figure 3: The sequence model of the Knights Tour in Essence Prime. The parameters to
the model (board size n and the starting square for the knight) are introduced
with the keyword given. The decision variables (the single-dimensional matrix
tour) are introduced with the keyword find.

There are tradeoffs involved in choosing subproblems to tabulate. Tabulating just the
expression (|tour[i]%n - tour[i+1]%n| = 1) may well reduce search, but tabulating
the entirety of the expression between two adjacent tour variables in a single step will
produce a table of a similar size (as only two variables are involved), while reducing search
much more. We could consider tabulating multiple adjacent moves as a single table — while
this may reduce search further, the resulting tables would grow rapidly as a function of the
number of variables involved. As we will see, the tabulation opportunities present in this
naïve model can be identified and exploited automatically by the methods presented in this
paper.

In both of these motivating examples, solver performance is improved by tens or hundreds
of times (depending on the solver type) completely automatically by TabID, without the
need to apply constraint modelling expertise.

1.3 Organisation

The rest of the paper is organised as follows. In Section 2 we review necessary background
for the paper. In particular, we provide details of our modelling language, tools, and the
abstract syntax tree data structure which our algorithms manipulate. We then discuss our
approach to finding promising parts of the problem where tabulation could be applied, in
Section 3. Here we cover each of our four heuristics and how they are adapted to different
situations that occur in the abstract syntax tree. In Section 4 we describe the tabulation
algorithm, its progress checks and work limits, and the caching system.

We then evaluate our system: in Section 5 in terms of how well the heuristics frame-
work identifies promising subproblems; in Section 6 in terms of how overall performance
is improved compared to the models without tabulation; in Section 7 with respect to how
well our system performs on a large set of models where tabulation might not a priori be
expected to improve performance; and finally in Section 8 we consider how tabulation scales
as we allow the arity of generated tables to increase. We discuss related work in Section 9
and conclude in Section 10.
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2. Background

This section gives the necessary background on constraint propagation, the constraint mod-
elling language we employ in this paper, and the Savile Row tool in which we situate
TabID.

2.1 Constraint Problems, Consistency, and Constraint Propagation

A constraint satisfaction problem (CSP) consists of a set of variables, each with a finite
domain of values, and a set of constraints that specify the allowed values for given subsets
of variables. A solution to a CSP is an assignment of values to the variables that satisfies
all of the constraints. To find such solutions, constraint solvers typically combine a search
through the space of partial assignments with constraint propagation, a form of deduction
that helps to reduce the search required. A constrained optimisation problem (COP) is a
CSP with an objective function that must be maximised or minimised.

Constraint propagation usually operates by establishing a consistency property on the
constraints and variables. Generalised arc consistency is a common, powerful consistency
property used in this paper, which we define in what follows. The scope of a constraint c,
named scope(c), is the set of variables that c constrains. A literal is a decision variable-value
pair (written x 7→ v). A literal x 7→ v is valid iff v is in the domain of decision variable
x. A support of constraint c is a set of valid literals containing exactly one literal for each
variable in scope(c), such that c is satisfied by the assignment represented by these literals.
A constraint c is Generalised Arc Consistent (GAC) (Bessiere, 2006) if and only if there
exists a support for every valid literal of every variable in scope(c). GAC is established by
identifying all literals x 7→ v for which no support exists and removing v from the domain
of x.

There exist efficient constraint propagation algorithms to establish GAC on a table
constraint, such as Compact Table (Demeulenaere et al., 2016; Ingmar & Schulte, 2018)
where tuples are bit-packed, Tries (Gent, Jefferson, Miguel, & Nightingale, 2007), and Simple
Tabular Reduction (Lecoutre, 2011). Table constraints are widely available in constraint
solvers.

2.2 Essence Prime

The importance of modelling is widely recognised in constraint programming (CP) as well as
the related fields of propositional satisfiability (SAT) and integer linear programming (ILP).
In CP several constraint modelling languages have been developed, including OPL (Van Hen-
tenryck, 1999), MiniZinc (Nethercote et al., 2007), and Essence Prime (Nightingale, 2024)
in order to aid in the statement of constraint models and abstract away from the details of
particular constraint solvers. Herein, we focus on Essence Prime, which is comparable with
OPL and MiniZinc.

Essence Prime provides the facility to model parameterised classes of problems, where an
individual problem instance is specified by giving values for the class parameters, for example
the integers n, startCol and startRow in Figure 3. The language supports Boolean and
integer finite-domain decision variables, both singly and collected into multidimensional
matrices, such as the one-dimensional matrix of integers tour in Figure 3. Constraints over
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these variables are expressed via arithmetic and logical expressions, as can also be seen in the
figure. Quantification and comprehension enable the concise statement of such expressions.
Essence Prime supports a number of global constraints (Rossi et al., 2006) that capture
common patterns in constraint modelling, including the all-different constraint present in
the figure (Régin, 1994), Global Cardinality Constraint (GCC) (Régin, 1996), and the table
constraint that is the focus of this paper.

2.3 Savile Row, Tailoring, and the Abstract Syntax Tree

We investigate TabID as a component of the constraint model reformulation tool Savile

Row (Nightingale et al., 2017). Savile Row is essentially a multi-pass term rewriting sys-
tem. It represents a model internally using several abstract syntax trees (ASTs) representing
the constraints, the objective function, the domain of each decision variable and parameter
(or matrix thereof), and other statements in the model. The parser reads a model in the
Essence Prime language, along with a parameter file giving a value to each of the problem
class parameters. There are several backends targeting different solvers, including mature
backends for CP and SAT solvers and a prototype ILP backend. The system has a num-
ber of different passes, some of which are always performed, others are required for specific
backends, and others are optional reformulations intended to improve the performance of the
solver. TabID is one optional reformulation. We refer to the entire process of transforming
a model into input for a solver as tailoring the model. The early steps of tailoring prior to
TabID are as follows:

• Problem class parameters and other constants (defined by letting statements) are
substituted into the model;

• All quantifiers and matrix comprehensions are unrolled;

• Matrices of decision variables are replaced with individual decision variables;

• Multi-dimensional matrix indexing is replaced with single-dimensional indexing of a
one-dimensional version of the matrix if required;

• Global constraints are identified by simple aggregation steps (Nightingale et al., 2017),
e.g. collecting a clique of not-equal constraints into a single all-different constraint.

In addition, simplifiers are applied after each pass to perform partial evaluation and to
maintain a normal form. In particular, negation is pushed towards the leaves of the AST
(similar to negation normal form), double negation is removed, and some operators are
rewritten when negated (for example, negated = is rewritten to 6=). Variable domains are
filtered using an external constraint solver prior to tabulation, and any assigned variables are
deleted. Details of simplifiers, the normal form, and domain filtering are given by Nightingale
et al. (2017).

As an example, consider the Knight’s Tour problem and its sequence model (shown in
Figure 3), with an 8 × 8 board. Part of the AST for this model is shown in Figure 4. The
tour matrix has been replaced with individual variables tour0, tour1, etc. The forAll

quantifier of Figure 3 has been unrolled to create n2 − 1 knight’s move constraints, each
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And

AllDifferent

CompoundMatrix

tour1 tour2 ...

Or

And

Equals

Abs 1

...

Sum

Mod

8tour1

Mod

8tour2

1 -1

Equals

Abs 2

...

...

A: B:

C:

D:

Figure 4: Part of the AST representing the constraints of the sequence model of Knight’s
Tour (Figure 3) where n = 8, showing the allDiff constraint and a part of one
of the knight’s move constraints linking two adjacent tour variables. Four AST
nodes are labelled A to D.

containing two adjacent tour variables. A fragment of one of the knight’s move constraints
is shown in the example AST. Also, the variable tour0 has been deleted because it was
assigned, and its assigned value has been removed from the other variable domains.

For TabID we consider Boolean and integer expressions, for example those represented
by nodes A, B, C, and D in Figure 4 (where A, B, and C are Boolean and D is integer).
We distinguish between top-level constraints and other Boolean expressions. Top-level con-
straints are Boolean expressions directly beneath the top And node (e.g. nodes A and B in
Figure 4). We refer to other Boolean expressions as nested (e.g. node C). Integer expres-
sions are always nested, they cannot be directly contained in the top-level conjunction. In
terms of the AST a table constraint is a Boolean expression with two arguments: a one-
dimensional matrix of decision variables, and a two-dimensional matrix representing a list
of satisfying tuples. Following the optional TabID pass, some further steps are required to
tailor the model for the target solver. We use the default settings of Savile Row which
can be summarised as follows, with further details given by Nightingale et al. (2017):

• Decomposition of constraint types that the target solver does not support;

• Common subexpression elimination (Active CSE) which factors out identical (or se-
mantically equivalent) expressions replacing them with a new decision variable (for
example, in the Knight’s Tour sequence model in Figure 3 there are identical absolute
value, division, and modulo expressions that would all be factored out by Active CSE);

• General flattening to extract nested expressions where the nesting is not allowed by
the target solver (for example, in Figure 3 the absolute value operator contains a sum
which (if not already extracted by CSE) would be extracted and replaced with a new
decision variable).
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In addition the SAT backend has a final encoding step where each integer variable is
encoded using order, direct, or both as required for the constraints containing the variable.
The remaining constraints (such as linear, element, and table constraints) are encoded to
CNF. Others such as all-different and GCC are decomposed before reaching the SAT back-
end. Further details of the SAT encoding are given in the Savile Row manual (Nightingale,
2024).

3. TabID: Identifying Promising Subproblems for Tabulation

We have designed four heuristics for TabID to identify cases where expert modellers might
experiment with tabulation to improve the performance of a model. The heuristics operate
on the AST, identifying AST nodes that are candidates for tabulation. The heuristics
are applied somewhat differently for top-level constraints, nested Boolean expressions, and
integer expressions, and we describe these cases in Section 3.2 below. First we describe the
types of changes tabulation can make to the AST.

Note that the heuristics to identify promising subproblems do not take account of the
size of the resulting table, nor the work required to generate it. The heuristics can and
frequently do identify candidates that would be impractical to tabulate. Progress checks
(described in Section 4) allow tabulation to be abandoned early and play an important role
in avoiding overhead.

Figure 5 provides an overview of the system, showing how the set of heuristics are
combined with other components described in Section 4.

3.1 AST Modifications

The AST that TabID acts upon is described in Section 2.3 with an example in Figure 4.
Tabulation modifies the AST in one of two ways depending on the type (integer or Boolean)
of the node to be replaced. When the AST node is of type Boolean, the subtree rooted at
the node is directly replaced with one table constraint. For example, if node B of Figure 4
were to be replaced, the resulting tree would be Figure 6 (upper) in which B has been
replaced with node E. Node B is a top-level constraint with variables tour1 and tour2 in
scope, and its replacement is a top-level constraint with the same scope. If the node to be
replaced is a nested Boolean expression, such as node C in Figure 4, then the replacement
table constraint will also be nested. Some solver types do not allow nested table constraints
and in this case it would be extracted and replaced with a new Boolean variable, however
this occurs in another pass after TabID is complete.

When the node to be replaced is of type integer, the node is replaced with a new variable
and a top-level constraint is created to link the new variable to the variables in scope of
the tabulated expression. For example, node D of Figure 4 is replaced with new auxiliary
variable aux1 in Figure 6 (lower), and a new table constraint G is added to the top-level
conjunction with aux1 and tour1 in scope. The new table constraint is generated from an
equality between the new variable and the expression to be tabulated, which in this example
is aux1 = tour1%8. The domain of the auxiliary variable is generated from the expression
using the extended domain filtering method (Nightingale et al., 2017) (the default method
for all variables introduced by Savile Row).
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problem instance (.eprime model, .param file)

do initial tailoring
(see Section 2.3)

identify promising sub-
trees using heuristics

tabulatecache
progress checks,

work limits,
SAT size limit

re-formulate for
target solver

external solver solves

interpret solver output

solution, UNSAT, or TIMEOUT

TabID

Savile Row

initial AST

AST candidate
expressions

AST with some expres-
sions replaced by tables

solver-specific problem file

solver output or timeout

Figure 5: An overview of the TabID process as part of the constraint solving pipeline in
Savile Row. The white boxes with solid borders represent data; the grey boxes
represent processes.

Finally, both examples in Figure 6 have an identifier (aux2) in place of the table of
satisfying tuples; this is because matrices of constants are cached to avoid duplication.

3.2 Identifying Promising Constraints

First we define the four heuristics as they apply to top-level constraints (i.e. constraints in
the top-level conjunction). The heuristics are as follows, in the order that they are applied:

Identical Scopes identifies sets of two or more constraints whose scopes contain the same
set of decision variables.

Duplicate Variables identifies constraints with at least one variable occurring more than
once in the constraint.
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And

AllDifferent

CompoundMatrix

tour1 tour2 ...

Table

CompoundMatrix

...

aux2

tour1 tour2

E:

After tabulation of node B:

And

AllDifferent

CompoundMatrix

tour1 tour2 ...

Or

And

Equals

Abs 1

...

Sum

aux1 Mod

8tour2

1 -1

Equals

Abs 2

...

...

F:

After tabulation of node D:

Table

CompoundMatrix aux2

aux1 tour1

G:

Figure 6: Two examples of tabulation applied to the AST shown in Figure 4. Upper: Node B
of Figure 4 is replaced with a table constraint labelled E. Both top-level constraints
and nested Boolean expressions are directly replaced when they are tabulated.
Lower: Node D of Figure 4 (an integer expression) is replaced with a new auxiliary
variable (F), and a table constraint G is attached to the top-level And node. The
scope of the table constraint is the scope of the tabulated expression plus the new
variable (aux1 in this case).

Large AST identifies a constraint where the number of nodes in the AST is greater than
5 times the number of distinct decision variables in scope.

Weak Propagation identifies a constraint c1 that is likely to propagate weakly (i.e. less
than GAC), such that there is another constraint c2 that propagates strongly, with at
least one variable in the scope of both c1 and c2. The method of estimating whether
a constraint will propagate strongly is described in Section 3.3. Note that only c1 is
identified for tabulation.

Subproblems containing more than 20 distinct variables are not candidates for tabulation
because they would almost certainly be impractical to tabulate. Each of the four heuristics
is based on a simple rationale regarding either propagation strength or propagation speed
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of the constraint(s). The constants used in these heuristics were chosen by hand based on
preliminary experiments.

First we consider the Identical Scopes heuristic. It is well known that multiple constraints
on the same scope may not propagate strongly together, even if each constraint individually
does propagate strongly. The Identical Scopes heuristic is intended to collect such sets of
constraints into a single table constraint that may propagate more strongly and also may
be faster to propagate. An extreme example would be two contradictory constraints on
the same scope (e.g. x < y and y < x) which would be replaced by a trivially false table
constraint. The idea behind Identical Scopes is not new: constraint networks are defined as
normalized iff no pair of constraints has the same scope (Bessiere, 2006).

The Duplicate Variables heuristic identifies constraints that are likely to propagate
weakly even when the target solver has a strong propagator for the constraint type. In
most cases a GAC propagator will enforce GAC only when there are no duplicate variables.
In some cases it is intractable to enforce GAC with duplicate variables. GAC on the Global
Cardinality Constraint (GCC) is known to be NP-hard with duplicate variables (Bessière
et al., 2007), therefore Régin’s polynomial-time GAC propagator (Régin, 1996) achieves
GAC only when there are no duplicate variables. The knight’s move constraint of the
Knight’s Tour sequence model (Section 1.2) triggers the Duplicate Variables heuristic: each
decision variable in scope is mentioned four times. In the evaluation we show that tabulating
this constraint improves solver performance very substantially.

The Large AST heuristic identifies constraints that are not compactly represented in the
AST. The knight’s move constraint of the Knight’s Tour sequence model also triggers the
Large AST heuristic. It has two decision variables in scope, and the AST representation
(part of which is illustrated in Figure 4) has 43 nodes. In this case, tabulating the constraint
avoids the need to create auxiliary variables during CSE and flattening (Section 2.3), and
also strengthens propagation of the constraint. In general the rationale behind the heuris-
tic is that a table propagator may be more efficient while achieving the same or stronger
propagation.

Finally we consider the Weak Propagation heuristic. It is intended to catch cases where
the weak propagation of one constraint is hindering strong propagation of another. The
knight’s move constraint of the Knight’s Tour sequence model also triggers the Weak Prop-
agation heuristic: the representation of the knight’s move constraint for a CP solver is not
expected to enforce GAC (because it contains arithmetic such as sum and modulo), and it
overlaps with an allDiff constraint that is expected to enforce GAC. To implement the
Weak Propagation heuristic we need to estimate which constraint expressions are expected
to propagate strongly. Section 3.3 describes how we do this.

Each of the four heuristics proves to be valuable: each one is triggered on at least one of
the problems that we study in the evaluation. The heuristics are applied in the order that
they are listed in this section.

In some cases it can be useful to tabulate an expression within a constraint without
tabulating the entire top-level constraint. One example is where the top-level constraint
is out of reach of tabulation (i.e. tabulation would produce an impractically large table or
take too long). We have adapted the heuristics in two ways (to identify nested Boolean and
integer expressions respectively) as described in Appendix A. The goals remain the same:
to strengthen propagation, or to replace an unwieldy expression to improve the efficiency
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of propagation. The adapted heuristics will be distinguished from top-level heuristics by
adding (Nested) or (Integer) to the name (e.g. Large AST (Nested), Large AST (Integer)).

3.3 GAC Estimate

Given an expression e, the GAC estimate is a heuristic to estimate whether the represen-
tation of e for a conventional CP solver will propagate strongly. In cases where CP solvers
vary, we use Minion (Gent et al., 2006) as a reference. When e is a top-level constraint, the
GAC estimate is simply an estimate of whether the solver will enforce GAC on e. Nested
Boolean expressions are treated identically to top-level constraints. When e is an integer
expression, the GAC estimate is applied to the constraint a = e (where a is a new auxil-
iary variable), with the rationale that e will in many cases be extracted by flattening and
replaced with a (see Section 2.3), creating the constraint a = e.

The definition of the GAC estimate is recursive on the AST representing the expression e.
To avoid undue complexity the same GAC estimate is used regardless of target solver. At the
leaves of the AST, constants and references to variables are defined to be strong. Each type
of internal AST node (such as sum or product) has its own rules to define when it is weak
or strong. For example, the allDiff constraint often has a GAC propagator so it is defined
to be strong iff all its children are strong. Therefore the constraint allDiff(x1, x2, x3) is
strong. A sum is defined to be strong when all its children are strong, and for each child c the
interval of possible values [a, b] of c satisfies b− a ≤ 1. The reason is that sums are usually
implemented with bound consistency propagators that are in general weaker than GAC but
equivalent to GAC in this specific case. The constraint allDiff(x1 − x2, x3 − x4, x5 − x6)
on integer variables x1, . . . , x6 ∈ {1 . . . 3} is therefore defined to be weak. Its representation
for a CP solver is unlikely to enforce GAC on the variables x1, . . . , x6 even when allDiff

has a GAC propagator.

4. TabID: Tabulation, Caching, Progress Checks, and Limits

Having identified promising candidates, the next step is to perform tabulation efficiently and
with appropriate work limits to avoid impractically large tables and long tabulation times.
The method to generate tables is a straightforward depth-first search and is described in
Appendix B. For efficiency we have implemented a cache to avoid repeated generation of
identical tables for expressions that are semantically equivalent (up to renaming of decision
variables). The cache relies on a normal form for expressions, and both the cache and the
normal form are described in Section 4.1. Finally, in Sections 4.2 and 4.3 we describe work
limits and progress checks applied to tabulation. Figure 5 provides an overview showing
how the various components of TabID fit together.

4.1 Caching

We use caches to avoid generating identical tables for constraints that are semantically
equivalent (up to renaming of decision variables). To store or retrieve a table for an ex-
pression e, we first place e into a normal form as follows. First the expression is simplified
and normalised as described in Section 2.3. Then all associative and commutative k-ary
expressions (such as sums) and commutative binary operators (e.g. =) within e are sorted.
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Alphabetical order is used because it will group together references to the same matrix (all
else being equal) and place references to different matrices in a consistent order regardless
of the indices. The normal form is not only used for accessing the caches. It is also ap-
plied before generating a table for an expression e to ensure that tables are generated with
columns in the correct order for storing in the cache.

After applying the normal form, the expression is traversed in depth-first, left-first order
to collect a sequence of decision variables (without duplication), and the variables in the
sequence are then renamed to a canonical sequence of names to create e′. Thus the actual
variable names in e do not affect e′, only their relative positions. e′ and the variable domains
together are used as a key to store and retrieve tables in the caches.

As an example, the e′ expression for the Knight’s Tour move constraint from Figure 3
with n = 8 is shown below.

((1=|((x0%8) - (x1%8))|) /\ (2=|((x0/8) - (x1/8))|)) \/

((1=|((x0/8) - (x1/8))|) /\ (2=|((x0%8) - (x1%8))|))

There are two in-memory caches: the first contains tables, and the second stores cases
where tabulation failed because it failed a progress check or reached the node limit. The
in-memory caches do not persist after one tailoring process on one problem instance. We
have also implemented a persistent filesystem cache but this is disabled for the evaluation
because it would cause timings to change depending on the order of processes.

4.2 Progress Checks and Work Limits

In some cases a heuristic will identify a constraint that is too large to be tabulated. Simple
work limits (such as those applied in our earlier work (Akgün et al., 2018) where we limited
the depth-first search to generate at most 10,000 tuples, and to fail and backtrack at most
100,000 times) are not ideal because time can be wasted attempting to tabulate constraints
that are far beyond reach. As an alternative we propose progress checks where the progress
of the algorithm through the assignment space is compared to the total size of the space, and
if the algorithm seems to be making insufficient progress then the search is stopped early.
The depth-first search algorithm progresses through the assignment space in lexicographic
order, making it straightforward to calculate the number of total assignments explored so
far from the current (partial) assignment.

Suppose we have a constraint on variables x1, . . . , xr with domains D1, . . . , Dr, and we
reached a partial assignment setting variables 〈x1, . . . xk〉 to values 〈v1, . . . , vk〉 where k ≤ r.
The partial assignment is completed by filling in the minimum value of the domain for each
unassigned variable:

τ = 〈v1, . . . , vk,min(Dk+1), . . . ,min(Dr)〉

The formulas below assume that each domain is a single contiguous range of integers Di =
{0 . . .max(Di)}. The implementation has an additional step to map domain values into a
single contiguous range. The last assignment number A and current position C are:

A =
r

∑

i=1



max(Di)×
r
∏

j=i+1

|Dj |
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C =

r
∑

i=1



τi ×

r
∏

j=i+1

|Dj |





The progress check uses the current node count (nodeCount) as well as the parameter
nodeLimit. It compares the progress made so far to the proportion of the search node limit
that has been used so far, effectively using a linear extrapolation to estimate whether the
search will complete within the node limit. The search is abandoned if:

C

A
<

nodeCount

nodeLimit

The term C
A

represents the progress made so far through the search space, and nodeCount
nodeLimit

is
the proportion of the search node budget used so far. The progress checks are pessimistic: if
a search is expected to slightly exceed the node limit it is abandoned, even though the search
algorithm is unlikely to progress through the assignment space at a constant rate. A more
optimistic strategy could be obtained by adjusting the formula above (e.g. by multiplying the
left-hand side by an additional parameter that is > 1), or instead a stochastic estimation
procedure could be used (Knuth, 1975). Progress checks are carried out after 1000 and
10,000 nodes, and then after every 10,000 nodes. In addition to the progress checks, the
search is terminated if it reaches nodeLimit nodes.

One further limit is applied when tabulating nested Boolean expressions. For solvers
or encoding backends that do not support reified or nested table constraints, we limit A
to be no more than nodeLimit. The reason is that a nested Boolean expression would be
replaced with a nested table constraint by tabulation (as in Section 3.1) which would then
be replaced with a new Boolean variable and a top-level reified table constraint. If the solver
does not support reified table constraints, it is converted to a conventional table constraint
with exactly A satisfying tuples. This final step is problematic if A is large, therefore we
limit A.

4.3 SAT Size Limit

Encoding to SAT and applying a state-of-the-art SAT solver can be very effective for some
problem classes. Savile Row has a SAT backend (briefly described in Section 2.3) that
includes encodings or decompositions for all constraints in Essence Prime, and with a choice
of two encodings for table constraints. Applying TabID prior to SAT encoding can improve
solver performance on amenable problem classes, as we will show in Section 6. However, in
some cases applying TabID can dramatically increase the size of the SAT formula and as a
consequence reduce solver performance.

The SAT size limit is an optional limit in TabID that prevents large increases in the SAT
encoding size (measured by the number of clauses). Given a candidate Boolean expression
e, the SAT size limit first estimates the encoding size of e, then limits the encoding size of
the generated table constraint to be no more than 2 times larger than that of e. A small
increase is allowed because a table constraint encoding may have better properties than
other encodings (for example, unit propagation simulating GAC).

To estimate the encoding size of e, a CSP instance C is made containing only e and
decision variables in the scope of e. C is tailored for encoding to SAT (as described in

2014



TabID: Automatic Identification and Tabulation of Subproblems

Section 2.3), creating C ′. C ′ is encoded to SAT2 and the encoding size is recorded (excluding
the encoding of variables in C). Finally, the encoding size of the generated table constraint
is limited by bounding the number of tuples generated (if the encoding size is a function of
the number of tuples), or simply by encoding the generated table constraint and rejecting
it if the encoding is too large.

5. Feasibility Evaluation of TabID

We now come to the first part of our evaluation, to show that TabID can identify and
tabulate promising subproblems of a wide range of models. Here we are evaluating TabID’s
set of heuristics together with the progress checks and work limits, to show that they are
of use in successfully tabulating automatically. For this feasibility evaluation, we do not
consider the effectiveness of tabulations: in Section 6, we will show that in many cases
applying TabID strongly improves the total time to tailor and solve an instance (including
time taken to identify candidates and perform tabulation).

This feasibility evaluation is divided into two. We first examine, in Section 5.1, what
we call ‘Baseline Problems’ where we have identified examples of tabulation in the litera-
ture. Tabulation (whether performed manually or with tool support) is a well-established
technique, and for some problem classes and models there are examples in the literature
of subproblems that can profitably be tabulated. For these models we compare with the
literature, in addition to comparing the original model to the version after applying TabID.
We then examine, in Section 5.2, seven new case studies where tabulation has not been
previously identified in the literature but where TabID was able to tabulate automatically.
In Section 5.3 we summarise the results of our study and how each heuristic performs.

Following some preliminary experiments, we have set the parameter nodeLimit to 100,000
for our feasibility evaluations. Also, we chose not to apply the SAT size limit. The effect
of the node limit can be seen (for example) with the Killer Sudoku problem where some
constraints of arity 5 (on variables with domain size 16) fail a progress check but others are
successfully tabulated. The base models (with parameter files) are publicly available online
(Akgün et al., 2024) alongside a version of Savile Row that implements TabID.

5.1 Baseline Problems

The set of baseline problems consists of four problems presented by Dekker et al. (2017), and
two others: Sports Scheduling Completion and Maximum Density Still Life. In the first four
cases we show that TabID can automatically identify and tabulate the same subproblems
that Dekker et al. identified by hand and found to be useful, as well as finding some other
opportunities for tabulation. Similarly, for Sports Scheduling Completion, TabID identifies
and tabulates the same constraint as in the literature. For Maximum Density Still Life,
there is no exact equivalent in the literature but TabID tabulates the “easy formulation”
constraint from the model of Bosch and Trick (2004, Section 1.1).

2. With some efficiency measures, e.g. generating the entire encoding of C′ is not always necessary.
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5.1.1 Black Hole

Black Hole was introduced as a variant of patience in Section 1.2, along with a constraint
model of the problem. To recap, the model has two matrices of variables: blackHole, the
sequence of cards played into the black hole; and its inverse cardSequence (the index of each
card in blackHole). We post the adjacency constraint on each pair of adjacent variables
in blackHole. Less-than constraints on cardSequence ensure that the cards in a fan are
not played out of order. Both matrices have an allDiff constraint, and they are linked by
channelling constraints. An instance of Black Hole is a permutation of the 52 cards. We
experimented with the 102 randomly-generated instances from CSPLib (Nightingale, 2018).

All adjacency constraints trigger the Weak Propagation heuristic because they overlap
with the allDiff on the blackHole matrix. In addition the Identical Scopes (Nested)
heuristic is triggered by a small number of equalities (no more than 9) within the channelling
constraints. No other constraint triggers any heuristic, so our set of candidates is very similar
to those identified by hand (Gent, Jefferson, Kelsey, Lynce, Miguel, Nightingale, Smith, &
Tarim, 2007). All candidates are successfully tabulated.

5.1.2 Block Party Metacube Problem

The Block Party Metacube Problem is a puzzle in which eight small cubes are arranged into
a larger metacube, such that the visible faces on each of the six sides of the metacube form
a ‘party’. Each small cube has a symbol at each corner of each of its faces (24 symbols per
cube in total), and each symbol has three attributes, with each attribute in turn taking one
of four values. To form a valid party (the party constraint), the four small cubes forming
a visible face of the large cube must be arranged so that the four symbols in the middle of
the visible face are either all different, or all the same, for each of the three attributes.

The model we use is closely based on Dekker et al. (2017) and we use the same set of
instances. The model has two matrices of decision variables, cubeAt and symAt. Matrix
cubeAt encodes a permutation of the 8 cubes (numbered 1 to 8), representing the relative
locations of the cubes in the metacube. Further, symAt represents for each of the 4 symbol
positions located in the middle of each of the 6 faces of the metacube (24 symbol positions)
which symbol is visible in that position. A hand-computed matrix pp encodes how the 24
positions in which symbols are placed on a cube occur together at corners of a cube. A set
of channelling constraints link each cubeAt variable to three symAt variables.

There are some notable differences between our model and Dekker et al. They introduce
a variable for each attribute at each of the 24 symbol positions, whereas in our model the
expression for the attribute (one of the following: symAt[i]/16, symAt[i]%4, or (symAt
[i]%16)/4 with constant i) is used wherever it is needed. Where necessary Savile Row

will introduce a variable for an attribute expression during tailoring. Also, Dekker et al.
introduced a local rotation variable for each small cube in their non-tabulated model. The
rotation variables are not present in their tabulated model. Essence Prime does not have
local decision variables so we used an existential quantifier in place of each rotation variable.

Dekker et al. tabulated the 8 channelling constraints linking cubes and symbols. The
Duplicate Variables, Large AST, and Weak Propagation heuristics all identify the same
set of channelling constraints (with arity 4) and they are all successfully tabulated. The
Weak Propagation (Nested), Large AST (Nested), or Weak Propagation (Integer) heuristics
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identify the attribute expressions (e.g. symAt[i]/16) or an equality of two attribute ex-
pressions, contained in the party constraints. All such expressions are successfully tabulated
(and all have arity 2). Larger nested sub-expressions of the party constraints are identified
by Identical Scopes (Nested), but almost all fail the progress check at 1,000 nodes. At most
4 are tabulated in any given instance.

5.1.3 Handball Tournament Scheduling

The Handball Tournament Scheduling problem is to schedule matches of a tournament, while
respecting the rules governing the tournament, and minimising a cost function related to the
availability of venues. We use the model and the same 20 instances of Dekker et al. (2017),
which is simplified from the full model (Larson et al., 2014) by omitting some constraints.
The problem has 14 teams (in two divisions of 7), and briefly it requires constructing one
round-robin tournament for each division (in periods 1-7), followed by a round-robin tour-
nament for all teams (periods 8-20) then its mirror image (periods 21-33). Constraints are
either structural (such as balancing home and away games) or seasonal (such as respecting
venue unavailability, given as a parameter). The main sets of variables represent: the home-
away pattern (HAP) indexed by row and period, with values home, away, or bye (i.e. does
not play); the break period for each row of HAP, when the alternating home-away pattern
is broken by the team playing at home twice or away twice in sequence; the contestant

(opponent) for each entry in HAP; the team assigned to each row of HAP, named teamof;
and the cost of each row (rowcost), which contributes to the objective.

Dekker et al. reformulated the original model in three steps. First, they generated a
table constraint to channel between a row of HAP and its corresponding break variable
(and reported no significant speed-up from this). Second, they reformulated the row cost
constraint for each row of HAP to be in terms of break, teamof, and rowcost (replacing
HAP variables with break). Thirdly, they applied tabulation to the row cost constraints
(generating arity 3 table constraints).

TabID is not capable of reformulating a constraint to change its scope, so we have
performed the first two steps manually and we evaluate whether TabID can do the final step
automatically. The model presented to TabID closely follows Dekker et al., except that local
decision variables declared within the row cost constraint are replaced with an existential
quantifier (because Essence Prime does not have local decision variables). The quantifier
unrolls to a disjunction where each disjunct corresponds to one value of the break variable.

When TabID is disabled, using a disjunctive version of the row cost constraint would
be artificially bad so in this case we use a different formulation that is stated on a row of
the HAP matrix, teamof, and rowcost. The formulation of the objective is similar to the
baseline (non-tabulated) model of Dekker et al. The rest of the model is identical to the
version presented to TabID.

The Duplicate Variables, Large AST, and Weak Propagation heuristics identify the row
cost constraints and all are tabulated. Also, unary constraints on contestant are identified
by Weak Propagation, while Identical Scopes (Nested) identified equalities containing a
single contestant variable. Weak Propagation (Integer) triggered for shift expressions used
in matrix indexing and linear expressions involving contestant and HAP. All candidates
mentioned here were tabulated.
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5.1.4 JP Encoding Problem

The JP Encoding problem was introduced in the MiniZinc Challenge 2014. In brief, the
problem is to find the most likely encoding of each byte of a stream of Japanese text where
multiple encodings may be mixed. The encodings considered are ASCII, EUC-JP, SJIS,
UTF-8, or unknown (this choice incurs a large penalty). Once again our model closely
follows that of Dekker et al. (2017). We use all 10 instances in the MiniZinc benchmark
repository. The instances are from 100 to 1900 bytes in length. Each byte has four variables:
the encoding, a byte_status variable that combines the encoding with the byte’s position
within a multibyte character, a char_start variable indicating whether the byte begins a
new multibyte character, and the score which contributes to the objective.

Dekker et al. tabulate three subproblems. The first connects two adjacent status

variables, and the Identical Scopes heuristic triggers on this. The second links status,
encoding, and char_start, and we found that the Identical Scopes heuristic separately
links status to encoding, and status to char_start. The encoding and char_start

variables are both functionally defined by status so no propagation is lost with two binary
table constraints compared to one ternary table. Thirdly Dekker et al. tabulate the con-
straint linking the score to the encoding. The Duplicate Variables and Large AST heuristics
trigger on this. In summary, the set of subproblems identified by TabID is not identical to
Dekker et al., but is exactly equivalent in propagation strength (assuming GAC is enforced
on table constraints). All candidates are successfully tabulated (creating binary tables).

5.1.5 Maximum Density Still Life

The Maximum Density Still Life problem, CSPLib problem 32 (Smith, 2015), is to maximise
the number of live cells in an n × n grid in such a way that applying the rules of John
Conway’s Game of Life would leave the grid unchanged. Cells outside the grid are assumed
to be dead. The rules state that a live cell survives if it has two or three live neighbours,
but dies otherwise. A dead cell will only become alive if it has exactly three live neighbours.
Maximum Density Still Life has been solved for extremely large grids (Chu & Stuckey, 2012)
using a sophisticated CP model and other techniques. For sufficiently large grids, a provably
optimal solution is constructed from a finite set of tiles, thus providing a solution for any n.

Our focus is not on solving Still Life for large n but in evaluating tabulation, and so
we have simply modelled the problem using an n× n matrix g of Boolean variables (where
true means live), surrounded by a border of width 2 of cells that are false. The rules are
implemented with two implication constraints, one setting the cell to true if exactly three
of the eight neighbours are alive; the other setting the cell to false if fewer than 2 or more
than 3 neighbours are alive; leaving cells with exactly two live neighbours unconstrained, as
they would be unchanged in the next step of the game. The constraints are applied to each
cell in the n× n matrix and to the inner layer of border cells. We used the instances where
n ∈ {6..15}. Letting sum(neighbours) abbreviate the sum of the 8 neighbours of g[i,j],
the constraints for one cell g[i,j] are written as follows:

sum(neighbours) = 3 -> g[i,j],

(sum(neighbours) > 3 \/ sum(neighbours) < 2) -> !g[i,j]

For each cell within the n × n matrix, the Identical Scopes heuristic identifies the two
implication constraints (together) as a candidate for tabulation, and they are successfully
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tabulated (with arity 9 for cells not touching the edges). For the cells in the inner border (and
away from the corners), each cell has 3 unassigned neighbours and Savile Row simplifies the
two constraints to a single sum 6= 3 constraint which is not a candidate for tabulation. When
tabulation is disabled, the three occurrences of sum(neighbours) are removed by common
subexpression elimination (Nightingale et al., 2017) and replaced with a new variable.

Our model is logically equivalent to the “easy formulation” constraint model of Bosch and
Trick (2004, Section 1.1). Tabulation seemed promising as an improvement to this model
without needing to reformulate the constraints to take into account additional mathematical
insights (Chu & Stuckey, 2012; Smith, 2002). The constraints may seem to be natural
candidates for tabulation, but in fact (as we will see in Section 6.3) tabulation provides no
benefit, slowing down solving in most cases. We therefore include Maximum Density Still
Life as an example of tabulation where the result negatively affects performance.

5.1.6 Sports Scheduling Completion

The Sports Scheduling Completion problem is to construct a schedule of n(n− 1)/2 games
among n teams (n must be even), where each team plays every other team once. The
schedule is divided into n − 1 weeks, in each week there are n/2 periods, and one game is
played in each period of each week. No distinction is made between home and away games.
Each team plays at most twice in a period, and each team plays exactly once each week (Van
Hentenryck et al., 1999).

The schedule is represented explicitly with a matrix schedule[w,p,i], indexed by the
week w, period p, and i which is 1 or 2 for the two teams in the game. Some symmetry
is broken by ordering the two teams in each game in the schedule matrix. allDiff

constraints are used to ensure each team plays once each week, and a set of gcc constraints
(one per period) ensure each team plays at most twice in each period (with an auxiliary
variable card indicating the number of games played by each team in each period). A second
matrix game[w,p] (also indexed by week and period) represents each game with a single
integer. The two representations are channelled with the following constraints:

forAll w : WEEKS . forAll p : PERIODS .

game[w,p] = n*(schedule[w,p,1]-1) + schedule[w,p,2]

Finally an allDiff constraint is posted on the game matrix to ensure every team plays
every other team exactly once.

In Sports Scheduling Completion, we start with a partial schedule where some of the
slots in schedule are assigned. 10 instances were generated with n = 12 and 10 slots
assigned a team at random with uniform distribution. Trivially unsatisfiable instances were
filtered out.

The Weak Propagation heuristic identifies each of the channelling constraints (on 3
variables), and all are tabulated. Van Hentenryck et al. (1999) manually tabulated the same
constraint in their OPL model of Sports Scheduling. Weak Propagation also identifies linear
equality constraints over the card variables for each period (introduced automatically as
implied constraints from gcc), and these are also tabulated.
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5.2 New Case Studies

In this section we present seven case studies that were not featured in the literature to our
knowledge. In each case we briefly describe the model and discuss the expressions that
trigger the TabID heuristics.

5.2.1 Accordion Patience

‘Accordion’ (BVS Development Corporation, 2017) is a single-player (patience or solitaire)
card game. The game starts with the chosen cards in a sequence, each element of which
we consider as a ‘pile’ of one card. Each move we make consists of moving a pile on top of
either the pile immediately to the left, or three to the left (i.e. with two piles between the
source and destination) such that the top cards in the source and destination piles match
by either rank (value of the card, e.g. both 7) or suit (clubs, hearts, diamonds, or spades).
The result of each move is to reduce the number of piles by 1 and change the top card of
the destination pile. The empty space left at the position of the source pile is deleted. The
goal is to keep making moves until just one pile remains. We consider the ‘open’ variant
where the positions of all cards are known before play starts, in a variant studied by Ross
and Knuth (1989) where we play with a randomly chosen subset of n ≤ 52 cards. A problem
instance consists of the subset of cards in play, and their initial positions. We have generated
5 random instances for each value of n ∈ {11, 12, 13, 14, 15, 16}.

We model accordion with a matrix called piles of (n − 1) × n variables with domain
{0 . . . 51}, the element piles[i,j] representing the top card of the stack in position j in
the sequence after move i. Only the top card in each stack is represented; others are not
relevant. We have 2(n − 1) decision variables for the n − 1 moves, expressing which pile
is moved to which other pile (named from and to). We also have two variables per move
representing the top card of the stack that is moved (fromcard), and the top card of the
stack it is moved onto (tocard). Frame axioms ensure that unmoved cards are copied from
one timestep to the next, and that the unused slots at each timestep fill up with zeroes. A
set of constraints link to with tocard, and from with fromcard by indexing the piles

matrix. Finally the move is implemented by indexing into piles with from and to.

There are two key constraints on the moves. The first (Move1) is that the move is of
either one or three places, written as follows:

forAll t : int(1..n-1) . to[t] = from[t] - 1 \/ to[t] = from[t] - 3

The other key constraint (Move2) ensures that the top cards of the two piles are of the
same rank or suit. This is expressed by stating that the relevant two cards either have the
same value modulo 13 or integer-divided by 13, as follows:

forAll t : int(1..n-1) .

fromcard[t]%13 = tocard[t]%13 \/ fromcard[t]/13 = tocard[t]/13

All Move1 and Move2 constraints are identified by the Duplicate Variables, Large AST,
and Weak Propagation heuristics and are tabulated, creating binary tables. The Weak
Propagation (Integer) heuristic identifies expressions of the form x-c where c is a constant.
These expressions come from indexing into the piles matrix with from and to, and they
are tabulated. Identical Scopes identifies a small number of frame axiom constraints which
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are tabulated. Preliminary experiments showed that almost all benefit came from tabulating
Move1 and Move2 constraints.

5.2.2 Coprime Sets

Erdős and Sárközy (1993) studied a range of problems involving coprime sets. A pair of
numbers a and b are coprime if there is no integer n > 1 which is a factor of both a and
b. The Coprime Sets problem of size k is to find the smallest m such that there is a subset
of k distinct numbers from {m/2 . . .m} that are pairwise coprime. In our model, the set is
represented as a sequence V of integer variables. Each pair of variables V[i] and V[j] has
a set of coprime constraints, one for each potential factor in {2 . . .m}:

forAll d : int(2..m) . ((V[i]%d != 0) \/ (V[j]%d != 0))

Adjacent variables in the sequence are ordered with less-than constraints to break sym-
metry. Also, the lower bound of m/2 is enforced with constraints V[i]>=(V[k]/2) for each
i from 1 to k-1. Finally the variable V[k] is minimised.

In the experiments, we used the instances where k ∈ {8 . . . 25}. For each pair of vari-
ables, the Identical Scopes heuristic is triggered by the coprime constraints, a symmetry
breaking constraint if one exists, and a lower-bound constraint if one exists. For instances
of size 8 . . . 19, tabulation is successful for each candidate set of constraints, and all original
constraints are replaced with binary tables. For the larger instances, Large AST (Nested)
and Weak Propagation (Nested) identify sub-expressions of the coprime constraint: (V[i]%
d != 0), and these are tabulated.

5.2.3 Killer Sudoku

Killer Sudoku, CSPLib problem 57 (Nightingale, 2015), is a popular puzzle similar to the
classical Sudoku, where an empty 9× 9 grid is filled in with numbers 1 . . . 9, such that each
row, column and the nine non-overlapping 3× 3 sub-squares take different values. In Killer
Sudoku there are also clues (which differ between instances). Clues are sets of cells that
sum to a given value (and also take different values). We use a straightforward model where
each cell of the grid has one decision variable with domain {1 . . . 9}. The variables of each
row, column and non-overlapping 3×3 sub-square are constrained by allDiff. Traditional
9× 9 Killer Sudoku instances are trivial for a constraint solver, so we use an existing model
for the 16× 16 case, and an existing set of 100 16× 16 instances (Nightingale et al., 2017).
The instances are all satisfiable but unlike conventional Killer Sudoku puzzles, they may
have more than one solution.

Each clue is a set of cells (from 1 to 5 cells) that are contiguous. For each clue, the model
contains both an allDiff (except for size 1 clues) and a sum equality constraint on the
same scope. In a conventional constraint solver (without clause learning), the model prop-
agates poorly and solving times can be poor. It was shown by Nightingale et al. (2017)
that associative-commutative common subexpression elimination (AC-CSE) (when com-
bined with implied sum constraints generated from the allDiff constraints) can improve
solving times substantially by connecting the two constraints on each clue, and also con-
necting the clues to the rules. The constraints below represent a size 3 clue from one of the
instances.
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(field[3,4] + field[4,4] + field[4,5]) = 26,

allDiff([field[3,4], field[4,4], field[4,5]])

For each clue of size 3 to 5, the two clue constraints are (together) identified as a candidate
by the Identical Scopes heuristic. For clues of size 2, the clue allDiff is removed prior
to tabulation because it is subsumed by a larger allDiff, leaving just the sum equality
constraint. The sum equality triggers the Weak Propagation heuristic. Clues of size 2
to 4 are tabulated, but in some cases clues of size 5 cannot be tabulated. For example,
the first instance (named sol1 in the repository) has 9 clues of size 5, of which 6 were
successfully tabulated. The other 3 failed the progress check after 10,000 nodes (as described
in Section 4.2). In each case the arity of the generated table is equal to the size of the clue.

5.2.4 Knight’s Tour Problem

The Knight’s Tour Problem was described in Section 1.2. Recall that we use the Hamiltonian
path version of Knight’s Tour, i.e. the last square visited is not required to be a knight’s
move from the first square visited. An instance defines n and the starting location of the
knight. We experiment with instances where n ∈ {6 . . . 12, 15, 20, 25, 30, 35} and with two
starting locations, (0, 0) and (0, 1), for 24 instances in total.

We use two models, and in both the location of the knight is encoded as a single integer
(nx + y) where (x, y) are the coordinates of the knight on the board (from 0). The first
model is the sequence model introduced in Section 1.2 (see Figure 3), in which we have a one-
dimensional matrix of variables (tour), with tour[i] representing the location of the knight
at time-step i. The constraints enforce that initially the knight is at the given location, it
never revisits a location (via allDiff), and each adjacent pair tour[i] and tour[i+1]

corresponds to a knight’s move. The knight’s move constraint uses integer division and
modulo to obtain the x and y coordinates. For convenience we re-cap this constraint here:

((|tour[i]%n - tour[i+1]%n| = 1) /\ (|tour[i]/n - tour[i+1]/n| = 2)) \/

((|tour[i]%n - tour[i+1]%n| = 2) /\ (|tour[i]/n - tour[i+1]/n| = 1))

The second model (named successor) has a matrix of variables next which indicate the
successor of each location. The next variables are constrained by allDiff. In addition, it
has all variables and constraints of the sequence model and a set of channelling constraints
connecting next to tour, ensuring there are no cycles in next.3 The channelling constraints
are as follows:

forAll i : int(0..tourLength-2). next[tour[i]] = tour[i+1]

The knight’s move constraint triggers the Duplicate Variables, Large AST, and Weak
Propagation heuristics. For both models, when n ≤ 15, all knight’s move constraints are
tabulated (creating a binary table). For instances where n = 20, the first 15 or 16 are
tabulated (where variable domains have been reduced by preprocessing), and the number

3. The standard CP model of a Hamiltonian path problem uses a successor viewpoint and a global constraint
(e.g. path in Gecode (Gecode Team, 2024)). Savile Row and Minion do not have the path constraint.
Instead the successor model loosely follows an example in Gecode (Gecode Team, 2024) (credited to
Gert Smolka) which has successor, predecessor, and jump variables that give the index of each location
in the sequence. In preliminary experiments our model performed slightly better than the Gert Smolka
model when using Minion. The size of both of our models and Gert Smolka’s model (as the sum of
domain sizes) is Θ(n4).
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reduces further to 9 when n = 35. For the remaining knight’s move constraints, each
division and modulo operator is identified by Weak Propagation (Integer), extracted and
tabulated (creating a binary table constraint). Each unique division and modulo expression
is tabulated once and the auxiliary variable is reused as described in Appendix A.2. When
TabID is disabled, identical common subexpression elimination (CSE), which is part of the
default configuration (Nightingale et al., 2017), improves the knight’s tour constraint by
adding auxiliary variables for the division, modulo, and absolute value expressions.

Finally, the channelling constraints in the successor model are translated to an element

constraint that indexes from 1. If the lower bound of tour[i] is not 1 (after domain filtering)
then a shifted index expression tour[i]+c is created.4 The tour[i]+c expressions are
identified by Weak Propagation (Integer) and tabulated for the 8 instances where n ≤ 15
(also creating binary tables). When n > 15 a small proportion of them are tabulated.

5.2.5 N-Linked Sequence and Optimal N-Linked Sequence

This puzzle, proposed by Itay Bavly (Roeder, 2017b), requires arranging as many as possible
out of the first 100 positive integers into a sequence, so that in every pair of adjacent numbers
one is a multiple of the other. The longest possible sequence was found to consist of 77
numbers (Roeder, 2017a). The question was also asked for 1000 numbers, and in this case a
sequence with 418 numbers was constructed. We use the name n-linked sequence as proposed
by William Gasarch (2019), who also introduced the parameter n for the largest integer.

We consider two versions of the puzzle. The first version is a decision problem in which
we ask whether a sequence exists of some given length, where the length len is a fraction
of n chosen to be challenging (close to the unsatisfiability threshold, but still satisfiable).
The second version is an optimization problem where we simply seek a longest sequence
as in the original problem description. Both versions are modelled with a one-dimensional
matrix seq of variables with domain {1 . . . n} representing the sequence. In the decision
version, seq is of length len, which is a parameter. In the optimization version, len is
a variable that is maximised. In both versions the entire matrix seq is allDiff. The
divisibility constraint for the optimization problem is shown below. In the decision problem,
the condition (i<=len) is omitted.

(i<=len) -> ((seq[i]%seq[i-1] = 0) \/ (seq[i-1]%seq[i] = 0))

For the decision version of the problem, we used the 15 instances where n ∈ {60, 70, 80}
and len ∈ {n− 30, n− 25, n− 20, n− 15, n− 10}. For the optimization version, we used in-
stances n = {12, 14, 16, . . . , 42}. For the optimization problem, the Duplicate Variables and
Weak Propagation heuristics identify each arity 3 divisibility constraint and they are all tab-
ulated. For the decision problem, Duplicate Variables, Large AST, and Weak Propagation
heuristics identify each arity 2 divisibility constraint and all are tabulated.

5.2.6 Peaceable Armies of Queens

This puzzle is also named ‘Peaceably Coexisting Armies of Queens’ (Smith et al., 2004).
The problem asks how to place two equal-sized armies of queens on a chessboard so that the
white queens do not attack the black queens, and vice versa. On a standard 8 by 8 board,

4. For instances where the starting location is (0, 1) most tour[i] variables have a lower bound of 0.
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there are 71 non-isomorphic solutions and their number grows quickly with board size. Some
early results and discussion are due to Stephen Ainley (1977, Problem C5). A sophisticated
model that makes use of the regular constraint was used in the MiniZinc Challenge 2022.

We use a very simple model, based on the Basic Model of Smith et al. (2004), that takes
a single parameter n for the board size (defining an n × n board). For each square on the
board we have a variable with domain {0, 1, 2} with the values indicating no queen, white,
and black respectively. As in the third model of Smith et al., we also use one additional
variable armySize to indicate the number of queens in each army, and this is maximised.
There are two sum constraints stating that there are armySize occurrences of values 1 and
2 respectively. The vast majority of the constraints are to prevent an attack between a pair
of queens from opposing armies. Supposing the board is named b, and squares (i, j) and
(k, l) share a row, column, or diagonal, then the attack constraint b[i,j]+b[k,l] != 3 is
posted.

We experimented with instances where n ∈ {4 . . . 11}. The two army size constraints
are identified (together) by the Identical Scopes heuristic. For n ≥ 5 the candidate has
more than 20 variables and is discarded, otherwise tabulation fails the progress check after
1,000 nodes. Each attack constraint is identified by the Weak Propagation heuristic and all
are tabulated (creating binary table constraints). The attack constraints are identical apart
from the variable names, so after the first is tabulated the rest are retrieved from the cache.
Without tabulation a new integer variable is introduced for each sum b[i,j]+b[k,l] in an
attack constraint. Note that the MiniZinc Challenge 2022 model has the same viewpoint and
the non-attack requirements are implemented with regular constraints which would usually
propagate strongly, suggesting that tabulation of the attack constraints may be useful.

5.2.7 Strong External Difference Families

A Strong External Difference Family (SEDF) is an object defined on a group, with appli-
cations in communications and cryptography (Paterson & Stinson, 2016). For the purposes
of this paper, a group is a set G with an associative and invertible binary operation ×.
Also, G must contain an identity element e, which means that e × g = g for every g ∈ G.
The model of SEDF described below (with additional symmetry breaking constraints) was
used to find a number of previously undiscovered SEDFs, including the first in non-Abelian
groups (Huczynska et al., 2021).

Given a finite group G on a set of size n, an (n,m, k, λ) SEDF is a list A1, . . . , Am of
disjoint subsets of size k of G such that, for all 1 ≤ i ≤ m, the multi-set Mi = {xy−1 | x ∈
Ai, y ∈ Aj , i 6= j} contains λ occurrences of each non-identity element of G.

The parameters of the SEDF problem are (n,m, k, λ), the group G given as a multipli-
cation table tab (which is an n × n matrix of integers), and inv, a one-dimensional table
which maps each group element to its inverse. The SEDF is represented as an m×k matrix
sedf. The entire sedf matrix is contained in a single allDiff constraint. It has row sym-
metry (as the sets are not ordered) (Flener et al., 2002) and also each row has symmetry (as
each row represents a set): any two rows may be exchanged in a solution while preserving
solutionhood; also any two elements within a row may be exchanged while preserving solu-
tionhood. The variables within each row and the first column are ordered with < constraints
to partially break the two kinds of symmetry.
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To ensure each multi-set Mi has λ occurrences of each non-identity element, we use
the gcc on the comprehension below. Value 1 has cardinality 0, and all other values have
cardinality λ. Each gcc contains all variables in sedf. Note that both sedf[i,p] and
sedf[j,q] are individual variables, and that the inner expression is equivalent to tab[X,

inv[Y]] for integer variables X and Y.

[ tab[sedf[i,p], inv[sedf[j,q]]] |

p:int(1..k), q:int(1..k), j:int(1..m), j!=i ]

We use a set of 12 instances where 19 ≤ n ≤ 29, 3 ≤ m ≤ 8, and 2 ≤ k ≤ 5. The
instances originate from research into SEDFs (Huczynska et al., 2021) and are provided in
the experimental repository.

The Identical Scopes heuristic identifies the allDiff and all gcc constraints together.
Duplicate Variables, Large AST, and Weak Propagation heuristics identify each gcc indi-
vidually. In each case tabulation fails the progress check at 1,000 nodes. Identical Scopes
(Integer) identifies cases where tab[X,inv[Y]] within a gcc overlaps with X<Y or Y<X

ordering the first column (where X and Y are variables in the sedf matrix); Large AST (In-
teger) and Weak Propagation (Integer) identify the rest of the tab[X,inv[Y]] expressions
and all are successfully tabulated for all instances (creating table constraints of arity 3).

5.3 Summary of Results

We have shown the utility of all four TabID heuristics when applied to top-level constraints,
and in most cases their nested and integer versions as well. Table 1 summarises the set
of heuristics applied to each problem class. The table indicates when a heuristic fires for
at least one instance of a problem class, and at least one of the subproblems identified by
the heuristic is tabulated. All heuristics except Duplicate Variables (Nested) and Duplicate
Variables (Integer) meet these criteria for at least one problem class. The top-level heuristics
are most important and fire on all but one of the problems, while the other heuristics are
also contributing and are essential for SEDF. Nested and Integer heuristics tend to become
relevant when top-level constraints are beyond the reach of tabulation, for example in SEDF
and the largest instances of Knight’s Tour.

For 9 of the 15 models, the generated tables are predominantly binary. Examples in-
clude games (e.g. Accordion Patience), maths problems such as Coprime Sets, and puzzles
(e.g. Peaceable Armies of Queens). There are four examples of tabulation (predominantly)
producing ternary table constraints: Handball Tournament Scheduling; Optimal N-Linked
Sequences; SEDF; and Sports Scheduling Completion. BPMP has two sets of expressions
that are tabulated: the channelling constraints of arity 4, and division and modulo expres-
sions where an arity 2 table is produced. Killer Sudoku has 2, 3, 4, and 5 arity tables
matching the sizes of the clues in the puzzle. Finally, with Still Life tabulation produces
tables of arity 9, albeit on Boolean variables. The nodeLimit parameter is set to a conser-
vative value (100,000), minimising the time cost of tabulation but also limiting the arity
of generated tables. However the preponderance of arity 2 and 3 tables comes from the
structure of the models rather than the effect of nodeLimit.
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Problem Top-level Nested Integer

IS DV LAST WP IS DV LAST WP IS DV LAST WP

BlackHole X X

BPMP X X X X X X X

Handball X X X X X

JPEncod. X X X

MDSL X

SportsSchC X

Accordion X X X X X

Coprime X X X

KillerSu. X X

KnTourSeq X X X X

KnTourSucc X X X X

NLinkedSeq X X X

NLinkedOpt X X

PAQueens X

SEDF X X X

Table 1: Heuristics that trigger for each problem class: Identical Scopes (IS); Duplicate
Variables (DV); Large AST (LAST); and Weak Propagation (WP). A tick indicates
that the heuristic identifies at least one subproblem for at least one instance of the
problem class and the subproblem is tabulated.

6. Experimental Evaluation of TabID

Having shown that TabID identifies and tabulates promising subproblems of each of the
benchmark problems, we now evaluate whether TabID actually speeds up solving of these
problems. We test this hypothesis with two conventional CP solvers (Minion and Gecode,
taking advantage of extensive research into table propagators) and two CP solvers with
conflict learning (OR-Tools and Chuffed). We also test the hypothesis in a different setting,
where problem instances are encoded into SAT and solved with a recent CDCL SAT solver
(Kissat). In this case we experiment with two different encodings of the table constraints.
We first give experimental details and describe the statistical method, and then look at each
of the problems of Section 5 in turn. TabID is configured in the same way as in Section 5:
nodeLimit is set to 100,000; and the SAT size limit is not applied except where stated
otherwise.

6.1 Experimental Details

We evaluate tabulation with five solvers in six configurations, as follows:

Minion Version 1.9.2 of Minion (Gent et al., 2006), with ascending value and static vari-
able orderings. The Trie propagator is used for all table constraints (Gent, Jefferson,
Miguel, & Nightingale, 2007).
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Gecode Commit d1bd874 on the release/6.3.0 branch of Gecode (Gecode Team,
2024) with the Compact Table propagator (Ingmar & Schulte, 2018). The search
order is the same as for Minion.

Chuffed Version 0.13.0 of Chuffed (Chu et al., 2018) with free search enabled (i.e. the solver
is free to use dynamic search ordering heuristics). Chuffed encodes all table constraints
into SAT internally: it uses the support encoding for binary table constraints (Gent,
2002) and the Bacchus encoding otherwise (Bacchus, 2007).

OR-Tools Version 9.7.2996 of OR-Tools (Perron & Didier, 2023) CP-SAT solver with free
search enabled. The support encoding is used for binary table constraints (Gent, 2002).
Each non-binary table constraint is compressed to a set of short tuples or c-tuples
(Katsirelos & Walsh, 2007) which is then encoded using basic Boolean constraints
similarly to Akgün et al. (2016).

Kissat Version 3.1.1 of Kissat (Biere & Fleury, 2022) with Savile Row’s default SAT
encodings for all constraint types unless otherwise stated. The support encoding is
used for binary table constraints (Gent, 2002) and the Bacchus encoding for other
tables (Bacchus, 2007).

Kissat (MDD) As above, but non-binary tables are compressed into Multi-valued Decision
Diagrams (MDDs) which are then encoded with the GenMiniSAT encoding (Abío
et al., 2016).

The solvers and configurations were chosen to include: the recent Compact Table prop-
agator, as well as an earlier table propagator; conventional CP (Minion and Gecode), clause
learning CP, and SAT solvers; and both static and dynamic search orders. We used Savile

Row 1.10.0 for the experiments, extended with the new TabID method. Each reported time
is the median of five runs on a 134-node cluster, each node having two 48-core AMD EPYC3
processors and 512 GB RAM; jobs were submitted requiring 1 CPU core and 6 GB RAM. A
time limit of 1 hour was applied. Reported times are total times (unless otherwise stated)
and include the time taken by Savile Row to tailor the instance, the time taken to apply
TabID (if activated), and the backend solver time. Software, models and parameter files for
all experiments are publicly available online (Akgün et al., 2024).

6.2 Statistical Analysis

To compare two configurations A and B of Savile Row (for example, where A does not
include TabID and B does), we first take the median of the total time for each instance
and each configuration. The median was chosen because it is less affected by outliers than
the mean. Instances where both configurations timed out are discarded. For the remaining
timeouts (i.e. median total time is >3600 s) we apply a PAR2 penalty, so their median total
time is considered to be 7200 s. For each instance, we take the quotient of the two medians
(A
B

). We take the geometric mean of the set of quotients to obtain s, a single statistic to
compare A and B. If s > 1 then B is considered to be better than A. The geometric mean
is more appropriate than the arithmetic mean in this case (Nightingale et al., 2017).

Where s is close to 1, it may not be clear whether the difference between A and B is
statistically significant. As in Nightingale et al. (2017), we use the bootstrap method to
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Figure 7: TabID without SAT Size Limit vs No TabID. Total runtime (including both
Savile Row and the solver) with each of the six solvers for the problem classes:
Black Hole, Block Party Metacube Problem, Handball Tournament Scheduling,
JP Encoding, Maximum Density Still Life, and Sports Scheduling Completion.
Time with TabID is shown on the x-axis and without TabID on the y-axis. The
red dotted lines indicate the time limit of 1 hour; points beyond the line timed
out and had the PAR2 penalty applied. Points above the x = y diagonal were
solved faster with TabID than without. The s value on each plot is the geometric
mean of speedup quotients.
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Figure 8: TabID with SAT Size Limit vs No TabID. Total runtime (including both
Savile Row and the solver) with each of the six solvers for the problem classes:
Block Party Metacube Problem, Killer Sudoku, Maximum Density Still Life and
Sports Scheduling. Time with TabID using the SAT size limit is shown on the
x-axis and without TabID on the y-axis. Other details are the same as in Figure 7.

compute a 95% confidence interval of s with 100,000 bootstrap samples. We consider the
difference between A and B to be statistically significant when the 95% confidence interval
does not include 1.

6.3 Evaluation of Baseline Problems

First we present results for six problem classes where table constraints have been applied in
the literature to improve a constraint model. Four of these classes were used in Dekker et al.
(2017) to evaluate their auto-tabling method, while the other two are from earlier constraint
modelling literature. Results are shown in Figure 7. For each problem class we use the set
of instances described in Section 5.1. In this section we give a summary of results. Further
analysis can be found in Appendix C.1.

For Black Hole, TabID significantly speeds up all six solvers with the most substantial
improvements seen in solvers without clause learning. The results are mixed for BPMP,
where Minion, Gecode, and OR-Tools show a significant speedup, Chuffed does not reach
significance and the SAT solvers are slowed down by TabID. For Handball Tournament
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Scheduling there is a clear benefit for the CP solvers without learning, but for all other
solvers the instances are too easy to show a clear difference. On the JP Encoding problem,
TabID substantially improved the SAT solver’s performance but made much less difference
with the CP solvers. Maximum Density Still Life might seem an obvious candidate, however
we found that TabID does not strengthen propagation (node counts for Minion and Gecode
are not reduced) and results are mostly negative. Finally, for Sports Scheduling TabID
substantially improved the performance of the CP solvers without learning (as expected)
but results with the learning solvers are mixed.

For problems where there are substantial negative results (s < 0.5 for any solver), adding
the SAT size limit can help. Results with the SAT size limit enabled are shown in Figure 8.
For BPMP, we found that adding the SAT size limit improves performance for Kissat, Kissat
(MDD), and Chuffed. For Maximum Density Still Life and Sports Scheduling, switching on
the SAT size limit broadly improves the performance of TabID.

6.4 Evaluation of New Case Studies

In this section we give experimental results for seven new case studies described in Sec-
tion 5.2. Results are shown in Figures 9 and 10, and for all problem classes the set of
instances is described in Section 5.2. We give an overview of results here: further discussion
of results can be found in Appendix C.2.

For Accordion Patience, TabID dramatically reduces search with the non-learning CP
solvers, however with the learning solvers the difference is small or even negative. On the
Coprime Sets problem, TabID allows a few additional instances to be solved by the non-
learning CP solvers but makes little difference to the other solvers despite TabID changing
the model extensively. On the Killer Sudoku problem, TabID strongly improves performance
of the non-learning CP solvers but also increases the SAT encoding size quite substantially
and slows down all learning solvers on average. Adding the SAT size limit moves all the
average speedups closer to 1 for Killer Sudoku (Figure 8). On the sequence model of Knight’s
Tour, TabID causes a very clear speedup for all solvers. When n ≤ 15 TabID produces an
improved model with much stronger propagation and no auxiliary variables. With the
successor model the results are mainly positive but complex, and the reasons for that are
discussed in Appendix C.2.

TabID speeds up all solvers quite substantially on the N-Linked Sequence problem, how-
ever Kissat and OR-Tools mainly benefit for the easier instances suggesting these solvers
are able to improve the formulation over time by conflict learning. Results for Optimal
N-Linked Sequence are similar but with reduced speedups due to the generation of larger
tables. For Peaceable Armies of Queens, the tabulated model propagates much better lead-
ing to big speedups for the non-learning CP solvers, however the learning solvers are almost
unchanged. Finally, SEDF demonstrates that large speedups are possible (for all solvers)
even when no top-level constraints are tabulated.

6.5 Discussion

With the conventional CP solvers Gecode and Minion, we expected TabID to improve solv-
ing time, and it does in the vast majority of cases. Three of the four groups of heuristics
(Identical Scopes, Duplicate Variables, Weak Propagation) are based on strength of propaga-
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Figure 9: TabID without SAT Size Limit vs No TabID. Total runtime (including both
Savile Row and the solver) with each of the six solvers for the problem classes:
Accordion Patience, Coprime Sets, Killer Sudoku, and Knight’s Tour (with two
models). Time with TabID is shown on the x-axis and without TabID on the
y-axis. Other details are the same as in Figure 7.

tion, i.e. identifying sub-problems where propagation is expected to be weak. Assuming the
heuristics are accurate, the question then is whether the benefit of obtaining GAC outweighs
the cost of generating and propagating table constraints. Gains range from minor efficiency
improvements (e.g. Block Party Metacube Problem with Minion) to dramatic reductions in
search (e.g. Black Hole, Killer Sudoku, N-Linked Sequence). The other group of heuristics
(Large AST and its integer and nested versions) aim to improve efficiency by replacing a
large, cumbersome expression with a table. Large AST heuristics are triggered on several
problem classes but typically fire together with other heuristics (see Table 1). One example
is SEDF, and in this case TabID is worthwhile (particularly for the most difficult instances
of SEDF which are sped up by over 40 times). We also have a few cases where TabID
slows down search: the Knight’s Tour successor model with Gecode (because Gecode has an
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Figure 10: TabID without SAT Size Limit vs No TabID. Total runtime (including
both Savile Row and the solver) with each solver for the problem classes: N-
Linked Sequence, Optimal N-Linked Sequence, Peaceable Armies of Queens, and
Strong External Difference Families. Time with TabID is shown on the x-axis
and without TabID on the y-axis. Other details are the same as in Figure 7.

efficient GAC propagator for the shift constraint), and Still Life with Minion (where TabID
does not strengthen propagation and the table constraints are simply slower to propagate).

For the solvers with conflict learning (Kissat, Kissat (MDD), Chuffed, OR-Tools) the
picture is not as simple. None of them use a native table propagator. Table constraints are
encoded into SAT and the size of the encoding affects solver performance. Also, conflict
learning may be able to mitigate weak propagation. For some problem classes, TabID is
clearly worthwhile: for Black Hole, the solving time becomes approximately constant and
the most difficult instances (without TabID) are sped up by approximately 10 times for the
SAT solvers and more for Chuffed and OR-Tools; both models of Knight’s Tour are sped up
by orders of magnitude (except the successor model with OR-Tools); and N-Linked Sequence
exhibits large speed-ups for some instances. In each case the generated table constraints are
binary and are encoded compactly without any additional SAT variables. SEDF (where the
generated table constraints have arity 3) also benefits from TabID to a smaller degree.

All problem classes where TabID is notably worse with the conflict learning solvers have
non-binary constraints (BPMP for some solvers/instances, Sports Scheduling Completion
for some solvers/instances, Still Life, and Killer Sudoku). The results suggest that arity,
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SAT encoding size, or both are important. Adding the SAT size limit to TabID improves
average performance on all four of these problem classes, for most of the conflict learning
solvers. The exceptions are BPMP and Sports Scheduling with OR-Tools. Figure 8 shows
the performance using TabID with the SAT size limit applied for these four problem classes.
Full results with the SAT size limit are given in Appendix D.

Finally, the overhead of TabID proved to be acceptable in these experiments. All run-
times reported in this section are total times, but further analysis presented in Appendix E
shows that the time spent applying TabID (as a proportion of total time) is usually small.

7. Experimental Evaluation of TabID on Other Problem Classes

In this section we evaluate TabID on a large set of models and problem instances from an
existing collection. The purpose is to evaluate the effect of TabID on models where we do not
necessarily expect it to improve the model. The key questions are whether TabID represents
an unacceptable overhead, and whether the heuristics and limits in TabID accurately identify
only those subproblems where tabulation will be useful. The nodeLimit parameter is set
to 100,000 and the SAT size limit (Section 4.3) is applied for all 6 solvers and all problem
classes.

We used all 50 models and 596 instances from Nightingale et al. (2017), including models
and instances that were used in other experiments in this paper. The models are of a variety
of problems including combinatorial designs (e.g. BIBD, OPD), puzzles (such as English Peg
Solitaire), and industrial design problems (such as SONET). All models and instances are
available in the experiments repository.

Results are plotted in Figure 11. In this case we have one plot for each solver, and all
50 models are plotted together. TabID is a modest win on average for Minion and Gecode,
with Killer Sudoku and Peaceable Armies of Queens showing the largest gains. For the other
four solvers, TabID (with the SAT size limit) adds a small overhead on average. Each plot
in Figure 11 is annotated with the proportion of instances where speedup s of the instance is
less than 0.9, where it is close to 1 (‘close’), and where it is greater than 1.1. Approximately
half the instances lie close to the x = y line in each case (i.e. 0.9 ≤ s ≤ 1.1).

The geometric mean speedup for each solver is close to 1, showing that the overhead
of TabID does not deteriorate performance excessively. For Gecode and Minion, a modest
overall speedup is observed, with 95% confidence interval values of [1.05, 1.18] and [1.17, 1.39]
respectively. The learning solvers incur a small overhead, with intervals of [0.88, 0.96] for
Chuffed, [0.94, 0.99] for Kissat, [0.88, 0.94] for Kissat (MDD), and [0.87, 0.96] for OR-Tools.
However, we should not simply turn off TabID whenever the chosen solver has conflict
learning. Results presented in Section 6 show that large improvements in performance are
possible with conflict learning solvers.

8. Scalability of TabID

In this section we investigate how our approach scales as the arity of a generated table
increases. The SAT size limit is switched off and nodeLimit is set to 100,000 for this
experiment. Even though large-arity tables may not be of practical interest in general,
there might be cases where they are useful and we want our method to successfully generate
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Figure 11: For each of the six solvers, the figure plots the total time (including both Savile

Row and the solver) with TabID using the SAT size limit on the x-axis and
without TabID on the y-axis for a set of 50 models. Other details are the same
as in Figure 7. The problem classes with a distinct symbol and colour have at
least one point away from the x = y diagonal on at least one of the plots.
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Sequence Arity Tabulation Time (s) Solver Auto

variables r nodes tuples Tabulation SR Total Solver nodes

— — — — — 0.22 0.36 174,171 —
2 3 724 285 0.01 0.24 0.03 2435 Yes
3 4 4,999 3,697 0.04 0.32 0.04 588 Yes
4 5 60,454 51,689 0.23 0.89 0.37 330 No
5 6 835,789 762,213 0.85 1.52 6.34 203 No
6 7 12,268,984 11,396,505 13.88 21.57 129.98 143 No

Table 2: Results of tabulating subsequences of lengths 2, 3, 4, 5, and 6 (generating con-
straints of lengths 3, 4, 5, 6, and 7) of the optimal N-Linked sequence problem
with n = 15 and solving with Minion. The first line shows no tabulation. The
total node count, number of tuples generated, and time are reported for the tab-
ulation process in columns 3-5. Savile Row total time, solver time and solver
nodes are reported in columns 6-8. Finally the Auto column indicates whether
tabulation would have completed with the work limit and progress checks switched
on.

such tables. For this purpose, we use the optimal n-linked sequence problem introduced
in Section 5.2.5 and investigate the time and search nodes required to generate tables of
various arities and also the effect of them on a CP solver.

Here we experiment with the instance where n = 12, and we scale tabulation up by
increasing the number of sequence variables in the table constraint. In particular, we use 2
to 6 adjacent variables in the table, thus table arities r range from 3 to 7, and we maximize
the sequence length from 6 upwards. To achieve this we have written a separate model
for each value of r, and in these models the divisibility constraint is extended to cover
r − 1 sequence variables. For example, when r = 4 the divisibility constraint (for each i in
{3 . . . n}) is as follows:

!active[i] \/ ( ((seq[i]%seq[i-1] = 0) \/ (seq[i-1]%seq[i] = 0))

/\ ((seq[i-1]%seq[i-2] = 0) \/ (seq[i-2]%seq[i-1] = 0)))

We also post an allDiff constraint over the same set of seq variables:

active[i] -> allDiff([seq[i-2],seq[i-1],seq[i]])

The Identical Scopes heuristic identifies these two constraints together as a candidate.
For each value of r, 6 constraints of arity r are tabulated, and 5 binary constraints are
tabulated between adjacent pairs of variables within the first 6 variables in the sequence
(where active[i] is true and the conjunction decomposes into r − 2 binary constraints
before tabulation).

The results of the experiments are shown in Table 2. The first row corresponds to the
case when no tabulation is invoked. The ‘tabulation nodes’ in the third column is the number
of nodes generated to tabulate all candidates. The arity r candidate is tabulated once and
the other 5 are retrieved from the cache. Auto on the last column says whether automatic
tabulation could be done with the progress checks and work limit on. For the No rows,
TabID would stop at the first progress check at 1,000 nodes.
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The results show that the number of nodes explored decreases significantly as we generate
larger tables. However, tabulation explores more nodes, and tabulation, Savile Row and
solver times increase. While the stronger inference comes with a cost, the incurred runtimes
seem reasonable until we reach 762,213 tuples (arity 6). With 11 million tuples (arity 7),
we observe a notable cost in tabulation, but still we are able to generate and use the tables.

In summary, the overhead of generating the tables scales as expected and is not pro-
hibitive until we have millions of tuples (r = 7). The best balance of propagation strength
against overhead is found with 285 tuples (r = 3), while r = 4 is the largest size allowed
with the progress checks and work limit switched on.

9. Related Work

In accordance with reformulating a subset of the problem constraints for stronger and/or
cheaper constraint propagation, the Globalizer tool (Leo et al., 2013) of MiniZinc helps
detect opportunities to use global constraints in constraint models. For instance, it can
detect that a set of disequality constraints can be converted to an all-different constraint.
However, the approach is not completely automatic. First, the user provides some instances,
then the tool solves them and analyzes the solutions to find properties that match global
constraints. The detected global constraints are provided as a suggestion to the user because
they are not guaranteed to be correct for all problem instances.

The tool proposed by Dekker et al. (2017) can convert any predicate (Boolean function)
in MiniZinc into a table constraint, but the user must annotate the predicates to be tab-
ulated. In the same vein, the IBM ILOG CPLEX Optimization Studio software supports
strong annotations to indicate that the solver should find a precomputed table constraint
corresponding to a specified set of variables; the resulting table constraint is then added to
the model as an implied constraint (IBM, 2024). The Propia library performed a similar step
for an annotated goal in ECLiPSe (Le Provost & Wallace, 1992). In all of these approaches,
the user is required to identify the promising parts of a given model for tabulation.

Ek (2018) proposed to automatically encapsulate sub-problems of MiniZinc models and
to identify the strongest candidates for tabulation using a set of heuristics based on numerical
scores. One example is minimising argument modesty, a measure of the number and domain
size of arguments (decision variables and problem class parameters) of the sub-problem.
The implementation builds on MiniZinc auto-tabling (Dekker et al., 2017). The goal of
the system is very similar to TabID, but the approach is quite different: encapsulation and
scoring are applied to the problem class model, and the heuristics are entirely different to
ours. The system was evaluated with models of Black Hole patience and the Block Party
Metacube Problem (BPMP). The preliminary results reported were not positive, however
there are many ways in which this work could be developed further.

With the same goals as tabulation, researchers have studied replacing a set of constraints
with other constraints. De Uña et al. (2018) considered alternative data structures to store
the contents of tables. Specifically, they proposed the use of Multivalued Decision Diagrams
(MDDs) and Deterministic Decomposable Negation Normal Forms (d-DNNFs), motivated
by the fact that creating a table can be costly when the reformulated subproblem has a large
number of solutions. The experimental results show that while building compact structures
like MDDs or d-DNNFs can be substantially faster than building tables in certain problem
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classes, it is not clear which structure yields the best total solving time overall. The paper
suggests that a more robust technique could choose between the three structures (table,
MDD, d-DNNF) depending on an estimate of the size of the solution set of the subproblem.
In any case, the presented approach does not automatically identify candidate subproblems.
The heuristics we present in this paper could be used to detect automatically opportunities
for generating MDD and d-DNNF constraints.

As an alternative, Löffler et al. (2020) considered transforming subproblem constraints
to a regular constraint. The experimental results demonstrate that the best total solving
times are achieved either by a table constraint or by the combination of regular and table
constraints. Again, there is currently no specific algorithm to detect candidate subprob-
lems automatically. The approach either relies on the heuristics presented in our earlier
work (Akgün et al., 2018) or is applied manually.

Our approach could also generate tables in other compact representations where ordinary
tuples are replaced by compressed tuples (Katsirelos & Walsh, 2007; Régin, 2011; Xia &
Yap, 2013), short tuples (Nightingale et al., 2011, 2013; Jefferson & Nightingale, 2013),
or smart tuples (Mairy et al., 2015). The latter generalizes classical, compressed and short
tuples, can lead to exponentially smaller tables, and can encode compactly many constraints,
including a dozen well-known global constraints. Under a very reasonable assumption about
the acyclicity of smart tuples, a polynomial time GAC algorithm was introduced and shown
to be effective in practice (Mairy et al., 2015). In addition, Le Charlier et al. (2017) proposed
automatically synthesizing smart table constraints from (ordinary) table constraints. While
the theoretical worst-case time complexity of the algorithm is quadratic in the size of the
input table, it was shown to have quasi linear execution time on the considered benchmarks.
Segmented tuples (Audemard et al., 2020) also generalise compressed tuples by allowing
tuples to contain sub-tables over a restricted scope. They demonstrate good performance of
segmented tables compared to MDD and regular formulations of a crossword design problem.

Propagation of multiple overlapping table constraints can be stronger than GAC on each
constraint individually. For example, Schneider and Choueiry (2018) proposed a filtering
algorithm based on Compact Table for full PWC, a level of consistency that is significantly
stronger than GAC. More recently Wang and Yap (2020) presented a decomposition to
binary constraints which achieves full PWC in some cases.

Finally, advances in propagating or encoding table constraints could improve perfor-
mance of TabID. Wang and Yap (2023) survey formalisms for ad-hoc constraints (compressed
tables, MDDs, among others) focusing on expressive power. SAT encodings continue to im-
prove, e.g. Wang and Yap (2022) present some faster alternatives to MDD encodings.

10. Conclusions and Future Work

In this paper we have demonstrated that a small set of heuristics can successfully identify
promising sub-problems in a constraint model for tabulation, and that these opportunities
can be effectively exploited. The entire process is automated in TabID, situated in the
constraint modelling system Savile Row. Our heuristics identify the same tabulation op-
portunities as recent work by Dekker et al. (2017) where manual annotations of a constraint
model are used. In addition we have presented nine other case studies demonstrating the
efficacy of our heuristics and automated tabulation. We evaluated the method with SAT,
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learning CP, and conventional CP solvers, on a wide variety of models. The results vary
considerably between problem classes, and between solvers on the same problem class. In
some cases, the method produces orders of magnitude improvements in solving time and
this is achieved completely automatically. In general we have observed more gains with CP
solvers that have native, efficient table propagators. When using a SAT solver, the arity of
the generated tables and the size of the encoding are important to solver performance.

We have also evaluated the method on a set of 50 models (from a pre-existing collection)
where for most models we expected there to be no opportunities for useful tabulation. In
the large majority of cases we found that TabID makes very little difference to total time,
the best possible outcome for TabID when there are no opportunities for useful tabulation.
In this experiment we applied a SAT encoding size limit in addition to the work limit that
is always part of TabID. In the final experiment we investigated how tabulation scales as
the arity of a constraint is increased, showing (for the Optimal N-Linked Sequence problem)
that table generation can scale far beyond the table size (i.e. number of tuples) that has
the best trade-off between propagation strength and overhead. Currently, a potential user
of TabID would be well advised to experiment with a few instances of their problem class
to determine whether TabID is useful.

There are two main avenues of future work. Firstly, there is opportunity to refine and
extend the collection of heuristics in TabID. Machine learning could be employed to help
decide which expressions are promising candidates, as well as to tune the parameters of
the tabulation procedure. It has already been applied to predict whether a problem class
is generally amenable to tabulation (Cena et al., 2023), as well as to predict whether a
regular or a table constraint works faster in a CSP with a single constraint (Löffler
et al., 2021). Secondly, it would be interesting to investigate generating compressed table
representations such as MDDs (with a work limit and progress checks adapted to the rep-
resentation). For some compressed representations (including MDDs) there already exist
algorithms to generate them (surveyed in Section 9). Integrating compressed representa-
tions promises to improve the scalability of the method in some cases, allowing more of the
identified candidates to be tabulated.
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Appendix A. Identifying Promising Nested Expressions

A.1 Identifying Promising Nested Boolean Expressions

In this section we adapt the four heuristics to identify candidates for tabulation from the
set of nested Boolean expressions. The heuristics are adapted as follows (in the order they
are applied).

Identical Scopes (Nested) identifies a Boolean expression c1 that has the same scope as
a top-level constraint c2, where c2 does not contain c1.

Duplicate Variables (Nested), and Large AST (Nested) are unchanged apart from
applying to nested Boolean expressions rather than top-level constraints.

Weak Propagation (Nested) identifies a Boolean expression c1 that is likely to propa-
gate weakly (Section 3.3), and there exists a top-level constraint c2 that propagates
strongly, with at least one variable in the scope of both c1 and c2.

Once again, subproblems containing more than 20 distinct variables are not considered
as candidates for tabulation. All four heuristics except Identical Scopes (Nested) identify a
single Boolean expression to be tabulated. Identical Scopes (Nested) is somewhat different:
it identifies a single Boolean expression (named c1) to be replaced, but the table constraint is
generated from the conjunction of c1 with all top-level constraints that have the same scope
as c1. For example, suppose that x 6= y is a nested Boolean expression c1, and x ≤ y is a
top-level constraint c2 (the only top-level constraint with scope {x, y}). x 6= y would trigger
the Identical Scopes (Nested) heuristic. A table would be generated for (x 6= y) ∧ (x ≤ y)
and c1 would be replaced with the new table constraint, while c2 would remain unchanged.

The nested Boolean expression heuristics are applied after the top-level constraint heuris-
tics. They are applied to the AST in a top-down order: all four heuristics are applied to an
AST node n before any of the descendants of n. The rationale is to tabulate the largest pos-
sible Boolean expression to get the most benefit (within the limits described in Section 4.2).
If an expression is identified by one of the heuristics but tabulation fails (e.g. by exceeding
a work limit), then parts of the expression (i.e. descendant nodes in the AST) may still be
tabulated. This occurs in the Knight’s Tour problem for example, described in Section 5.2.4.

A.2 Identifying Promising Integer Expressions

Finally we adapt the heuristics to apply to integer expressions. The integer expression
heuristics are applied last. The AST is traversed in the same order as for Boolean nested ex-
pressions (i.e. parents before children). Tabulating an integer expression has the additional
step of introducing a new auxiliary variable. To avoid the overhead of introducing unnec-
essary variables, we only consider expressions that would be extracted by general flattening
(Section 2.3). The model may contain identical integer expressions, and to avoid tabulating
multiple identical expressions (and introducing multiple auxiliary variables for them) we use
a cache mapping expressions to auxiliary variables. Before applying the heuristics to an
expression e1, we first check the cache, and if another expression identical to e1 has already
been tabulated with auxiliary variable a1 then e1 is replaced with a1.
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Prior to applying the heuristics to expression e1, a temporary auxiliary variable atemp is
created, and the constraint ctemp : atemp = e1 is made (but not attached to the AST). In
terms of e1 and ctemp , the heuristics are as follows:

Identical Scopes (Integer) identifies an integer expression e1 that contains more than
one variable and has the same scope as a top-level constraint c2 where c2 does not
contain e1.

Weak Propagation (Integer) identifies an integer expression e1 where either: (a) e1 is
likely to propagate weakly (as in Section 3.3), and the top-level constraint c2 that
contains e1 is likely to propagate strongly when e1 is temporarily replaced with atemp ;
or (b) the constraint ctemp would trigger the top-level Weak Propagation heuristic.

Duplicate Variables (Integer), and Large AST (Integer) are identical to the heuris-
tics Duplicate Variables and Large AST applied to ctemp .

If e1 triggers any heuristic except Identical Scopes (Integer), tabulation is attempted
on the constraint ctemp . If tabulation is successful, then atemp becomes permanent, e1 is
replaced with atemp , and the new table constraint is attached to the AST (as described in
Section 3.1). Identical Scopes (Integer) is similar: the only difference is that tabulation
is attempted on the conjunction of ctemp with all top-level constraints that have the same
scope as e1. As with top-level and nested heuristics, subproblems containing more than 20
distinct variables (including atemp) are not considered as candidates for tabulation.

Appendix B. Generating Tables

The algorithm for generating a table is implemented entirely within Savile Row and oper-
ates directly on an arbitrarily nested Boolean expression, avoiding the need to tailor a can-
didate expression for an external solver. In preliminary experiments we also implemented
tabulation subject to resource limits in Minion, to take advantage of the propagation mech-
anism in the solver. However, we found that this was slower than our approach of doing
tabulation entirely within Savile Row. In our discussion we therefore focus only on the
internal generation approach.

Given a Boolean expression e to tabulate, we first traverse the AST of e (in depth-first,
left-first order) to collect a list of its variables without duplication. A table is generated by
depth-first search with a static variable ordering (the order of the variable list) and branching
on each value in turn. At each node of search the expression is simplified (Section 2.3);
if it evaluates to false then the search backtracks (regardless of whether all variables
have been assigned). At each leaf node of search that evaluates to true, we store the
corresponding assignment as a tuple in the table. This method adapts to the local structure
of the expression, and it only considers the remaining subset of variables occurring in a
subtree. This is in contrast to a generate-and-test approach to tabulation which would
evaluate the expression for all possible assignments to every variable in the expression.

For example, consider the knight’s move constraint of the Knight’s Tour sequence model
with n = 4. Table 3 shows part of the depth-first search to tabulate the constraint between
tour[7] and tour[8], the first pair of variables with domain {1 . . . 15} (i.e. all values except
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x y Simplified expression

— — (|x%4-y%4|=1 /\ |x/4-y/4|=2) \/ (|x%4-y%4|=2 /\ |x/4-y/4|=1)

1 — (|1-y%4|=1 /\ y/4=2) \/ (|1-y%4|=2 /\ y/4=1)

1 1 false

...
1 6 false

1 7 true (tuple 〈1, 7〉 added to table)
1 8 true (tuple 〈1, 8〉 added to table)
1 9 false

...

Table 3: A fragment of the depth-first search to tabulate the knight’s move constraint
between variables tour[7] (denoted by x) and tour[8] (denoted by y) of the
Knight’s Tour sequence model, with n = 4 and starting location (0, 0).

the starting position of 0). Once the first variable is assigned to 1, the expression becomes
much shorter and simpler. When both variables are assigned, it evaluates to either true or
false. The first two tuples to be added to the table are 〈1, 7〉 and 〈1, 8〉. The next would
be 〈1, 10〉. Tables are generated with tuples in lexicographic order, and with columns in the
order of the variable list.

Appendix C. Detailed Experimental Results

In this appendix we provide more detailed analysis including confidence intervals and statis-
tical significance results as described in Section 6.2. Some problem classes have 10 or fewer
instances, in which case we report the speedup quotient for each instance instead of the 95%
confidence interval.

C.1 Baseline Problems

C.1.1 Black Hole

TabID can speed up all six solvers. The solvers without clause learning show very substan-
tial speedups with TabID and the effect is clearly significant. For example, Gecode has a
geometric mean speedup of 16.00 with 95% confidence interval [10.59, 24.01]. Minion ex-
hibits a small overhead, and some easy instances are slower with TabID than without, but
on average there is a large speedup with 95% confidence interval of [7.17, 17.73]. The solvers
with learning performed much better on Black Hole (with or without TabID), and the aver-
age speedup is significant, though smaller: the 95% confidence intervals for Kissat, Chuffed
and OR-Tools are [3.24, 4.01], [2.09, 2.87], and [4.55, 7.71], respectively. The two SAT solver
configurations are in fact identical for this problem class because all table constraints are
binary and the support encoding is used in both cases (see Section 6.1).
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C.1.2 Block Party Metacube Problem

The solvers exhibit differing speed-ups, with the largest being Gecode where s = 13.42
with 95% confidence interval of [11.90, 14.76]. For Minion the speed-up is smaller but sig-
nificant, with a 95% confidence interval of [1.14, 1.42]. We found no significant difference
with Chuffed, where the 95% confidence interval is [0.68, 2.26]. In the results presented
by Dekker et al. (2017), Chuffed performs badly without tabulation, whereas here it is solv-
ing all instances. Their non-tabulated model has additional rotation variables and others
(see Section 5.1.2) which may explain the difference in performance. OR-Tools shows a
larger (and statistically significant) improvement with confidence interval [1.44, 6.46].

TabID substantially reduces performance of the SAT solver with both encodings. For
this problem the sizes of the SAT encodings are increased by TabID. Adding the SAT size
limit (Section 4.3) to TabID improves performance for Kissat, Kissat (MDD), and Chuffed,
resulting in average speed-ups of 2.10, 1.60, and 7.60 respectively as shown in Figure 8.

C.1.3 Handball Tournament Scheduling

For this problem class there is a clear benefit for the conventional CP solvers: the 95%
confidence intervals for Gecode and Minion are [2.49, 9.66] and [1.56, 6.62] respectively. For
all other solvers, the instances are too easy to show a clear difference. Total times are around
10 seconds for every instance, both with and without TabID. The 95% confidence intervals
for Kissat, Kissat (MDD), Chuffed, and OR-Tools are [1.02, 1.16], [0.89, 0.99], [0.74, 0.96],
and [1.37, 1.62] respectively.

C.1.4 JP Encoding Problem

For JP Encoding the results are slightly positive for Gecode and Minion, however they
can solve only two of the ten instances. Chuffed solves six instances with TabID and four
without, and is somewhat faster with TabID. OR-Tools solves all instances with or without
TabID, however TabID slows it down on average.

Savile Row’s default SAT encoding for sums does not scale well when encoding the
objective function. Instead we used the GGPW encoding (Bofill, Coll, Nightingale, Suy,
Ulrich-Oltean, & Villaret, 2022) applied to the direct encoding of the variables (Nightingale,
2024). Kissat and Kissat (MDD) show the largest speed-ups of around 10 times on average.
The speedup quotients for each solver on each instance (except double timeouts) are shown
in the following table.

Solver Sorted speedup quotients for tabulation

Minion 0.90, 2.18
Gecode 0.90, 1.35
Kissat 3.69, 3.82, 8.22, 10.63, 16.49, 19.18, 34.58
Kissat-MDD 4.03, 4.41, 5.84, 10.04, 16.60, 18.07, 34.04
Chuffed 1.45, 2.02, 2.06, 2.22, 2.71, 3.51
OR-Tools 0.28, 0.40, 0.42, 0.49, 0.52, 0.55, 0.81, 1.06, 1.38, 2.23
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C.1.5 Maximum Density Still Life

Still Life might seem to be an obvious candidate for tabulation, however for Gecode and
Minion we found that the node counts are identical for all non-timeout instances: TabID does
not improve propagation. Minion is substantially slower with TabID, as are the learning
solvers except Kissat (MDD). Gecode and Kissat (MDD) have approximately the same
performance, as shown in Figure 7 and the following table.

Solver Sorted speedup quotients for tabulation

Minion 0.08, 0.15, 0.26, 0.62
Gecode 1.01, 1.23, 1.27, 1.29
Kissat 0.27, 0.39, 0.68, 0.69
Kissat-MDD 0.72, 0.80, 1.14, 1.17
Chuffed 0.03, 0.04, 0.28
OR-Tools 0.01, 0.03, 0.03, 0.05, 0.05, 0.49

Adding the SAT size limit to TabID improves its performance for all solvers except
Gecode, resulting in average speed-ups between 0.60 (Minion) and 1.31 (Kissat) as shown in
Figure 8. Recall from Section 5.1.5 that the Identical Scopes heuristic identifies subproblems
with arity 9 (for grid squares away from the inner border), arity 6 (for squares adjacent to
the inner border), and arity 4 (for corner squares). The SAT size limit always prevents the
arity 9 and 6 candidates being tabulated. It also prevents arity 4 candidates being tabulated
when the MDD encoding of table is used. Instead, parts of the constraints are identified
by Duplicate Variables (Nested) and they are tabulated with mixed results as shown in
Figure 8.

C.1.6 Sports Scheduling Completion

TabID proves to be highly beneficial for the conventional CP solvers Gecode and Minion,
as expected. However, with Chuffed the picture is mixed and the average speedup is very
close to 1. Results with Kissat depend on the choice of encoding for the generated table
constraints, with the support encoding performing much better than the MDD encoding
(however, instances are too easy for firm conclusions). Finally, OR-Tools is less effective
than the other learning solvers in general but TabID helps quite substantially. Plots and
geometric mean speedups are shown in Figure 7, and the sorted speedup quotients for each
solver on each instance (except double timeouts) are shown in the following table. Adding
the SAT size limit to TabID improves Kissat (MDD) performance in particular but makes
OR-Tools worse (see Figure 8).

Solver Sorted speedup quotients for tabulation

Minion 7.64, 9.43, 22.48, 27.90, 51.09, 55.63
Gecode 11.53, 15.19, 21.79, 34.62, 40.22, 76.70
Kissat 0.63, 0.83, 1.56, 1.72, 1.73, 1.79, 1.87, 2.18, 2.23, 2.47
Kissat-MDD 0.16, 0.23, 0.24, 0.25, 0.28, 0.32, 0.33, 0.34, 0.38, 0.56
Chuffed 0.11, 0.28, 0.52, 0.59, 0.75, 1.70, 2.14, 3.00, 3.77, 4.38
OR-Tools 0.28, 2.51, 2.72, 4.64, 5.37, 7.85, 33.20, 81.58, 234.85
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C.2 New Case Studies

C.2.1 Accordion Patience

For the two non-learning CP solvers, TabID speeds up solving considerably. Gecode has the
largest geometric mean speedup of 56.68, with 95% confidence interval [25.27, 126.75]. In
some cases TabID reduces search nodes by more than 1,000 times and this translates into
very large speedups. For Chuffed the effect is small, the geometric mean speedup is 1.40
with 95% confidence interval [1.14, 1.74]. TabID seems to cause a slight slow-down for Kissat
and Kissat (MDD) but neither reach significance (with 95% confidence intervals [0.87, 1.01]
and [0.88, 1.03] respectively). OR-Tools is also somewhat slower, with confidence interval
[0.67, 0.88].

A preliminary experiment with a particular instance (named cards_11_01.param)
and Minion (with a static variable and value ordering) showed that almost all the benefit
comes from tabulating Move1 and Move2 constraints (described in Section 5.2.1). Without
tabulation, Minion takes 644,774 nodes. With just Move1 and Move2 tabulated, Minion
takes 35,760 nodes, and with TabID it takes 35,712 nodes (and total time was almost iden-
tical).

C.2.2 Coprime Sets

For the non-learning CP solvers, TabID is neutral for the smallest (and easiest) instances
but starts to pay off for larger instances. The 95% confidence intervals are [1.07, 1.98] for
Gecode and [1.22, 2.42] for Minion. In both cases some additional instances are solved with
TabID. Kissat and Chuffed show very little difference overall, which we found surprising
given the extensive changes that TabID makes to the model. Finally, OR-Tools benefits
for easier instances but there is little difference after approximately 100 s. One additional
instance is solved with TabID, and the confidence interval is [1.36, 2.32].

C.2.3 Killer Sudoku

For the non-learning CP solvers, TabID makes a substantial difference. For Minion the
average speedup is 12.34 with 95% confidence interval [7.54, 20.47]. The effect on Gecode
is smaller, with geometric mean speedup of 5.20 and 95% confidence interval [3.74, 7.28].
However, for all the learning solvers, the geometric mean speedup is below 1 (e.g. with Kissat
the average is 0.67 with 95% confidence interval [0.63, 0.70]). In this case TabID increases
SAT encoding size quite substantially. Adding the SAT size limit to TabID prevents some of
the identified subproblems being tabulated, and for all solvers it moves the geometric mean
speedup closer to 1. OR-Tools benefits in particular, with geometric mean speedup of 0.97.
The results with the SAT size limit are shown in Figure 8.

C.2.4 Knight’s Tour Problem

For the sequence model, TabID causes a very clear speedup for all solvers. In this case,
tabulation of instances where n ≤ 15 produces a quite different model with no auxiliary
variables and much stronger propagation. Kissat shows the least improvement, with a
geometric mean speedup of 35.79 and 95% confidence interval [14.08, 89.36].
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With the successor model the results are more complex. For Minion, TabID makes little
difference except for the 8 instances described in Section 5.2.4 where shift constraints are
tabulated. For these 8 instances there is a speedup of more than 100 times. Gecode is slightly
slower with TabID; it uses a GAC propagator by default for shift constraints so does not
benefit from TabID in this case. The SAT solvers and Chuffed benefit from TabID, in terms
of both time and number of instances solved. For example, Kissat has a geometric mean
speedup of 8.02 with confidence interval [3.78, 18.29]. Finally, with OR-Tools we found that
7 instances were solved faster with TabID and it made almost no difference to the others.
The 7 instances are of various sizes from 8 to 15 and have no obvious common features; only
three have the shift constraints that made a large difference with Minion.

C.2.5 N-Linked Sequence and Optimal N-Linked Sequence

For the decision problem, TabID speeds up all solvers quite substantially. For example
Chuffed has a geometric mean speedup of 129.38 with 95% confidence interval [35.59, 509.32].
Gecode and Minion struggle to solve many instances with or without TabID. All table con-
straints are binary so the two SAT configurations are the same (see Section 6.1). Kissat and
OR-Tools are affected less than the other solvers, but both still reach statistical significance.
For example, OR-Tools has confidence interval [1.85, 13.97]. For Kissat and OR-Tools,
TabID seems to help more on the easier instances, suggesting that these solvers are able to
improve the formulation of an instance over time by conflict learning.

TabID also appears to speed up all solvers for the optimization problem, but for Kissat
(MDD) and OR-Tools the gain is small (and for OR-Tools it does not reach significance).
Kissat and Kissat (MDD) have 95% confidence intervals of [2.18, 8.17] and [1.16, 2.10] respec-
tively. Chuffed benefits the most, with 95% confidence interval [70.02, 656.66]. OR-Tools
has confidence interval [0.46, 3.12].

The table constraints generated for the optimization problem are of arity 3 and have
more tuples for the same value of n. For the decision problem, with n ∈ {60, 70, 80}, the
tables have between 462 and 656 tuples. For the optimisation problem (with 12 ≤ n ≤ 42)
the tables have between 202 and 2058 tuples, shifting the trade-off between TabID and the
default encodings or propagators.

C.2.6 Peaceable Armies of Queens

The tabulated model propagates much better with the conventional CP solvers and they
exhibit very large speedups as a result. The conflict learning solver performance is almost
unchanged by TabID. Kissat and Kissat (MDD) are identical since all table constraints are
binary (see Section 6.1). The sorted speedup quotients for each solver on each instance
(except double timeouts) are shown in the following table.

Solver Sorted speedup quotients for tabulation

Minion 1.19, 2.95, 43.43, 317.85, 1231.42
Gecode 0.76, 5.38, 21.12, 345.59, 591.67
Kissat 1.07, 1.11, 1.13, 1.13, 1.24, 1.27
Kissat-MDD 0.89, 0.91, 1.03, 1.04, 1.23, 1.29
Chuffed 1.01, 1.05, 1.42, 1.53, 2.23
OR-Tools 0.83, 0.86, 0.86, 0.92, 1.11

2045



Akgün, Gent, Jefferson, Kiziltan, Miguel, Nightingale, Salamon & Ulrich-Oltean

10 1

100

101

102

103

104

s=11.05

Minion

s=16.08

Gecode

s=3.63

Kissat

s=3.54

Kissat (MDD)

s=2.39

Chuffed

s=5.81

Black Hole
OR-tools

10 1

100

101

102

103

104

s=1.07 s=9.63 s=2.10 s=1.60 s=7.60 s=1.67

Block Party M
etacube

10 1

100

101

102

103

104

s=2.77 s=4.40 s=1.06 s=0.91 s=0.83 s=1.46

H-ball Tournam
ent

10 1

100

101

102

103

104

s=1.03 s=0.96 s=9.63 s=9.66 s=1.86 s=0.74

JP Encoding

10 1

100

101

102

103

104

s=0.60 s=0.89 s=1.31 s=1.10 s=0.72 s=0.80

M
ax Dens Still Life

10 1 101 103
10 1

100

101

102

103

104

s=24.27

10 1 101 103

s=27.73

10 1 101 103

s=1.60

10 1 101 103

s=1.13

10 1 101 103

s=1.59

10 1 101 103

s=2.53

Sports Scheduling

Time with TabID w. SAT Size Limit (s)

Ti
m

e 
wi

th
 Ta

bI
D 

Of
f (

s)

Figure 12: For each of the six problem classes: Black Hole, Block Party Metacube Problem,
Handball Tournament Scheduling, JP Encoding, Maximum Density Still Life,
and Sports Scheduling, and the six solvers, the figure plots the total time (in-
cluding Savile Row and the solver) with TabID applying the SAT size limit on
the x-axis and without TabID on the y-axis. Other details are as in Figure 7.

C.2.7 Strong External Difference Families

The results are positive for all solvers, but particularly for Gecode, Minion, and OR-Tools
on larger instances. For example, with Gecode the geometric mean speedup is 5.63 with
95% confidence interval [2.29, 14.16], and a peak speedup of 65 times. Gecode, Minion,
Kissat, and Kissat (MDD) all have no time-outs, with and without TabID. Chuffed solves
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Figure 13: For each of the four problem classes: Accordion Patience, Coprime Sets, Killer
Sudoku, and Knight’s Tour (with two models), and the six solvers, the figure
plots the total time (including both Savile Row and the solver) with TabID
applying the SAT size limit on the x-axis and without TabID on the y-axis.
Other details are the same as in Figure 7.

all instances with TabID, but times out on 1 instance without TabID. OR-Tools is similar but
times out on 3 instances without TabID. The 95% confidence intervals for solvers Chuffed,
Kissat, and Kissat (MDD) are [1.38, 3.16], [1.62, 2.54], and [1.44, 2.64] respectively so all
reach statistical significance. In SEDF all the tabulated expressions are of one kind: they
are integer expressions within a gcc constraint. SEDF demonstrates that large speedups
are possible even when no top-level constraints are tabulated.

Appendix D. Results with SAT Size Limit

In Section 4.3 we describe the option to apply a SAT size limit which avoids generating a
table for a candidate expression if the resulting SAT encoding would be too large. In this
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Figure 14: For each of the four problem classes: (Optimal) N-Linked Sequence, Peaceable
Armies of Queens, and Strong External Difference Families (SEDF), and the six
solvers, the figure plots the total time (including both Savile Row and the
solver) with TabID applying the SAT size limit on the x-axis and without TabID
on the y-axis. Other details are the same as in Figure 7.

appendix we present the results of solving problems without TabID versus TabID with the
SAT size limit applied; Figures 12 to 14 show the comparison for the baseline problems
as well as the new case studies (cross-reference with the results presented and analysed in
Sections 6.3 and 6.4).

In Figure 12 we observe that the speedups with the SAT size limit applied is broadly
similar for Minion, Gecode and OR-tools. However, when we consider the results with Kissat,
Kissat(MDD) and Chuffed, we see a marked improvement for the Block Party Metacube
problem with almost all instances being solved faster than when TabID is turned off, and
with the geometric mean of speedups rising from (0.52, 0.19, 1.29) to (2.10, 1.60, 7.60).
There are also improvements for the Maximum Density Still Life problem with the same
three solvers.

Figure 13 shows the results for the first batch of new case studies. Here, the application
of the SAT size limit does not change the results considerably in most cases. The exception is
the Killer Sudoku problem, where we see that with the SAT size limit there is a deterioration
in performance with Minion and Gecode, but a big improvement with OR-tools.
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Figure 15: The time spent on the different phases of the solving process. Instances are
ordered by total Savile Row time along the horizontal axis; for each instance
the runtime is split into three phases displayed vertically: firstly Savile Row’s
pre-processing excluding TabID, secondly the time spent on TabID, and finally
the time taken by the target solver. We show all instances from the featured
problem classes in Section 6 whose total runtime is between 10 and 3600 seconds.
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Finally in Figure 14 we have the results for the second batch of new case studies. Once
again the results here are very similar to the ones presented in Section 6.4. The SAT size
limit does have a slight negative impact on the Strong External Difference Families problem
— in this case some speedups were achieved by TabID even though the SAT encoding size
of some of the tables are over the threshold imposed by the SAT size limit.

Appendix E. Overhead of TabID

We present a brief analysis of the time taken by TabID as compared to the other phases in
the solving pipeline. The SAT size limit is switched off and nodeLimit is set to 100,000 for
this experiment. Figure 15 shows how the total runtime is divided between Savile Row

and the target solver. The time spent in Savile Row is further split into two phases: TabID
and everything else. The middle TabID portion (shown in orange) is relatively small in the
vast majority of cases – sometimes it can take over half of the Savile Row time, but in
those cases much longer is spent in the backend solver phase.

In most cases the majority of time is spent in the final solving phase carried out by the
backend solver. However, there are several instances where considerable time is spent in
Savile Row to reformulate the problem ready for the target solver which then solves it
almost instantly.
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