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Abstract: The building sector, responsible for 40% of global energy consumption, faces

increasing demands for sustainability and energy efficiency. Accurate energy consumption

forecasting is essential to optimise performance and reduce environmental impact. This

study introduces a hybrid machine learning framework grounded in Sparse, Interpretable,

and Transparent (SIT) modelling to enhance building energy management. Leveraging

the REFIT Smart Home Dataset, the framework integrates occupancy pattern analysis,

appliance-level energy prediction, and probabilistic uncertainty quantification. The frame-

work clusters occupancy-driven energy usage patterns using K-means and Gaussian Mix-

ture Models, identifying three distinct household profiles: high-energy frequent occupancy,

moderate-energy variable occupancy, and low-energy irregular occupancy. A Random

Forest classifier is employed to pinpoint key appliances influencing occupancy, with a

drop-in accuracy analysis verifying their predictive power. Uncertainty analysis quanti-

fies classification confidence, revealing ambiguous periods linked to irregular appliance

usage patterns. Additionally, time-series decomposition and appliance-level predictions

are contextualised with seasonal and occupancy dynamics, enhancing interpretability.

Comparative evaluations demonstrate the framework’s superior predictive accuracy and

transparency over traditional single machine learning models, including Support Vector

Machines (SVM) and XGBoost in Matlab 2024b and Python 3.10. By capturing occupancy-

driven energy behaviours and accounting for inherent uncertainties, this research provides

actionable insights for adaptive energy management. The proposed SIT hybrid model can

contribute to sustainable and resilient smart energy systems, paving the way for efficient

building energy management strategies.

Keywords: hybrid machine learning; sparse interpretable transparent (SIT) model; energy

prediction; uncertainty quantification; sustainable energy management

1. Introduction

1.1. Background

The building sector is at the forefront of the global challenge to achieve Net Zero

emissions by 2050. Accounting for 40% of global energy consumption and a significant pro-

portion of carbon emissions, buildings present both a critical challenge and an opportunity
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for innovation in energy management [1,2]. Accurate forecasting of energy consumption

is essential for enabling data-driven decisions that optimise energy performance, support

decarbonisation, and enhance sustainability [3,4]. However, forecasting accuracy is often

hindered by the inherent uncertainties of building energy systems [5,6].

Building energy systems are characterised by their complexity, involving diverse

equipment, intricate topologies, strong non-linearities, long time delays, and tightly cou-

pled multi-system interactions [7]. Building energy consumption, as a typical time-series

dataset, is influenced by a wide range of factors, including physical properties of the

building, outdoor weather conditions, occupant behaviours, equipment operations, socioe-

conomic factors, and geographic location. These challenges necessitate the development of

precise, reliable, and data-driven energy forecasting models that can effectively integrate

these internal and external influencing factors.

Furthermore, building operational data exhibit unique characteristics across temporal

and spatial dimensions. Temporally, buildings exhibit thermal inertia, periodicity, and

latency in their energy systems, which influence energy usage patterns. Spatially, buildings

with similar types, physical properties, and geographic locations often exhibit analogous

energy consumption behaviours. However, traditional forecasting models often oversim-

plify these dimensions. In the temporal dimension, time-series data are frequently treated

as unordered, assuming equal importance for all time points, leading to a loss of critical

information. In the spatial dimension, conventional models typically train on data from

a single building, making them unsuitable for leveraging cross-building similarities and

ineffective for buildings with limited operational data.

As the complexity and intelligence of equipment systems continue to increase, the

randomness of meteorological parameters and operating conditions frequently introduce

variability and stochasticity in the energy load profiles of end-users. This randomness poses

significant challenges for predicting building energy consumption. Common forecasting

models often neglect the influence of input variable uncertainty on prediction performance,

thereby reducing the reliability and timeliness of decisions related to optimising comprehen-

sive energy systems. To address these challenges, forecasting models must achieve two key

objectives: (1) finely process building operational time-series data to extract meaningful

features, and (2) leverage data from other buildings to build accurate predictive models

in scenarios with limited data. Additionally, to enhance the applicability and reliability

of data-driven forecasting models, the results must be interpretable, providing actionable

decision support for building energy management.

1.2. Related Work on Building Energy Prediction

The increasing complexity of building energy systems and the advent of smart tech-

nologies have driven a paradigm shift in energy management strategies. Traditionally,

building energy consumption was predicted using physics-based models that rely on

detailed heat balance equations to simulate the dynamic processes of thermal energy

transfer, which are now known as white-box models [8]. For example, these white-box

models analyse heat transfer through building envelopes and the operation of HVAC

systems by employing simulation software such as EnergyPlus, eQuest, TRNSYS, and

FLUENT [9]. Depending on the computational approach, these models are classified into

methods like Computational Fluid Dynamics (CFD), zonal methods, and nodal meth-

ods [10]. Application can be seen in obtaining the heating and cooling load [11], HVAC

energy consumption [12], and temperature control [13]. Despite their strong theoretical

foundation, these models are heavily dependent on precise physical details such as building

geometry, material properties, and operational parameters, information that is often diffi-

cult to procure. Moreover, long modelling cycles, high computational costs, and potential
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deviations limit their practical application, confining these methods predominantly to the

design phase of buildings [14].

In contrast, data-driven models offer an alternative that bypasses the need for exhaus-

tive physical details by leveraging historical energy consumption data to forecast future

demand [15]. Early approaches using traditional statistical methods, such as autoregressive

models and regression analyses, were relatively simple and easy to implement [5]. How-

ever, the statistical methods struggled with large datasets, long prediction horizons, and

the nonlinear relationships inherent in building energy systems [16,17]. Machine learning

methods emerged to overcome these limitations, which are known as black-box models,

such as Support Vector Machines (SVM) [18], Artificial Neural Networks (ANN) [19], Ran-

dom Forest (RM) [20], and Convolution Neural Network (CNN) [21]. Researchers have

utilised techniques such as SVM and ANN to interpolate between load and temperature

patterns, with studies by Chen et al. showing that SVM regression can outperform conven-

tional physical models even when only weather data are used [22]. Although ANNs have

been widely applied for short-term load forecasting, initial models that relied primarily on

temperature data encountered significant errors during atypical periods, such as weekends

and holidays, leading to enhancements that integrated time-related features to improve

performance [23]. Additional methods, including ensemble approaches and k-nearest

neighbours (k-NN), have further refined predictions. For example, hourly energy consump-

tion data from over 520 apartments were analysed in Seoul, classifying them into low and

high-energy demand groups to forecast next-day consumption more accurately [24].

Advancements in deep learning have further revolutionised the field by addressing

the limitations of earlier data-driven methods. Deep learning techniques such as Recurrent

Neural Networks (RNNs) and, more specifically, Long Short-Term Memory (LSTM) net-

works have proven particularly effective in handling time-series data due to their ability

to capture long-term dependencies [25]. Research indicates that incorporating meteoro-

logical data and additional temporal features into LSTM models significantly enhances

predictive accuracy [26]. Additionally, Convolutional Neural Networks (CNNs), originally

developed for image processing tasks, have been adapted to extract spatial features from

sensor data, thereby providing insights into spatial dependencies within building energy

systems [27]. Hybrid and ensemble approaches that combine deep learning with tradi-

tional methods, which are often referred to as grey-box learning, further improve model

robustness, interpretability, and generalisation across various building types [28].

Beyond these technical advancements, several practical applications and case studies

highlight the real-world impact of AI-driven energy management [29]. Lindberg et al.

conducted a comprehensive study on long-term energy trends in residential buildings,

analysing data from more than 100 structures and categorising them into seven typical en-

ergy consumption profiles, offering a reliable benchmark for community grid investments

and planning [30]. Similarly, the integration of Artificial Neural Networks with Model Pre-

dictive Control (MPC) in air conditioning system optimisation is reviewed, demonstrating

energy savings between 6% and 73% across different seasons using a residential building

as a case study [31]. The k-shape clustering method is employed to enhance the accuracy

of energy consumption predictions, underscoring the importance of refined predictive

models for effective building management [32]. Moreover, machine learning techniques are

applied to model in-building equipment, achieving remarkably low prediction errors, 3.6%

in cooling seasons and 3.9% in heating seasons, thereby providing valuable insights for en-

ergy design and system improvement [33]. In another innovative application, Killian et al.

applied a joint fuzzy model predictive control approach to an Austrian university building,

integrating physical and data-driven models to optimise energy control strategies while



Architecture 2025, 5, 24 4 of 24

maintaining occupant comfort, with simulations indicating an energy-saving potential

between 31% and 36% [34].

Despite these promising developments, a critical challenge remains: the integration of

expert knowledge with data-driven approaches [35]. While data-driven models excel in

uncovering hidden patterns and delivering high predictive accuracy, they often operate as

black boxes, lacking the interpretability that comes from incorporating explicit physical

principles [30]. Traditionally, expert insights have been used only during the feature extrac-

tion stage, leaving a gap in understanding the underlying physical processes. Bridging this

gap through the development of physics-informed AI models holds significant promise, as

it can lead to systems that are both highly accurate and inherently interpretable [36].

Looking forward, several challenges must be addressed to fully realise the potential of

AI-driven building energy management systems. Model interpretability remains a pressing

issue, as the internal workings of many AI models are difficult to explain, which can limit

stakeholder confidence and practical implementation [37]. Data quality and availability are

also major concerns, particularly for older or smaller buildings that lack comprehensive

sensor networks, thus restricting the amount of high-quality training data available [38].

Moreover, while models fine-tuned for specific buildings can perform exceptionally well,

their scalability and generalizability across diverse building types and operational condi-

tions continue to pose significant challenges [39]. Lastly, the high computational demands

of deep learning models can hinder real-time applications, necessitating further research

into more efficient algorithms and computing strategies [40].

In response to these challenges, this study introduces a novel hybrid machine learn-

ing framework grounded in the Sparse, Interpretable, and Transparent (SIT) paradigm.

Foremost among its advantages is the model’s inherent capacity to handle non-linear

relationships within the time-series data. Unlike linear models, NARMAX extends the

traditional ARMAX framework by incorporating non-linear terms, making it exceptionally

well-suited to capture the intricate dynamics of residential energy consumption. While

complex enough to capture non-linearities, NARMAX remains more interpretable than

black-box models like deep neural networks. By integrating advanced methodologies such

as appliance-level energy prediction, time-series decomposition, and seasonal and occu-

pancy patterns analysis, the framework addresses the inherent complexities and multi-scale

dynamics of building energy consumption. Leveraging the REFIT Smart Home dataset,

the proposed framework demonstrates superior predictive accuracy and interpretability

compared to traditional machine learning models. The framework’s interpretability bridges

the gap between predictive analytics and actionable insights, enabling decision-makers to

optimise energy management strategies.

2. Materials and Methods

2.1. Methodology

2.1.1. Classification and Clusters for Occupancy Pattern Analysis

Occupancy behaviour was analysed using the REFIT Smart Home dataset’s appliance-

level and aggregate energy consumption data. A binary occupancy label was created based

on a predefined energy consumption threshold, where aggregate energy consumption

exceeding 300 Watts was classified as occupied (111) and lower values as unoccupied (000).

In the residential building energy consumption cases, 300 W is a reasonable benchmark to

distinguish between active occupancy (e.g., cooking and heating) and background energy

use like fridge and other standby loads [41]. Further statistics analysis for Building 01 are

conducted, shown in Figures 1 and 2. The blue bars in the histogram shows the frequency

of different energy consumption levels. The histogram reveals a sharp peak at very low

power consumption values (below 300 W), highlighting a dominant category of low-energy
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consumption periods. Beyond 300 W, the frequency of occurrences decreases significantly,

suggesting that higher energy consumption levels are associated with different occupancy

patterns or appliance usage behaviours. The Sturges method (red) and Freedman–Diaconis

method (green) confirm the presence of a distinct peak in low power consumption ranges,

which helps validate that 300 W falls at a natural cut-off between background energy use

and higher consumption patterns. In Figure 2 the median value (50th percentile) is 302 W,

indicating that half of the recorded energy usage values are below this level. This analysis

confirms that 300 W serves as a threshold, guaranteeing that low-power background loads

are not misclassified as occupancy.
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Figure 1. Distribution of energy aggregate for Building 01.

ff

ff tt

ff
tt

ffi
tt ff

ffi

Figure 2. Percentile-based energy distribution for Building 01.

A Random Forest Classifier was implemented to predict occupancy. Random Forest

was chosen for occupancy classification due to its robustness in handling high-dimensional,

nonlinear energy usage data. It provides strong predictive accuracy while maintaining

computational efficiency, making it ideal for classifying occupancy states based on appliance

usage patterns. Additionally, Random Forest offers built-in feature importance ranking,

allowing for deeper insights into which appliances contribute most to occupancy prediction.

This interpretability is particularly valuable for energy management applications, where

understanding the key drivers of occupancy is critical for optimising energy efficiency.

In the random forest classifier training, two feature sets were considered: one including

aggregate energy consumption and another excluding it to evaluate the predictive power

of appliance-level and contextual features alone. The model was evaluated using accuracy,

precision, recall, and F1-score, and 5-fold cross-validation was applied to ensure robustness.

In addition, the grid search method was applied to optimise the hyperparameters, like the

number of trees, maximum depth, and minimum samples per leaf.
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A feature ablation study was conducted to assess the contribution of individual

appliances to occupancy prediction. Each appliance feature was removed one at a time,

and the resulting drop in model accuracy was recorded. This analysis quantified the

predictive power of specific appliances, identifying the appliances as key contributors to

occupancy classification.

To further explore occupancy behaviour, K-means clustering and Gaussian Mixture

Models (GMM) were applied to appliance-level energy consumption due to their effec-

tiveness in segmenting energy consumption behaviours. K-means provides a fast and

scalable method for identifying distinct occupancy groups based on energy usage, making

it well-suited for high-dimensional appliance-level data. GMM complements K-means by

allowing probabilistic membership assignments, which is particularly useful for house-

holds exhibiting transitional occupancy behaviours. The combination of these two methods

ensures a comprehensive clustering approach that captures both rigid and flexible oc-

cupancy patterns. Hyperparameter selection for clustering models was guided by the

Elbow Method and Silhouette Score analysis. The optimal number of clusters for K-means

was determined by identifying the inflection point in the within-cluster sum of squares

plot, where additional clusters provided marginal improvement. For GMM, the Bayesian

Information Criterion (BIC) was optimised to balance model complexity and likelihood

estimation, ensuring the best probabilistic representation of occupancy states.

The optimal number of clusters was determined using the Elbow Method, identifying

distinct patterns in household energy usage. Clustering provided additional insights

into occupancy-driven appliance usage behaviours. For GMM, the Bayesian Information

Criterion (BIC) was optimised to balance model complexity and likelihood estimation,

ensuring the best probabilistic representation of occupancy states.

Probabilistic outputs from the classifier were analysed to quantify prediction uncer-

tainty. Prediction probabilities between 0.4 and 0.6 were flagged as ambiguous cases,

highlighting uncertain occupancy states. This uncertainty analysis informed further model

refinements and decision boundary adjustments.

2.1.2. Single and Multi-Feature Time-Series Prediction

Time-series forecasting was conducted to predict aggregate energy consumption us-

ing both single and multiple features. The dataset was divided into 80% training and

20% testing, maintaining temporal continuity to prevent data leakage. Predictions were

generated using various machine learning and deep learning models, ensuring a compre-

hensive evaluation of their performance in forecasting residential energy consumption.

The selected models included LSTM, Transformer, NARMAX, SVM, ANN, XGBoost, and

Random Forest. These models were chosen based on their ability to capture sequential

dependencies, nonlinear relationships, and interpretability.

For single-feature prediction, models were trained using only time-related inputs,

including hours of the day and day of the week, to predict aggregate energy consumption.

The input data were transformed into a sequence format using a sliding window approach,

where each training sample consisted of 24 consecutive hourly observations used to predict

the next hour’s aggregate consumption.

A Long Short-Term Memory (LSTM) network was implemented for sequential mod-

elling due to its proven effectiveness in capturing long-range dependencies in time-series

data. The architecture consisted of two stacked LSTM layers, each with 50 units, followed

by a dense output layer. Dropout regularisation with a rate of 0.2 was applied after each

LSTM layer to prevent overfitting. The model was compiled using the Adam optimiser

and trained with a Mean Squared Error (MSE) loss function. Hyperparameters such as the

number of layers, units per layer, dropout rate, and learning rate were optimised using
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Bayesian optimisation with the Tree-structured Parzen Estimator (TPE), ensuring efficient

tuning without excessive computational cost. Early stopping was implemented to monitor

validation loss and prevent unnecessary training iterations. Predictions were de-normalised

to restore the original scale of energy consumption.

A Transformer-based model was also employed as an alternative to LSTM, leveraging

a self-attention mechanism to capture long-range dependencies in sequential data. Unlike

recurrent networks, Transformers can dynamically assign different weights to different time

steps using Multi-Head Self-Attention, improving model interpretability and efficiency.

Positional encoding was introduced to provide the model with temporal awareness, and

the final encoding of each time step was passed through a fully connected output layer

to generate predictions. Similar to the LSTM model, the Transformer was trained using

the Adam optimiser with an MSE loss function. Hyperparameters—including the number

of attention heads, hidden dimensions, and feed-forward network size—were fine-tuned

using Bayesian optimisation and early stopping to optimise generalisation.

NARMAX was introduced as an interpretable alternative to deep learning models.

While LSTMs and Transformers provide high accuracy, they lack transparency in under-

standing the influence of input variables on predictions. NARMAX, in contrast, offers an

explicit mathematical representation of system dynamics, making it valuable for energy

managers seeking to understand causal dependencies in energy consumption. The general

NARMAX model is defined as:

y(t) = F
[

y(t − 1), . . . , y
(

t − ny

)

, u(t), . . . , u(t − nu), e(t − 1), . . . , e(t − ne)
]

(1)

where y, u, and e represent the system output, input and noise, F is the general represen-

tation of some typical nonlinear model forms, like a polynomial model, neural network,

and other kinds of nonlinear forms; ny, nu, and ne are the maximum time lags for the

system output, input and noise. In the NARMAX modelling, the key procedure involves

applying the Forward Regression Orthogonal Least Square (FROLS) algorithm to detect

the model structure and estimate the parameters. This approach ensures that only the most

significant variables are retained, enhancing interpretability while maintaining predictive

power. Unlike deep learning models, which often act as black boxes, NARMAX allows en-

ergy managers to identify which factors most influence consumption patterns and develop

targeted efficiency strategies based on these insights.

Beyond its interpretability, NARMAX supports predictive control applications in energy

management. By analysing its explicit equations, energy managers can optimise HVAC

systems, lighting, and appliance scheduling based on forecasted energy demands. Moreover,

regulatory compliance and reporting benefit from NARMAX’s transparency, as the model

provides a structured way to demonstrate how different variables impact energy consumption.

This capability is particularly valuable in settings where decision-makers require explainable

and audit-friendly models for policy enforcement and sustainability reporting.

The model complexity was controlled using the Akaike Information Criterion (AIC)

and Bayesian Information Criterion (BIC), ensuring an optimal balance between inter-

pretability and predictive power.

To improve forecasting accuracy, multiple contextual features—including temperature,

humidity, brightness, and climate conditions—were incorporated alongside time-series

data. These additional inputs allowed models to capture environmental influences on

energy consumption. Data preprocessing involved merging external feature datasets with

aggregate energy consumption data based on timestamps. Mean imputation was applied

to handle missing values, and all features were normalised to ensure stable training. The

sliding window method was extended to include both past energy consumption and

contextual variables as input sequences.
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A deep learning-based multi-feature LSTM model was developed to process these

inputs. The architecture followed a similar structure to the single-feature LSTM but with

an expanded input space to accommodate external variables. The network consisted of

two LSTM layers with 50 units each, followed by a dense output layer. The ReLU activation

function was used for non-linear transformations, and dropout layers (rate = 0.2) were

included to prevent overfitting. The training was conducted using the Adam optimiser,

and the MSE loss function was minimised over 50 epochs with early stopping. Hyperpa-

rameter tuning, including batch size and learning rate adjustments, was conducted using a

combination of grid search and Bayesian optimisation.

A Transformer model was also employed for multi-feature prediction. The input

feature set was passed through multiple self-attention layers, allowing the model to adjust

the importance of different inputs over time dynamically. The final encoding of each time

step was used to generate predictions, similar to the single-feature Transformer setup.

Model hyperparameters—including the number of attention heads and feed-forward

network dimensions—were tuned for optimal performance.

To benchmark forecasting performance across different modelling approaches, ad-

ditional machine learning models—including Support Vector Machines (SVM), Artificial

Neural Networks (ANN), Extreme Gradient Boosting (XGBoost), and Random Forest—

were evaluated. These models were chosen based on their ability to capture nonlinear

relationships and generalise well across diverse datasets. Each model was trained on the

same dataset split and evaluated using Root Mean Squared Error (RMSE) and Coefficient

of Variation (CV) to assess prediction accuracy. Hyperparameter tuning for SVM involved

optimising the kernel function (RBF vs. polynomial) and regularisation parameter (C) using

grid search. For ANN, the number of hidden layers, activation functions, and dropout

rates were fine-tuned through random search and cross-validation. The XGBoost model

was optimised using learning rate tuning, tree depth adjustments, and feature importance

analysis. Random Forest hyperparameters, including the number of estimators and tree

depth, were selected based on grid search and k-fold cross-validation.

Each model was selected based on its suitability for time-series forecasting and its

ability to capture different characteristics of energy consumption. LSTM and Transformer

models were chosen for their ability to learn long-range dependencies, NARMAX for its

interpretability, and ensemble models like Random Forest and XGBoost for their robustness

in feature-driven forecasting. A structured hyperparameter tuning process, incorporating

grid search, random search, Bayesian optimisation, and cross-validation, was applied

across all models to ensure optimal predictive performance in diverse energy datasets.

2.2. Dataset Description

The proposed framework is applied to the REFIT Smart Home dataset, a compre-

hensive resource for residential energy consumption research collected during the REFIT

project (2013–2015). This dataset includes high-resolution energy usage data from 20 UK

households retrofitted with smart home technologies, making it ideal for addressing the

complexities of building energy management. The dataset’s granularity and contextual rich-

ness provide a strong foundation for appliance-level energy prediction, temporal analysis,

and archetype-based modelling.

The dataset includes electrical load data, offering cleaned measurements of energy

consumption in Watts at both aggregate and appliance levels. These data are sampled

at 8-second intervals, enabling a detailed examination of short-term energy dynamics.

Appliance-level measurements cover a range of household devices, such as refrigerators,

washing machines, and microwaves, allowing granular analysis of specific energy usage

patterns. Aggregate-level data, on the other hand, capture the total energy consumption
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of each household. In addition, the dataset features building survey data that capture

the structural and operational characteristics of each household. These surveys include

information on building type (e.g., detached, semi-detached, or terraced), size (e.g., number

of rooms and floors), appliance inventory, and occupancy details. Another key component

of the dataset is the climate data collected from a nearby weather station. These data

include variables such as temperature, humidity, brightness, and wind speed, all of which

significantly influence residential energy consumption. For instance, temperature and

humidity are critical for modelling seasonal energy demands related to heating or cooling.

3. Results

3.1. Occupancy Pattern Analysis

This section presents the results of occupancy classification, feature importance analy-

sis, clustering, and uncertainty estimation, focusing solely on appliance-level and contextual

features without using aggregate energy consumption as an input.

The information for the 20 buildings is summarised in Table 1. This table provides a

structured summary of 20 buildings, detailing their occupancy, year of construction, type,

size, and corresponding energy consumption patterns. The analysis classifies the buildings

into three distinct energy usage profiles, based on occupancy patterns (frequent, variable,

and irregular). Occupancy significantly influences energy usage—consistent occupancy

usually results in increased consumption, while sporadic occupancy corresponds to lower

consumption levels. Detached houses with over four residents typically have greater

energy demands, whereas smaller homes with fewer occupants demonstrate reduced

usage. Generally, older structures (constructed before 1965) tend to display lower energy

consumption, possibly attributed to less appliance usage or more energy-efficient habits.

Table 1. Summary of the building information.

House ID Users
Construction

Year
Type Size Occupancy

Energy
Consumption

Pattern

1 2 1975–1980 Detached 4 beds Frequent High-Energy
2 4 - Semi-detached 3 beds Variable Moderate-Energy
3 2 1988 Detached 3 beds Variable Moderate-Energy
4 2 1850–1899 Detached 4 beds Variable Moderate-Energy
5 4 1878 Mid-terrace 4 beds Irregular Low-Energy
6 2 2005 Detached 4 beds Irregular Low-Energy
7 4 1965–1974 Detached 3 beds Frequent High-Energy
8 2 1966 Detached 2 beds Variable Moderate-Energy
9 2 1919–1944 Detached 3 beds Frequent High-Energy
10 4 1919–1944 Detached 3 beds Irregular Low-Energy
11 1 1945–1964 Detached 3 beds Irregular Low-Energy
12 3 1991–1995 Detached 3 beds Irregular Low-Energy
13 4 post 2002 Detached 4 beds Irregular Low-Energy
14 1 1965–1974 Semi-detached 3 beds Irregular Low-Energy
15 6 1981–1990 Detached 5 beds Irregular Low-Energy
16 3 mid 60s Detached 3 beds Irregular Low-Energy
17 2 1965–1974 Detached 3 beds Irregular Low-Energy
18 4 1945–1964 Semi-detached 3 beds Irregular Low-Energy
19 2 1965–1974 Detached 3 beds Irregular Low-Energy
20 4 1981–1990 Detached 3 beds Irregular Low-Energy

Three buildings are selected to show the results of occupancy pattern analysis to cover

different types of buildings.
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• Building 1: A detached residential structure, constructed between 1975 and 1980,

accommodating two individuals and is equipped with 35 appliances distributed

across four bedrooms.

• Building 5: This mid-terrace dwelling, built in 1878, houses four occupants, has

44 appliances, and includes four bedrooms.

• Building 14: This semi-detached building, constructed between 1965 and 1974, is

occupied by a single individual. It is furnished with 19 appliances and three bedrooms.

3.1.1. Clustering Analysis of Occupancy Patterns

The Elbow Method determined that the optimal number of clusters was three, reflect-

ing variations in household occupancy and appliance usage patterns. The clustering results

for Building 01 are visualised as the example in Figure 3.

tt

tt

   

(a) (b) (c) 

𝑥 
tt

tt

tt

Figure 3. (a) Elbow Method for optimal number of clusters for Building 01; (b) K-Means Clustering

of appliance usage for Building 01; (c) GMM clustering of appliance usage for Building 01.

In the result for the elbow method, K = 3 was selected for the number of clusters,

marking the transition where increasing the number of clusters no longer significantly

reduces inertia. Figure 3b,c present the clustering results for pairing normalised fridge-

freezer usage and washing machine usage, where higher values on either axis indicate

higher appliance usage. Data points clustered close to the origin with low x and y values

signify low usage behaviour. Points that are outliers with high x or y values indicate high

appliance usage. Data points with moderate values for one or both appliances reflect

mid-usage behaviour. Both two clustering methods agree that the majority of the data

belong to Cluster 2. K-Means creates a hard boundary for these points, excluding all

outliers in the process, while GMM reflects the uncertainty in this dense region, with some

points probabilistically assigned to Cluster 1. High fridge-freezer usage (e.g., x > 10) is

consistently assigned to Cluster 0, similar to washing machines. However, GMM softens

the assignments by assigning smaller probabilities to secondary clusters.

To better compare the clustering results for 20 buildings, meta-clustering is conducted

to group the buildings with similar performance. From each building’s clustering, the

cluster proportions and silhouette score are selected to group the buildings; results are

shown in Table 2. The meta-clustering revealed three distinct building groups based on

clustering patterns: high variability, moderate variability, and low variability.

The silhouette scores range between 0.56 and 0.60, which is a relatively small range.

This suggests that no meta-cluster has significantly stronger cohesion/separation from

the others. Buildings in Meta-cluster 0 exhibit similar proportions of all three clusters,

indicating that there is no single dominant cluster. Buildings categorised in Meta-cluster

1 do not reveal a clear dominant cluster, suggesting that these buildings may experience

significant variation in appliance usage over time. In contrast, buildings within Meta-

cluster 2 display the dominance of one cluster, implying that most of their data points
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belong to a single cluster or that their silhouette scores are relatively lower (closer to 0.56),

which indicates some overlap between clusters.

Table 2. Meta-clustering results for 20 buildings.

Building ID
Cluster 1

Proportion
Cluster 2

Proportion
Cluster 3

Proportion
Avg. Silhouette Meta-Cluster

01 0.37 0.28 0.35 0.58 2
02 0.40 0.39 0.21 0.56 1
03 0.38 0.37 0.25 0.60 1
04 0.36 0.35 0.28 0.59 1
05 0.35 0.33 0.32 0.58 0
06 0.35 0.35 0.30 0.56 0
07 0.37 0.29 0.34 0.57 2
08 0.37 0.37 0.27 0.58 1
09 0.35 0.29 0.37 0.56 2
10 0.35 0.32 0.33 0.58 0
11 0.35 0.33 0.31 0.59 0
12 0.34 0.31 0.35 0.58 0
13 0.32 0.38 0.30 0.60 0
14 0.33 0.32 0.35 0.58 0
15 0.32 0.36 0.32 0.60 0
16 0.32 0.34 0.34 0.58 0
17 0.33 0.34 0.33 0.59 0
18 0.32 0.34 0.34 0.58 0
19 0.34 0.32 0.34 0.58 0
20 0.32 0.33 0.36 0.60 0

Representative meta-clustering grouping results for Buildings 07, 08, and 17 illus-

trate these groups, as shown in Figure 4. Building 17, which represents Meta-Cluster 0,

demonstrates more stable cluster patterns. Building 08, located in Meta-Cluster 1, indicates

that appliance usage fluctuates, making clustering less effective. Building 07, belonging to

Meta-Cluster 2, suggests very dominant energy usage behaviours.

   

(a) (b) (c) 

ff
tt

Figure 4. (a) Cluster visualisation for Building 07; (b) cluster visualisation for Building 08; (c) cluster

visualisation for Building 17.

The household energy profiles can be characterised into three clusters as follows:

Cluster 1 (High-Energy, Frequent Occupancy Households): Homes with consistent

occupancy and high appliance usage throughout the day, indicating families with multiple

occupants or individuals working from home.

Cluster 2 (Moderate-Energy, Variable Occupancy Households): Homes with moderate

appliance activity, where occupancy fluctuates across different hours and days.

Cluster 3 (Low-Energy, Irregular Occupancy Households): Homes with sporadic

appliance usage, suggesting single-occupant households or part-time occupancy.



Architecture 2025, 5, 24 12 of 24

Based on the meta-clustering results and the observed clustering visualisations, three

appliance-usage-based household categories (Cluster 1, Cluster 2, Cluster 3) aligned with

the meta-cluster groups (0, 1, 2), summarised in Table 3.

Table 3. Mapping household energy profiles to meta-clusters.

Meta-Cluster Household Type Buildings Assigned

Meta-Cluster 0
Low-Energy, Irregular
Occupancy (Cluster 3)

01, 07, 09

Meta-Cluster 1
Moderate-Energy, Variable

Occupancy (Cluster 2)
02, 03, 04, 08

Meta-Cluster 2
High-Energy, Frequent
Occupancy (Cluster 1)

05, 06, 10–20

3.1.2. Occupancy Classification Performance

The Random Forest classifier was trained and tested using appliance-level features

from 20 buildings. The model was evaluated using accuracy, precision, recall, and F1-score,

with results summarised in Table 4.

Table 4. Occupancy classification performance across 20 buildings.

Building ID Accuracy Precision Recall F1-Score

Building 01 0.81 0.81 0.81 0.80
Building 05 0.95 0.95 0.95 0.95
Building 14 0.92 0.92 0.92 0.92

Mean 0.89 0.89 0.89 0.89
Stand Deviation 0.06 0.06 0.06 0.06

Overall, the classifier achieved a mean accuracy of 89%, demonstrating strong predic-

tive performance across different buildings using only appliance-level data. Buildings with

more consistent appliance usage patterns (e.g., regular washing machine cycles) exhibited

higher classification accuracy, while buildings with irregular energy usage behaviours

showed slightly lower performance.

A confusion matrix for three representative buildings (high-, medium-, and low-

energy users) is presented in Figure 5, illustrating classification performance in detail. False

positives primarily occurred during low-energy appliance activity periods, where minor

fluctuations in consumption led to misclassifications.

   

(a) (b) (c) 

tt

Figure 5. (a) Confusion matrix for Building 01; (b) confusion matrix for Building 05; (c) confusion

matrix for Building 15.
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3.1.3. Feature Importance and Drop-In Accuracy Analysis

To assess the contribution of each appliance to occupancy classification, a feature

importance analysis was conducted using the trained Random Forest model. The ranking

of appliance features is presented in Figure 6, where higher values indicate stronger

predictive power.
tt

Figure 6. Feature importance of appliance usage in occupancy prediction for Building 01.

For example, the washing machine, dishwasher and fridge-freezer were identified

as the most influential features in Building 01. This aligns with expectations, as these

appliances typically operate during occupied periods and exhibit distinct usage patterns

compared to other devices.

A drop-in accuracy analysis was performed to further validate the importance of

individual appliances. Each appliance feature was removed sequentially, and the corre-

sponding decrease in classification accuracy was recorded. For each building, the mean

drop in accuracy across all key features is computed, providing a single representative

value for how sensitive the building’s classification is to the removal of key features. After

ranking all buildings by the mean drop in accuracy, three buildings are selected to represent

high, low and balanced performance. Figure 7 illustrates the representative buildings,

where Building 01 has the highest mean drop across features, highlighting the prediction

that Building 01 relies heavily on specific features. Building 11 has the lowest mean drop

across features, showing the robustness of the classification model, as it does not depend

heavily on any one feature. The results for Building 11 indicate that the model performs

consistently across all features.

   

(a) (b) (c) 
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Figure 7. (a) Drop in accuracy for Building 01; (b) drop in accuracy for Building 11; (c) drop in

accuracy for Building 17.
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3.1.4. Uncertainty Analysis in Occupancy Classification

Occupancy classification was performed using the Random Forest method. To quan-

tify the confidence of the occupancy classifier, the model’s predicted probabilities were

analysed. A probability close to 0 or 1 indicates high confidence, while a probability near

0.5 suggests the model is uncertain. The uncertain classifications are defined as those

where the predicted probability falls within a range of 0.4 to 0.6. This range represents

cases where the model struggles to confidently assign an instance to either “occupied” or

“not occupied”.

Figure 8 presents a histogram of predicted probabilities of Building 01. The red-shaded

region (0.4 to 0.6) marks the ambiguous predictions, where the classifier struggles the most.

The result indicates that the majority of predictions are clustered near 0 and 1, indicating

that the model is confident in classifying most time instances as either occupied (1) or

unoccupied (0). This suggests that Building 01 has clear occupancy patterns, where usage

aligns strongly with either fully occupied or unoccupied states. A moderate proportion of

predictions (~15%) fall within the ambiguous range. The probabilities between 0.1 and 0.4

and 0.6 to 0.9 suggest that there are periods of partial occupancy uncertainty, where activity

fluctuates but does not reach a confident classification. This might correspond to sporadic

appliance use or inconsistent behavioural patterns in the building.

tt

tt

Figure 8. Distribution of probability of Building 01.

Similarly, the same uncertainty analysis is conducted for the remaining buildings,

and the aggregate analysis is summarised in Figure 9. Most predictions are concentrated

near 0 (unoccupied) and 1 (occupied). This suggests that the model is generally confident

in classifying occupancy states. A small but notable number of predictions fall into the

red-shaded range, where the model is uncertain about occupancy. The blue line is the

KDE (Kernel Density Estimate) line overlaying a smooth density estimate of probabilities,

which confirms sharp peaks at 0 and 1 and a relatively flat region in the ambiguous range.

The model is highly confident for most time periods, but uncertainty exists for about

15% of cases (as seen in the ambiguous range). Buildings with consistent energy patterns

(e.g., routine appliance usage) have fewer ambiguous predictions.

To determine which buildings contribute the most to uncertainty, the mean probability

of occupancy and standard deviation (std) are focused. A mean occupancy probability

near 0.5 suggests more uncertain predictions. Buildings with means between 0.4 and 0.6

are more ambiguous. A high standard deviation indicates greater variability in occupancy

predictions, implying fluctuating occupancy behaviour. The visualisations are displayed
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in Figure 10. Buildings 05, 06, 08, 10, and 17 have higher mean uncertainty and standard

deviation, which could be due to inconsistent occupancy patterns, irregular appliance

usage, or external environmental factors affecting predictions. Buildings 02, 14, 16, and 18,

with low uncertainty, have more predictable occupancy, making it easier for the model to

classify with confidence.

tt

tt
ff

Figure 9. Aggregated uncertainty analysis across 20 buildings.
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Figure 10. (a) Mean Uncertainty in Occupancy Prediction Across 20 Buildings; (b) Variability in

Occupancy Prediction Across 20 Buildings; (c) Uncertainty Spread Across Buildings.

This uncertainty analysis reinforces the need for probabilistic energy modelling to ac-

commodate ambiguous cases and improve decision-making in smart energy management.

3.2. Time-Series Prediction of Energy Consumption

This section evaluates the performance of single-feature and multiple-feature energy

consumption forecasting models across all 20 buildings. The models were assessed using

Root Mean Squared Error (RMSE) and Coefficient of Variation (CV) to quantify prediction

accuracy.

3.2.1. Single-Feature Prediction Results

Aggregate energy consumption was predicted using only time-based features. LSTM

and Transformer models were trained using 24 h sequences to forecast the next-hour

energy consumption. The RMSE and CV values for selected buildings are summarised in

Tables 5 and 6.
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Table 5. RMSE of time-series prediction models (single-feature input).

Building ID

RMSE

LSTM Transformer SVM NARMAX
Random

Forest
XGBoost

Building 01 280.840 289.257 289.737 253.615 445.988 436.339
Building 02 580.692 596.388 606.542 531.620 712.300 661.913
Building 03 488.530 530.565 534.036 485.911 786.650 548.777
Building 04 151.498 153.742 161.285 148.627 185.669 166.358
Building 05 337.691 364.870 361.556 343.663 535.614 466.773
Building 06 183.039 179.676 179.492 159.478 212.097 204.324
Building 07 390.583 415.331 404.487 396.713 465.600 444.108
Building 08 628.899 598.401 683.821 470.045 676.212 666.005
Building 09 486.542 494.429 489.253 466.484 598.420 559.414
Building 10 483.438 448.388 454.781 433.740 531.223 509.059
Building 11 407.975 411.626 487.744 303.801 434.738 409.987
Building 12 266.650 265.691 272.404 259.388 305.206 270.909
Building 13 595.766 596.717 614.510 487.713 658.976 644.520
Building 14 155.099 155.691 155.003 157.950 186.901 178.885
Building 15 280.772 259.180 274.446 243.129 396.730 366.786
Building 16 433.475 374.204 376.416 361.985 960.573 762.215
Building 17 280.092 287.384 287.588 266.227 321.525 288.658
Building 18 151.933 152.254 152.769 148.234 178.589 157.439
Building 19 198.733 214.328 208.175 194.196 251.752 233.554
Building 20 604.016 377.738 660.338 304.357 684.680 653.578

Table 6. CV of time-series prediction models (single-feature input).

Building ID

CV

LSTM Transformer SVM NARMAX
Random

Forest
XGBoost

Building 01 67.696 69.725 69.841 61.134 107.505 105.179
Building 02 108.930 111.874 113.779 99.725 133.618 124.166
Building 03 73.905 80.264 80.789 73.509 119.004 83.019
Building 04 42.571 43.202 45.322 41.765 52.173 46.747
Building 05 47.303 51.111 50.646 48.140 75.028 65.385
Building 06 37.256 36.572 36.534 32.461 43.171 41.589
Building 07 76.404 81.245 79.124 77.603 91.079 86.874
Building 08 85.996 81.826 93.507 64.275 92.466 91.070
Building 09 89.105 90.549 89.601 85.432 109.594 102.451
Building 10 77.847 72.203 73.233 69.845 85.542 81.973
Building 11 68.536 69.149 81.936 51.036 73.032 68.874
Building 12 74.599 74.331 76.209 72.567 85.386 75.791
Building 13 92.152 92.299 95.051 75.439 101.929 99.693
Building 14 70.773 71.043 70.729 72.074 85.285 81.627
Building 15 70.333 64.925 68.748 60.904 99.381 91.880
Building 16 109.159 94.234 94.791 91.156 241.895 191.944
Building 17 61.091 62.681 62.726 58.067 70.128 62.959
Building 18 54.679 54.795 54.980 53.348 64.273 56.661
Building 19 54.375 58.642 56.958 53.133 68.881 63.902
Building 20 65.778 73.367 71.911 33.145 74.562 71.175

Across 20 buildings, LSTM, Transformer, and NARMAX generally stayed within

10–15% of each other in RMSE. In more predictable households, NARMAX outperformed

others by up to 12%, whereas Transformer led by roughly 8–10% in irregular-demand

settings. Meanwhile, SVM lagged 10–20% behind top performers, and Random Forest or
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XGBoost often trailed by 20–25%, indicating challenges with purely time-based inputs. In

certain high-consumption buildings, LSTM registered the lowest errors, while NARMAX

excelled with moderate loads. Transformers also showed reliable accuracy but could be

sensitive to hyperparameter choices. Collectively, these outcomes highlight the marked

impact of occupant-driven variability on time-only forecasting.

In Figure 11a, Building 01 demonstrates a relatively stable energy consumption pattern,

with LSTM and Transformer models closely tracking actual consumption. Both models cap-

ture the long-term trend effectively, with minor deviations. NARMAX, while maintaining

interpretability, consistently underestimates energy usage, resulting in a lower predicted

range. Random Forest Predictions introduce substantial fluctuations, with frequent spikes

that deviate significantly from actual consumption, highlighting its difficulty in adapting

to stable energy demand. However, it is important to note that this figure represents only a

small portion of the entire testing period, and the overall performance of NARMAX across

the full dataset is stronger than it appears in this subset.

tt
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Figure 11. Model performance in predicting aggregate energy consumption for selected buildings

during stable consumption periods using single-feature inputs. (a) The predicted vs. actual energy

consumption for Building 01 over 6 June–6 July 2015) (b) The predicted vs. actual energy consumption

for Building 05 over 10 March–10 April (c) The predicted vs. actual energy consumption for Building

15 over 1 April–1 May 2015.

Figure 11b presents the results for Building 05, where LSTM and Transformer models

continue to show strong alignment with actual consumption trends. Both models provide

smooth and accurate predictions, reinforcing their ability to generalise across different

households. NARMAX offers reasonable performance but appears to struggle in cap-

turing certain variations within this selected period. Random Forest Predictions exhibit

erratic behaviour with high variance, failing to align well with the stable consumption

pattern observed in this building. While these observations highlight the effectiveness

of deep learning models within this timeframe, across the full testing period, NARMAX

demonstrates superior overall accuracy in more predictable households.

Figure 11c illustrates the performance for Building 15, where LSTM and Transformer

maintain their accuracy advantage, effectively modelling the stable consumption period.

NARMAX performs slightly worse compared to the previous cases, showing more variation

in its predictions, occasionally diverging from actual consumption values. Random Forest

Predictions remain inconsistent, introducing substantial noise and deviating from actual

consumption with frequent spikes, making it the least reliable model for this scenario.

Despite these short-term observations, the broader dataset analysis indicates that NARMAX

achieves better overall performance than the deep learning models in structured energy

demand scenarios.

Figure 11 provide insight into how different models perform over a selected stable

period, but they do not fully represent model performance across the entire testing set.

In the full dataset, NARMAX outperforms LSTM and Transformer in many buildings,

particularly where energy consumption patterns are more predictable. Overall, the figures

illustrate that LSTM and Transformer models effectively capture stable consumption trends
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within the selected time periods, closely following actual energy usage with minimal

deviation. However, these figures only represent a subset of the testing period. In the

complete testing set, NARMAX demonstrates superior overall performance, as reflected in

the RMSE and CV results, particularly in more predictable households. While NARMAX

appears to underestimate fluctuations in these selected periods, its structured regression

approach allows it to generalise better across the full dataset. Random Forest Predictions

continue to exhibit pronounced fluctuations, making them less reliable for modelling

smooth energy consumption patterns. These results reinforce that while deep learning

models excel at handling short-term variations, NARMAX remains a strong contender over

the entire dataset due to its robustness in structured energy demand scenarios.

3.2.2. Multiple-Feature Prediction Results

To assess the impact of contextual variables on energy prediction, models were trained

using temperature, humidity, brightness, and other external features. The results in

Tables 7 and 8 compare forecasting performance with and without additional features.

Table 7. RMSE of time-series prediction models (multi-feature input).

Building ID

RMSE

LSTM Transformer SVM NARMAX
Random

Forest
XGBoost

Building 01 280.840 289.257 289.737 291.301 445.988 436.339
Building 02 580.631 596.484 606.635 583.851 712.177 661.860
Building 03 488.582 530.597 534.059 550.867 786.746 548.852
Building 04 151.511 153.749 161.304 181.248 185.653 166.375
Building 05 337.728 364.929 361.615 357.436 535.632 466.632
Building 06 180.250 176.850 176.416 209.808 209.576 201.829
Building 07 390.648 415.398 404.556 368.684 465.676 444.181
Building 08 629.013 598.499 683.942 624.113 676.337 666.128
Building 09 486.387 494.489 489.304 423.288 597.332 559.192
Building 10 483.523 448.468 454.861 465.983 531.307 509.139
Building 11 407.715 411.724 487.586 412.959 434.688 409.891
Building 12 266.650 265.691 272.404 222.830 305.206 270.909
Building 13 595.707 596.655 614.104 586.351 659.072 644.649
Building 14 155.283 155.824 155.134 140.126 187.147 179.140
Building 15 280.611 259.519 274.175 237.710 396.609 366.929
Building 16 434.700 376.583 378.725 456.941 966.143 766.608
Building 17 280.092 287.384 287.588 202.443 321.525 288.658
Building 18 151.948 152.125 152.673 189.623 178.708 157.475
Building 19 199.525 214.829 209.102 110.259 250.876 233.607
Building 20 604.016 377.771 660.338 604.357 684.680 653.578

Including temperature, humidity, or occupancy proxies improved LSTM and Trans-

former accuracy by up to 15%, particularly in weather-sensitive households, while SVM

exhibited gains of approximately 10%. NARMAX’s RMSE generally showed stable or

improved performance, with reductions of 5–8% in many cases. However, in certain

high-variance settings, RMSE remained relatively unchanged or increased slightly, likely

due to inconsistencies in external variable relevance across different buildings rather than

overfitting. The refined feature selection using AIC/BIC and cross-validation effectively

mitigated previous overfitting concerns.
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Table 8. CV of time-series prediction models (multi-feature input).

Building ID

CV

LSTM Transformer SVM NARMAX
Random

Forest
XGBoost

Building 01 67.696 69.725 69.841 69.427 107.505 105.179
Building 02 108.903 111.876 113.780 73.019 133.575 124.138
Building 03 73.927 80.284 80.808 74.744 119.042 83.047
Building 04 42.571 43.200 45.323 51.123 52.165 46.748
Building 05 47.305 51.115 50.651 46.093 75.025 65.360
Building 06 36.737 36.044 35.955 35.904 42.714 41.135
Building 07 76.396 81.236 79.116 75.769 91.068 86.865
Building 08 85.993 81.821 93.502 84.597 92.462 91.067
Building 09 89.076 90.559 89.610 89.461 109.394 102.409
Building 10 77.860 72.215 73.245 71.344 85.555 81.985
Building 11 68.536 69.210 81.962 69.657 73.070 68.902
Building 12 74.599 74.331 76.209 75.292 85.386 75.791
Building 13 92.214 92.361 95.062 93.205 102.023 99.790
Building 14 70.895 71.142 70.827 70.630 85.443 81.787
Building 15 69.873 64.621 68.270 66.991 98.757 91.366
Building 16 109.504 94.864 95.403 105.488 243.378 193.113
Building 17 61.091 62.681 62.726 61.588 70.128 62.959
Building 18 54.633 54.696 54.893 52.133 64.254 56.620
Building 19 54.419 58.594 57.031 56.896 68.425 63.715
Building 20 65.778 73.370 71.911 73.145 74.562 71.175

Random Forest and XGBoost achieved moderate improvements of 5–12%, reinforcing

the benefit of ensemble models in capturing nonlinear dependencies. In homes with erratic

occupant schedules, deep learning methods maintained a strong advantage, reducing errors

by more than 20% due to their ability to handle complex feature interactions. Conversely,

in cases where environmental data had weak correlations with peak consumption, all

models exhibited only marginal improvements. These results emphasise the importance of

context-specific feature selection in optimising predictive performance while maintaining

model stability.

In Figure 12a, Building 01’s energy consumption is modelled with multi-feature

inputs during the selected stable period from 5 March 2015 to 5 April 2015. The LSTM

and Transformer models show strong predictive performance, aligning closely with actual

consumption trends, particularly during moderate consumption fluctuations. The inclusion

of additional features allows these models to capture energy consumption dynamics more

effectively. The NARMAX model exhibits improved tracking of overall patterns compared

to traditional methods, but still demonstrates sensitivity to overfitting, particularly in

certain peak consumption periods. The Random Forest model continues to struggle with

capturing variability, often underestimating actual consumption.

Figure 12b illustrates the prediction performance for Building 05 from 13 March 2015,

to 9 April 2015. During this period, the LSTM and Transformer models maintain superior

accuracy, capturing both short-term fluctuations and underlying trends more effectively

than other models. The NARMAX model, though benefiting from multi-feature inputs,

still exhibits periodic underestimation and struggles to fully adapt to abrupt spikes in

energy consumption. The Random Forest model remains stable but lacks responsiveness

to sudden shifts, leading to consistent deviations from actual values. The presence of

multi-feature data has reduced prediction variance across all models, highlighting the

benefits of contextual input in improving forecasting accuracy.
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Figure 12. Model performance in predicting aggregate energy consumption for selected buildings

using multi-feature inputs during stable consumption periods. (a) Building 01 from 5 March 2015 to

5 April 2015, (b) Building 05 from 13 March 2015, to 9 April 2015, and (c) Building 15 from 5 March

2015, to 1 April 2015, showing the influence of additional contextual variables.

Figure 12c presents the results for Building 15 from 5 March 2015, to 1 April 2015,

where Transformer and LSTM models continue to demonstrate their advantages in dy-

namic energy prediction. The Transformer model slightly outperforms LSTM during peak

consumption periods, reinforcing its ability to process sequential dependencies effectively.

NARMAX displays mixed performance, accurately capturing baseline trends but showing

inconsistencies in highly variable consumption intervals. The Random Forest model re-

mains less responsive to fluctuations, reinforcing its limitations in time-series forecasting

despite the incorporation of multi-feature data.

Figure 12 highlight how multi-feature models significantly enhance predictive accu-

racy compared to single-feature approaches. LSTM and Transformer models consistently

exhibit strong performance across different buildings and periods, effectively leveraging

contextual variables to adjust predictions based on external factors. The NARMAX model,

while offering interpretability, shows susceptibility to overfitting in some cases. Traditional

machine learning models, particularly Random Forest, maintain stability but are limited in

capturing rapid energy consumption changes. While the time period displayed in these

figures represents a stable subset of the overall testing period, results from the full dataset

confirm that NARMAX outperforms other models across the entire evaluation period, as

indicated by RMSE values in the comprehensive performance tables. This underscores the

importance of both time-series adaptability and feature selection in optimising building

energy consumption forecasting. It is important to note that these figures represent only a

selected portion of the testing period, and overall performance across the entire dataset

suggests that NARMAX achieves competitive accuracy in many cases, as indicated by the

RMSE and CV values in the results tables.

4. Discussion

The findings from this study demonstrate that combining occupancy pattern analysis

with advanced time-series prediction can significantly enhance building energy manage-

ment and forecasting. By employing Random Forest classification and clustering (K-means,

GMM, and meta-clustering), it revealed nuanced household energy usage behaviours and

provided a basis for more targeted management strategies. These insights align with the

broader goals of the Sparse, Interpretable, and Transparent (SIT) framework, where model

parsimony, result explainability, and prediction clarity are key.

From an occupancy perspective, the clustering outcomes indicate three main groups

of appliance usage intensity (low, moderate, and high), each associated with distinct occu-

pant behaviours. In particular, meta-clustering served as a scalable means to group and

compare multiple buildings, highlighting shared consumption patterns across different

households. These insights confirm that occupant behaviour plays a central role in driving

load variability—an observation supported by earlier research on occupancy-driven energy
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demand. Moreover, the Random Forest classifier underscored the importance of certain

appliances, notably the fridge-freezer and washing machine, as reliable indicators of occu-

pancy. The drop-in accuracy analysis further reinforced how specific appliances strongly

correlate with occupant presence. Such interpretability provides practical value: building

managers can focus on the most impactful end-users to develop targeted interventions.

Uncertainty analysis of occupancy classification demonstrated that a modest but

non-negligible portion of time periods remain ambiguously predicted (i.e., predicted prob-

abilities near 0.5). These uncertain predictions mostly occurred in two contexts: (1) during

overnight or early-morning hours when aggregate consumption is minimal and (2) in house-

holds exhibiting highly irregular or sporadic appliance usage. Probabilistic approaches to

occupancy detection, therefore, may improve real-time decision-making in building en-

ergy systems, particularly when occupant presence critically influences HVAC or demand

response operations.

In time-series forecasting, the results showed that LSTM and Transformer architec-

tures generally traditional machine learning models (Random Forest, SVM, XGBoost) when

only time-of-day or day-of-week inputs were used. This performance gap widened in

buildings with pronounced load fluctuations or highly dynamic occupant schedules, con-

sistent with previous literature on deep learning’s ability to capture nonlinear temporal

dependencies [25,26]. Notably, integrating contextual features such as temperature and

humidity led to further improvements in predictive accuracy, often reducing errors by

10–20% in weather-sensitive buildings. However, these performance gains varied across

households—some experienced marginal benefits if weather factors were weak predic-

tors of peak loads, indicating that occupant behaviour often remains the more dominant

influence on consumption patterns.

The NARMAX-based SIT approach demonstrated a nuanced performance, balancing

interpretability and predictive capability. Under stable or moderately variable conditions,

its structured regression framework yielded accuracy comparable to deep learning models

while offering clear insights into the relationships between input variables and energy

consumption. This interpretability is particularly valuable for energy managers seeking to

develop data-driven operational strategies.

However, in highly volatile settings, NARMAX exhibited sensitivity to the inclu-

sion of multiple external features, increasing the risk of overfitting. This highlights the

need for careful model selection and tuning to accommodate the inherent variability in

building energy data. Addressing this challenge requires further exploration of regular-

isation techniques and feature selection strategies to enhance NARMAX’s robustness in

dynamic environments.

Despite these limitations, the ability of NARMAX to provide explicit mathematical

formulations makes it a strong candidate for applications where decision-making trans-

parency is essential. By identifying key energy drivers and enabling predictive control

measures, NARMAX supports energy efficiency optimisation, proactive demand-side man-

agement, and compliance with regulatory frameworks. Future work should focus on

integrating uncertainty quantification techniques to further improve the generalizability of

NARMAX-based approaches in real-world energy management scenarios.

While the dataset used in this study was collected between 2013 and 2015, the fun-

damental energy consumption patterns—such as occupancy-driven demand fluctuations,

seasonal variations, and the impact of external factors like temperature—remain struc-

turally consistent over time. However, it is acknowledged that advancements in smart

home technologies, energy efficiency policies, and evolving occupancy behaviours may

introduce deviations in more recent or future datasets.
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To address this, our methodology is designed to be adaptable to newer datasets, as

the models used can be retrained with updated data while preserving their interpretability.

Future work could involve validating these findings using more recent energy consumption

datasets to assess whether the observed patterns hold over time or if additional model

adjustments are required. This would further strengthen the applicability of our approach

to evolving energy consumption trends.

5. Conclusions

This paper presented a hybrid machine-learning framework aimed at improving build-

ing energy forecasting through occupancy pattern analysis and time-series modelling. The

results demonstrate that identifying key occupancy-driven appliance features and cluster-

ing usage behaviours offer valuable insights into the temporal and contextual variability of

residential loads. Furthermore, combining these occupancy findings with advanced fore-

casting models (e.g., LSTM and Transformer networks) significantly enhances predictive

accuracy, particularly when external variables such as weather are incorporated.

The interpretability of the proposed approach also proved advantageous. Random

Forest classifications, supported by feature ablation studies, highlighted the relative im-

portance of each appliance for occupancy prediction. The NARMAX component, aligned

with the SIT paradigm, provided transparent model structures that capture key nonlinear

relationships in load data. Despite occasional overfitting in complex settings, this balance

between accuracy and interpretability can guide building managers toward data-driven

strategies with greater confidence and actionable insights.

Overall, this study underscores the critical interplay between occupant behaviour

and external factors in building energy forecasting. By classifying occupancy patterns,

quantifying classification uncertainty, and leveraging multi-feature data for time-series

prediction, we offer a comprehensive framework for data-driven energy management.

Future work could expand this framework by incorporating real-time sensor networks,

occupant feedback loops, and physics-informed AI models that explicitly encode building

thermal dynamics. Such an integration would further align with the SIT paradigm, as

adding domain knowledge can enhance both interpretability and accuracy. Additionally,

investigating transfer learning and federated modelling approaches could enable faster

adaptation of models to new buildings, especially where data are scarce. By maintaining

a strong emphasis on both interpretability and predictive power, building energy man-

agement systems can evolve into more adaptive, occupant-centric platforms that facilitate

robust, sustainable, and transparent operations.
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Abbreviations

The following abbreviations are used in this manuscript:

SVM Support Vector Machines

LSTM Long Short-Term Memory

MSE Mean Squared Error

NARMAX Nonlinear Autoregressive Moving Average with Exogenous Inputs

RMSE Root Mean Squared Error

CV Coefficient of Variation

ANN Artificial Neural Networks

XGBoost Extreme Gradient Boosting

SIT Sparse, Interpretable, and Transparent
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29. Ali, D.M.T.E.; Motuzienė, V.; Džiugaitė-Tumėnienė, R. Ai-Driven Innovations in Building Energy Management Systems: A

Review of Potential Applications and Energy Savings. Energies 2024, 17, 4277. [CrossRef]

30. Lindberg, K.B.; Bakker, S.J.; Sartori, I. Modelling Electric and Heat Load Profiles of Non-Residential Buildings for Use in

Long-Term Aggregate Load Forecasts. Util. Policy 2019, 58, 63–88.

31. Coccia, G.; Mugnini, A.; Polonara, F.; Arteconi, A. Artificial-Neural-Network-Based Model Predictive Control to Exploit Energy

Flexibility in Multi-Energy Systems Comprising District Cooling. Energy 2021, 222, 119958. [CrossRef]

32. Yang, J.; Ning, C.; Deb, C.; Zhang, F.; Cheong, D.; Lee, S.E.; Sekhar, C.; Tham, K.W. K-Shape Clustering Algorithm for Building

Energy Usage Patterns Analysis and Forecasting Model Accuracy Improvement. Energy Build. 2017, 146, 27–37. [CrossRef]

33. Geyer, P.; Singaravel, S. Component-Based Machine Learning for Performance Prediction in Building Design. Appl. Energy

2018, 228, 1439–1453. [CrossRef]

34. Killian, M.; Kozek, M. Implementation of Cooperative Fuzzy Model Predictive Control for an Energy-Efficient Office Building.

Energy Build. 2018, 158, 1404–1416. [CrossRef]

35. Sun, Y.; Haghighat, F.; Fung, B.C. A Review of The-State-of-the-Art in Data-Driven Approaches for Building Energy Prediction.

Energy Build. 2020, 221, 110022.

36. Farea, A.; Yli-Harja, O.; Emmert-Streib, F. Understanding Physics-Informed Neural Networks: Techniques, Applications, Trends,

and Challenges. AI 2024, 5, 1534–1557. [CrossRef]

37. Manfren, M.; Gonzalez-Carreon, K.M.; James, P.A. Interpretable Data-Driven Methods for Building Energy Modelling—A Review

of Critical Connections and Gaps. Energies 2024, 17, 881. [CrossRef]

38. Pinto, G.; Wang, Z.; Roy, A.; Hong, T.; Capozzoli, A. Transfer Learning for Smart Buildings: A Critical Review of Algorithms,

Applications, and Future Perspectives. Adv. Appl. Energy 2022, 5, 100084. [CrossRef]

39. Kazmi, H.; Fu, C.; Miller, C. Ten Questions Concerning Data-Driven Modelling and Forecasting of Operational Energy Demand

at Building and Urban Scale. Build. Environ. 2023, 239, 110407. [CrossRef]

40. Tien, P.W.; Wei, S.; Darkwa, J.; Wood, C.; Calautit, J.K. Machine Learning and Deep Learning Methods for Enhancing Building

Energy Efficiency and Indoor Environmental Quality–a Review. Energy AI 2022, 10, 100198. [CrossRef]

41. Kleiminger, W.; Beckel, C.; Staake, T.; Santini, S. Occupancy Detection from Electricity Consumption Data. In Proceedings of the 5th

ACM Workshop on Embedded Systems for Energy-Efficient Buildings; Association for Computing Machinery: New York, NY, USA,

2013; pp. 1–8.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Background 
	Related Work on Building Energy Prediction 

	Materials and Methods 
	Methodology 
	Classification and Clusters for Occupancy Pattern Analysis 
	Single and Multi-Feature Time-Series Prediction 

	Dataset Description 

	Results 
	Occupancy Pattern Analysis 
	Clustering Analysis of Occupancy Patterns 
	Occupancy Classification Performance 
	Feature Importance and Drop-In Accuracy Analysis 
	Uncertainty Analysis in Occupancy Classification 

	Time-Series Prediction of Energy Consumption 
	Single-Feature Prediction Results 
	Multiple-Feature Prediction Results 


	Discussion 
	Conclusions 
	References

