
This is a repository copy of A cache-aware DAG scheduling method on
multicores:Exploiting node affinity and deferred executions.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/225201/

Version: Accepted Version

Article:

Yi, Huixuan, Zhang, Yuanhai, Lin, Zhiyang et al. (4 more authors) (2025) A cache-aware
DAG scheduling method on multicores:Exploiting node affinity and deferred executions.
Journal of systems architecture. 103372. ISSN 1383-7621

https://doi.org/10.1016/j.sysarc.2025.103372

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

A Cache-aware DAG Scheduling Method on Multicores:

Exploiting Node Affinity and Deferred Executions

Huixuan Yi†, Yuanhai Zhang†, Zhiyang Lin†, Haoran Chen†, Yiyang Gao†, Xiaotian Dai§, Shuai Zhao†*

†Sun Yat-sen University, China §University of York, UK

Abstract—With increasingly complex functionalities being
implemented in emerging applications, multicores are widely
adopted with a layered cache hierarchy, and Directed Acyclic
Graphs (DAGs) are commonly employed to model the execution
dependencies between tasks. For such systems, scheduling meth-
ods can be designed to effectively leverage the cache to accelerate
the system execution. However, the traditional methods either
do not consider DAGs, or rely on sophisticated static analysis
to produce fixed scheduling solutions that require additional
hardware support (e.g., cache partitioning and colouring), which
undermines both the applicability and flexibility of these methods.
Recently, an online cache-aware DAG scheduling method has
been presented that schedules DAGs using an execution time
model with caching effects considered, eliminating the need for
static analysis and additional hardware support. However, this
method relies on simple heuristics with limited considerations on
both the allocatable cores and the competition between nodes,
resulting in intensive inter-node contention that undermines
cache performance. This paper proposes CADE, a cache-aware
scheduling method for DAG tasks that leverages the cache to
reduce DAG makespan. To achieve this, an affinity-aware priority
assignment is first constructed that mitigates the competition
among nodes for their preferred cores to hit the cache. Then, a
contention-aware allocation mechanism is constructed, which (i)
accounts for the impact of an allocation decision on the speed-up
of other nodes; and (ii) includes the busy cores for allocation by
enabling the deferred execution, effectively enhancing the cache
performance to accelerate the DAG execution. Experiments show
that compared to the state-of-the-art, the CADE significantly
reduces the DAG makespan by 24.02% on average (up to 33%)
with the cache miss rate reduced by 22.06% on average.

Index Terms—Cache-Aware Scheduling, Direct Acyclic
Graphs, Multi-core Systems

I. INTRODUCTION

With the ever-growing complexity of emerging applications

(e.g., 5G telecommunications, autonomous driving, and smart

manufacturing), multicore architectures are increasingly em-

ployed to meet computational demands, in which a layered

cache hierarchy is often equipped to accelerate system exe-

cution [1]–[3]. In addition, to enable complex functionalities,

parallel tasks in the system often require frequent commu-

nication and synchronisation, leading to pervasive execution

dependencies between the tasks that can be modelled as a

Directed Acyclic Graph (DAG) [4]. Fig. 1 presents an example

DAG task with ten nodes, in which a node indicates a series of

computations that must be executed sequentially, and an edge

This work is supported by National Key R&D Program of China under
Grant 2023YFB4503703, Guangdong Basic and Applied Basic Research
Foundation under Grant 2024A1515010240, Guangzhou Fundamental Re-
search Funds under Grant SL2023A04J00996/2024A04J3903, and FoShan
NanHai key area research under Grant 2230032004606.
*Corresponding author: Shuai Zhao, zhaosh56@mail.sysu.edu.cn.

v1
v3

v4
v6

v5
v7
v8

v10
v2

v9 v1
v3

v4
v6

v55

5

7

8 v7
11v8
7

v10
9

v2
v9

10

12

8

Fig. 1: An example DAG task with ten nodes (numbers in

black: the worst-case execution time of nodes).

connecting two nodes gives their execution dependency. For

instance, v6 can start only when v2 and v3 have finished.

For such systems, the complex dependency and parallelism

relationships between the nodes pose significant challenges for

DAG scheduling, which is proven as an NP-hard problem [5].

Furthermore, such challenges are greatly intensified when

caching effects are considered, where the node ordering and

allocation decisions would cause a substantial impact on the

cache performance [6]. Unfortunately, most DAG schedul-

ing methods [7]–[12] completely neglect the caching effects,

which can cause frequent cache misses and impose substantial

memory latency that significantly affects the execution of the

DAG task, undermining the performance of the system with

prolonged DAG makespan [1].

In addition, most existing cache-aware approaches do not

address DAG tasks [13]–[15], which rely on an over-simplified

task model where all tasks are independent of each other. For

DAGs, the strict precedence constraints would significantly

affect the scheduling order produced by these methods, leading

to a cache speed-up much lower than expected [16]. In

addition, some methods enhance cache performance by either

applying static code analysis or mandating additional support

from hardware platforms and compilers to manipulate the

cache, e.g., cache partitioning [15], [17] and cache colour-

ing [14]. However, for large systems on COTS (commodity-

off-the-shelf) architectures, these approaches face significant

challenges in applicability and effectiveness due to the reliance

on static analysis and additional hardware support.

Focusing on DAGs, an online cache-aware scheduling

method (named the AJLR) is proposed in [6]. Unlike most

cache-aware methods, the AJLR utilises an execution time ap-

proximation model with caching effects to guide the schedul-

ing of DAGs, leveraging the cache to accelerate the execution.

The use of the approximation model eliminates the need for

static analysis or additional hardware support. However, it

2

relies on simple and restricted heuristic rules for node ordering

and allocation, which neglects the competition of nodes for

favourable cores and considers only the idle cores as the

allocation candidates. This results in intensive node contention

for cores, leading to less effective scheduling solutions that fail

to fully leverage the cache to enhance system performance.

Contributions: This paper presents a novel Cache-aware

DAG scheduling method that exploits node Affinity and De-

ferred Executions to enhance the cache performance, namely

the CADE. To achieve this, an affinity-aware node priority

ordering is constructed, which assigns node priorities by

taking the competition of nodes over the favourable cores

into account, effectively mitigating the node contention that

improves the overall speed-up from the cache. In addition, a

contention-aware allocation mechanism is proposed with the

deferred execution enabled, which dispatches nodes to cores

by (i) examining the impact of allocation decisions on the

speed-up of other nodes and (ii) considering the busy cores

as candidates via deferred executions, enhancing the speed-up

gained from the cache that effectively accelerates the DAG

execution. The evaluation shows that the proposed CADE

outperforms the AJLR by 24.48% on average (up to 33%)

in terms of the DAG makespan, by effectively leveraging the

cache (reducing the cache miss rate by 22.06% on average).

Organisation: The rest of the paper is organised as follows:

Sec. II presents the related work. Sec. III gives the system and

task model. Sec. IV presents the working process of CADE.

The constructed priority assignment and the allocation are

described in Sec. V and Sec. VI, respectively. Finally, Sec. VII

presents the experiments and Sec VIII concludes the paper.

II. RELATED WORK AND LIMITATIONS

There are a large number of works proposed in recent years

focusing on cache-aware task scheduling and allocation [13]–

[18]. In [13], a non-preemptive fixed-priority scheduling ap-

proach is proposed with the shared cache partitioned for each

task, eliminating the inter-core cache interference to enhance

system predictability. In [14], a dynamic cache page allocation

for tasks is proposed based on cache colouring. This approach

continuously monitors cache performance to enable adaptive

cache repartitioning for tasks. In [15], an execution profile

is proposed to analyse resource usage and cache behaviour,

enabling the dynamic allocation of tasks on cache partitions.

However, these methods often rely on complex static analysis

(e.g., cache-related behaviours analysis [15]) or instruction-

level code analysis [16]; or mandate additional hardware

support, e.g., cache partitioning [15], [17], colouring [14], [18]

or locking [13]. This significantly undermines the generality

and applicability of these methods [6].

In addition, the above methods are designed for independent

tasks without considering any execution dependencies with

them. For the parallel tasks modelled as DAGs, existing works

can be categorised by the following scheduling schemes: (i)

the global scheme defines that a node can be executed on

any cores in each release [7], [19], [20]; (ii) the partitioned

scheme applied specifies that a node is designated with a fixed

allocation for all its releases [8], [21]–[23]; (iii) the federated

scheme is a hybrid of the global and partitioned schemes where

certain nodes are assigned with fixed allocations [9], [24],

[25]; and (iv) the semi-partitioned scheme provides a finer-

grained mapping where each release of a node is assigned

with a specific allocation, providing an effective balance

between the global and partitioned schemes [10], [26], [27].

However, most DAG scheduling methods assume that nodes

will always execute with their worst-case execution times

(WCETs), which completely neglect the impact of caching

effects on the execution time of nodes when scheduling the

nodes. This can cause extensive memory access latency due

to frequent cache misses, leading to the underutilisation of the

cache with prolonged DAG makespan.

The state-of-the-art cache-aware scheduling method for

DAG tasks (named AJLR) is proposed in [6]. The AJLR is

an online scheduling method based on the semi-partitioned

scheme, which consists of a priority assignment algorithm and

two allocation rules that orders and dispatches the ready nodes

to idle cores at each scheduling point. For the node ordering,

the AJLR assigns priorities to ready nodes based on the rule

of the highest node WCET first (HWF). By prioritising the

node with a higher WCET, the node is dispatched first with

more cores available for allocation, and hence, is more likely

to have a high speed-up from the cache. However, the AJLR

neglects the potential competition of the high-priority nodes

for the same preferred cores, at which they can obtain a high

cache speed-up. If multiple high-priority nodes compete for

the same core, only one node can be allocated to that core.

This can cause frequent cache misses due to the contention

for cores, leading to the following limitation.

Limitation 1. AJLR orders nodes solely based on their

WCETs without considering the contention among nodes for

preferred cores, leading to intensive core competition that

significantly undermines the cache performance.

With the ready nodes ordered by their priorities, the AJLR

decides their allocations by estimating the execution time with

caching effects of a node on a given core based on a Cache

Reuse Profile (CRP) constructed by a measurement-based

approach (See Sec. III-B). This timing model allows AJLR

to operate without the need for complex static analysis or

additional hardware support. At a scheduling point, AJLR first

constructs a speed-up table that contains the absolute speed-up

for all possible allocations based on the timing model, in which

the one with the maximum speed-up value is always chosen

as the allocation decision. Intuitively, this in general improves

the cache performance that can reduce the DAG makespan.

However, once an allocation decision is made, the selected

core becomes unavailable for other nodes, potentially resulting

in allocations with significantly reduced cache speed-up for

those nodes. In addition, AJLR restricts its consideration to

the idle cores only, which can be limited at a scheduling

point, especially for systems with a high workload. In such

cases, the cores that are better suited for the ready nodes

may not be available at the current scheduling point, yet are

completely ignored by the allocation process of the AJLR.

Hence, such a restriction would significantly undermine the

effectiveness of the method. Based on the above, AJLR suffers

3

Main Memory

System Bus

CPU1

Core

L1 Cache

L2 Cache

CPU2

Core

L1 Cache

CPU1

Core

L1 Cache

L2 Cache

CPU2

Core

L1 Cache

Cluster1 Cluster2

Fig. 2: System architecture with a two-layered cache.

from Limitations 2 and 3 that undermine its effectiveness.

Limitation 2. AJLR focuses on maximising the speed-up of

individual nodes without considering the core competition of

other ready nodes, resulting in high contention with under-

mined cache performance.

Limitation 3. The AJLR only considers the idle cores during

the allocation, which fails to fully leverage the cache to

accelerate node execution, leading to underutilised caches and

prolonged makespan.

Motivation. To address the above limitations, this paper

proposes a cache-aware DAG scheduling method (named

CADE) that enhances the cache performance of DAG tasks

to reduce the makespan. To achieve this, an affinity-aware

node priority ordering is proposed which accounts for the node

competition over favourable cores when assigning priorities,

effectively mitigating the core competition with improved

overall speed-up for the ready nodes. Then, an inter-core

contention-aware allocation mechanism with deferred execu-

tions is constructed, which (i) considers the speed-up gain and

loss collaboratively when examining a potential allocation and

(ii) takes the busy cores into account to identify the most

appropriate allocation of a node, effectively leveraging the

cache to accelerate the node execution. Below we first describe

the system model and preliminaries of the constructed method

(Sec. III), and detail its overall working process (Sec. IV).

Then, the proposed priority assignment and the allocation

mechanisms are described in Sec. V and Sec. VI, respectively.

III. SYSTEM MODEL AND PRELIMINARIES

This section describes the system and task model

(Sec. III-A), and the preliminaries for constructing the cache-

aware DAG scheduling method (Sec. III-B). Notations intro-

duced in this section are summarised in Tab. I.

A. System and Task Model

System Model. The system considered contains m symmet-

ric cores P = {p1, p2, ..., pm}, where the kth core is denoted

as pk. Cores in the system are grouped into clusters, with

each cluster containing a fixed number of cores. The system

employs a two-layered cache hierarchy, as shown in Fig. 2.

Such a two-layered cache hierarchy is commonly applied

in many COTS architectures, such as the ARM big.LITTLE

architecture [28] and Cortex A72 [29], etc. Under this setup,

the L1 cache is dedicated to one individual core, whereas the

TABLE I: Notations introduced in Sec.III

Notation Description

P The set of cores in the system.

m The number of cores in the system.

pk The kth core among m symmetric cores.

Lη The η level of cache with η ∈ {1, 2}.

τ / τl A periodic DAG task / the lth job of τ .

V / E The set of the nodes / edges in the DAG τ .

T The period of τ .

W The workload of τ .

vi / vli A node from a DAG task / the lth release of vi.

Ci The worst-case execution time (WCET) of vi.

t(vli) The time at which the node vli starts executing.

ρli / αl
i The priority and allocation of node vli.

Qr The set of the ready nodes at the scheduling point.

Q∗ The set of nodes to be examined for dispatching.

P∗ The set of idle cores at a scheduling point.

| · | The size of a given set.

H The node allocation history table for all cores.

H(pk) The list of nodes that are executed on pk .

AT The list of earliest available time for all cores.

AT (pk) The earliest available time of pk .

Ωi The CRP model of node vi.

Ωi(Lη) The reuse threshold for the Lη cache provided by Ωi.

S(vi, pk) The execution time speed-up approximated by the CRP
for node vi on the given core pk .

L2 cache is shared among cores within a cluster. Both L1 and

L2 caches are inclusive, in which any data stored in the L1

cache is also present in the L2 cache [28]. The Least Recently

Used algorithm [30] is applied as the cache replacement policy.

Task Model. This work focuses on the scheduling of

a single periodic DAG task. A DAG is defined as τ =
{V,E,W, T}, where V represents the set of nodes in τ ,

E ⊆ (V × V) represents the set of directed edges between

nodes, W denotes the total workload of τ , and T denotes the

period of τ . For a node vi ∈ V , its worst-case execution time

(WCET) is denoted as Ci. An edge (vi, vj) ∈ E represents

the execution dependency between vi and vj , where vj can

only start after vi has finished. In a DAG, the node without

any predecessor is defined as the source node, and the node

without any successor is considered as the sink node. As

with [6], [31], we assume that a DAG has a sole source node

and a sole sink node in this paper. For the DAG in Fig. 1, v1
and v10 are the source node and the sink node, respectively.

For DAGs with multiple source (resp. sink) nodes, a dummy

source (resp. sink) node with zero WCET can be added so that

this assumption still holds. The workload W of τ is calculated

as W =
∑

vi∈V Ci.

At runtime, τ is released periodically with the period T ,

where each release is referred to as a job. The lth job of

τ is denoted as τl. During the execution of τl, node vli is

assigned with a priority ρli and a specific allocation αl
i by the

proposed method. A higher numeric value of ρli indicates a

higher priority. The time duration from the release of a job τl
to its completion is defined as its makespan.

Scheduling Model. The Non-Preemptive Fixed-Priority

Scheduling scheme is applied [32]. At a scheduling point,

the ready nodes (i.e., nodes where all the predecessors have

finished execution) are listed in a ready queue Qr, sorted by

node priorities in decreasing order. The set of idle cores is

4

denoted as P∗. The number of such cores (|P∗|) indicates the

maximum number of nodes in Qr that can be dispatched for

execution at the current scheduling point, with Q∗ denotes the

set of nodes prioritised to be examined for dispatching.

Starting from the highest-priority node, the scheduler dis-

patches the ready nodes to the idle cores based on the proposed

allocation method. Once a node starts executing, it runs to

completion without being preempted by other nodes on the

designated core. Note, for different releases of the same node

(e.g., vli and vl−1
i), they can be dispatched to different cores

based on the allocation method.

As with the method in [6], the proposed scheduling method

requires the system to maintain an allocation history table H

that records the nodes being dispatched on each core. Function

H(pk) returns the list of nodes that are executed on pk, in

which the most recent node is always placed at the head

of the list. Notation AT (pk) represents the earliest available

time of pk, where AT = {AT (p1), ...,AT (pm)} contains the

AT (pk) of all cores.

B. Cache Reuse Profile

To account for the caching effects in DAG scheduling

methods, the Cache Reuse Profile (CRP) constructed in [6]

is applied in this work to approximate the execution time

of a node with caching effects. The CRP is constructed for

each node vi ∈ V , denoted as Ωi for vi. For a release of

vi (say vli), its CRP approximates the cache miss effects and

the resulting execution time based on the cache reuse distance

(RD) between vli and its previous release vl−1
i , which indicates

the number of unique cache line accesses of other nodes

during the two releases of vi [6]. The computation of the reuse

distance and the construction of CRP for vi is described below.

In general, the computation of the exact cache reuse distance

of two consecutive releases of a node (i.e., the number of

unique cache line accesses by others, denoted as ∆NoUC in

Fig. 3) heavily relies on static code analysis and simulations,

which suffer from severe scalability issues that undermine

the applicability for large-scale applications. However, as

demonstrated in [6], the number of unique cache line accesses

is often closely correlated to the execution time of these nodes

in a general case. Accordingly, the reuse distance between

vl−1
i and vli on a given level of cache Lη can be estimated

as the total execution time of other nodes that accesses the

Lη, as shown in Eq. 1 [6]. Function t(·) denotes the time

that a node starts its execution and g(·) provides the sum

of the execution time of nodes that (i) are executed between

the given time interval and (ii) access the cache Lη . This

significantly reduces the complexity compared to the static

analysis. More importantly, as demonstrated, the CRP provides

effective approximations that can guide the allocation process,

enhancing the cache performance. Detailed justifications of the

CRP are referred to [6].

RD(vli, Lη) = g

Ä

t(vli)− t(vl−1
i), Lη

ä

(1)

Based on the reuse distance, the CRP is constructed for each

node by learning from the measured execution time of the

node under varied reuse distances. In general, as the distance

0 16 128

Reuse distance (in NoUC)

0

30

s
1

60

s
2

100

A
p

p
ro

x
.

E
T

 o
v
e

r
W

C
E

T
 (

%
)

Reuse for core

Reuse for cluster

Fig. 3: An example CRP with a two-layered cache from [6].

grows, a node would experience gradual cache misses from

L1 to L2, and eventually miss all cache levels in a general

case (see Fig. 3). For a release of vi (e.g. vli), a designated

core pk, and its CRP Ωi, the execution time is estimated by

determining whether vli can hit any of the two levels of cache.

For a vli and a candidate core pk, the speed-up on its worst-

case execution time (i.e., Ci) due to the caching effects is

denoted as S(vli, pk), which is computed as follows. Starting

with the L1 cache, vli hits the cache and obtains a speed-up if

the following two conditions are satisfied:

C1. A previous instance of vli is found on the same cache,

e.g., vl−1
i is found on the allocation history of the cache.

C2. The reuse distance of vli is less than the threshold of the

cache in the CRP, which is denoted as Ωi(Lη) for Lη

hereafter, e.g., 16 for L1 cache in Fig. 3.

If vli hits the L1 cache, the speed-up over its WCET (e.g.,

s1% in Fig. 3) is obtained based on the cache reuse distance.

Accordingly, the execution time of vli on pk is approximated

by Ci × s1%. Otherwise, the CRP examines whether vli can

hit the L2 cache using the same process. If vi cannot hit any

level of cache, no speed-up is obtained so that execution time

is approximated as the WCET.

The CRP provides the foundation for the proposed CADE,

allowing effective allocation decisions to be made that better

utilise the cache to improve the system performance (see

Sec VII). Without the CRP, complex static analysis would be

required to assess the impact of caching effects on the node

execution time, such as instruction-level code analysis, leading

to significant computational overhead and reduced efficiency

in allocation algorithms. In addition, the use of CRP removes

the need for the additional support of underlying hardware

and compilers (e.g., cache colouring [33] and locking [34]),

enhancing the applicability of the proposed method [6].

IV. THE WORKING PROCESS OF CADE

Before diving into the technique details, this section first

presents the overall working process of CADE and its major

components. The CADE is an online scheduling method for

DAGs, which is executed at each scheduling point to produce

a job-level schedule for nodes in Qr (i.e., the set of ready

nodes). A scheduling point is triggered when a core becomes

idle and there are nodes in Qr waiting for execution. Note, as

CADE focuses on scheduling nodes in one DAG release, we

omit the index l for vli hereafter in the proposed method for

simplicity (i.e., vi is used where applicable).

5

Cache Reuse Profile

𝑣𝑖
𝑝𝑘assign

to

𝑣𝑖defer

for

Cache Reuse Profile

...

𝑣1 𝑣𝑛...

...

𝑣𝑖

compare with

CSG Table

p1 p2 p3

v1 𝑆 𝑣1, 𝑝1 𝑆 𝑣1, 𝑝2 𝑆 𝑣1, 𝑝3
v2 𝑆 𝑣2, 𝑝1 𝑆 𝑣2, 𝑝2 𝑆 𝑣2, 𝑝3
v3 𝑆 𝑣3, 𝑝1 𝑆 𝑣3, 𝑝2 𝑆 𝑣3, 𝑝3

𝑏

𝑑MCSG𝑐 Identify

idle core busy core node𝑎

𝑆(𝑣𝑖 , 𝑝𝑘) 𝑆(𝑣𝑖 , 𝑝𝑘)

ANPO

Deferred Exec.

⇒ 𝑣𝑖 𝑝𝑘
𝑝𝑘

Fig. 4: The framework overview of a CADE-scheduled system.

The overall working process of CADE is presented in

Alg. 1, with an illustration provided in Fig. 4. At a scheduling

point, the algorithm is invoked and produces scheduling deci-

sions for nodes in Qr. The algorithm takes the ready queue

Qr, the set of idle cores P∗ and the set of busy cores P¬ as the

inputs. In addition, two node queues Qs and Qd are initialised.

The Qs stores the nodes allocated by CADE at the current

scheduling point. The Qd contains nodes that are deferred by

CADE, which will be examined at the next scheduling point

for a higher speed-up and earlier completion.

At a scheduling point, CADE starts by prioritising the ready

nodes Qr using an affinity-aware node priority assignment

(line 2), i.e., the ANPO in Fig. 4 a . The ANPO considers

the core affinity of each node (i.e., cores where it can hit the

cache), and prioritises the nodes based on the contention over

their preferred cores. The working mechanism and construc-

tion of ANPO are detailed in Sec. V. Given the set of idle cores

P∗, at most |P∗| nodes will be dispatched for execution at the

current scheduling point (line 4). The notation Q∗ denotes the

set of nodes to be examined for dispatching with |Q∗|≤ |P∗|,
which contains |Q∗| nodes with the highest priority in Qr.

Given Q∗ and P∗, the CADE then produces node alloca-

tions that leverage cache to speed up the node execution (lines

6-17). To approximate the cache speed-up gain of different

allocation decisions, a contention-aware speed-up gain (CSG)

table (Fig. 4 b) is constructed for all possible allocations (line

6). For a given vi and a pk, the CSG estimates the speed-up

of a node vi on a given core pk, with the potential loss of

other nodes considered pk would become unavailable for their

allocations. The CSG table provides a comprehensive view of

the speed-up gain and loss of all nodes for each allocation,

providing effective guidance for CADE to produce allocations

that fully exploit the cache to enhance the system performance.

Based on the CSG, two allocation rules are constructed: (i)

the Maximum CSG First (MCSG), as shown in Fig. 4 c ; and

(ii) the Conditional Deferred Execution (CDE), as shown in

Fig. 4 d . The MCSG identifies the allocation (i.e., a pair of

vi and pk) with the maximum CSG value (line 9). For the

identified vi and pk, the CDE further compares the speed-up

of vi on pk with the speed-up expected on the busy cores,

determining whether it is beneficial to postpone the schedule

of vi for a certain busy core that can provide a higher speed-up

with earlier completion of vi’s execution (line 11).

Based on MCSG and CDE, the CADE examines every node

vi ∈ Q∗, in which the node with the highest CSG value is

always considered first. For a given node vi, the algorithm

determines whether vi should be dispatched or deferred to

obtain a higher speed-up. If vi is deferred by CDE, vi is

placed in Qd, in which the nodes will be postponed to the

next scheduling point for allocation (lines 11-12). Otherwise,

it is dispatched to the core with the highest CSG value (i.e.,

MCSG) and is added to Qs, which contains all the allocated

nodes with their αi decided (line 14). After vi is examined, the

algorithm updates Qr and Q∗ to remove vi (line 16). Finally,

the CADE terminates when all the idle cores are assigned with

a node or every node in Qr is examined, where the allocation

(i.e., αi) for each vi in Qs and the set of nodes deferred for

the next scheduling point Qd are returned (line 19).

In addition, the CADE maintains the allocation history table

H and tracks the earliest available time AT (pk) for each pk
in the system. The H is required by the CRP to approximate

the speed-up for the given node and core, providing critical

guidance for the scheduling decisions made by CADE. The

AT provides the times at which the busy cores become avail-

able, which is adopted in the implementation of the deferred

execution mechanism in Sec. VI. Below we first introduce the

proposed node priority assignment ANPO (Sec. V). Then, we

explain the constructed node allocation mechanism (Sec. VI),

including the CSG table and the two allocation rules, forming

the complete CADE method that fully leverages the cache to

accelerate DAG execution.

V. AFFINITY-AWARE NODE PRIORITY ORDERING

This section describes the construction of the ANPO de-

scribed in Sec. IV (i.e., Fig. 4 a). The existing methods

often schedule nodes simply based on their WCETs, e.g., the

highest node WCET first (HWF) [6], [35], [36]. However, these

methods fail to consider the core contention among the ready

nodes in terms of their preferred cores at which cache hits

6

Algorithm 1: Overall working process of CADE;

Input: Qr, P∗, P¬;

Initialise: Qs = ∅, Qd = ∅;

1 /* a Prioritises the ready nodes by ANPO.*/

2 sort Qr by ρi, ∀vi ∈ Qr;

3 while Qr ̸= ∅ ∧ P∗ ̸= ∅ do

4 Q∗ = Qr.first(min{|Qr|, |P∗|});
5 /* b Construct CSG table for all Q∗

and P∗
.*/

6 S =CSG(Q∗,P∗);
7 while Q∗ ̸= ∅ do
8 /* c Rule 1: Maximum CSG first by Alg. 3.*/

9 (vi, pk) = MCSG(S,Q∗,P∗);
10 /* d Rule 2: Deferred Execution by Alg. 4.*/

11 if CDE(vi, pk,P
∗,P¬) then

12 Qd = Qd ∪ vi;

13 else

14 αi = pk; P∗ = P∗ \ pk; Qs = Qs ∪ vi;

15 end

16 Qr = Qr \ vi; Q∗ = Q∗ \ vi;
17 end

18 end

19 return αi, ∀vi ∈ Qs, Qd;

can be achieved to accelerate the execution, i.e., the affinity.

Such an approach can lead to extensive contention if the nodes

selected for execution can only benefit from cache on the same

core, where only one node can be allocated on the preferred

core. This significantly undermines the cache performance,

thereby leading to prolonged DAG makespan.

To address this, the ANPO (affinity-aware node priority

assignment) is constructed to assign priorities for ready nodes

by considering (i) the core affinity of the ready nodes; and (ii)

the contention over the preferred cores among the ready nodes.

To achieve this, the affinity set (i.e., the set of preferred cores)

of each ready node is identified on which the node achieves

cache hits. Based on this, a metric Conflict Factor (CF) is

introduced to depict the degree of contention between a node

and other ready nodes for a given idle core. Leveraging CF, the

ANPO method assigns higher priorities to nodes with lower

contention with other ready nodes. Below we first present the

construction of the Conflict Factor. The notations introduced

in the ANPO are summarised in Tab. II.

Computation of CF. The CF quantifies the severity of

contention for the idle cores (P∗) between a node vi and other

ready nodes, given the affinity set of each node. To calculate

the value of CF, the affinity set where vi can hit the cache is

first derived, denoted as P(vi) in Eq. 2. For each pk in P∗,

the cache hit status of vi is represented by hk
i ∈ {L1, L2, ϵ},

where L1 and L2 denote cache hits at the corresponding cache

levels whereas ϵ indicates vi achieves no cache hits on pk. The

hk
i can be derived by the CRP following the approach outlined

in Sec III-B. As defined in Eq. 2, pk is incorporated into the

affinity set of vi only if vi hits the caches on pk, i.e., hk
i ̸= ϵ.

P(vi) = {pk | hk
i ̸= ϵ, ∀pk ∈ P∗} (2)

With affinity set P(vi) determined for each ready node vi,

TABLE II: Notations introduced in ANPO.

Notation Description

hk
i The cache hit status of node vi on core pk .

ϵ A value of hk
i indicating no cache hits.

P(vi) The affinity set of vi.

H(pk) The set of nodes that can hit the cache on pk .

C(pk) The set of cores within the cluster of pk .

CF (vi, pk) The contention degree of vi for dispatching to pk .

the set of nodes that could contend for a specific core pk is

identified by Eq. 3. The function H(pk) returns the set of

nodes that can hit the cache on pk (i.e., pk ∈ P(vi)). If such

nodes are dispatched at the same scheduling point, they might

compete for pk to accelerate the execution via cache.

H(pk) = {vi | pk ∈ P(vi), ∀vi ∈ Qr} (3)

Based on P(vi) and H(pk), the degree of contention that

vi can incur for being dispatched to pk is computed in Eq. 4,

denoted as CF (vi, pk). Note, Eq. 4 only considers the case

where pk is one of its preferred cores (i.e., vi ∈ H(pk)).
Otherwise, it has no contention with other nodes on pk. In

addition, because the CF (vi, pk) is applied as the divisor in

Eq. 5, CF (vi, pk) = 1 if vi incurs no contention on pk.

CF (vi, pk) = 1 +
∑

∀vj∈H(pk)\vi

1

|P(vj)|
(4)

As shown in the equation, the CF (vi, pk) is computed

by examining the size of the affinity set of the other nodes

that also prefer pk, i.e., the |P(vj)|, ∀vj ∈ H(pk) \ vi. The

intuition is that, if vj has a large size of P(vj), this indicates

vj has more candidate cores at which it can benefit from the

cache, hence, leading to a lower contention with vi on pk.

For instance, if |P(vj)|= 5, vj has a number of allocation

candidates at which it can still hit the cache, regardless

of whether pk is occupied. In contrast, if P(vj) = {pk},

allocating vi to pk would result in vj missing the cache without

any execution speed-up. This generally leads to a more severe

contention for core pk between the ready nodes.

The Construction of ANPO. With CF (vi, pk) computed,

the affinity-aware node priority assignment (ANPO) is con-

structed that always assigns a higher priority value for a ready

node with a lower contention on the preferred cores, where

a node with a higher priority is always scheduled first. For a

vi ∈ Qr, its priority ρi is computed by Eq. 5, which examines

the potential benefits of vi and the resulting contention for

other ready nodes if vi is allocated on pk ∈ P(vi).

ρi =
∑

∀pk∈P(vi)

{

|C(pk)|
CF (vi,pk)

, if hk
i = L1

1
CF (vi,pk)

, if hk
i = L2

(5)

For a given pk, the equation examines whether vi can hit the

L1 or L2 cache. If so, a reward is assigned as |C(pk)| (i.e., the

number of cores in the cluster) and 1 for hitting the L1 and L2

cache, respectively, where a higher reward can lead to a higher

priority. In addition, the CF (vi, pk) is applied to consider the

potential contention that vi can impose on other ready nodes

if it occupies pk, in which a low CF (vi, pk) results in a high

ρi. By considering both the benefits of vi and the contention

7

TABLE III: Notations introduced in CADE.

Notation Description

Q∗
i Nodes to be examined excluding vi, i.e., Q∗ \ vi.

P∗
k

The set of idle cores excluding pk , i.e., P∗ \ pk .

S†(Q∗
i , px) The maximum speed-up that the core px can offer for the

given set of nodes Q∗
i .

P⋄(vj) The set of cores that provides vj with the speed-up equals

to S†(Q∗
i , px) for each px ∈ P∗

k
.

S‡(vj ,P
∗
k
) The maximum speed-up that vj ∈ Q∗

i can obtain on the
cores in P∗

k
.

L(vi, pk) The highest speed-up loss among vj ∈ Q∗
i if vi is

allocated on pk .

S(vi, pk) Contention-aware speed-up gain if vi is allocated on pk .

V ′ The set of nodes with the highest CSG value in S.

P ′ The set of cores with the highest CSG value for the node
identified by MCSG.

V∗(pk) The set of nodes executed on pk that can hit the cache if
they are dispatched on pk again.

R2D(pk) The minimum distance between reuse distance and the
threshold Ωj(L2) among nodes in V∗(pk).

t The current time at the scheduling point.

P(vi) The set of cores that the node vi has considered at previous
scheduling points.

P¬ The set of busy cores at the current scheduling point.

it imposes on other nodes for occupying a given core pk, the

priority of vi is computed by iterating through every pk on

which vi can hit the cache, i.e., ∀pk ∈ P(vi).
With the ANPO applied, nodes that can hit the cache

while causing a low contention with others are in general

assigned a higher priority, which will be dispatched first at

a scheduling point. At a scheduling point, the nodes in Qr

are ordered by their priorities in non-increasing order, in

which the first |P∗| nodes (i.e., Q∗) will be considered by

the allocation process for dispatching. When multiple nodes

have the same priority value (i.e., ρi), the node with a higher

WCET is selected first. Compared to the existing methods, the

ANPO can mitigate the competition between nodes for certain

cores while still leveraging the cache to accelerate the node

execution, effectively reducing the resulting DAG makespan.

This is further justified by the experimental results in Sec. VII.

The Characteristic 1 describes the key feature of ANPO that

addresses Limitation 1 in Sec. II.

Characteristic 1. The ANPO considers the node competition

over the preferred cores when assigning priorities, effectively

mitigating the core contention among the ready nodes with

enhanced cache performance. This addresses Limitation 1.

VI. CONTENTION-AWARE ALLOCATION MECHANISM

WITH DEFERRED EXECUTION

This section presents the allocation process of CADE. As

described in Sec. II, the allocation mechanism of AJLR (i.e.,

the SOTA) suffers from two major limitations: (i) it fails

to account for the potential impact of an allocation on the

cache speed-up of other ready nodes and (ii) it restricts the

consideration of allocation to the idle cores only, neglecting

potentially more suitable allocations that will be available in

near future. These limitations result in less effective scheduling

solutions for DAGs with high inter-core cache contention,

which significantly undermines the effectiveness of AJLR,

hence, leading to prolonged DAG makespan.

TABLE IV: Speed-up of each possible allocation by the CRP.

S(vi, pk) p1 p2 p3
v1 510 500 500

v2 400 600 100

v3 500 400 200

TABLE V: The contention-aware speed-up gain table.

S(vi, pk) p1 p2 p3
v1 210 300 500

v2 300 600 100

v3 490 200 200

To address these limitations, the CADE allocates nodes

by (i) considering the impact on cache speed-up caused

by inter-core cache contention and (ii) taking into account

the potential benefits of waiting for nearly released cores,

with a deferred execution mechanism to enable improved

allocation decisions, thereby enhancing cache performance and

accelerating execution. To achieve this, a contention-aware

speed-up gain table (CSG) is constructed that considers the

impact of inter-core contention on the speed-up of ready nodes

(Sec. VI-A). Based on the CSG, two allocation rules are

designed for enhanced cache utilisation, forming the complete

CADE method that schedules tasks with immediate allocation

or deferred execution (Sec. VI-B). The notations introduced

in this section are summarised in Tab. III.

A. The Construction of the CSG Table

This section describes the construction of CSG based on

the execution time approximations produced by the CRP

(i.e., Fig. 4 b). As described in Sec. II, the AJLR produces

allocations solely based on the independent cache speed-

up of each individual node, i.e., S(vi, pk). This ignores the

potential impact of an allocation on the cache speed-up of

other ready nodes, leading to limited cache performance. To

address this, the CSG is constructed, which incorporates the

potential speed-up loss resulting from other ready nodes that

cannot be executed on a specific core.

Intuitions and Benefits. Before presenting the construction

process of the CSG, we first illustrate the key intuition

of the CSG and the benefits it brings to CADE. Consider

a scheduling point in which there exist three ready nodes

{v1, v2, v3} and three idle cores {p1, p2, p3}, in which the

S(vi, pk) of every possible allocation decision is presented

in Tab.IV. Below we explain (i) the necessity of the CSG by

illustrating the limitation of the AJLR and (ii) the benefits

brought by the CSG using two examples.

Example 1. For the example system in Table IV, as the

allocation with the highest S(vi, pk) is always chosen in AJLR,

v2 is first dispatched to p2 as S(v2, p2) = 600 is the highest

speed-up among all possible allocations. Then, v1 is allocated

on p1 following the same approach, where S(v1, p1) = 510.

Finally, v3 is left with p3 as p1 and p2 are occupied. This

schedule obtains a total speed-up of 510+ 600+ 200 = 1310
for all three nodes.

Example 1 illustrates the schedule produced by the AJLR,

which obtains a total speed-up of 1310. However, it is not

8

difficult to find a better solution in which v1, v2, v3 can be al-

located to p3, p2 and p1 respectively, achieving a higher speed-

up of 500 + 600+ 500 = 1600. From the example, the AJLR

is limited to the local optimisation of each individual node

during the scheduling process, overlooking the contention for

nodes where multiple nodes can hit the same cache. Therefore,

this method often leads to sub-optimal scheduling decisions

that fail to effectively leverage the cache to accelerate node

execution, leading to prolonged DAG makespan.

However, as an online scheduling method, global optimi-

sation through extensive search would be impractical due to

its high complexity. To address this issue, a more informative

speed-up approximation with the node contention (denoted as

S(vi, pk)) is constructed, which considers both (i) the speed-

up for dispatching a node to a core and (ii) the potential loss

for other nodes as this core is no longer available. For v1 in

Tab. IV, if it is allocated on p1, it would obtain a speed-up of

510 as described above. However, for v2 and v3, they cannot

be allocated on p1 again, in which v2 incurs no loss if being

allocated on p2 whereas v3 incurs a speed-up loss of 300 if it

is allocated on p3. Therefore, considering both the speed-up of

v1 and the loss of v3, the final S(v1, p1) is 510− 300 = 210.

Following a similar approach, Tab. V presents the contention-

aware speed-up gain for the nodes in Tab. IV.

Example 2. With CSG in Tab. V, v2 would be scheduled first

with the highest S(v2, p2). However, in contrast to Example 1,

v1 and v3 are allocated to p3 and p1, respectively, addressing

the issue of the low cache speed-up of v3. Guided by the

CSG, this schedule achieves a total absolute speed-up of

500+600+500 = 1600 as suggested by Tab. IV, outperforming

the schedule produced by AJLR in Example 1.

Example 2 illustrates the resulting schedule based on the

new speed-up metric, demonstrating its effectiveness in miti-

gating the impact on the speed-up due to the node contention

on cores. This effectively improves the overall speed-up of the

ready nodes rather than focusing on certain individual nodes.

Construction of CSG Table. As mentioned above, the CSG

table provides approximations of the speed-up considering

node contention for each ready node on every idle core.

Instead of focusing solely on the speed-up of an individual

node, the CSG table accounts for both the speed-up gained by

dispatching a node to a core and the potential loss incurred by

other nodes when the core becomes unavailable. By capturing

the impact of inter-core contention, the allocation based on the

CSG table mitigates the negative effects of node competition,

contributing to improved overall speed-up.

We now describe the construction of the CSG table, as

shown in Alg. 2. First, following the priority order based on

ANPO, Q∗ is obtained by taking the first |P∗| ready nodes in

Qr (if they exist), which will be examined for dispatching. In

addition, the S(vi, pk), ∀vi ∈ Q∗, ∀pk ∈ P∗ are computed

based on the allocation history H (see Sec. III-B), which

provide the foundation for the constructed CSG table. Then,

the algorithm starts by computing the contention-aware speed-

up gain for each possible allocation, i.e., S(vi, pk), ∀vi ∈
Q∗, ∀pk ∈ P∗. For each vi ∈ Q∗ and every pk ∈ P∗

(line 1), the algorithm calculates S(vi, pk) by considering both

Algorithm 2: CSG(Q∗,P∗): the construction of S.

1 for each vi ∈ Q∗ and each pk ∈ P∗ do

2 Q∗
i = Q∗ \ vi; P∗

k = P∗ \ pk;

3 /* Maximum speed-up on each px by Eq. 6 */

4 for each px ∈ P∗
k do

5 compute S†(Q∗
i , px) by Eq. 6;

6 end

7 /* Speed-up estimation for vj ∈ Q∗
i on P∗

k */

8 for each vj ∈ Q∗
i do

9 compute P⋄(vj) based on Eq 8;

10 compute S‡(vj ,P
∗
k) based on Eq. 7;

11 end

12 /* Speed-up loss estimation by Eq. 9*/

13 compute L(vi, pk) based on Eq. 9;

14 /* CSG value assuming vi allocated to pk */

15 S(vi, pk) = S(vi, pk)− L(vi, pk);
16 end

17 return S;

the benefits of assigning vi on pk and the potential loss for

other nodes if pk becomes unavailable, based on the following

computations. Below we detail the computations of each term.

• S†(Q∗
i , px): the maximum speed-up of other ready nodes

(i.e., nodes in Q∗
i = Q∗ \ vi) on px (i.e., a given core in

P∗
k = P∗ \ pk) (lines 4-6);

• S‡(vj ,P
∗
k): the maximum speed-up that vj can obtain on

the idles cores except pk, i.e., P∗
k (lines 8-11);

• L(vi, pk): the highest speed-up loss of vj ∈ Q∗
i if they

are not being allocated on pk (line 13);

• S(vi, pk): the CSG value of vi if it is allocated on pk
based on L(vi, pk) (line 15).

First, S†(Q∗
i , px) is computed in Eq. 6, which takes the

highest speed-up value among the S(vj , px) of all the vj ∈ Q∗
i .

S†(Q∗
i , px) = max

∀vj∈Q∗

i

S(vj , px) (6)

Then, the maximum speed-up of vj on cores in P∗
k (i.e.,

S‡(vj ,P
∗
k)) can be obtained by Eq. 7. For a given vj ∈ Q∗

i ,

function P⋄(vj) denotes the set of cores on which the speed-

up of vj equals the maximum speed-up that px ∈ P∗
k can

offer for all nodes in Q∗
i , i.e., S(vj , px) = S†(Q∗

i , px), as

shown in Eq. 8. If P⋄(vj) ̸= ∅, S‡(vj ,P
∗
k) is computed

as the maximum value of S†(Q∗
i , px), ∀px ∈ P⋄(vj). For

px ∈ P⋄(vj), vj can obtain the highest speed-up compared

to any other node in Q∗
i , so that vj are more likely to be

allocated on such cores. Hence, the associated speed-up is

used to determine S‡(vj ,P
∗
k). Otherwise (i.e., P⋄(vj) = ∅),

the value of S‡(vj ,P
∗
k) is computed as the maximum speed-up

S(vj , px) of vj among on every px ∈ P∗
k .

S‡(vj ,P
∗
k) =

max
px∈P⋄(vj)

S†(Q∗
i , px), P⋄(vj) ̸= ∅

max
∀px∈P∗

k

S(vj , px), otherwise
(7)

P⋄(vj) = {px | S(vj , px) = S†(Q∗
i , px), ∀px ∈ P∗

k} (8)

9

Algorithm 3: MCSG(): Maximum CSG First.

Input: S, Q∗, P∗;

Output: (vi, pk);
Parameters: V ′ = P ′ = ∅;

1 V ′ = V ′ ∪ argmax
vi

{S(vi, pk) | ∀vi ∈ Q∗, ∀pk ∈ P∗};

2 vi = argmax
vi

{ρi | vi ∈ V ′};

3 P ′ = P ′ ∪ argmax
pk

{S(vi, pk) | ∀pk ∈ P∗};

4 pk = argmax
pk

{R2D(pk) | ∀pk ∈ P ′};

5 return vi, pk;

To this end, the disparity between the speed-up of vj on pk
(i.e., S(vj , pk)) and on other idle cores (i.e., S‡(vj ,P

∗
k)) can

be calculated as S(vj , pk)−S‡(vj ,P
∗
k) for every vj ∈ Q∗

i , as

shown in Eq. 9. If a negative value is obtained, it indicates that

vj would not incur a speed-up loss if pk is not available. In

such cases, the value of speed-up loss for vj is zero. Finally,

the maximum speed-up loss among all nodes in Q∗
i is obtained

as L(vi, pk), indicating the potential impact for other ready

nodes if vi is allocated on pk.

L(vi, pk) = max
∀vj∈Q∗

i

{

0, if S(vj , pk)− S‡(vj ,P
∗
k) < 0

S(vj , pk)− S‡(vj ,P
∗
k), otherwise

(9)

Following this, the S(vi, pk) can be determined as

S(vi, pk) = S(vi, pk) − L(vi, pk) (line 15), highlighting the

benefits gained by vi against the potential impacts on other

ready nodes if vi is dispatched to pk. Finally, Alg. 2 terminates

after the S(vi, pk) of every vi and pk are computed, with the

CSG table S returned at line 17.

Time Complexity. It is worth noting that a number of opti-

misations (e.g., via dynamic programming) can be performed

to achieve a time complexity of O(n2×log n) for constructing

the CSG table. First, the S†(·) and S‡(·) can be computed and

stored as look-up tables with a time complexity of O(n2).
Based on the look-up tables, time complexity of O(log n) can

be achieved for computing L(·), where the maximum value of

S(·)−S‡(·), ∀vj ∈ Q∗
i can be obtained by utilising a balanced

tree structure to accelerate the computation. Therefore, S can

be constructed with a complexity of O(n2 × log n).

B. Construction of Allocation Rules

Based on the CSG table, the CADE produces allocation

decisions based on two major rules: (i) Maximum CSG First

(i.e., MCSG in Fig. 4 c); and (ii) Conditional Deferred

Execution (i.e., the CDE in Fig. 4 d). The MCSG identifies

the allocation (i.e., a pair of vi and a pk) with the maximum

S(vi, pk) value. Then, CDE determines whether to dispatch vi
according to MCSG or postpone the schedule of vi for a more

suitable core. Below we detail the construction of two rules.

Maximum CSG First. The working process of MCSG is

presented in Alg. 3, which takes the S, Q∗ and P∗ as the

inputs. The algorithm starts by identifying the vi that can

achieve the maximum CSG value (lines 1-2). If multiple nodes

are identified (i.e., |V ′|> 1), the one with the highest priority

Algorithm 4: CDE(): Conditional Deferred Execution.

Input: vi, pk, P∗, P¬;

Parameters: P (vi);
1 for each px ∈ P¬ \ P(vi) do

2 if S(vi, px)− S(vi, pk) > AT (px)− t then

3 P(vi) = P(vi) ∪ P∗;

4 return true;

5 end

6 end

7 P (vi) = ∅;

8 return false;

ρi is selected for consideration, and in cases of equivalent

priority, the node with larger WCET (ci) is chosen.

Then, for the identified vi, the algorithm identifies the core

where vi has the highest CSG value (lines 3-4). However,

vi may obtain the same maximum CSG value on multiple

cores, i.e., |P ′|> 1. In this case, MCSG analyses the allocation

history of each pk ∈ P ′ (denoted as H(pk)), and identifies

the pk where allocating vi has the least impact on nodes

previously executed on pk. For such nodes, they are likely

to be dispatched to the same core again to achieve a high

cache speed-up. To achieve this, Eq. 10 provides the set of

nodes that can hit the cache if they are dispatched again on

pk (denoted as V∗(pk)) based on H(pk), in which Ωj(L2)
gives the maximum reuse distance of vj for hitting the cache.

V∗(pk) = {vj | RD(vj , L2) < Ωj(L2), ∀vj ∈ H(pk)} (10)

Then, for a pk and the nodes executed on it (i.e., V∗(pk)),
the algorithm identifies the minimum distance between the

reuse distance and the threshold Ωj(L2) among all vj ∈
V∗(pk), denoted as R2D(pk) in Eq. 11. If the execution time

of vi is higher than such a distance, this will lead to a direct

cache miss of vj if it is dispatched on pk again. Following this

intuition, the pk with the maximum R2D(pk) is selected for

vi (line 4), which is less likely to affect the cache speed-up

of following releases of nodes in V∗(pk).

R2D(pk) = min
vj∈V∗(pk)

{Ωj(L2)−RD(vj , L2)} (11)

Finally, the rule MCSG is finished with a potential allocation

(vi, pk) returned (line 5). As described above, the MCSG

dispatches nodes to cores based on the CSG value instead of

the speed-up of a single node, which considers and effectively

mitigates the contention among the ready nodes competing

for the same core. This provides the key for addressing the

Limitation 2 in Sec. II, as described in Characteristic 2.

Characteristic 2. With the CSG table and MCSG constructed,

CADE explicitly considers the core contention between nodes

during allocation, enhancing the cache performance for the

scheduled nodes rather than certain individuals. This ad-

dresses the Limitation 2.

Conditional Deferred Execution. With MCSG applied,

a potential allocation (vi, pk) is identified. However, as the

computation is limited to P∗, pk may not provide the highest

speed-up for vi, where a busy core that will be available soon

10

could offer a high speed-up for vi with earlier completion.

Based on this consideration, the CDE is constructed to deter-

mine whether to defer the schedule of vi for a more suitable

core or to dispatch vi to pk at the current scheduling point.

The CDE improves allocation decisions by determining

whether deferring the execution of a node for a short period

can lead to improved cache speed-up and reduced makespan.

Unlike immediate dispatch to idle cores, CDE evaluates the

potential benefits of deferring the execution of a node by

comparing the speed-up from waiting for a busy core with

the current allocation identified by MCSG. This rule avoids

premature allocation to less suitable cores by considering the

future availability of cores, helping to mitigate unnecessary

inter-core contention and enhancing the utilisation of caches.

Alg. 4 presents the computation process of CDE, which

takes the identified allocation (vi, pk), the set of idle cores

P∗, and the set of busy cores P¬ as inputs. The algorithm

starts by iterating over every core px ∈ P¬ \ P(vi) (line 1).

The function P(vi) gives the set of cores that are considered

for vi in previous scheduling points. This ensures that the

cores which are already examined for vi are not reconsidered

by the CDE, effectively preventing a scenario where vi is

repeatedly deferred without ever being executed. For each

px, the difference in cache speed-up that vi can achieve on

pk and px is calculated, and is then compared to the time

duration that vi must wait for px to become available (i.e.,

AT (px)−t), where AT (px) gives the next idle time of px and

t is the current time (line 2). If S(vi, px)−S(vi, pk) outweighs

AT (px)−t, a more suitable core px is found that can provide a

higher cache speed-up for vi. In this case, the execution of vi is

deferred for px instead of being dispatched immediately, with

P(vi) updated to include P∗ and CDE(·) returns true (lines

3-4). Otherwise, deferring the execution of vi is not beneficial,

hence, it is dispatched to pk as suggested by MCSG. In this

case, P(vi) = ∅ and the CDE(·) is terminated with false

returned (lines 7-8).

Based on the above, the CADE extends the consideration

of the candidate cores by accounting for busy ones, instead of

focusing solely on the idle cores. This facilitates the allocation

decision in terms of improving cache speed-up, effectively

reducing the DAG makespan. Characteristic 3 summarises the

key that addresses Limitation 3 as discussed in Sec. II.

Characteristic 3. With CDE applied, the CADE effectively

extends the consideration to the busy cores with effective allo-

cation decisions, which fully leverages the cache to accelerate

the DAG execution. This addresses Limitation 3.

Time Complexity. The time complexity of MCSG and CDE

is O(n2). First, the MCSG identifies the maximum S(vi, pk)
with a time complexity of O(|P∗|2), in which at most |P∗|
nodes are examined for every pk. For a candidate allocation

(vi, pk), the complexity of the CDE is O(n) as at most all

m − |P∗| cores will be examined. Hence, the complexity is

O(|P∗|2+n × |P∗|) = O(n2). Finally, given the complexity

the CSG table (O(n2× log n)), the time complexity of CADE

is O(n2 × log n), which is similar to that of the AJLR [6].

Discussion. It is worth noting that although the proposed

CADE illustrated using a two-level cache hierarchy, it can

be effectively adapted to more complex cache architectures

with minor modifications. For instance, for a system with

a three-layered cache, the corresponding CRP can be firstly

constructed as described in [6]. Then, when computing ANPO,

the rewards for prioritising nodes with cache hits at different

levels can be effectively adjusted to m, C(k), and 1 for L1,

L2, and L3 cache hits, respectively. In addition, when applying

MCSG, the maximum reuse distance of vj for cache hits

can be updated from Ωj(L2) to Ωj(L3). This highlights the

generality of CADE in adapting to varying cache hierarchies

while keeping the overall framework unchanged.

VII. EXPERIMENT

In this section, the effectiveness of the proposed CADE

is evaluated against the following methods in terms of the

resulting DAG makespan and cache performance.

• Baseline: The traditional method that schedules and allo-

cates a DAG by the node eligibility ordering in [37] and

the Worst-Fit allocation without considering the cache.

• AJLR: The SOTA in cache-aware DAG scheduling [6].

• AJLR-A: The variant of the AJLR with the proposed

ANPO applied for node ordering.

• Proposed-H: The proposed CADE with the highest node

WCET first constructed in [6] applied for node ordering.

• Proposed: The proposed CADE with ANPO applied.

A. Experimental Setup

The evaluation is performed using the simulator constructed

in [6] with extensive synthesised DAG tasks. The simulation is

conducted on a desktop machine equipped with an Intel Core

i7-13700KF processor. Unless stated otherwise, the simulated

system contains m = 8 homogeneous cores, with each four

cores organised into one cluster. The system is modelled with a

two-level cache hierarchy (see Sec III-A), where the L1 cache

is dedicated to each core with a size of 64 KB, and the L2

cache is shared among cores of a cluster with a size of 256 KB.

The CRP model constructed in [6] is applied in this work, with

modifications to adapt it to a 2-level cache model (i.e., without

the L3 caching effects), as shown in Fig. 3. The caching effects

are modelled by the CRP, which abstracts detailed cache

configurations (e.g., cache line size and associative ways).

Hence, these specific details are omitted without jeopardising

the reproducibility of the results. As with [6], [38], [39], the

CRP is adopted as the global CRP for all nodes in the system,

in which a longer reuse distance generally leads to a higher

execution time. The objective is to evaluate the effectiveness of

CADE against the state-of-the-art given a CRP, which can be

effectively constructed for various hardware platforms using

the measurement-based approach presented in [6].

Each simulated system consists of a single periodic DAG

task. The DAGs are generated by the DAG generator in [37],

which produces a DAG by generating its nodes layer by layer.

The number of layers Ψ in the DAG is randomly decided in

the range [5, 15]. In each layer, the number of nodes Φ is

randomly decided in the range [10, 40]. Each newly generated

node has a 20% probability of being connected to a random

node in the previous layer to form execution dependencies.

11

1 2 3 4 5 6 7 8 9 10

0.4

0.6

0.8

1.0
No

rm
al

ise
d

m
ak

es
pa

n Baseline
AJLR
AJLR-A

Proposed-H
Proposed

(a) with Ψ ∈ [5, 15], Φ = 25 and U = 25%

1 2 3 4 5 6 7 8 9 10

0.4

0.6

0.8

1.0

No
rm

al
ise

d
m

ak
es

pa
n Baseline

AJLR
AJLR-A

Proposed-H
Proposed

(b) with Ψ = 10, Φ ∈ [10, 40] and U = 25%

1 2 3 4 5 6 7 8 9 10

0.4

0.6

0.8

1.0

No
rm

al
ise

d
m

ak
es

pa
n Baseline

AJLR
AJLR-A

Proposed-H
Proposed

(c) with Ψ = 10, Φ = 25 and U ∈ [20%, 40%]

Fig. 5: The normalised makespan of the first ten instances of DAG tasks.

0 50 100 150 200 250
Workload of the DAG task

0.2

0.4

0.6

0.8

1.0

L1
 m

iss
 ra

te

Baseline
AJLR
Proposed

(a) Relationship between the L1 miss rate and the
DAG workload

0 50 100 150 200 250
Workload of the DAG task

0.2

0.4

0.6

0.8

1.0

L2
 m

iss
 ra

te

Baseline
AJLR
Proposed

(b) Relationship between the L2 miss rate and the
DAG workload

0 50 100 150 200 250
Workload of the DAG task

0.4
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

. m
ak

es
pa

n

Baseline
AJLR
Proposed

(c) Relationship between the normalised makespan
and the DAG workload

Fig. 6: Evaluation of cache miss rates and makespan across varying workloads

After all layers are generated, all nodes without predecessors

(resp. successors) are directly connected to the source (resp.

sink) node to ensure one source (resp. sink) node within the

DAG. The DAG period T is randomly generated in the range

[10, 144] units of time following a uniform distribution, with

values chosen to ensure a hyperperiod of 144 units of time. The

utilisation U of each DAG is randomly generated in the range

[20%, 40%], and its workload W is determined by W = U×T .

The WCET of each node in the DAG is then generated in a

uniformly random distribution based on W . The total system

utilisation is computed by U = U×m. For each configuration,

1000 DAGs are generated.

B. Comparison of the Makespan of the First Ten Jobs

This section evaluates the competing methods by comparing

the normalised makespan of the first ten jobs released by 1000

DAG tasks generated under various settings of Ψ, Φ and U ,

as shown in Fig. 5. For each trial (i.e., one DAG per trial),

the makespan is normalised by the maximum value observed

under all scheduling methods.

Obs 1. The proposed CADE outperforms the Baseline and

AJLR by 35.09% and 29.98% on average, respectively.

The observation is derived from Fig. 5(a) to 5(c). In this

experiment, the proposed CADE outperforms the Baseline

by 37.27%, 36.86% and 31.15% on average, respectively.

In addition, it outperforms the AJLR by 31.80%, 31.48%
and 26.67% under different system settings, respectively.

As observed in the figures, starting with a cold cache, the

makespan for the first job across various methods shows

almost no difference, as no cache speed-up could be achieved.

Then, the advantages of cache-aware methods (i.e., AJLR and

CADE) become apparent for the later jobs compared to the

Baseline for the following jobs. After the fourth job, the DAG

makespan becomes stable due to the warmed cache. Among

the examined jobs, the proposed CADE constantly dominates

other competing methods (including the AJLR) by producing

a lower DAG makespan under all settings, which justifies its

effectiveness in scheduling DAG tasks.

Obs 2. The proposed node priority ordering outperforms the

HWF by 15.34% on average in reducing the DAG makespan.

This observation can be obtained by comparing either

AJLR-A with AJLR or Proposed-H and Proposed in Fig. 5(a)

to 5(c). First, AJLR-A outperforms AJLR by 23.84%, 22.93%
and 19.54%, respectively with different system settings. In

contrast to the HWF, the constricted ANPO effectively miti-

gates such competition by considering the favourable cores of

each ready node when assigning priorities, hence, outperform-

ing the HWF by improving the overall speed-up of the ready

nodes. In addition, similar observations can also obtained by

comparing the Proposed and Proposed-H, where the Proposed

reduces the DAG makespan by 9.39%, 8.80% and 7.53%
on average, respectively. This justifies the Characteristic 1

described in Sec. V.

Obs 3. The proposed allocation mechanism outperforms the

AJLR by 17.14% on average in reducing the DAG makespan.

This is observed from Fig. 5 by comparing either Proposed-

H with AJLR or Proposed and AJLR-A. First, the Proposed-H

outperforms the AJLR with a reduced makespan by 25.09%,

25.19% and 20.92% for varied system settings, respectively.

This is expected as AJLR only considers the idle cores and

produces allocations solely based on the independent speed-

up values of individual nodes without considering the impact

on others. In contrast, CADE dispatches nodes based on the

CSG table, which accounts for both the speed-up gain and

12

4 6 8 10 12 14 16

0.2

0.4

0.6

No
rm

. a
ve

ra
ge

 m
ak

es
pa

n

Baseline AJLR Proposed

Fig. 7: under Φ = 18, m = 8, U = 25% with varied Ψ.

6 12 18 24 30 36 420.0

0.2

0.4

0.6

No
rm

. a
ve

ra
ge

 m
ak

es
pa

n

Baseline
AJLR
Proposed

Fig. 8: under Ψ = 8, m = 8, U = 25% with varied Φ.

loss for allocating a node. In addition, with the deferred

execution technique, the busy cores are also taken into account

to obtain a higher speed-up, effectively exploiting the cache

to accelerate the node execution. Similar observations are

also obtained by comparing Proposed with AJLR-A, in which

Proposed outperforms AJLR-A by 10.91%, 11.55%, 9.14%.

This justifies the Characteristics 2 and 3 presented in Sec. VI.

C. Comparison of Cache Performance

This section compares the cache performance of the compet-

ing methods under varied DAG workloads, as shown in Fig. 6.

This experiment demonstrates that the reduced makespan is

achieved by reducing the cache miss rates, which is estimated

by the CRP (Sec. III-B) based on the reuse distances.

Experimental Setup. In this experiment, 6,000 DAGs are

randomly generated for evaluation. To obtain DAGs with

varied workloads (i.e., W), the T of each DAG is fixed at

144 units of time while U ∈ (0, 40%]. As a similar trend is

observed when W > 250, all 6000 DAGs are generated with

W ∈ (0, 250]. Other setups remain consistent with Sec. VII-A.

Obs 4. CADE reduces the average miss rate by 24.45% on

L1 and 19.66% on L2 compared to AJLR.

Fig. 6(a) and Fig. 6(b) present the average L1 and L2 miss

rate of the first ten jobs of DAGs with a varied workload,

respectively. As observed, CADE consistently achieves lower

miss rates compared to the competing methods at both cache

levels. When W < 100, the L2 miss rate under CADE is

around 10%. This indicates that under CADE, only the first

job of most DAGs would miss the L2 with a cold cache. With

100 < W < 150, an obvious increase in the L1 miss rate

is observed, as large workloads generally result in prolonged

reuse distances, causing most nodes to exceed the threshold

of the L1 cache reuse distance. The L2 miss rate begins to

increase after W > 200 due to the same reason. When W =
250, the miss rates at both levels under varied methods become

similar, in which the high workload leads to larger nodes with

very long cache reuse distances, preventing nodes from hitting

any cache regardless of the scheduling methods.

0.10 0.15 0.20 0.25 0.30 0.35 0.400.0

0.2

0.4

0.6

0.8

No
rm

. a
ve

ra
ge

 m
ak

es
pa

n

Baseline
AJLR
Proposed

Fig. 9: under Ψ = 8, Φ = 18, m = 8 with varied U .

4 8 12 16 20 240.0

0.2

0.4

0.6

0.8

1.0

No
rm

. a
ve

ra
ge

 m
ak

es
pa

n

Baseline
AJLR
Proposed

Fig. 10: under varied m when Ψ = 10, Φ = 30 and U = 30%∗8.

Fig. 6(c) shows that CADE dominates other competing

methods in terms of makespan in a general case, demonstrating

its effectiveness under DAGs with varied workloads. By cross-

comparing Fig. 6(a) to Fig. 6(c), we observe that the increase

in makespan correlates closely with the rise in miss rates at

L1 and L2. When W < 100, makespan is increased along

with a gradual rise in the L1 miss rate. A significant increase

in makespan is observed when 100 < W < 150, with a

similar increase observed for the L1 cache miss rate. As W

approaches 200, the L2 miss rate increases significantly, caus-

ing complete cache misses for most nodes, where the resulting

DAG makespan is increased and becomes similar across all the

competing methods. Based on the above, we observe that the

resulting DAG makespan is closely associated with the cache

miss rates. This justifies the impact of caching effects on the

resulting DAG makespan, hence, the motivation of this work.

Most importantly, it provides evidence demonstrating that the

reduction in makespan under the proposed CADE is achieved

by enhancing the cache performance.

D. Overall Comparison of the Average Makespan

This section explores the overall effectiveness of the pro-

posed CADE under DAGs with varied structural parameters

(i.e., the number of layers Ψ, the number of nodes per layer

Φ and the utilisation U) and system configurations (i.e., the

number of cores m), as shown in Fig. 7 to 10, respectively. For

each configuration in a figure, 500 DAGs are generated and

the normalised average makespan of the first ten jobs across

all the DAGs is reported. The normalisation factor is set to

the maximum makespan observed by all the methods among

all configurations in each figure.

Obs 5. CADE outperforms AJLR by 24.02% on average in

terms of DAG makespan across all configurations.

As shown in Fig. 7 to 10, CADE outperforms the competing

methods in most cases in terms of DAG makespan. Com-

pared to AJLR, the CADE reduces the makespan by 25.35%,

25.29%, 21.40% and 24.00% under varied Ψ, Φ, U and m, re-

spectively. First, with an increased Ψ and Φ in Fig. 7 and 8, the

makespan of DAGs decreases under all methods. The reason is

with the same U , an increased number of nodes would cause a

13

reduction in node WCETs, hence, leading to a more balanced

schedule with an earlier finish in a general case [37], [40].

As the number of nodes increases, the competition between

nodes is intensified for the preferred cores. In this case, the

advantages of CADE over the competing methods become

obvious, which explicitly considers the affinity and contention

between nodes, effectively mitigating the competition with

enhanced cache performance. By contrast, the AJLR fails to

consider such contention, leading to a high competition over

certain cores with undermined speed-up effects, especially

when the number of nodes is high, e.g., with Ψ = 14 or

Φ = 16 in Fig. 7 and 8, respectively.

In addition, with an increased U (Fig. 5(c)), the makespan

in general increases under all methods, which becomes similar

with U = 0.4. This is also observed in Fig. 6, in which

a higher U (and hence, the workload) in general prolongs

the cache reuse distances of nodes, thereby leading to a

higher cache miss rate under all competing methods. A similar

observation is also obtained from Fig. 10 with m = 4, in which

the high workload on each core results in ever-long cache

reuse distances for nodes. However, as the number of cores

increases (i.e., m ∈ [8, 16]), the advantages of CADE over

AJLR become pronounced (up to 33.00% in reducing DAG

makespan) due to the constructed node priority ordering and

the allocation mechanism. With more cores available, CADE

can effectively mitigate contention between nodes and benefit

from deferred executions. When m exceeds 20, the disparity

between methods diminishes, as nodes can easily achieve a

high cache hit rate regardless of the schedule, at which CADE

still retains a slight advantage over competing methods.

VIII. CONCLUSION

This paper proposes CADE, a cache-aware scheduling and

allocation method for DAG tasks on multicore systems. First,

the ANPO is proposed, which assigns priorities to ready

nodes by considering the node competition for preferred cores,

effectively mitigating the core contention among the nodes.

For the allocation process, the CSG table is constructed to

account for the speed-up gain of an allocation decision of the

node as well as the potential loss for other nodes. Based on

the CSG, CADE dispatches nodes with the highest CSG value,

which mitigates the impact of cache contention on the speed-

up for other ready nodes, obtaining a high cache speed-up for

the ready nodes instead of certain individuals. In addition, a

deferred execution mechanism is adopted that enables nodes

to defer their executions for cores with higher cache speed-

up. Experimental results demonstrate that CADE outperforms

the SOTA methods in terms of reducing DAG makespan by

enhancing the cache performance. Future work includes the

extension of CADE to systems with multiple DAG tasks

exhibiting varying cache sensitivities, the exploration of its

adaptation to heterogeneous architectures, and the optimising

of CADE for further enhancement of the cache performance.

REFERENCES

[1] Y. Lin, Q. Deng, M. Han, Z. Feng, S. Wang, and Q. Peng, “Lag-
based schedulability analysis for preemptive global edf scheduling with
dynamic cache allocation,” Journal of Systems Architecture, vol. 147, p.
103045, 2024.

[2] L. Qian, Z. Qu, M. Cai, B. Ye, X. Wang, J. Wu, W. Duan, M. Zhao,
and Q. Lin, “Fastcache: A write-optimized edge storage system via
concurrent merging cache for iot applications,” Journal of Systems

Architecture, vol. 131, p. 102718, 2022.

[3] B. Agarwalla, S. Das, and N. Sahu, “Efficient cache resizing policy for
dram-based llcs in chipmultiprocessors,” Journal of Systems Architec-

ture, vol. 113, p. 101886, 2021.

[4] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and
A. Wiese, “A generalized parallel task model for recurrent real-time
processes,” in IEEE 33rd Real-Time Systems Symposium, 2012, pp. 63–
72.

[5] J. D. Ullman, “Np-complete scheduling problems,” Journal of Computer

and System sciences, vol. 10, no. 3, pp. 384–393, 1975.

[6] S. Zhao, X. Dai, B. Lesage, and I. Bate, “Cache-aware allocation of
parallel jobs on multi-cores based on learned recency,” in Proceedings of

the 31st International Conference on Real-Time Networks and Systems,
2023, p. 177–187.

[7] J. Li, Z. Luo, D. Ferry, K. Agrawal, C. Gill, and C. Lu, “Global edf
scheduling for parallel real-time tasks,” Real-Time Systems, vol. 51,
no. 4, pp. 395–439, 2015.

[8] D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo, “Partitioned fixed-
priority scheduling of parallel tasks without preemptions,” in IEEE Real-

Time Systems Symposium (RTSS), 2018, pp. 421–433.

[9] S. Baruah, “Federated scheduling of sporadic dag task systems,” in IEEE

International Parallel and Distributed Processing Symposium, 2015, pp.
179–186.

[10] C. Maia, P. M. Yomsi, L. Nogueira, and L. M. Pinho, “Semi-partitioned
scheduling of fork-join tasks using work-stealing,” in IEEE 13th Inter-

national Conference on Embedded and Ubiquitous Computing. IEEE,
2015, pp. 25–34.

[11] Q. He, N. Guan, Z. Jiang, and M. Lv, “On the degree of parallelism for
parallel real-time tasks,” Journal of Systems Architecture, vol. 156, p.
103286, 2024.

[12] S. Ben-Amor and L. Cucu-Grosjean, “Graph reductions and partitioning
heuristics for multicore dag scheduling,” Journal of Systems Architec-

ture, vol. 124, p. 102359, 2022.

[13] N. Guan, M. Stigge, W. Yi, and G. Yu, “Cache-aware scheduling and
analysis for multicores,” in Proceedings of the seventh ACM interna-

tional conference on Embedded software, 2009, pp. 245–254.

[14] Y. Ye, R. West, Z. Cheng, and Y. Li, “Coloris: a dynamic cache
partitioning system using page coloring,” in Proceedings of the 23rd

International Conference on Parallel Architectures and Compilation,
2014, p. 381–392.

[15] R. Gifford, N. Gandhi, L. T. X. Phan, and A. Haeberlen, “Dna: Dynamic
resource allocation for soft real-time multicore systems,” in IEEE 27th

Real-Time and Embedded Technology and Applications Symposium

(RTAS), 2021, pp. 196–209.

[16] W. Chang, D. Goswami, S. Chakraborty, L. Ju, C. J. Xue, and
S. Andalam, “Memory-aware embedded control systems design,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 36, no. 4, pp. 586–599, 2017.

[17] S.-W. Lo, K.-Y. Lam, W.-Y. Huang, and S.-F. Qiu, “An effective cache
scheduling scheme for improving the performance in multi-threaded
processors,” Journal of Systems Architecture, vol. 59, no. 4, pp. 271–278,
2013.

[18] X. Pan and F. Mueller, “Numa-aware memory coloring for multicore
real-time systems,” Journal of Systems Architecture, vol. 118, p. 102188,
2021.

[19] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. Buttazzo, “Schedulability analysis of conditional parallel task graphs
in multicore systems,” IEEE Transactions on Computers, vol. 66, no. 2,
pp. 339–353, 2017.

[20] X. Jiang, J. Sun, Y. Tang, and N. Guan, “Utilization-tensity bound for
real-time dag tasks under global edf scheduling,” IEEE Transactions on

Computers, vol. 69, no. 1, pp. 39–50, 2020.

[21] Y. Gao, H. Yi, H. Chen, X. Fang, and S. Zhao, “A structure-aware dag
scheduling and allocation on heterogeneous multicore systems,” in 2024

IEEE 14th International Symposium on Industrial Embedded Systems

(SIES). IEEE, 2024, pp. 26–33.

[22] S. Ben-Amor and L. Cucu-Grosjean, “Graph reductions and partitioning
heuristics for multicore dag scheduling,” Journal of Systems Architec-

ture, vol. 124, p. 102359, 2022.

[23] X. Deng, A. H. Sifat, S.-Y. Huang, S. Wang, J.-B. Huang, C. Jung,
R. Williams, and H. Zeng, “Partitioned scheduling with safety-
performance trade-offs in stochastic conditional dag models,” Journal

of Systems Architecture, vol. 153, p. 103189, 2024.

14

[24] T. Yang, Y. Tang, X. Jiang, Q. Deng, and N. Guan, “Semi-federated
scheduling of mixed-criticality system for sporadic dag tasks,” in IEEE

22nd International Symposium on Real-Time Distributed Computing

(ISORC). IEEE, 2019, pp. 163–170.
[25] M. Han, T. Zhang, Y. Lin, and Q. Deng, “Federated scheduling for typed

dag tasks scheduling analysis on heterogeneous multi-cores,” Journal of

Systems Architecture, vol. 112, p. 101870, 2021.
[26] M. Hatami, “Semi-partitioned scheduling hard real-time periodic dags

in multicores,” in The Proceeding of First Work-in-Progress Session of

CSI International Symposium on Real-Time and Embedded Systems and

Technologies (WiP-RTEST 2018), 2018, p. 9.
[27] F. Li, R. Bi, J. Wang, J. Sun, Z. Sun, G. Tan, and M. Chen, “Vpss: A

dag scheduling heuristic with improved response time bound,” Journal

of Systems Architecture, vol. 148, p. 103084, 2024.
[28] Holdings, Arm, “Arm cortex-a series programmer’s guide for armv8-a-

14.2. cache coherency,” 2015.
[29] A. Holdings, “Cortex-a72 mpcore processor technical reference manual,”

2015.
[30] K. Beyls and E. D’Hollander, “Reuse distance as a metric for cache

behavior,” in Proceedings of the IASTED Conference on Parallel and

Distributed Computing and systems, vol. 14. Citeseer, 2001, pp. 350–
360.

[31] Q. He, x. jiang, N. Guan, and Z. Guo, “Intra-task priority assignment
in real-time scheduling of dag tasks on multi-cores,” IEEE Transactions

on Parallel and Distributed Systems, vol. 30, no. 10, pp. 2283–2295,
2019.

[32] A. Burns and A. J. Wellings, Real-time systems and programming

languages: Ada 95, real-time Java, and real-time POSIX. Pearson
Education, 2001.

[33] J. Chang and G. S. Sohi, “Cooperative cache partitioning for chip
multiprocessors,” in ACM International Conference on Supercomputing

25th Anniversary Volume, 2007, pp. 402–412.
[34] D. B. Kirk, “Smart (strategic memory allocation for real-time) cache

design,” in Real-Time Systems Symposium. IEEE Computer Society,
1989, pp. 229–230.

[35] J. Roeder, B. Rouxel, and C. Grelck, “Scheduling dags of multi-version
multi-phase tasks on heterogeneous real-time systems,” in IEEE 14th

International Symposium on Embedded Multicore/Many-core Systems-

on-Chip (MCSoC), 2021, pp. 54–61.
[36] P. Chen, W. Liu, X. Jiang, Q. He, and N. Guan, “Timing-anomaly free

dynamic scheduling of conditional dag tasks on multi-core systems,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 18,
no. 5s, pp. 1–19, 2019.

[37] S. Zhao, X. Dai, I. Bate, A. Burns, and W. Chang, “Dag scheduling
and analysis on multiprocessor systems: Exploitation of parallelism and
dependency,” in IEEE Real-Time Systems Symposium (RTSS), 2020, pp.
128–140.

[38] X. Dai, S. Zhao, B. Lesage, and I. Bate, “Using digital twins in
the development of complex dependable real-time embedded systems,”
in International Symposium on Leveraging Applications of Formal

Methods. Springer, 2022, pp. 37–53.
[39] B. Lesage, X. Dai, S. Zhao, and I. Bate, “Reducing loss of service for

mixed-criticality systems through cache-and stress-aware scheduling,” in
Proceedings of the 31st International Conference on Real-Time Networks

and Systems, 2023, pp. 188–199.
[40] S. Zhao, X. Dai, and I. Bate, “Dag scheduling and analysis on multi-core

systems by modelling parallelism and dependency,” IEEE Transactions

on Parallel and Distributed Systems, vol. 33, no. 12, pp. 4019–4038,
2022.

Huixuan Yi is currently a student pursuing his
master’s degree at the School of Computer Science,
Sun Yat-sen University, Guangzhou, China. His re-
search interests mainly include the scheduling and
allocation of DAG tasks.

Yuanhai Zhang received his Ph.D. degree in com-
puter science in 2024, from Sun Yat-sen University,
Guangzhou, China. He is currently a researcher at
Sun Yat-sen University, China. His research interests
include fault-tolerant scheduling, real-time systems
and cyber-physical systems.

Zhiyang Lin is an undergraduate student at the
School of Computer Science, Sun Yat-sen Uni-
versity, Guangzhou, China. His research interests
mainly include ensuring temporal determinism in
real-time systems and heuristic scheduling algo-
rithms.

Haoran Chen is currently pursuing his master’s de-
gree at the School of Computer Science, Sun Yat-sen
University, Guangzhou, China. His research interests
mainly include the scheduling and allocation of DAG
tasks in containers.

Yiyang Gao is currently a student pursuing his mas-
ter’s degree at the School of Computer Science, Sun
Yat-sen University, Guangzhou, China. His research
interests mainly include the scheduling of parallel
tasks and the resource management.

Xiaotian Dai received the Ph.D. degree from the
University of York, York, U.K., in 2019. He is
a Lecturer with the Real-Time Systems Research
Group, University of York. His research applies
to high-performance embedded computing, robotic
systems, and safety-critical autonomous systems.
His research interest is mainly in real-time systems,
including flexible and adaptive task scheduling, con-
trol scheduling co-design, and timing analysis of
multicore systems.

Shuai Zhao received the Ph.D. degree in Com-
puter Science from the University of York, UK.,
in 2018. He is an associate professor at the Sun
Yat-sen University, China. His research interests
include scheduling algorithms, multiprocessor re-
source sharing, schedulability analysis, and safety-
critical programming languages. He can be reached
at: zhaosh56@mail.sysu.edu.cn.

	I Introduction
	II Related Work and Limitations
	III System Model and Preliminaries
	III-A System and Task Model
	III-B Cache Reuse Profile

	IV The Working Process of CADE
	V Affinity-aware Node Priority Ordering
	VI Contention-aware Allocation Mechanism with Deferred Execution
	VI-A The Construction of the CSG Table
	VI-B Construction of Allocation Rules

	VII Experiment
	VII-A Experimental Setup
	VII-B Comparison of the Makespan of the First Ten Jobs
	VII-C Comparison of Cache Performance
	VII-D Overall Comparison of the Average Makespan

	VIII Conclusion
	References
	Biographies
	Huixuan Yi
	Yuanhai Zhang
	Zhiyang Lin
	Haoran Chen
	Yiyang Gao
	Xiaotian Dai
	Shuai Zhao

