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Machine-learning based classification of 2D-IR
liquid biopsies enables stratification of melanoma
relapse risk†

Kelly Brown, a Amy Farmer,a Sabina Gurung,a Matthew J. Baker,b Ruth Boardc

and Neil T. Hunt *a

Non-linear laser spectroscopy methods such as two-dimensional infrared (2D-IR) produce large,

information-rich datasets, while developments in laser technology have brought substantial increases in

data collection rates. This combination of data depth and quantity creates the opportunity to unite

advanced data science approaches, such as Machine Learning (ML), with 2D-IR to reveal insights that

surpass those from established data interpretation methods. To demonstrate this, we show that ML and

2D-IR spectroscopy can classify blood serum samples collected from patients with melanoma according

to diagnostically-relevant groupings. Using just 20 mL samples, 2D-IR measures ‘protein amide I

fingerprints’, which reflect the protein profile of blood serum. A hyphenated Partial Least Squares-

Support Vector Machine (PLS-SVM) model was able to classify 2D-protein fingerprints taken from 40

patients with melanoma according to the presence, absence or later development of metastatic disease.

Area under the receiver operating characteristic curve (AUROC) values of 0.75 and 0.86 were obtained

when identifying samples from patients who were radiologically cancer free and with metastatic disease

respectively. The model was also able to classify (AUROC = 0.80) samples from a third group of patients

who were radiologically cancer-free at the point of testing but would go on to develop metastatic

disease within five years. This ability to identify post-treatment patients at higher risk of relapse from

a spectroscopic measurement of biofluid protein content shows the potential for hybrid 2D-IR-ML

analyses and raises the prospect of a new route to an optical blood-based test capable of risk

stratification for melanoma patients.

Introduction

Non-linear spectroscopy methods based on ultrafast lasers,

such as two-dimensional infrared (2D-IR) spectroscopy, are

capable of measuring large, information-rich datasets from

a given molecular sample.1 Applications of 2D-IR methods have

revealed considerable new insights into molecular structure,2

dynamics,3–5 intermolecular interactions6,7 and reactions.8–14

The information density of 2D-IR arises from the ability to

spread the vibrational spectrum of a molecule over a second

frequency dimension, somewhat akin to 2D-NMR, along with

the introduction of a time-resolved axis that reports on ultrafast

dynamics. 2D-IR has found considerable applications to

proteins where its sensitivity to intramolecular vibrational

couplings and energy transfer leads to a protein amide I band

shape that is highly susceptible to changes in protein secondary

structure and dynamics, including subtle effects such as those

resulting from ligand binding.15–28 Taken together with the close

biological link between a protein's structure and its function,

this means that the amide I 2D-IR spectrum of a protein can be

considered to be a unique, label-free, ngerprint of its solution-

phase structure.

In parallel with progress in 2D-IR interpretation, the last

decade has also seen considerable advances in measurement

technology, with high pulse repetition-rate lasers and mid-IR

pulse shaping meaning that a 2D-IR spectrum now takes just

seconds or minutes to acquire.29–33

This combination of information density and data abun-

dance makes 2D-IR a promising candidate for combination

with data science approaches such as machine learning (ML) to

maximise the insight obtained from experimental datasets. The

possibility of linking ML with 2D-IR has been assessed using

simulated data, showing the potential for models to learn

spectral signatures of dynamic proteins.34,35 Experimental

applications of ML to 2D-IR have also shown the ability to
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classify spectra of small, purpose-designed sets of chemically

distinct samples.25

An important barrier for hybrid 2D-IR-ML approaches to

cross however is to provide insights from experimental data that

could not be achieved with traditional spectroscopic analyses.

The ability to approach problems that are intractable by other

means would open the door to many new applications in

protein analysis ranging from structure interpretation and

intermolecular interactions to biomedical analysis.36 To explore

this, we have linked 2D-IR protein ngerprints and ML to

classify blood serum samples collected from patients with

melanoma according to their protein prole.

Human serum is a protein-rich uid, containing around

70 mg mL−1 proteins composed mainly of serum albumin (35–

50 mg mL−1) and the globulins (25–35 mg mL−1).37 The latter

group is comprised of more than 50 individual types of protein,

present at concentrations ranging from milligrams to less than

micrograms per millilitre. The types and concentrations of

proteins present in blood serum samples respond sensitively to

metabolic processes37 and, of relevance to this study, the

protein prole can also be a marker for disease.38–40

The range and varying abundance of constituent proteins

also mean that measuring the serum protein prole quickly and

directly is challenging. Infrared (IR) absorption spectroscopy

studies have highlighted changes in protein signatures in

samples from cancer patients,41 but a combination of a lack of

resolution and confounding absorptions from water hinder

direct interpretation of protein signals.42 Despite this, studies

using sample drying or background subtraction methods have

shown that IR signatures of blood serum samples can be used to

detect cancers and have reported changes in the protein region

of the spectrum, but detailed analysis was restricted to bands

assigned to non-proteinaceous species.41–49 In contrast to IR

absorption, 2D-IR not only spreads the protein signature over

two spectral dimensions, increasing resolution, but also

suppresses the background water absorption27 allowing a more

direct and detailed measurement of changes in serum protein

proles without sample manipulation or background

subtraction.

Here, we apply 2D-IR and ML to the problem of melanoma

risk stratication. Melanoma is the h most common cancer

in the UK, with incidences rising worldwide. A major challenge

in treatment planning for melanoma patients is the accurate

assessment of the post-operative risk of relapse. Patients at high

risk of developing melanoma metastasis (relapse) aer surgery

can reduce the risk and increase their distant melanoma-free

survival through adjuvant treatment.50–53 Whilst adjuvant ther-

apies, both immunotherapy and BRAF-targeted treatments,

reduce the recurrence risk, more work is required to distinguish

patients needing treatment from those cured by surgery alone.54

This is important to healthcare providers in terms of reducing

treatment burden and the high price of drugs, but vital to

patients who could avoid treatment toxicities if adjuvant

therapy is not required. Furthermore, melanoma patients at

high risk of relapse undergo regular radiological imaging for

ve years post-surgery, irrespective of adjuvant therapy.55 This

exposes patients to serial radiation, which increases the risk of

cancer. The ability to identify patients with high-risk disease

through alternative methods would therefore improve follow up

stratication.

The diagnostic process to establish a patient's risk of relapse

currently depends simply on the stage of the melanoma. A

liquid biopsy, using biouids to identify at-risk patients would

therefore provide a step-change in early detection, leading to

lifesaving and prolonging treatment whilst avoiding treatment

toxicities in others. Our results show that a hybrid 2D-IR-ML

approach is capable of differentiating serum samples accord-

ing to diagnostically relevant groups. The considerable overlap

of the spectra in these groups means that such an outcome

would be extremely difficult without the application of ML tools

and so highlights the potential of such methods. Although

exploratory, our results also suggest that optical tools based on

advanced spectroscopies and ML could have a role to play in

future diagnostic approaches.

Experimental
2D-IR spectroscopy

The two-dimensional infrared (2D-IR) spectrometer featured

two Yb-based amplied lasers (Pharos 20 W and Pharos 10 W,

Light Conversion) synchronized by a common oscillator.56 Each

laser was used to pump an optical parametric amplier (OPA,

Orpheus Mid-IR, Light Conversion) equipped with difference

frequency generation to produce independently tuneable sour-

ces of pump and probe pulses respectively for 2D-IR

spectroscopy.

For the experiments described below, the output of both

OPAs was centred at 1650 cm−1, resonant with the protein

amide I mode. The OPAs produced usable bandwidths of

>200 cm−1with energies of 2.5 and 1.5 mJ per pulse, respectively,

at a pulse repetition rate of 50 kHz.

2D-IR data collection was via a 2DQuick spectrometer (Pha-

setech) employing the pump–probe beam geometry and a mid-

IR pulse shaper to generate and control the time delay (s)

between the pair of “pump” pulses.57,58 Signal detection was via

64-element HgCdTe array detector using the ZZZZ (parallel)

polarization geometry, which maximises signal intensity. Each

sample was measured at waiting time (Tw) values of 250 fs and 5

ps, yielding both the protein signal (Tw = 250 fs) and a small

thermal signal from H2O (Tw = 5 ps) that was used for signal

pre-processing and standardisation via previously published

methods.27,59,60 For a given value of Tw, s was scanned in steps of

24 fs to a maximum delay time of 3 ps, applying a rotating frame

frequency of 1208 cm−1. Each 2D-IR plot represents the average

of 500 spectra, repeated 3 times.

Patient samples

Samples were sourced from the study Spectroscopic Diagnosis

of Melanoma, REC reference number 15/LO/1312, approved by

London-Brent. Samples were collected from patients with

a conrmed diagnosis of melanoma. Blood samples were ano-

nymised and serum extracted via centrifugation. Aer extrac-

tion, serum was stored at −80 °C. Non-identiable clinical and
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demographic data were obtained in-line with the study

protocol.

The serum samples were representative of three patient

groups: the control group, where aer surgery the patient did

not present with a subsequent cancer diagnosis. The metastatic

group where the presence of metastatic disease was already

conrmed at the time the blood sample was obtained, and the

developed metastasis group, where patients were radiologically

cancer free following surgery but went on to develop metastatic

disease within the ve-year follow-up period. The sample cohort

analysed consisted of 40 individual patients; 8 control, 21

metastatic and 11 developed metastasis. A breakdown of the

relevant patient metadata for each class is given in Table S1.†

Sample measurement

For each sample, 20 mL of defrosted serum was placed between

two CaF2 windows, without the inclusion of a spacer. The

pathlength of the cell was adjusted so that the absorbance of the

dH–O–H + ylibr combination band of water located at ∼2130 cm−1

was equal to ∼0.1, corresponding to a sample thickness of

∼2.75 mm.27

Each patient sample was measured in triplicate, generating

three spectra per patient. To account for potential variations in

instrument performance with time, control group spectra were

collected during each measurement set, resulting in the

measurement of 16 control samples, with each of the 8 indi-

vidual control patients' serum measured twice. Overall, this

resulted in the collection of 144 spectra. 48 spectra in the control

group, 63 in the metastatic group and 33 in the developed

metastasis group.

Data pre-processing

Aer 2D-IR measurements, spectral pre-processing was per-

formed using the previously published workow,59 utilising

custom R scripts. In brief, this involves using the thermal water

response at Tw = 5 ps to perform baseline correction and signal

normalisation.59,60 This normalisation procedure corrects for

pathlength variations and instrument variability between

measurements. Savitsky–Golay smoothing was also applied. All

spectra were processed in unison and with the same pre-

processing parameters to ensure no spectral processing varia-

tions would be introduced.

Algorithm training and cross validation

Machine learning models were developed utilising the Caret and

pROC packages in R to identify the unique spectral ngerprint

associated with samples from each of the three classes: control,

metastatic and developed metastasis. This model was then used to

classify spectra from a blind set of patient samples. The predic-

tive classication model used a nested cross-validation (CV)

framework that incorporated partial least squares (PLS) for

dimensionality reduction and a support vector machine (SVM)

for classication, a general schematic of theML process is shown

in Fig. S1.† A 3-fold outer CV was implemented using unique

patient identiers, with training and test splits generated to

maintain class balance across the folds. For each outer fold, the

training data was further partitioned in the inner loop for

hyperparameter tuning, which employed a 3-fold CV within the

training data. At all stages, the dataset was rigorously stratied

based on sample ID to ensure that no replicate spectra from the

same patient appeared in both testing and training sets.

PLS was employed to address the high dimensionality of the

spectral dataset by projecting the scaled and mean centred

spectral data onto a lower-dimensional latent variable (LV)

space while maximising covariance with the class labels. PLS

was applied independently to each training and test split to

extract 15 LVs representing the most informative spectral

features. During execution of the nested CV, the overlap within

the feature space between the training and testing PLS LV scores

was assessed by comparing the distribution of PLS scores for

the training and test sets in each outer fold. This evaluation

conrmed that the test and training sets within each outer-fold

produced scores of similar magnitudes, validating the suit-

ability of this approach within the nested CV PLS-SVM model

(Fig. S2†). The extracted LV scores were then used as input

features for training the SVM models with a radial basis func-

tion (RBF) kernel. Hyperparameters for the cost parameter (C)

and sigma were optimised using a grid search strategy with area

under the one-vs.-all receiver operating characteristic curve

(AUROC) of the validation sets used to guide parameter

selection.

For each outer fold, the nal SVM model was trained on the

full training set with the optimal hyperparameters obtained

from the inner loop. Model performance was assessed using the

independent test set using Cohen's kappa, sensitivity, speci-

city and AUROC parameters. Probabilistic predictions were

recorded to facilitate post hoc analysis and visualisation of class

separations. Variable importance in projection (VIP) scores were

calculated for each PLS LV to assess their contribution to the

model. VIP scores were computed by weighting each compo-

nent's contribution to the explained variance of the PLS model.

The use of the nested CV approach allowed for unbiased esti-

mates of generalisation performance but also ensured model

tuning and evaluation were conducted on strictly independent

datasets. By employing a stratied, hierarchical framework, we

mitigate the risk of overtting, especially given the imbalanced

dataset.

Results and discussion
2D-IR spectra

The 2D-IR spectra of the collected serum samples in the amide I

region (Fig. 1(a–c)) show a band shape that is consistent with

previous studies using commercial, pooled serum.25–27,60 A clear

negative band (red) is present on the spectrum diagonal near

1660 cm−1 which is assigned largely to the amide I v = 0–1

transition of the predominant a-helix-rich human serum

albumin protein. The positive (blue) peak due to the accompa-

nying, anharmonically-shied, v = 1–2 transition is located

near a probe frequency of 1640 cm−1.27 The 2D peak shapes are

asymmetric, extending in a teardrop shape towards pump

frequencies of 1630–1640 cm−1 as a result of contributions from

the globulin protein family, which contain a greater fraction of

© 2025 The Author(s). Published by the Royal Society of Chemistry Chem. Sci.
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b-sheet structures compared to serum albumin.27 Although

descriptive assignments of the features are possible, it is

important to note that these spectra represent an additive

prole arising from the amide I bands of all proteins present in

the sample, scaled by their respective concentrations, and so are

more effectively thought of as a ngerprint of the protein prole

for each patient sample. As such, variations in amide I peak

shape or intensity between patient groups could reveal differ-

ences in protein prole (types, concentrations, structures, post-

translational modications, aggregation), potentially arising

from disease states or progression. Realistic assessments of the

sensitivity of 2D-IR to proteins in H2O-rich media suggest that

the 2D-IR protein ngerprint should be sensitive to uctuations

in the contributions of around 10–12 of the most abundant

proteins by concentration.44,59

The spectra in Fig. 1(a)–(c) show averaged results encom-

passing all of the spectra measured from patients in each of the

three groups (control (a), developed metastasis (b) and metastatic

(c)). The spectra are broadly similar, as would be expected given

the general similarities of human protein proles, though some

small differences are apparent in the amplitude and shape of

the amide I bands in Fig. 1(a–c). Difference spectra (Fig. 1(d–f))

produced via subtraction of the spectra in Fig. 1(a–c) from one

another show that the spectral changes between classes only

appear clearly following magnication (Fig. 1(g–i)), revealing

the subtle distinctions between the patient groups. This broad

consistency between samples conrms the effectiveness of the

data pre-processing strategy. It is encouraging to note that the

changes displayed in Fig. 1(g–i) focus not only on the a-helix

region of the spectrum, near 1660 cm−1, but also in the b-sheet

region near 1630–1640 cm−1. This rstly suggests that the

Fig. 1 Average 2D-IR spectra obtained with Tw = 250 fs for each of the different patient classification groups (a) control (Cont, 48 spectra), (b)

developed metastasis (Dev, 33 spectra) and (c) metastatic (Met, 63 spectra). Difference spectra determined for subtraction of the averaged

spectra of the three classes from each other are shown in panels (d) metastatic – control, (e) developedmetastasis – control and (f) metastatic –

developed metastasis. (g) to (i) show the difference spectra from (d)–(f) expanded by the multiplication factor shown.

Chem. Sci. © 2025 The Author(s). Published by the Royal Society of Chemistry
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changes between samples are localised on the protein portion

of the response, rather than spectral noise for example.

Secondly, it suggests that there may be changes in both albumin

and globulin content that can be used to differentiate spectra of

the three sample groups.

Although we can extract these subtle changes through aver-

aging of all spectra from a given group and careful spectral

subtraction, visual classication on a per-sample basis would be

challenging and unreliable, a fact that would be further

complicated by patient-to-patient and sample-to-sample varia-

tion as protein levels respond to many everyday factors. The

overlapping spectral features, combined with variations in peak

intensity and shape, create an intricate pattern that does not

lend itself to straightforward interpretation, as demonstrated by

the application of PCA or PLS analyses (Fig. S3†). However, ML

models offer a solution via the ability to identify patterns within

complex datasets. By training models on a range of spectral

data, the ability to detect subtle spectral variations can be

developed, potentially enhancing classication accuracy. Our

aim was thus to exploit ML methods to leverage the nuanced

spectral information, improving diagnostic reliability that

could ultimately reveal markers of disease progression or risk

from the serum protein prole.

Machine learning development

A number of ML methods were tested to address the challenges

of classifying 2D-IR spectra of serum samples according to their

diagnostic groups. 2D-IR spectra of the amide I region (1600–

1700 cm−1) contain some 2624 pixels, not all of which contain

information that will be useful for classication. As a result,

hyphenated ML approaches exploiting partial least squares

(PLS) to perform dimensionality reduction of the data were

employed. The initial attempt used PLS-Discriminant Analysis

(PLS-DA). This supervised technique combines PLS dimen-

sionality reduction with classication by identifying latent

variables (LV) that maximise group separation while minimis-

ing noise from irrelevant spectral features.25,61 PLS-DA is

particularly well suited toward high dimensionality data such,

as 2D-IR spectra where co-linearity among variables can

complicate analysis. While PLS-DA showed some ability to

separate the three sample groups, its overall classication

performance was limited, though sufficient clustering in some

LVs suggested that more advanced machine learning strategies

could improve the classication accuracy (Fig. S4†).

Subsequently, more powerful classication approaches such

as k-Nearest Centroid (kNC), Random Forest (RF) and Support

Vector Machines (SVM) were evaluated due to their proven

efficacy for high-dimensional dataset classications.62–67 All

three hyphenated models (with PLS) were implemented using

the nested CV approach described in the experimental section.

The performance of each model was assessed using the stan-

dard evaluation metrics of AUROC, sensitivity and specicity.

Each of these metrics provide unique insights into the model's

classication performance. AUROC evaluates the model's

ability to distinguish between classes, with values closer to unity

indicating better discriminating power. Sensitivity assesses the

ability to identify true positives correctly, which is crucial for

detecting subtle spectral differences, while specicity evaluates

the ability to identify true negatives correctly, reecting the

model's robustness in minimising false positives.

The performance of the three models is summarised in

Table 1, where classication performance of the control, devel-

oped metastasis andmetastatic groups is shown. The kNC model

demonstrated moderate improvements in sensitivity and

AUROC compared to PLS-DA for the developed metastasis and

metastatic groups, although its performance for the control

group remained limited. The RF model further improved

AUROC and specicity, particularly for themetastatic group, but

its sensitivity for the control and developed metastasis groups

remained below commonly accepted performance standards.

The SVM model emerged as the most effective approach,

achieving the highest AUROC values across all groups (0.75,

0.80 and 0.86 for control, developed metastasis and metastatic,

respectively). PLS-SVM also achieved a balance between sensi-

tivity and specicity, with notable improvements in sensitivity

for the control and developed metastasis groups. These results

therefore show that SVM offers the most promising approach

for addressing the classication challenges posed by the 2D-IR

dataset.

Table 1 Summary of model performance metrics of all PLS-X models assessed. All metrics reported are the average obtained across 3 outer

folds of the nested CV

Model Parameter

Sample group

Control Developed metastasis Metastatic

k-Nearest centroid (kNC) AUROC 0.53 0.66 0.73

Sensitivity 0.53 0.56 0.93

Specicity 0.78 0.96 0.71
Random Forest (RF) AUROC 0.63 0.70 0.81

Sensitivity 0.36 0.50 0.93

Specicity 0.82 0.90 0.69

Support vector machine (SVM) AUROC 0.75 0.80 0.86

Sensitivity 0.69 0.72 0.70

Specicity 0.76 0.89 0.88

© 2025 The Author(s). Published by the Royal Society of Chemistry Chem. Sci.
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PLS-SVM model performance

To gain a deeper understanding of the classication perfor-

mance of the PLS-SVM model, the average performance across

the three outer folds of the nested CV model is presented in

Fig. 2. The individual fold performances are also provided in the

ESI (Fig. S5–S7†). The average confusion matrix (Fig. 2(a))

demonstrates that the PLS-SVM model is able to differentiate

between samples from the three patient groups. Correct

predictions, shown along the matrix diagonal, clearly dominate

while misclassications are relatively evenly distributed across

the three groups. The even distribution of misclassications

also indicates that the model does not exhibit a systematic bias

toward any particular class. Instead, the errors appear to stem

from the natural variability in the dataset rather than model-

specic shortcomings. The latter observation is consistent

with spectral variations between the groups that are over-

lapping, as indicated by PCA and PLS analyses. Note that the

total number of samples listed in the matrix reect just the

portion of the data set that appears in the outer fold test set.

The ROC curves (Fig. 2(b)) for each sample group further

demonstrate the discriminative power of the PLS-SVM model,

with AUROC values of 0.75, 0.80, and 0.86 for the control,

developed metastasis, and metastatic groups, respectively. These

values show that the model effectively separates the classes,

particularly for the metastatic group, where the highest AUROC

value reects superior classication performance. The shape of

the ROC curves for all groups, with an upward trajectory

towards the top le corner of the plot, indicates high sensitivity

and specicity across the range of classication thresholds.

This progression highlights the ability of the model to classify

true positives correctly while minimising false positives. The

model achieves balanced sensitivity and specicity values

across all groups (Table 1), with sensitivity values ranging from

0.69 for the control group to 0.72 for the developed metastasis

group. Specicity values are higher, peaking at 0.89 for the

developed metastasis group. These results indicate that the

model is capable of correctly identifying true positives but also

robust in minimising false positives. The Kappa value of 0.523

reects a more moderate agreement between predicted and

actual classications but is still consistent with reliable

performance of the model.

While the PLS-SVM model clearly captures the underlying

patterns in the data, the inherent overlap in spectral features

would be expected to impose a limitation on classication

accuracy for this relatively small experimental dataset. This can

be assessed via probability box plots (Fig. 2(c)), which provide

a quantitative measure of predictive condence returned by the

model for each sample. These plots show that for each of the

three groups there is a signicant clustering of high probabili-

ties for the correct class, showing that the model maintains

strong condence in its predictive ability. However, the box

plots also illustrate the challenge posed by the overlapping

spectral features, which results in a relatively wide distribution

of probabilities showing lower condence in some of the

predictions. For example, the control group exhibits a broad

distribution of predicted probabilities, with signicant overlap

into the developed metastasis and metastatic regions. Similarly,

the developed metastasis group demonstrates a range of proba-

bilities, perhaps reecting its intermediate nature between the

other two groups and so the potential for shared spectral

characteristics with the control and metastatic classes. These

overlapping distributions align with the misclassications

observed in the confusion matrix and highlight the presence of

some uncertainty in distinguishing between groups but overall,

the performance is strong, and uncertainties would be expected

to be reduced with the addition of more data to the model.

It is instructive to consider the regions of the 2D-IR response

that the ML model uses to make decisions when classifying

samples. Variable Importance in Projection (VIP) scores show

the contribution of each PLS LV to the model's classication

performance. This not only provides useful spectroscopic

insight but can also be used to assess whether classication was

based on meaningful, biologically relevant spectral features,

rather than random noise and to guard against overtting. The

VIP scores, Fig. 3(a), highlight the importance of the specic

PLS components in distinguishing between the control, devel-

oped metastasis and metastatic groups. Components with VIP

scores greater than unity are considered the most inuential, as

they capture signicant variations in the data and reect the

spectral regions that contribute most to the model. Here we

Fig. 2 Average performance metric outputs across outer folds for test

samples, (a) average confusionmatrix, (b) average ROC curves for each

class: control (green), developed metastasis (gold) and metastatic

(pink) (c) prediction probability box plots across all outer folds for each

class, with jitter points added showing each individual probability value

and range. Clear separation of the target category from the others

show the model's confidence in producing a classification.

Chem. Sci. © 2025 The Author(s). Published by the Royal Society of Chemistry
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observe that the most important LVs identied are 15, 13 and

14, with LV 15, capturing the most signicant variations. The

corresponding loading plots (Fig. 3(b–d)) illustrate the specic

spectral regions associated with these LVs. The most prominent

features in LV 15 and 13 primarily lie in the region around

1660 cm−1 with additional contributions from the 1640 cm−1

region. LV 14 appears to be dominated by changes in 1625–

1640 cm−1 region. It is noteworthy that, although no direct

correlation between these loadings and the difference spectra

discussed above are expected, or necessary for good model

performance, many of the areas that arise in LVs 13–15 align

with features in the inter-group difference spectra from Fig. 1

(reproduced in Fig. 3(e–g), see coloured arrows). These obser-

vations underline that the PLS loadings are identifying regions

of the 2D-IR spectrum that correspond to the main parts of the

amide I band, as would be expected for a model that is using

spectral information for sample classication. In combination

with the other parameters that are used to assess model

performance this further conrms that the ML approach is

leading to an accurate and robust sample classication output.

Discussion

The use of ML strategies to extract information from 2D-IR

spectra and specically to classify spectra from groups of clin-

ical serum samples is encouraging. While ML approaches have

been used for more straightforward classications of experi-

mental spectra, where clear changes between classes are antici-

pated,25 this represents the rst application to a system where it

was not clear at the outset that differences would be forth-

coming. As such, this provides evidence for the potential of ML

approaches to extract information that might not otherwise be

recoverable. This nding also adds experimental weight to

studies, that have paired ML with simulated 2D-IR data35 and

should serve to motivate work to enlarge experimental datasets

or to explore the use of mixed simulated/experimental strategies.

The fact that our 2D-IR-ML method is able to differentiate

spectra obtained from different patient groups based on the

serum protein prole is equally encouraging. The method

requires only small volumes of blood serum, with measurement

times on the order of minutes, while data collection requires no

prior sample manipulation to account for the presence of water,

all of which suggest that 2D-IR-ML methods have the potential

for further development towards applications in biomedical

diagnostics and more generally for solution-phase protein

analysis.

Considering the results of this study in the more specic

context of risk stratication for the treatment of melanoma. A

promising approach to detecting melanoma residual disease

exploits detection of circulating tumour DNA (ctDNA).54,68,69

Presence of ctDNA as a biomarker has been shown to correlate

with relapse risk68 and clinical trials are ongoing, though

quantities of ctDNA in cases of non-metastatic melanoma are

small and so hard to detect.54 Our results show that variations in

the protein prole of the patient's blood serum may offer

another, parallel, route to identifying disease states and pre-

dicting relapse risk. This correlates with observations relating to

other cancers using IR absorption spectroscopy,41–49 but the

addition of superior spectral resolution means that 2D-IR may

offer a useful complementary technology to these tools.

One advantage of the 2D-IR ML approach is the detailed

insight that is contained within the regions of the amide I

band that were identied with sample classications. Fig. 3

shows that changes to both the a-helix and b-sheet region were

highlighted by the model as being of importance, suggesting

that the changes could encompass a range of proteins. It is also

noteworthy that some consistency was achieved between ML

output and the difference spectra obtained from the average

signal from each sample class. This suggests that 2D-IR results

may ultimately be able to point towards molecular markers for

disease based on changes in the broad protein prole of serum

samples. As discussed above, these changes may include

Fig. 3 (a) Average variable importance of projection scores across training set of outer folds. VIP scores greater than 1 indicate important latent

variables used in making model predictions. Panels (b) to (d) shows the spectral loadings of the three variables considered to be the most

important, (b) = LV 15, (c) = LV 13, (d) = LV 14. Panels (e–g) reproduce the difference spectra from Fig. 1(g–i) for comparison. Coloured arrows

highlight points of interest as discussed in the text.

© 2025 The Author(s). Published by the Royal Society of Chemistry Chem. Sci.
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variations in the relative concentrations of some of the major

proteins, but there are also indications from prior 2D-IR

studies of serum that changes in structure, dynamics or

ligand binding can all inuence the amide I prole.15 Equally,

the contribution of post-translational modications to the

amide I band are as yet unexplored. In making a link between

serum spectroscopy and disease, one has to be aware of

potential confounding factors given that serum reports on

many bodily processes,70 but these results offer a rm basis for

follow-up studies. Further experiments using protein libraries

to understand some of the potential spectroscopic contribu-

tions would be instructive. Similarly, combining 2D-IR results

with powerful supporting technologies like proteomics anal-

yses would be of particular value in identifying specic

molecular changes that are leading to the 2D-IR-based classi-

cations. Such a multi-platform approach could add vital new

information relating to understanding the molecular nature of

disease progression.71

One clear result of the study is that there is overlap of

spectral features between the individual sample groups and

that this has proved a challenge for the MLmodel. This overlap

in spectral features was expected given the broad molecular

similarity of patient serum samples, the presumed gradual

progression of disease states and the shared biochemical

markers likely to be present between the groups. For instance,

the differences between control and developed metastasis

samples may stem from subtle changes in protein prole that

are indicative of early-stage disease. However, since the devel-

oped metastasis samples come from different patients at

varying stages of disease progression, these subtle differences

may not be consistently evident across all samples, making it

harder to differentiate them from the control group. This in

essence is the challenge that the 2D-IR-ML approach sought to

overcome, so indications that it may be possible are encour-

aging. The fact that the ML model uses the full 2D-plot also

shows that the information density inherent in the 2D-R

method will be valuable in doing so.72,73 Similarly, patients in

the later stages of developed metastasis may exhibit spectral

proles that resemble those of metastatic disease, further

blurring the distinction between these two groups and

complicating classication. As has been shown to be the case

with ML-based approaches, such problems would benet

considerably from larger studies involving many more samples

and serial samples over time.74,75 Additionally, the provision of

true controls from healthy individuals would provide useful

insights. In this respect, the clear differentiation between the

three patient groups, all of which have had treatment from

melanoma that would be expected to reduce the variation

between them is another positive indicator for the potential of

combined 2D-IR-ML strategies.

Conclusions

Here we present a rst attempt to apply 2D-IR spectroscopy to

the analysis of clinical biouid samples, specically targeting

the classication of patient serum samples from post-treatment

melanoma patients. By leveraging the water suppression

protocol of 2D-IR we were able to obtain high quality spectra of

the protein amide I region, allowing investigation of whether

this response may contain markers for disease progression. By

integrating 2D-IR spectroscopy with ML strategies, we have

developed a model that could successfully classify patient

samples according to three clinically relevant groups: control,

developed metastasis and metastatic, establishing proof of prin-

ciple for the specic application and for future hybrid 2D-IR-

ML-based protein analysis strategies.

Despite the nuanced spectral differences observed, manual

classication was not tractable due to overlapping spectral

features and subtle variations across patient groups. However,

advanced ML strategies, particularly the PLS-SVM model,

proved capable of good classication performance, achieving

AUROC values of 0.75, 0.80, and 0.86 for the control, developed

metastasis and metastatic groups, respectively and demon-

strating robust discriminative power. Balanced sensitivity and

specicity further reinforced the model's reliability in identi-

fying disease states.

These ndings highlight the potential of 2D-IR spectroscopy

combined with ML to contribute to cancer diagnostics. While

the inherent overlap in spectral features imposes some limita-

tions on classication accuracy, the demonstrated ability to

differentiate between patient groups at an accepted level

underscores the feasibility of this approach for clinical appli-

cations. Future work should focus on rening ML strategies,

particularly through the expansion of datasets, including the

addition of non-symptomatic healthy individuals. These could

potentially be enhanced by inclusion of data collected using

different polarisation geometries, which could enhance off-

diagonal regions of the spectrum, though careful consider-

ation of how to combine the datasets would be required.76

Additionally, exploring complementary spectroscopic tech-

niques could enhance classication performance and provide

deeper insights into the biological features of disease progres-

sion leveraged for classication. Ultimately, this study lays

a foundation for the exploration of 2D-IR-ML approaches,

offering a promising tool for harnessing the information

content of 2D datasets.
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