
Machine learning to predict haemorrhage after injury: So many models, so little dynamism
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A B S T R A C T

Accurately predicting the need for blood transfusion in bleeding patients remains a critical challenge in emer
gency care. Machine learning (ML) models show promise for improving decision support in these scenarios, but a 
gap remains between research and practical application. Existing models frequently overlook the dynamic nature 
of clinical data, hindering their ability to provide accurate predictions for blood transfusion needs in emergency 
settings. We conducted a scoping review to examine ML models that integrate time-varying variables to predict 
blood transfusion needs in trauma patients. We discuss challenges in data collection, particularly the limitations 
of electronic health records (EHRs) in capturing high-quality time-series data and emphasise the need for 
explainable artificial intelligence (AI). We suggest future directions for research that include advancing 
computational approaches, improving data collection, and enhancing the interpretability of ML models to ensure 
their clinical relevance and utility.

Letter to the editor

The management of bleeding patients in emergency settings is a 
critical challenge that requires timely and informed decision-making 
[1]. Identifying high risk patients in need of blood transfusion can be 
difficult for clinicians and would benefit from decision support [2]. 
While machine learning models hold promise for predicting bleeding 
risk [3,4], a significant chasm exists between research and real-world 
application [5,6]. We argue here that this gap is partly attributable to 
the failure of these models to incorporate key decision making factors 
clinicians use to diagnose haemorrhage.

The resuscitation of bleeding patients requires a nuanced approach 
based on the dynamic assessment of vital signs and point of care blood 
analysis, which can rapidly evolve during treatment [7]. Trends in these 
variables provide crucial insights into a patient’s evolving clinical status 
and guide timely interventions, particularly in cases of active bleeding. 
A rise in heart rate and lactate levels coupled with progressive hypo
tension after injury is suggestive of haemorrhage, prompting emergent 
blood transfusion. Furthermore, the patient’s response to this fluid 
resuscitation is fundamental to assessing their degree of ongoing hae
morrhage. The dynamic interplay of laboratory values, physiological 
markers, and response to therapy guides clinicians in their 
decision-making [7].

We conducted a scoping review to identify machine learning (ML) 
models that incorporate changes in patient variables over time to predict 
the need for blood transfusion. The Joanna Briggs Institute (JBI) scoping 
review framework was used to guide this review [8]. Publications were 
eligible for inclusion if they reported a ML-derived prediction model for 
blood transfusion that had dynamic inputs. We defined a dynamic input 
as a variable that included a change over time. Our search was per
formed in four databases: Medline, Web of Science, Embase, and 
Cochrane. The search terms used were ((“trauma” or “injury” or 
“emergency”) and (“artificial intelligence” or “machine learning” or 
“predictive modelling” or “algorithm”) and (“outcome prediction” or 

“prognosis” or “predictive analytics”) and (“haemorrhage” or “blood 
loss” or “transfusion”)).

This strategy yielded seven studies for inclusion (Fig. 1). Screening 
was conducted independently by two authors (GS and YA) and any 
conflicting decisions were resolved by an independent third author 
(MM).

After full text review, none of the seven identified articles, which 
described over 30 ML approaches to haemorrhage prediction, contained 
models that included dynamic variables.

The absence of dynamic input variables within ML models for hae
morrhage prediction stands in contrast to their successful application in 
other clinical areas, such as acute kidney injury prediction. A recently 
published model which uses a Recurrent Neural Network was developed 
to predict acute kidney injury after paediatric cardiac surgery. The 
model is a “time-aware” using data collected at multiple times [9]. This 
approach highlights the potential of dynamic ML models to solve com
plex prediction challenges by effectively capturing the evolution of pa
tient states over time.

The first challenge to incorporate dynamic variables in to haemor
rhage prediction models, lies in the complexities of capturing high- 
quality time-series data from electronic health records (EHR) in 
bleeding trauma patients. Many ML models are derived from routinely 
collected healthcare data rather than bespoke databases for developing 
ML models. Additionally, EHR data can vary significantly between 
hospitals due to different documentation systems and methods. For 
example, some hospitals may use free-text entries for documenting pa
tient information, while others employ structured tick-box formats and 
detailed templates to standardize data entry. Trauma EHRs typically 
include vital signs, laboratory results, imaging studies, medication re
cords, and clinical notes, but the consistency and completeness of this 
data can vary. Data entry practices during active bleeding events can be 
inconsistent, leading to gaps or irregularities in the temporal represen
tation of critical variables such as blood pressure, heart rate, and blood 
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gas variables [10,11]). Issues with recording data are surmountable, 
however. A recent study demonstrated that a pre-hospital to emergency 
department increase in shock index was associated with a twofold 
higher risk of blood transfusion in trauma patients [12]. Even without 
incorporating additional patient variables, this simple model highlights 
the prognostic value of changes in clinical parameters over time. The 
study’s findings suggest that incorporating dynamic changes in clinical 
variables, such as the shock index, into predictive models could improve 
the accuracy of blood transfusion risk assessment.

A second challenge that arises from dynamic AI prediction models is 
the ability to differentiate between pathological processes causing 
changes in vital signs and the effects induced by treatments. For 
example, an increase in blood pressure might result from the natural 
resolution of a pathological condition or from the administration of 
vasopressors. This distinction is crucial for accurate modeling and 
interpretation of patient data. While current literature incorporates the 
treatment variables as input variables, this ignores the causality aspect 
of observable variables (i.e. vital signs) and treatment initiated in 
response to these variables [13,14]. To disentangle this, using a causal 
framework could be helpful as demonstrated by Lim et al. in predicting 
tumour response to chemotherapy, radiotherapy or combination treat
ment [15]. The limitation of such frameworks is the requirement 
high-quality data with sufficient time resolution, particularly within the 

changeable environment of major trauma. Failing to differentiate between 
these factors can lead to misleading conclusions and impair clinical 
decision-making.

Third, the integration of input variables that change over time into 
ML models has introduced a challenging layer of complexity. To take 
advantage of temporal patterns of multivariate time series data, the 
underlying data-generating process must have regular repeated obser
vations of the variables. Advances in computational approaches specif
ically designed to process sequential data and model dynamic patterns, 
such as Recurrent Neural Networks (RNN) or Transformers networks, 
are used in other domains; without the necessary volume of data 
required to train them, they cannot be brought to the bedside [16]. The 
question remains about the volume of data available and how it can be 
validated to add real value. Ensuring that sufficient data is available, 
accurate and validated is crucial for these models to be effective in 
clinical settings.

Finally, interpretability, and therefore usability, of these complex 
models may be challenging. While RNNs and LSTMs excel at capturing 
temporal dependencies, their inner operations can lack transparency, 
making it difficult for clinicians to understand and trust the model’s 
decision-making process. If clinicians cannot understand or interpret the 
ML/AI model output, its usability will be negatively impacted, 
hampering its adoption into clinical settings [17]. It has therefore 

Fig. 1. PRISMA flowchart of studies included in the scoping review.
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become increasingly important to ensure AI/ML is explainable to 
end-users [18]. Within deep learning, approaches to improve inter
pretability are being explored. Techniques include Shapley Additive 
exPlanations (SHAP) to evaluate the contributions of each feature to the 
model’s predictions; Local Interpretable Model-agnostic Explanations 
(LIME) for local approximations of the model’s behavior, and visuali
zation tools to graphically represent data trends and model outputs [19]. 
Further work is needed to improve interpretability to clinicians in 
real-world settings.

Efforts should focus on ensuring the availability of high-quality time- 
series data for model training and validation. Standardisation of data 
structures and validation metrics is crucial, especially when dealing with 
heterogeneous data sources. Collaborations between healthcare in
stitutions, technology companies, and academic researchers could 
facilitate the pooling of computational resources and expertise required 
to train and optimize these complex models effectively. Addressing the 
interpretability and usability concerns of these models should be a pri
ority, to build trust among clinicians, and facilitate the adoption of these 
models in clinical practice. Overcoming these hurdles is crucial for 
developing clinically relevant and trustworthy ML models that can 
effectively incorporate dynamic variables and provide timely and ac
curate predictions for haemorrhage management.
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