
This is a repository copy of QoE-guaranteed optimization in MEC-enabled metaverse: an 
active inference deep reinforcement learning approach.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/225219/

Version: Accepted Version

Article:

Du, J., Gong, J., Chu, X. orcid.org/0000-0003-1863-6149 et al. (4 more authors) (2025) 
QoE-guaranteed optimization in MEC-enabled metaverse: an active inference deep 
reinforcement learning approach. IEEE Transactions on Cognitive Communications and 
Networking. ISSN 2332-7731 

https://doi.org/10.1109/TCCN.2025.3554003

© 2025 The Authors. Except as otherwise noted, this author-accepted version of a journal 
article published in IEEE Transactions on Cognitive Communications and Networking is 
made available via the University of Sheffield Research Publications and Copyright Policy 
under the terms of the Creative Commons Attribution 4.0 International License (CC-BY 
4.0), which permits unrestricted use, distribution and reproduction in any medium, provided
the original work is properly cited. To view a copy of this licence, visit 
http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1

QoE-Guaranteed Optimization in MEC-Enabled

Metaverse: An Active Inference Deep

Reinforcement Learning Approach
Jianbo Du, Jie Gong, Xiaoli Chu, Zehui Xiong, Xianfu Chen, Mianxiong Dong, and F. Richard Yu

Abstract—In this paper, we consider a MEC-enabled metaverse
scenario which consists of a remote metaverse server and an edge
server that cooperates to provide services to mobile users. The
edge server is deployed at the base station (BS), serves a dual
role: augmenting computational capabilities for user equipment
(UE) and pre-caching a portion of the metaverse service contents
before each time slot. Moreover, the foreground information
and the requested contents generated by the UEs can also be
cached to the BS. We formulate a problem to maximize the
cache hit number by jointly optimizing contents pre-caching and
resource allocation at the BS while considering UEs preference
and reducing the UEs total energy consumption, essential for the
efficient delivery of services in dynamic MEC environments. To
solve this problem, we reformulate it as a partially observable
markov decision process and propose an active inference enabled
deep reinforcement learning algorithm, which combines active
inference with deep reinforcement learning to select the optimal
strategy by minimizing the expected free energy. Simulations
show that the proposed algorithm can effectively improve the
total quality of experience and the cache hit number of UEs,
while minimizing the UEs total energy consumption compared
with other baseline algorithms.

Index Terms—Mobile edge computing, metaverse, deep rein-
forcement learning, active inference.

I. INTRODUCTION

Metaverse has recently attracted considerable attention from

both industry and academia. It enables users to immerse
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themselves in virtual worlds from any location and at any time,

which is a new kind of social ecology that can link physical

and virtual worlds [1], offering a multitude of benefits across

diverse application scenarios [2]. Nonetheless, the immense

demands for data processing pose a significant challenge to

the development of the metaverse.

To overcome this challenge, multi-access edge computing

(MEC) is a feasible strategy. It situates computational re-

sources in the vicinity of virtual service providers, thereby

achieving latencies that are measured in milliseconds. Exten-

sive research has been conducted on MEC in both academic

and industrial settings. The authors of [3] constructed a model

that includes edge servers and multiple industrial internet of

things devices, and proposed an energy-efficient task offload-

ing algorithm to minimize long-term energy consumption. In

[4], the authors developed a millimetre wave MEC mechanism

based on non-orthogonal multiple access, with the objective of

reducing the average delay of MEC task offloading by opti-

mizing beamwidth, user device scheduling and transmission

power. The authors of [5] proposed a blockchain-driven joint

optimization algorithm for MEC systems to address issues

such as high energy consumption during task processing. In

the previous paper, we presented a novel space-air-ground inte-

grated network architecture enhanced by MEC and blockchain,

which addresses network dynamics by reformulating the o-

riginal resource allocation problem as a partially observable

markov decision process (POMDP) [6].

Due to the low latency and high bandwidth characteris-

tics of the MEC, substantial research have been dedicated

to the exploitation of MEC within metaverse applications.

Dang et al. proposed an innovative digital twin scheme for

metaverse supported by adopting a synergistic model that

integrates communication, computation, and storage through

MEC and ultra-reliable and low-latency communications [7].

Aung et al. proposed a hybrid architecture of fog-edge for

metaverse applications which utilizes edge devices to perform

tasks with the heavy computations such as three-dimensional

physics calculations within the virtual universe [8]. In [9],

the authors introduced an efficient approximation algorithm,

which optimizes rewards for augmented reality applications

in metaverse-enabled MEC networks, maximizing cumulative

rewards within network capacity limits while maintaining

application responsiveness. The authors in [10] devised a

multiple MEC servers rendering framework, and formulated

an optimization problem to maximize the system utility, which

contains minimizing energy consumption for MEC servers and
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users’ quality of experience (QoE). The authors in [11] focused

on investigating an UAV-aided vehicular metaverse, paved the

way to link metaverse and the real world, and proposed to

leverage a proximal policy optimization based deep reinforce-

ment learning algorithm to solve the optimal control policy

to the Markov Decision Process (MDP) formulation. In [12],

the authors utilized an algorithm that minimizes the average

subunit synchronization time between the real world and the

digital world, and reduced the average subunit synchronization

time between them as much as possible. The integration of

MEC in metaverse applications has been a crucial area for

researches, leading to innovative solutions that leverage the

low latency and high bandwidth of the MEC to enhance

user experiences and optimize network operations. However,

existing research focus mainly on optimizing the delay or

energy consumption of the system to improve the performance,

while overlooking the optimization of content caching.

Relying on the advances in MEC for metaverse applications,

deep reinforcement learning (DRL) has achieved significant

success. The ability of DRL to learn best practices through

trial is ideally suited to the dynamic and complex environ-

ments common to metaverse applications, enabling intelligent

decision making and adaptation to user’s behaviour. Main-

stream DRL algorithms like Rainbow DQN, proximal policy

optimization (PPO) [13], and soft actor-critic (SAC) have

been applied to cloud-edge computing environments [14] for

task offloading and resource allocation. The authors of [15]

established a non-collision control algorithm based on DRL

to accomplish waypoint tracking tasks in uncertain circum-

stances, such as those with unexpected obstacles. In [16], the

authors introduced a system based on the DRL algorithm. The

authors combined PPO, relative advantage shaping with min-

imum splitting reward, and deep monte carlo into a self-play

framework to facilitate decision-making. In [17], a novel DRL-

assisted scheme proposed to co-optimise the task offloading

decisions and the allocation of computational resources, etc.,

based on the content request history and accessible network

resources. In [18], the authors proposed a novel framework

which combines DRL and lyapunov optimization to solve

the coupling problem in different time frames. The authors

in [19] propose a federated DT framework to support the

imitation of mobile systems. The authors in [20] investigated

the secure task offloading and computation resource allocation

issues in a consortium blockchain-enabled MEC system, and

used PPO to dynamically learn the optimal joint solution to

address the problem effectively. The authors in [21] designed

an intelligent UAV swarm-based cooperative algorithm for

consecutive target tracking and physical collision avoidance,

the simulation results demonstrate that the swarm behaviors

stay stable in realistic scenarios with perturbing obstacles.

The integration of DRL with other optimisation techniques has

shown particular efficacy in solving complex challenges such

as task offloading and resource allocation, thereby improving

the overall efficiency and responsiveness of MEC systems.

Conventional DRL algorithms typically rely on manually

designed reward signals to guide agents toward achieving

desired objectives. These algorithms predict future states by

learning the relationship between past states and optimal

actions, optimizing for long-term goals. Due to their focus

on long-term returns, short-term dynamics and randomness

have minimal impact on their convergence. Moreover, the

exploration strategies in DRL help to some extent in avoiding

local optimum solution. However, as research advances and the

complexity of application scenarios increases, the limitations

of conventional DRL algorithms have become increasingly

evident. First, the black-box optimization process of DRL

makes it challenging to interpret the rationale behind it-

s decision-making, raising concerns about transparency and

trustworthiness in critical tasks. Second, mainstream DRL

algorithms often encounter convergence issues in complex

environments due to the highly dynamic nature of the data

and the constraints of single reward designs. In contrast, active

inference, grounded in theories from neuroscience such as

Bayesian inference and the free energy principle, offers sig-

nificant advantages. It not only provides strong interpretability

but also establishes a natural correspondence between an

agent’s perception and action mechanisms. Active inference

[22], [23] employs an intrinsic generative model that enables

agents to actively explore their environment and act based

on internal beliefs and preferences. By minimizing the uncer-

tainty between expectations and reality [24], this framework

effectively enhances the efficiency of goal-directed behaviors.

Compared with traditional DRL algorithms, active inference

demonstrates superior adaptability and robustness in complex,

dynamic environments, offering a promising solution to the

aforementioned challenges.

In recent years, there have been some works applying

active inference to the DRL. Fang et al. in [25] developed

an innovative algorithm used in cloud-edge network systems

for large language models. This approach eschews traditional

reward-based guidance in favor of decision-making and re-

source allocation predicated on the minimisation of expected

future free energy. In [26], the authors transformed the trading

model into an active inference framework and proposed an

intelligence-based reinforcement learning approach that allows

for the construction of advanced environmental cognition

without the need for external rewards. The above works pri-

marily considered the application of active inference in large

language model scenarios and transaction problems. However,

research to address the communication issues in MEC-enabled

metaverse systems are quite rare.

In summary, while large amount of researches has been

dedicated to enhancing system performance by optimizing

communication latency, there still lack studies focusing on

the full utilization of base station (BS) storage capacity while

using active inference methods to further optimize the perfor-

mance of metaverse systems. The existing literatures indicate

that effectively leveraging the storage resources of BS to

improve overall system performance remains underexplored.

In this work, our main contributions are given as follows.

• We introduce a MEC-enabled metaverse scenario, where

a MEC server collaborates with a remote metaverse server

that provides metaverse services to multiple user equip-

ments (UEs). The metaverse server caches all metaverse

service contents and the MEC server covers a specified

metaverse region. We consider the whole communication
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Fig. 1: The concerned scenario.

process, where the UEs first deliver requests to the

MEC server, then the MEC server fetches the missed

contents from the metaverse server and encodes them

before delivering to the UEs. Finally, the UEs decode the

contents. In addition, foreground information generated

on the user side is also considered, which can be offloaded

to the MEC server or processed locally, depending on

local processing capabilities.

• Based on the proposed MEC-enabled metaverse model,

our objective is to enhance the total QoE and the cache hit

number of UEs, while reducing the energy consumption

of UEs. The object is achieved through the joint optimiza-

tion of the cache replacement decision of the background

models and objects, the offloading decision of UEs’

foreground information, the computation resource allo-

cation of the MEC server, the local computation resource

allocation, and the wireless transmission rate allocation

of the MEC server. Furthermore, our optimisation is

subject to binary constraints for contents caching and

replacement, task offloading and the continuous variable

constraints on resource allocation, etc.

• Given the randomness of UEs’ requests, the highly

dynamic nature of channel conditions, and the strong

coupling of variables caused by complex constraints, this

problem becomes exceptionally intricate and challenging

to address. To tackle this, we propose an innovative

algorithm-active inference enabled deep reinforcement

learning (ADRL). Specifically, ADRL computes the “free

energy” through batch simulations of different actions,

reducing reliance on existing experiences and predefined

objective functions. The algorithm selects the strategies

corresponding to several lowest free energy values and

parameterizes them as a diagonal Gaussian distribution,

with the peak of this distribution determining the strate-

gy selection. By simultaneously maximizing the reward

function and minimizing the “expected free energy”, the

ADRL algorithm achieves faster convergence. Compar-

ative analyses with baseline approaches demonstrate the

effectiveness of the proposed algorithm.

The subsequent sections are structured as follows. Section

II provides a detailed introduction to the network architecture

and system model. In Section III, we describe the problem

formulation. In Section IV, the problem is redefined as a

MDP problem. Section V elaborates on the proposed ADRL

algorithm. In Section VI, we present the simulation results and

discussions. Section VII draws the conclusions. Section VIII

describes our possible future research directions.

II. NETWORK ARCHITECTURE

In this section, we consider the uplink and downlink s-

cenarios in a MEC-enabled metaverse network. Specifically,

we focus on the metaverse service model, which provides the

relative contents of the metaverse. The caching model and

offloading model elucidate the mechanisms of content caching

and task offloading within the system, respectively. The latency

model meticulously delineates the computation of the delay for

UEs, a pivotal metric that significantly influences the QoE for

UEs. The cache hit model quantifies the frequency of cache

hits of the UEs, offering insights into the efficiency of content

retrieval. Lastly, the energy analysis model presents a prelim-

inary assessment of the energy consumption of the proposed

system, highlighting the trade-offs between performance and

energy efficiency. Then, we provide a detailed description of

the sub-models.

A. System Description

The MEC enabled metaverse system is illustrated in Fig.

1, and a BS which covers the metaverse region. There are

I UEs that request metaverse service, and we consider each

UE only make a single request. The set of metaverse UEs is

denoted as I = {1, 2, ..., I}. The metaverse contents which
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TABLE I: Parameter Notations

Parameter Notations

Number of Metaverse background
models

S

Number of objects of each model Ls

Background Calculation amount of models Cs

Calculation amount of objects Cs,l

Size of models Ds

Size of objects Ds,l

Number of Metaverse UEs I

Max and min calculation amount of
foreground interactions

C
f
min, C

f
max

Max and min size of foreground in-
teractions

D
f
min, D

f
max

UEs Processing power of UEs P
p
i

Transmission power of UEs P t
i

Maximum processing capability of
UEs

F loc
max

Max and min transmission rate be-
tween BS and metaverse server

Rb
min, R

b
max

MEC server Processing capability of the MEC
server

Fmec

Maximum transmission rate provided
by MEC server

Rmec

Storage capacity of MEC server Π

Processing density of encoding λen

Processing density of decoding λde

Processing density of frame integra-
tion

λinte

QoE requirement for end-to-end de-
lay

△t

Others Weight parameters in objective ǫ1, ǫ2, ǫ3
Weight coefficients of UEs’ QoE γ1
Weight coefficients of cache hit num-
ber

γ2

Weight coefficients of UEs’ energy
consumption

γ3

Content life threshold Thre

need to be rendered can be divided into foreground interac-

tions and background virtual environments. In the metaverse,

the foreground interaction information encompasses new UE

poses and interactions that are triggered by control operations

or by interactions with other UEs within the same virtual

environment. These interactions tend to be more complex and

less predictable, yet they carry a relatively lighter rendering

load. Meanwhile, the background virtual environment, which

demands a heavier rendering workload, requires a larger stor-

age capacity because of the incorporation of intricate details

and complex textures that are essential for the creation of a

realistic and immersive experience. The background of each

virtual environment is considered to be a model, and there are

S models, each model s has some objects. All of these models

and objects are cached in a remote metaverse server.

Under specific conditions, when multiple virtual reality

users are in the same environment, their visual contents are

likely to be very similar, hence they might need to render the

same 3D models [27]. In this paper, we assume that the BS

can store the rendered contents based on the popularity and the

correlation between the different users. Our system operates

over discrete in time slots, which is indexed by t, and the set

of the time slots is denoted by T = {1, 2, ..., T}.

B. Metaverse Service Model

To provide metaverse services, metaverse has two main

functionalities, i.e., intensive image processing features that

require heavy CPU processing power and background caching

associated functionalities [28]. The virtual environment con-

tains two parts, including the background and objects. The set

of the backgrounds is denoted as S = {1, 2, ..., S}, where each

background s is also called model s. Each model contains

some objects, which is denoted as Ls = {1, 2, ..., l, ..., Ls}.

The model s can be described by Λs = {Cs, Ds}, s ∈ S ,

where Cs (in CPU cycles) is the amount of the computation,

i.e., the required CPU cycles to render the model, and Ds (in

bits) is the size of the model. Similarly, the object sl of model s

can be described as Ξs,l = {Cs,l, Ds,l}, s ∈ S , l ∈ Ls, where

Cs,l is the required CPU cycles to render the object, and Ds,l

is the size of the object. The amount of the computation and

the size of the models and the objects are constants will keep

unchanged. However, UEs may request different model and

different objects. The foreground interactions information of a

certain UE i in time slot t can be described {Cf
i (t), D

f
i (t)},

i ∈ I, t ∈ T , where C
f
i (t) is the the required CPU cycles,

and the D
f
i (t) is the data size, which change across different

time slots.

C. Caching Model and Offloading Model

For background, it could be cached on the MEC server and

rendered there proactively. Denote the caching indicator of

model s as κs(t) ∈ {0, 1}, s ∈ S , where κs(t) = 1 means

model s is cached and rendered on the BS in time slot t, and

κs(t) = 0 means that the model need to be downloaded from

the metaverse server and rendered by the UE itself locally.

Similarly, the caching indicator of object sl is denoted as

ζs,l(t) ∈ {0, 1}, s ∈ S , l ∈ Ls, where ζs,l(t) = 1 means

that object sl is cached and rendered at the BS in time slot t,

and ζs,l(t) = 0, otherwise.

Denote the storage capacity of the MEC server as Π, when

there is no remaining capacity in MEC server, some models

and objects (which together called as contents) have to be

removed from the MEC server. In this paper, we adopt simple

content removal model, i.e., we remove the contents from the

MEC server when its life exceeds a certain threshold, thus

to keep the freshness and diversity of the cached contents.

Define the content life threshold as Thre, the life of model s

is denoted as Lifes(t), and the life of the object l of model s

is defined as Lifes,l(t) [29] [30]. The content life is defined as

the difference between the indexes of the current time slot and

the time slot it is cached into the MEC server, for example,

when model s is stored into the model at time slot 3, and the

current time slot is time slot 8, the life of model s equals to 8-

3=5. Denote the model removal indicator as vs(t) ∈ {0, 1}, if

Lifes(t) > Thre, the model s will be removed from the MEC

server, and we have vs(t) = 1; otherwise, we have vs(t) = 0.

The removal indicator of model s can be determined by

vs(t) = I{Lifes(t) > Thre}, (1)

where I{·} is the symbolic function, where I{·} = 1 when ·
holds, and I{·} = 0 otherwise.

Similarly, we define the object removal indicator as vs,l(t) ∈
{0, 1}, and it can be determined by

vs,l(t) = I{Lifes,l(t) > Thre}. (2)
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In the above two equations, if a content is not cached at the

MEC server, the removal indicator will be zero.

After content caching and removal, we use ns(t) ∈ {0, 1} to

denote whether model s exists on the MEC server at time slot

t, where ns(t) = 1 means it exists, and ns(t) = 0 otherwise;

meanwhile, we use ns,l(t) ∈ {0, 1} to denote whether the

object l of model s exists on the MEC server at time slot t,

where ns,l(t) = 1 means it exists, and ns,l(t) = 0 otherwise.

Based on the above definitions, the content existence indi-

cators evolve according to [31]

ns(t) = ns(t− 1) + κs(t) · I{ns(t− 1) = 0}

−vs(t) · I{ns(t− 1) = 1}, (3)

ns,l(t) = ns,l(t− 1) + ζs,l(t) · I{ns,l(t− 1) = 0}

−vs,l(t) · I{ns,l(t− 1) = 1}. (4)

Let Πrm(t) represents the remaining available capacity of

the MEC server, and Πrm(t) revolves according to

Πrm(t) = Πrm(t− 1)−
∑

s/∈N (t−1)

Ds · κs(t) +
∑

s∈N (t−1)

Ds · us(t)

−
∑

s∈S

∑

l/∈Ns(t−1)

Ds,l · ζs,l(t) +
∑

s∈S

∑

l∈Ns(t−1)

Ds,l · vs,l(t), (5)

where N (t− 1) = {s|ns(t−1)=1,s∈S} and N(t− 1) = |N (t−
1)| are the set and number of models cached in the MEC server

at time slot t− 1; moreover, Ns(t− 1) = {l|ns,l(t−1)=1,l∈Ls
}

and Ns(t−1) = |Ns(t−1)| are the set and number of objects

of model s cached in the MEC server at time slot t− 1.

The foreground interactions can be conducted by the UE

itself, or be offloaded to the BS. Denote the offloading decision

of the foreground interactions of UE i in slot t as ̺i(t), i ∈ I,

t ∈ T , where ̺i(t) = 1 means the foreground interactions are

offloaded to the BS, and ̺i(t) = 0 means the foreground

interactions are conducted by UE i itself.

D. Latency Model

At the beginning of each time slot, each UE i will

generate a metaverse service request, denote the request as

Reqi(t) = {bi(t),Li(t), C
f
i (t), D

f
i (t), qi(t)}, where bi(t) ∈ S

and bi(t) = s stands for UE i requests to enjoy in background

s, Li(t) ⊆ Ls is the set of objects in model s requested by UE

i, C
f
i (t) is the CPU cycles needed to render the foreground

interactions, D
f
i (t) is the data size of foreground interactions

information, and qi(t) represents the required resolution level

of metaverse frames.

For each UE, in order to enjoy metaverse services, there

are some typical steps, which are represented in Fig. 1. 1)

Each UE sends a request Reqi(t) to the BS. 2) The foreground

information can be conducted by the UE itself, or be offloaded

to the BS. 3) For the background environments, the BS first

examines whether the contents are cached on the BS, where

the contents include the requested models and objects. If some

of the contents are not cached, the BS first fetches the missed

contents from the metaverse server, and then renders them.

4) The BS encodes (or compresses) the background environ-

ments, maybe with the processed foreground information if

offloaded to the BS. 5) The BS delivers the encoded contents

(which may conclude the foreground information if offloaded

to the BS) to the corresponding UEs. 6) Each UE decodes

the received contents, and if the processing of the foreground

information is conducted by the UE, it needs to integrate the

foreground and background information into the final frame.

However, if the foreground is offloaded to the BS, the decoded

contents are the final frame.

1) Foreground Information Rendering Delay: If the fore-

ground information is processed by UE i, the local foreground

rendering delay is T
f,loc
i (t) =

Cf
i
(t)

f loc
i

(t)
, where f loc

i (t) is the

processing capability of UE i.

If the foreground information is offloaded to the BS, the

uplink transmission delay is given by T
f,up
i (t) =

Df
i
(t)

Ri(t)
, and

the delay that foreground information rendering in the BS is

T
f,rend
i (t) =

Cf
i
(t)

fmec
i

(t) , where Ri(t) is the transmission rate

of UE i, and fmec
i (t) is the processing capability that BS

allocates to UE i.

2) Background environment Rendering Delay: As men-

tioned before, background environment information includes

model and its embedded objects. Considering bi(t) = s, and

the set of requested objects is Li(t), the background contents

fetching delay from the metaverse server is given in (6), where

Rb(t) is the transmission rate between the BS and the remote

metaverse server, and the rendering delay is given in (7).

tb,d(t) =
1

Rb(t)

(

∑

s∈S

I{bi(t) = s} · (I{ns(t− 1) = 0} ·Ds

+
∑

{l∈Li(t)}
⋂
{l/∈Ns(t−1)}

Ds,l)

)

, (6)

tb,r(t) =

∑

s∈S I{bi(t) = s} ·

(

Cs +
∑

l∈Li(t)
Cs,l

)

fmec
i (t)

, (7)

Therefore, the background rendering delay is

T
b,rend
i (t) = tb,d(t) + tb,r(t). (8)

3) Encode Delay: After rendering, if the foreground infor-

mation is offloaded to the BS, both the foreground and back-

ground information will be encoded. The delay of encoding

background is

T
b,en
i (t) =

(

Ds +
∑

l∈Li(t)

Ds,l

)

· λen

fmec
i (t)

, (9)

where λen is processing density of encoding.

The delay of encoding foreground information is

T
f,en
i (t) =

D
f
i (t) · λ

en

fmec
i (t)

. (10)
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4) Encoded Contents Downlink Delivery Delay: If the

foreground information is offloaded to the BS, denote the

size of encoded background and foreground as D
b,en
i (t) =

g

(

Ds+
∑

l∈Li(t)

Ds,l, qi(t)

)

and D
f,en
i (t) = g(Df

i (t), qi(t)),

where g(x, y) is a function of data size and resolution, which

is defined as g(x, y) = x
y , then the downlink background

and foreground encoded contents delivery delay is given by

T
b,down
i (t) =

Db,en
i

(t)

Ri(t)
and T

f,down
i (t) =

Df,en
i

(t)

Ri(t)
. Please note

that, we consider the wireless channels are reciprocal, where

the uplink and downlink data rate is same for each UE.

5) Decode and Obtain Final Frame Delay: If UE i offloads

foreground interaction information to the BS, by decoding the

received information, the final frame is obtained, and the delay

is

T
de,off
i (t) =

(Df,en
i (t) +D

b,en
i (t)) · λde

f loc
i (t)

. (11)

If the foreground interaction information is rendered by UE

i locally, the decoding delay is

T
de,loc
i (t) =

D
b,en
i (t) · λde

f loc
i (t)

. (12)

6) Integration Delay: If the foreground interaction infor-

mation is rendered by UE i locally, it needs to integrate the

received information with the local rendered information into

the final frame, and the delay is

T inte
i (t) =

(Df
i (t) +D

b,en
i (t)) · λinte

f loc
i (t)

. (13)

7) Total Latency: If the foreground information is rendered

locally, the background processing total delay is

T
1,b
i (t) = T

b,rend
i (t) + T

b,en
i (t) + T

b,down
i (t) + T

de,loc
i (t), (14)

and the total delay of UE i is

T
tot,1
i = max

{

T
f,loc
i (t), T 1,b

i (t)
}

+ T inte
i (t). (15)

If the foreground information is offloaded to the BS, the

total delay is

T
tot,2
i (t) = T

f,up
i (t) + T

f,rend
i (t) + T

b,rend
i (t)

+ T
f,en
i (t) + T

b,en
i (t) + T

f,down
i (t)

+ T
b,down
i (t) + T

de,off
i (t). (16)

Combining the two cases, the total delay of UE i is

T tot
i (t) =

(

1− ̺i(t)
)

T
tot,1
i (t) + ̺i(t)T

tot,2
i (t). (17)

Based on the total end-to-end latency, the QoE [32] of UE

i is defined as

Qi(t) = I{T tot
i (t) ≤ ∆t}, (18)

where △t is the maximum tolerable end-to-end delay for

enjoying metaverse services.

E. Cache Hit Model

If there is a cache hit for the required model and all required

objects, i.e., the required background is all cached in the BS,

then the background will be compressed and delivered to UE

for further processing and displaying, and we call this situation

as a cache hit [28]. Otherwise, if some items of the background

are not cached in the BS, the missed items will be fetched from

the remote metaverse server and rendered by the MEC server,

this will lead to an increased latency [28].

Let bi(t) = s and Li(t) = |Li(t)|, the number of cache hit

is considered to be one of our objective, and is defined by

zi(t) = I







∑

s∈S

I{bi(t) = s} · ns(t) · I





∑

l∈Li(t)

ns,l(t) = Li(t)











. (19)

F. Energy Analysis

The energy consumption of UE i when the foreground

information is locally rendered is

E1
i (t) = P

p
i

(

T
f,loc
i (t) + T

de,loc
i (t) + T inte

i (t)
)

, (20)

where P
p
i is the processing power of UE i. When the

foreground information is offloaded to the BS, the energy

consumption of UE i is

E2
i (t) = P t

i T
f,up
i (t) + P

p
i T

de,off
i (t), (21)

where P t
i is the transmission power of UE i.

Therefore, the energy consumption of UE i is

Ei(t) =
(

1− ̺i(t)
)

E1
i (t) + ̺i(t)E

2
i (t). (22)

III. PROBLEM FORMULATION

In this section, we first design our objective function, and

then formulate the optimization problem.

A. Objective Function

Our objective is to maximize the total QoE of UEs, the

cache hit number, and meanwhile to minimize the total energy

consumption, and our objective function is designed as

Obj(t) = ǫ1γ1
∑

i∈I

Qi(t)+ǫ2γ2
∑

i∈I

zi(t)−ǫ3γ3
∑

i∈I

Ei(t),(23)

where γ1 (in Utility), γ2 (in Utility), γ3 (in Utility/Joule) are

the weight coefficients used to balance the relative magnitude

of the QoE, the cache hit number and the energy consumption,

ensuring they are on the same scale, and meanwhile to unify

the unit of the three items. Moreover, ǫ1, ǫ2 and ǫ3 are used

to balance the importance of the three items, which should

satisfy ǫ1, ǫ2, ǫ3 ∈ [0, 1], and ǫ1 + ǫ2 + ǫ3 = 1.
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B. Problem Formulation

To achieve the objective, we propose to jointly optimize

the caching decision of models κ(t) = {κs(t)}, s ∈ S , the

caching decision of objects ζ(t) = {ζs,l(t)}, s ∈ S , l ∈ Ls,

the offloading decision of the foreground interactions of UEs

̺(t) = {̺i(t)}, i ∈ I, the computation resource allocation in

the MEC server fmec(t) = {fmec
i (t)}, i ∈ I and in UEs

f loc(t) = {f loc
i (t)}, i ∈ I, and the wireless transmission

rate allocation R(t) = {Ri(t)}, i ∈ I, subjecting to the

QoE requirement of metaverse UEs, and thus to maximize

the objective as defined in Eq. (18). The joint optimization

problem is formulated as

(P1) : max
κ(t),ζ(t),̺(t)

fmec(t),floc(t),R(t)

1

T

∑

t∈T

Obj(t)

s.t. (C1) : κs(t), ζs,l(t) ∈ {0, 1}, s ∈ S, l ∈ Ls,

(C2) : ̺i(t) ∈ {0, 1}, i ∈ I,

(C3) : fmec
i (t) ≥ 0, i ∈ I,

(C4) :
∑

i∈I

fmec
i (t) ≤ Fmec,

(C5) : 0 ≤ f loc
i (t) ≤ f loc

max, i ∈ I,

(C6) : Ri(t) ≥ 0, i ∈ I,

(C7) :
∑

i∈I

Ri ≤ Rmec,

(C8) :
∑

s∈S

ns(t)Ds +
∑

s∈S

∑

l∈Ls

ns,l(t)Ds,l ≤ Π,

(C9) : Πrm(t) ≥ 0. (24)

In problem (P1), (C1) and (C2) require that the background

model caching, background objects caching, and foreground

interaction information offloading are binary variables. (C3)

and (C4) are the constraints on MEC server computation

resource allocation, where Fmec is the processing capability

of the MEC server, and (C4) requires that the total amount

of allocated computation resources should not exceed the

processing capability of the MEC server. In (C5), f loc
max is the

maximum processing capability of UEs, which is same for all

UEs, and (C5) is the constraint on the value range of local

computation resource allocation of UEs. (C6) and (C7) are

the constraints on wireless transmission rate allocation, and

Rmec is the maximum transmission rate that can be provided

by the MEC server. (C8) requires that the total size of cached

background model and objects should not exceed the storage

capacity of the MEC server Π. (C9) requires that the remaining

capacity of the MEC server should be non-negative.

IV. PROBLEM REFORMULATION

Since the high-dynamic and the time-coupled features of

the system, it is hard for traditional optimization algorithms

to solve the optimal adaptive and real-time decisions. DRL

appears as an effective decision making solution, which can

mitigate the temporal affects, and focus on long-term objective

optimization, and thus is feasible to solve the problems. In

the framework of DRL, agent aims to find a policy that can

maximize the total expected rewards. Active inference is a

promising approach derived from cognitive and computational

neuroscience, where agent chooses actions to maximize the

evidence supporting a model that is biased towards its own

preferences. This framework is an important extension of

Bayesian perception and learning to incorporate probabilistic

decision making. Although active inference and DRL have

different sources, both frameworks use similar approaches to

learning adaptive behaviors, and active inference is applied to

many established DRL forms, which could provide a promis-

ing additional component to current DRL methods, indicate a

framework which is potentially unified for adaptive decision

making in uncertain circumstances.

A. State Space

According to the description of the system model, the state

space is given by S = {s(t), t ∈ T }, defined as

s(t) ,
{

Cf (t), Df (t), b(t), L(t), q(t), Rb(t),

N (t− 1), Ns(t− 1), Πrm(t− 1), Life
md(t),

Life
obj(t), Vmd(t), Vobj(t)

}

, (25)

where

• Cf (t) = {Cf
i (t)}, i ∈ I, where Ci(t) is the CPU cycles

needed to render the foreground interactions of UE i in

time slot t;

• Df (t) = {Df
i (t)}, i ∈ I, where Di(t) is the data size of

foreground interaction information of UE i in time slot

t;

• b(t) = {bi(t)}, i ∈ I, where bi(t) ∈ S is the requested

index of background model of UE i in time slot t;

• L(t) = {Li(t)}, i ∈ I, where Li(t) ∈ Ls is the requested

set of background objects of UE i in time slot t;

• q(t) = {qi(t)}, i ∈ I, where qi(t) is the required

resolution level of metaverse frames of UE i in time slot

t;

• Rb(t) is the wireless transmission rate between the BS

and the remote metaverse server in time slot t;

• N (t−1) = {s|ns(t−1)=1,s∈S} is the set of models cached

in the MEC server at time slot t− 1;

• Ns(t − 1) = {l|ns,l(t−1)=1,l∈Ls
} is the set of objects of

model s cached in the MEC server at time slot t− 1;

• Πrm(t − 1) is the remaining available caching resource

of the MEC server after content placement at time slot

t− 1;

• Life
md(t) = Lifes(t), s ∈ S is the life of model s at

time slot t;

• Life
obj(t) = Lifes,l(t), s ∈ S, l ∈ L is the life of object

l of model s at time slot t;

• Vmd(t) = {vs(t)}, s ∈ S is the removal indicator of

model s at time slot t;

• Vobj(t) = {vs,l(t)}, s ∈ S, l ∈ L is the removal indicator

of object l of model s at time slot t.

B. Action Space

In each time slot, the agent decides its actions a(t), which

comprises the following items.

• The caching decision of models κ(t) = {κs(t)}, s ∈ S;
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• The caching decision of objects ζ(t) = {ζs,l(t)}, s ∈ S ,

l ∈ Ls;

• The offloading decision of the foreground interactions of

UEs ̺(t) = {̺i(t)}, i ∈ I;

• The computation resource allocation in the MEC server

fmec(t) = {fmec
i (t)}, i ∈ I;

• The computation resource allocation in UEs f loc(t) =
{f loc

i (t)}, i ∈ I;

• The wireless transmission rate allocation R(t) =
{Ri(t)}, i ∈ I.

Thus, the action in time slot t is given by

a(t) , {κ(t), ζ(t), ̺(t), fmec(t), f loc(t), R(t)}. (26)

C. Reward Function

In problem (P1), our objective is to maximize the long-term

average objective of the system. Since the immediate reward

reflects the weighted sum of QoE of UEs, cache hit number,

and the energy consumption of UEs at each time slot, we

consider the immediate reward r(t) as

rimm(t) = ǫ1γ1
∑

i∈I

Qi(t) + ǫ2γ2
∑

i∈I

zi(t)− ǫ3γ3
∑

i∈I

Ei(t).

(27)

Considering the constraints in (P1), if the constraints are all

satisfied, the agent will be rewarded with rimm(t), otherwise,

the agent will not obtain any reward, since the solution it finds

is not feasible. We use a binary variable v(t) as the indicator,

where if all constraints are satisfied, we have v(t) = 1, and the

immediate reward is set to the system utility in the current time

slot t; otherwise, if the action violates any of the constraints,

the system incurs a penalty. In this paper, we set v(t) = 0, and

therefore, r(t) = 0 in such cases. Accordingly, the immediate

reward r(t) is revised as

r(t) = v(t)rimm(t). (28)

D. Next State

After action selection and execution, the agent will receive

an immediate reward. The system state transitions from the

current state s(t) to the next state s(t + 1) according to the

following dynamics:

• The CPU cycles while render the foreground interactions

of the UE i in time slot t+1, Cf (t+1) = {Cf
i (t+1)},

i ∈ I, is generated from [Cf
min, C

f
max] randomly;

• The data size of foreground information of the UE i in

time slot t+ 1, i.e., Df (t+ 1) = {Df
i (t+ 1)}, i ∈ I, is

generated from [Df
min, D

f
max] randomly;

• The requested index of background model of the UE i

in time slot t + 1, i.e., b(t + 1) = {bi(t + 1)}, i ∈ I,

bi(t+ 1) ∈ S , is chosen from {1, 2, ..., S} randomly;

• The requested set of background objects of the UE i in

time slot t+1, i.e., L(t+1) = {Li(t+1)}, i ∈ I, Li(t+
1) ⊆ Ls, is generated like this, first generate a random

value l from {1, 2, ..., |Li(t + 1)|}, and then randomly

choose l objects from Ls;

• The required resolution level of mateverse frames of the

UE i in time slot t+1, i.e., q(t+1) = {qi(t+1)}, i ∈ I,

is chosen from {1, 2, 3, 4} randomly;

• The wireless transmission rate between the BS and the

remote metaverse server in time slot t+1, i.e., Rb(t+1)
is generated from [Rb

min, R
b
max] randomly;

• The set of models cached in the MEC server at time slot

t, i.e., N (t) = {s|ns(t)=1,s∈S}, updates according to Eq.

(3);

• The set of objects of model s cached in the MEC server

at time slot t, i.e., Ns(t) = {l|ns,l(t)=1,l∈Ls
}, evolves

according to Eq. (4);

• The remaining available caching resource of the MEC

server after content placement at time slot t, i.e., Πrm(t),
evolves according to Eq. (5);

• The life of model s at time slot t+1, i.e., Lifemd(t+1) =
Lifes(t+ 1), s ∈ S is updated according to Lifes(t +
1) = Lifes(t) + 1;

• The life of object l of model s at time slot t + 1, i.e.,

Life
obj(t+ 1) = Lifes,l(t+ 1), s ∈ S, l ∈ L is updated

according to Lifes,l(t+ 1) = Lifes,l(t) + 1;

• The removal indicator of model s at time slot t, i.e.,

Vmd(t) = {vs(t)}, s ∈ S , is determined according to

Eq. (1);

• The removal indicator of object l of model s at time slot

t + 1, i.e., Vobj(t + 1) = {vs,l(t + 1)}, s ∈ S, l ∈ L is

determined according to Eq. (2).

Remark 2: In the following, we use st, at and st+1 to

represent s(t), a(t) and s(t+ 1) for notation simplicity.

V. ACTIVE INFERENCE ENABLED DRL BASED JOINT

OPTIMIZATION ALGORITHM

In this section, we will first present the preliminaries of

ADRL algorithm, and then present the pseudocode of the

ADRL algorithm.

A. Preliminaries of ADRL

ADRL is a DRL algorithm based on active inference, which

is well-suited for addressing problems framed as partially

observable Markov decision processes (POMDPs). POMDPs

involve a set of states, actions, transition probabilities, rewards,

observations, and conditional probabilities for outcomes. In

this framework, agents inferring the hidden state from partial

observations complicates decision-making.

Active inference, initially designed for POMDPs, can also

enhance fully observable MDP by incorporating intrinsic moti-

vation, thus improving decision-making efficiency. By combin-

ing active inference with DRL, we can optimize both reward

and free energy, leading to faster convergence and better policy

selection even in environments with low uncertainty.

The primary goal of both active inference and DRL is to

enable intelligent agents to make optimal decisions in uncer-

tain environments. However, traditional DRL faces challenges

in generalizing policies and adapting to dynamic settings, as

it relies heavily on value functions and exploration strategies,

typically requiring many trials.
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In contrast, active inference operates without explicitly

defined reward functions; it uses an internal generative model

to drive actions based on intrinsic beliefs, aiming to reduce

uncertainty. This framework is grounded in the free energy

principle, which suggests that systems maintain equilibrium by

minimizing discrepancies between expected beliefs and actual

observations. By minimizing free energy, agents can achieve

adaptable, goal-directed behaviors, making active inference

a powerful approach for understanding perception, learning,

and decision-making in both biological systems and machine

learning.

The conceptual process of strategy selection depends on

the expected future free energy of the agent. Variational

free energy (VFE) constitutes a tractable bound on the KL

divergence between the logarithm of model evidence and prior

and posterior, defined as

F = KL
(

δ(s, θ)
∥

∥ηΦ(m, s, θ)
)

, (29)

where δ(s, θ) is the agent’s belief about future variables,

and ηΦ(m, s, θ) is the generative model with preferences. By

setting the preferences, ηΦ(m, s, θ) can be made as close as

possible to ηΦ(m, s, θ), that is, to minimize the variational free

energy for each time slot. Therefore, the VFE is also referred

to as the lower bound of (negative) model evidence.

Since the F solved at each time slot, but the optimization

policy π is often a time series, therefore, we expand the F to

include future variables, thereby obtaining the expected future

free energy F̃ (the KL divergence between the agent’s beliefs

about future variables and the agent’s preferred generative

model). The current goal is to minimize F̃ to obtain the

optimal policy π∗, which is defined by

F̃ = KL(δ(m0:T , s0:T , θ, π) ‖ η(m0:T , s0:T , θ)), (30)

where m0:T represents the agent’s observation sequence on the

time series 0 : T , s0:T represents the agent’s state sequence

on the time series 0 : T , δ(m0:T , s0:T , θ, π) represents the

agent’s beliefs about future variables, η(m0:T , s0:T , θ) is the

agent’s generative model, θ is the parameters neural network

of the generative model. It is known from the properties of

divergence that it is non-negative, so the minimum value of F̃

is 0 only when η(m0:T , s0:T , θ) equal to δ(m0:T , s0:T , θ, π),
that is

KL(δ(m0:T , s0:T , θ, π)‖η(m0:T , s0:T , θ)) = 0 =⇒ F̃ = 0.
(31)

In order to obtain a optimal policy δ(π) by minimizing the

F̃ , we mention that [33]

F̃ = 0 ⇒ KL
(

δ(π) ‖ e−F̃π

)

= 0, (32)

where

F̃π = KL
(

δ
(

m0:T , s0:T , θ|π
)

‖ηΦ(m0:T , s0:T , θ)
)

, (33)

when δ(π) = σ(−F̃π), the expected future free energy is

minimized, or in other words, when the F̃π is minimized, the

strategy is more likely to occur.

According to [33], −F̃π can be split into expected informa-
tion gain terms and external terms, that is

−F̃π ≈ Em0:T |π) [KL (δ(s0:T , θ | m0:T , π) ‖ δ(s0:T , θ | π))]︸ ︷︷ ︸
Expected information Gain

− Eδ(s0:T ,θ|π)

[
KL

(
δ(m0:T | s0:T , θ, π) ‖ η

Φ(m0:T )
)]

︸ ︷︷ ︸
Extrinsic Term

, (34)

where the first term maximizes the expected information

gain, promoting exploration of the state space. In addition,

the second term minimizes the KL difference between the

agent’s beliefs about future observations and its preferred

observations. Overall, minimizing F̃π achieves a harmonious

equilibrium between exploration and development.

In each time slot, we need to optimize to select the most

likely action. This requires the calculation of three parts: 1) the

calculation of beliefs about future variables; 2) the calculation

of F̃π; 3) the optimization of δ(π).
1) Calculation of beliefs about future variables: Beliefs

about future variables can be decomposed as

δ(s0:T ,m0:T , θ|π) = δ(θ)
T
∏

t=0

δ(mt|st, θ, π)δ(st|st−1, θ, π),

(35)

where the observation mt is correspond directly to the current

state st in fully observable MDP.

δ(mt|st, θ, π) = Eδ(st|θ,π)[η(mt|st)], (36)

δ(st|st−1, θ, π) = Eδ(st−1|θ,π)[η(st|st−1, θ, π)]. (37)

2) Calculation of F̃π: The F̃π for each time slot is

− F̃πτ
≈ −Eδ(st,θ|π)

[

KL
(

δ(mt|st, θ, π)
∥

∥

∥ηΦ(mt)
)]

−H[δ(mt | π)] + Eδ(st|π)[H[δ(mt | st, π)]]

−H[δ(st | st−1, θ, π)] + Eδ(θ)

[

H[δ(st | st−1, θ, π)]
]

. (38)

Here, since the state is determined and has no uncertainty,

the value of the second term in the above formula is 0.

Furthermore, the first term can be calculated by [34]

−U (oτ ) ∝ Eδ(st,θ|π)

[

KL
(

δ(mt|st, θ, π)
∥

∥

∥ηΦ(mt)
)]

, (39)

where U (oτ ) represents the cumulative reward of the current

step, i.e.,

U (oτ ) =

τ
∑

t=0

r(t), (40)

where r(t) is defined in Eq. (28) by the (P1).

Therefore, for the proposed MDP model, Eq. (38) is trans-

formed as

− F̃πτ
≈

τ
∑

t=0

r(t)−H[δ(mt | π)] + Eδ(st|π)[H[δ(mt | st, π)]]

−H[δ(st | st−1, θ, π)] + Eδ(θ)

[

H[δ(st | st−1, θ, π)]
]

. (41)

3) Optimization of δ(π): We parameterize δ(π) as a diago-

nal Gaussian distribution, so only the peak of F̃π needs to be

obtained to determine the policy selection.
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Fig. 2: Flowchart of our proposed Algorithm 1.

B. Pseudocode of ADRL Algorithm

The detailed pseudocode for the ADRL-based joint content

caching, offloading decision, base station computational re-

source allocation, and base station transmission rate allocation

algorithm can be found in Algorithm 1. Since ADRL is

designed to address problems with continuous action spaces,

the agent will output continuous actions. To adapt the outputs

to our defined problem (P1), we need to transform the outputs.

1) Continuous Action Normalization: To reduce the dimen-

sionality of the action space, all continuous variables (such

as computation resource allocation) are constrained to a value

between 0 and 1. Let a represent a general action output, with

amax and amin denoting the maximum and minimum values

that a can take, respectively, and let ā denote the actual value.

Then, ā can be recovered from a as follows:

ā =
a− amin

amax − amin
. (42)

2) Discrete Action Reformulation: We transform the discrete

actions as follows: For the continuous actions, the output of the

proposed algorithm keeps unchanged; for the binary variables,

we consider the continuous outputs as the probabilities of

κs(t) = 1, ζs,l(t) = 1 and ̺i(t) = 1, respectively, during

the training phase, and the values of them are obtained by

sampling with the probabilities. During the testing phase, the

values of κs(t), ζs,l(t) and ̺i(t) are obtained by rounding the

output continuous values to the nearest integer.

The flowchart of our proposed Algorithm 1 is illustrated

in Fig. 2 in order to facilitate a better understanding of the

working principle.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, we carry out simulation experiments to

examine the performance of our ADRL algorithm and discuss

the experimental results. The simulation experiments were

conducted utilizing a laptop. The implementation was carried

Algorithm 1 ADRL-based Joint Optimization Algorithm

Initialization:
1: Initialize: initial state st, ensemble network θ1, reward network

θ2, factorized belief overaction sequences δ(π) ← N (0,Π),
Parameter distribution η(θ);

2: Input: planning horizon H , optimization iterations N , number of
candidate policies J , the number of episodes Tmax, the number
of train epochs Nep;

Iteration:
3: while episode T ≤ Tmax do
4: Reset the environment;
5: while epoch e ≤ Nep do
6: Get batchsize(st, at, rt, st+1) from buffer;
7: Perform a gradient desent step on the ensemble network

parameters θ1;
8: Perform a gradient desent step on the reward network

parameters θ2;
9: end while

10: Get st by interact with the environment;
11: Initial the δ(π) by N (0, 1);
12: while optimisation iteration n ≤ N do
13: Sample J candidate policies from δ(π);
14: while candidate policy j ≤ J do

15: Get the H[δ(st | st−1, θ, π)] and the Eδ(θ)

[
H[δ(st |

st−1, θ, π)]
]

according to ensemble network θ1;

16: Get predicted reward r
′

t according to reward network θ2;
17: Update − F̃

j
π by Eq.(41);

18: end while
19: Select top k(k ≤ j) πj according to −F̃ j

π ;
20: end while
21: Optimize π according to top kπj ;
22: δ(π)← refit(F̃ j

π);
23: Take action at ∼ π;
24: Reform action at as āt;
25: Get st+1, rt by step(āt);
26: Let st+1 = st;
27: end while
28: return π∗ = π.
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out using python 3.8, in conjunction with TensorFlow 2.3, pro-

viding a robust environment for executing the computational

tasks associated with our research. The default parameters are

listed in Table II, and the default learning rate is set at 0.01.

TABLE II: Simulation Parameters

Notations Value

I 10

S 5

Ls {6,7,8,9} randomly

Cs [200,600] M CPU cycles randomly

Cs,l [20,100] M CPU cycles randomly

Ds [20,60] Mbit randomly

Ds,l [2,30] Mbit randomly

C
f
min, C

f
max {50,200} M CPU cycles [27]

D
f
min, D

f
max {10,40} Mbit

Rb
min, R

b
max {10,500} Mbps

λen 5 CPU cycles/bit

λde 5 CPU cycles/bit

λinte 5 CPU cycles/bit

△t 25 ms [35]

P
p
i 10W ∼ 20W randomly

P t
i 0.1W ∼ 2W randomly [36]

ǫ1, ǫ2, ǫ3
1
3
, 1

3
, 1

3
γ1 0.1 Utility

γ2 10 Utility

γ3 10 Utility/Joule

Fmec 10 G CPU cycles/s

F loc
max 1 G CPU cycles/s [37]

Rmec 1 Gbps [38]

Π 1.7Gbit

Thre 5

In the following simulations, we compare the proposed

algorithm with the following benchmark algorithms.

1) No-model-caching: The caching indicator of all models,

(i.e., κs(t)) are all set for 0 at the start of each time slot, i.e.,

the models that requested by UEs are not cached at the BS,

and need to download them from the remote metaverse server.

This benchmark algorithm is employed to evaluate the impact

of the model cache decision in the proposed model framework.

2) No-object-caching: The caching indicator of all objects

(i.e., ζs,l(t)) are all set for 0.

3) Average-MEC-computation: The processing capability of

the BS (i.e., Fmec) is average-allocated for each UE i. This

means that each UE can fairly obtain a certain proportion of

computing resources. This method of allocation helps to ensure

that all UEs can receive a similar level of service performance.

4) Average-transmission-rate: This algorithm evenly allo-

cates the transmission rate provided by the BS to each UE.

This approach ensures that every UE in the network can enjoy

a balanced data transmission speed.

5) DDPG: This is a traditional DRL algorithm which is

developed for decision making under continuous action space.

Since our formulated problem involves both continuous and

integer variables within the action space, in order to used

DDPG to solve our problem, it is tailored like this: for the

continuous actions, the output of DDPG keeps unchanged; for

the binary variables, we consider the continuous outputs as

the probabilities of κs(t) = 1, ζs,l(t) = 1 and ̺i(t) = 1,

respectively, during the training phase, and the values of them

are obtained by sampling with the probabilities. During the

testing phase, the values of κs(t), ζs,l(t) and ̺i(t) are obtained

by rounding the output continuous values to the nearest integer.

Algorithms typically require metrics to characterize their

performance and effectiveness [39]. Based on a comprehensive

evaluation from various perspectives, we conduct a compar-

ative analysis of the aforementioned algorithms using the

following indicators: system service quality, cache accuracy,

overhead, and reward.

1) System service quality can be reflected through the QoE

of the UEs. When the delay in content retrieval decreases, the

real-time performance of the system improves, resulting in

an enhanced user experience; conversely, an increase in delay

leads to a poorer user experience. The framework we propose

dynamically optimizes cached content and adjusts resource

allocation to minimize the total delay in content retrieval,

thereby improving system service quality.

2) Cache accuracy is measured by the cache hit number. The

higher the proportion of content pre-cached at the base station

that matches user requests during each time slot, the higher the

cache hit rate. This leads to shorter transmission paths for users

acquiring content, thereby reducing transmission delays, which

in turn enhances the real-time performance of the system.

3) Overhead primarily includes various costs incurred at the

user end, with user energy consumption being a significant

component. The energy consumption at the user end mainly

arises from uploading front-end information, decompressing

received content, and merging processes. By optimizing the

local sending power, processing power, and processing ca-

pability of users, it is possible to effectively reduce energy

consumption at the user end and consequently save on user

overhead.

4) Reward is composed of a weighted sum of QoE, cache

hit number, and energy consumption, as defined in Eqs. (27)

and (28), and the three weight factors ǫ1, ǫ2, ǫ3 take their

default values, i.e., the value of each of them is set to 1
3 , and

thus the three components contribute equally in the metrics.
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Fig. 3: Convergence under different learning rates of the

ADRL agent.

A. Convergence

In this section, we evaluate the convergence behavior of our

proposed algorithm across various learning rates.
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Fig. 3 shows the convergent trend of the proposed algorithm

when the learning rate is 0.0001 and 0.0002 respectively. As

shown in this figure, the rewards increase fast in the first 40

rounds, and then gradually converges around the 60th episode

under different learning rates, which demonstrate that our

proposed algorithm can converge fast.

0 20 40 60 80 100 120 140 160 180 200

Episode

0

1

2

3

4

5

6

7

8

9

R
ew

ar
d

105

Proposed
No-model-caching
No-object-caching
Average-MEC-computation
Average-transmission-rate
DDPG

Fig. 4: Comprehensive convergence performance comparison.

Fig. 4 illustrates the convergence performance of the pro-

posed algorithm compared to the benchmark algorithms. The

convergence performance can be evaluated in terms of con-

vergence speed and total reward, etc. It is evident that most

algorithms achieve convergence around episode 60, while the

DDPG algorithm completes convergence around episode 180,

indicating that the DDPG algorithm requires more exploration

and adjustment. This phenomenon is primarily attributed to the

dual driving mechanism of free energy and reward adopted by

the proposed algorithm, integrating neural network optimiza-

tion with biological characteristics. Compared to traditional

DRL algorithms that rely solely on a single reward signal, the

proposed algorithm considers additional factors affecting the

agent’s behavior during the decision-making process. Further-

more, after convergence, the proposed algorithm can achieve

the highest reward value, while the reward values of other

algorithms are relatively lower.

B. Performance Evaluation
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Fig. 5: Energy consumption, E vs. the processing power of

the UEs, P
p
i .

In Fig. 5, we demonstrate how the energy consumption

of the UEs changes as its processing capability (i.e., P
p
i )

increases. It can be observed that when P
p
i = 0.001W, the

energy consumption of the UEs is also relatively low. There

is a positive correlation between them, which can be reflected

by Eqs. (20) and (21). As P
p
i further increases, the energy

consumption of the UEs also rises. It is evident from Fig. 5

that compared with the proposed algorithm, the No-model-

caching, No-object-caching, and DDPG algorithms have high-

er energy consumption, while the performance of the Average-

MEC-computation and Average-transmission-rate algorithms

is similar to that of our algorithm. Since when the processing

capacity changes, the allocation of processing capacity and

the maximum transmission rate of the MEC server primarily

affect the BS’s processing delay and transmission delay, while

having a relatively small impact on the delays associated with

energy consumption. In addition, the figure also shows that

the proposed algorithm surpasses other benchmark algorithms

(including the traditional DRL algorithm DDPG) in terms of

minimizing system energy consumption across systems with

varying UEs’ processing capabilities.
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Fig. 6: The total QoE of UEs, Q vs. the local processing

capabilities of the UEs, F loc
max.

In Fig. 6, we illustrate how the total QoE of UEs changes

with improvements in its local processing capacity (i.e.,

F loc
max). Both the proposed algorithm and several baseline

algorithms used for comparison follow this trend. When F loc
max

is as low as 0.1G, the QoE values for all algorithms are notably

low. This is because limited F loc
max forces UEs to offload fore-

ground information to the BS, resulting in relatively large local

foreground rendering delays T
f,loc
i (t) as well as significant

decoding delays T
de,off
i (t) and T

de,loc
i (t). Notably, in another

scenario where UE processes foreground information locally, it

experiences relatively large frame integration delays T inte
i (t).

As F loc
max increases, the overall end-to-end delay gradually

decreases, leading to a continuous rise in the QoE values of all

algorithms after convergence. Furthermore, it can be observed

that the QoE achieved by the proposed algorithm surpasses

that of all other algorithms, reaching the highest target value.

This observation aligns with our earlier analysis.

In Fig. 7, we have illustrated the impact of the MEC server’s

maximum storage capacity(i.e., Π) on the total QoE of UEs.
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Fig. 7: The total QoE of UEs, Q vs. the maximum storage

capacity of the MEC server, Π.

Since Π only plays a role in constraint (C8) of problem (P1),

as the algorithm converges, a larger value of Π implies that

more models and objects can be cached in the BS. This reduces

the necessity of downloading background information from

the metaverse server, thereby decreasing the total end-to-end

latency. The QoE value increases as Π increases, which is

consistent with the performance trend shown in the figure.

Moreover, our algorithm demonstrates superior performance

compared to other benchmark algorithms under different val-

ues of Π.
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Fig. 8: Cache hit number, Z vs. the Number of objects of

each model, Ls.

In Fig. 8, we depict how the number of objects of each

model(i.e., Ls) impacts the cache hit number (i.e., zi). The

figure presents the numbers of cache hit for several differ-

ent algorithms when Ls = {1, 5, 10, 15}. When Ls = 1,

the proposed algorithm, Average-MEC-computation, Average-

transmission-rate and the DDPG algorithms all achieve high

values. This is because when each model contains only one

object, the probability that this object is cached in the BS

is quite high, which significantly increases the possibility of

a cache hit when the UE requests this object. However, as

the number of objects in the model increases, the probability

that a UE’s request for a specific object within the model

results in a cache hit gradually decreases, which is consistent

with the trend shown in the figure. For those cases where no

models or objects are cached in the BS, all UE requests for

models and objects must be downloaded from the metaverse

server. Therefore, the cache hit rates of the No-model-caching

and No-object-caching algorithms remain zero in the figure.

Overall, our proposed algorithm outperforms other benchmark

algorithms in terms of the cache hit number.

VII. CONCLUSIONS

In this paper, we introduced a MEC-enabled metaverse

system which concludes a metaverse server, a BS and mul-

tiple mobile UEs. We aimed to an optimization problem to

enhance the total QoE and the cache hit number of UEs,

and reduce the energy consumption at the UE end by jointly

optimizing content caching, foreground information offloading

decisions and computational resources and transmission rate

allocation. Then we proposed an ADRL algorithm to achieve

the optimal solution by minimizing the agent’s intrinsic “free

energy” in combination with optimizing the specific reward.

The experimental results demonstrate the proposed algorithm

performs well in enhancing the total QoE and the cache hit

number of UEs, and minimizing system energy consumption,

and converges rapidly.

VIII. FUTURE WORK

At present, we only directly assign the value of the trans-

mission rate to UEs through the base station. In fact, from the

perspective of modeling, this is not rigorous enough. In the

future, we hope to calculate the transmission rate between UEs

and the BS by using the Shannon formula, and then take into

account various interferences in the communication process,

so as to make our model more reasonable.

In addition, in the calculation of energy consumption, we

did not consider the energy consumption caused by the mobilty

of UEs, which is in fact an important issue in practical

scenarios and will be considered in our future work to make

our model more reasonable and more in line with the actual

situations.
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