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ABSTRACT: A general approach is described for the synthesis and
elaboration of medium-sized ring mono- and difunctionalized 8- or
9-membered ring lactone building blocks. The lactones are
prepared via cascade ring expansion reactions and elaborated via
Suzuki−Miyaura cross coupling and various N-functionalization
reactions. This enables efficient access to diverse, medium-sized
ring building blocks in a synthetically challenging and under-
represented area of the pharmaceutical chemical space.

T he quality and diversity of compound libraries, building
blocks and scaffolds are a cornerstone of modern drug

discovery.1 In the building block space, chemists at
AstraZeneca2 and Pfizer3 have carried out surveys of their
own collections with a view to enhancing the building blocks
used in their programs. Examples of both monofunctionalized
(1a−c) and difunctionalized (1d) building blocks, with
commonly encountered aryl halide/boronate or amine
functionality, are shown in Scheme 1a. Previous work in one
of our groups led to the development of a difunctionalized 3D
building block 1e (Scheme 1a) based on a normorphan
scaffold and comprising a protected lactam and vinyl BMIDA
cross-coupling handle.4 More recently, a detailed survey of the
chemical space presented by commercially available building
blocks has been carried out.5 From that study, it is clear that
there are several factors that can influence the design of new
building blocks. These include ensuring that the building
blocks have properties that will not adversely affect the ADME-
Tox profile of the potential drug candidate. In addition, the
introduction of novel building blocks will allow the exploration
of an underrepresented area of pharmaceutical space.
Medium-sized rings (8−11-membered rings) are a highly

important compound class in medicinal chemistry.6 However,
compared to analogous normal-sized (5−7-membered) ring
scaffolds, they are far less well explored, both in compound
screening collections and as building blocks. In large part, this
is due to the challenge of synthesizing medium-sized rings via
cyclization reactions.6b,7 Ring expansion reactions are of much
current interest in this context, as they represent a practical
way to generate medium-sized ring products, without having to
resort to high-dilution reaction conditions.8,9

The cyclization/ring expansion (CRE) cascade reaction
method recently developed in one of our groups is one such
approach (Scheme 1b).10 Using CRE, linear carboxylic acids of
the form 2a undergo overall end-to-end cyclization via a
cascade reaction involving activation (2a→ 2b), cyclization via

an internal tertiary amine group to form a charge reactive
intermediate (2b → 2c), and ring expansion in situ (2c → 3).
The CRE method has been used to form various lactam and
lactone products (e.g., 3a−d) in high yields, at 0.1 M
concentration.
In this Note, we report the design, synthesis, and

functionalization of medium-ring mono- and difunctionalized
building blocks 4 (Scheme 1c). The monofunctionalized
building blocks 4a are 8- or 9-membered ring lactones and are
designed as capping compounds with aryl halide or boronate
cross-coupling synthetic handles. We also present two
examples of 8-membered ring difunctionalized building blocks
4b (X = Br or BPin) which are scaffold-like building blocks
suitable for double functionalization. It was envisaged that,
using Suzuki−Miyaura cross coupling (SMCC), building
blocks 4 could be monoderivatized to give 5. Then, after
Boc group removal, functionalization occurred a second time
to deliver 3-D, medium-ring lead-like compounds 6, via a range
of N-functionalizations commonly used in medicinal chem-
istry11 (sulfonylation, amidation, N-alkylation, reductive
amination, Buchwald-Hartwig amination and SNAr N-aryla-
tion). Herein, we present the successful realization of this
approach, culminating in the development of novel medium-
ring mono- and difunctionalized 8- and 9-membered ring
lactone building blocks.
We started by preparing monofunctionalized medium-sized

ring building blocks 4a−h, with each substrate bearing a
reactive handle able to undergo SMCC.12 The building block
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synthesis started with N-alkylation of a suitable amino alcohol
(e.g., 2-piperidinemethanol) to form linear substrates 8, with
the requisite alkyl bromides 7 (obtained via Wohl−Ziegler
bromination using N-bromosuccinimide, see SI for details).13

Conversion into medium-sized ring lactones was then
accomplished by ester hydrolysis, followed by our standard
CRE cascade method,10 activating the carboxylic acid using
T3P.10b,14 This sequence, shown in Scheme 2a, enabled the
synthesis of 8-membered aryl bromide-containing lactones
4a−d, with the same sequence also used to prepare
homologues 4e and 4f (see SI for full details). In the case of
9-membered ring lactone 4f, its conversion into boronic acid
4g and boronic ester 4h was also demonstrated; these
alternative building blocks were made as they were also
expected to be amenable to SMCC, but with organohalide
couplings partners, which tend to be more easily available than
the analogous boronic acids/esters. As a simple demonstration
of the elaboration with the aryl bromide building blocks, each
of aryl bromides 4a−f was cross-coupled with PhB(OH)2 in an
SMCC reaction catalyzed by Pd(dppf)Cl2·CH2Cl2 (Scheme
2b).15

Two difunctionalized lactone building blocks 4i and 4j
(Scheme 3) were also synthesized using the same methods
described earlier in Scheme 2a. Both difunctionalized building
blocks were designed to contain a Boc-protected amine, to
enable N-functionalization following Boc group removal, and
either an aryl bromide (4i) or aryl boronic ester (4j) cross-

coupling handle, suitable for deployment in SMCC reactions.
Each building block was elaborated at both positions via the
installation of a range of medicinally relevant functional
groups.
First, the SMCC of bromide 4i with different aryl boronic

acids/esters was explored. These cross couplings worked well,
affording coupled products 5g−l in generally good yields.
Pleasingly, good yields were obtained with a pyridine, an
unprotected indole, and a N-methylpyrazole. Next, the range of
functionalized medium-ring lactones accessible was expanded
further by reacting boronic ester containing building block 4j
with a range of readily available aryl bromides, to form coupled
products 5g, 5h, and 5l−t (Scheme 3a). This cross-coupling
manifold was generally lower yielding, as shown by a
comparison of the yields obtained for 5g, 5h and 5l.
Nevertheless, using the boronic ester building block 4j, and
noting that no individual reaction optimization was attempted,
a range of challenging cross-couplings was accomplished in
26−66% yields using just one set of reaction conditions. A
range of heteroaryl groups was successfully incorporated,
including isoquinoline, quinoxaline, benzimidazole, pyridine,
isoxazole, 2-methoxypyrimidine and a uracil derivative.
Representative monofunctionalized products 5k and 5l were

then elaborated a second time via a range of N-functionaliza-
tion reactions, with six different reaction classes demonstrated
in total (Scheme 3b). In all cases, cleavage of the Boc
protecting group was carried out by reaction with 4 M HCl in

Scheme 1. Synthesis and Elaboration of Medium-Sized Ring
Lactone Building Blocks Prepared via Cascade Ring
Expansion Reactions

Scheme 2. Synthesis and Elaboration of Monofunctionalized
Building Blocks

aReaction conditions (for full details see SI). 7 (1 equiv), amine (1
equiv), K2CO3, MeCN, 90 °C, 16−20 h b4 (1 equiv), MeOH, aq.
LiOH, 50 °C, 1 h, then CHCl3, i-Pr2NEt, T3P, RT, 18 h

c4f (1 equiv),
B2Pin2 (2 equiv), aq. Na2CO3, Pd(dppf)Cl2·CH2Cl2 (5 mol %), 1,4-
dioxane, 50 °C, 16.5 h d4f (1 equiv), B2Pin2 (2.3 equiv), Pd(dppf)Cl2
(10 mol %), KOAc, 1,4-dioxane, 60 °C, 23 h e4 (1 equiv) PhB(OH)2
(2 equiv), 1,4-dioxane, aq. Na2CO3, Pd(dppf)Cl2·CH2Cl2 (5 mol %),
50 °C, 16−20 h.
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1,4-dioxane; this was followed by concentration to form the
HCl salt, which was used directly in the following N-
functionalization reaction without purification. Sulfonylation
worked well under standard conditions,16 with sulfonamides 6a
and 6f isolated in high yields from substrates 5k and 5l
respectively. Reductive amination17 also worked well, to afford
amines 6b and azaindole derivative 6g, as did acylation using
acid chlorides18 to form amides 6c and 6h. Alkylation of the
amine19 with 1-(bromomethyl)-4-(trifluoromethyl) benzene
afforded amine 6d. Both building blocks were also amenable to
Buchwald−Hartwig amination,20 exemplified by the formation
of functionalized aniline 6e and 6i in good yields. Finally,

substrate 5l was converted into functionalized aniline 6j
following a high yielding SNAr reaction.

21

In summary, we report a general approach for the synthesis
and elaboration of medium-ring mono- and difunctionalized 8-
or 9-membered ring lactone building blocks. Both types of
building blocks have been elaborated using medicinally
relevant coupling or N-functionlization partners. The modular
approach of the building block synthesis means that other
medium-ring building blocks can be readily prepared. Ten
examples of difunctionalized lead-like compounds are prepared
to showcase this medium-ring building approach to scaffolds

Scheme 3. Synthesis and Elaboration of Difunctionalized Building Blocks

aReaction conditions (for full details see SI). Prepared on gram scale using the methods summarized in Scheme 2a (see SI for full details). b4i (1
equiv), ArB(OH)2 or ArBPin (1.5−2 equiv), aq. Na2CO3, Pd(dppf)Cl2·CH2Cl2 (5 mol %), 1,4-dioxane, 50 °C, 16−20 h. c4j (1 equiv), ArBr (2
equiv), aq. Na2CO3, Pd(dppf)Cl2·CH2Cl2 (10 mol %), 1,4-dioxane, 50 °C, 16−20 h. d5k/l (1 equiv), 4 M HCl in 1,4-dioxane, then CH2Cl2, NEt3,
sulfonyl chloride (1.2 equiv), DMAP, 0 °C → RT, 18 h. e5k/l (1 equiv), 4 M HCl in 1,4-dioxane, then THF, aldehyde (1 equiv), AcOH,
NaBH(OAc)3, RT, 18 h.

f5k/l (1 equiv), 4 M HCl in 1,4-dioxane, then CH2Cl2, NEt3, acid chloride (1.2 equiv), DMAP, 0 °C → RT, 18 h. g5k (1
equiv), 4 M HCl in 1,4-dioxane, then THF, NEt3, 1-(bromomethyl)-4-(trifluoromethyl) benzene (1.2 equiv), 70 °C, 18 h. h5k/l (1 equiv), 4 M
HCl in 1,4-dioxane, then toluene, Cs2CO3, (±)-BINAP, Pd2bda3 (10 mol %), ArBr (1.2 equiv), 110 °C, 65 h. i6l (1 equiv), 4 M HCl in 1,4-
dioxane, then CH3CN, K2CO3, 2-chloro-5-nitropyridine (1.2 equiv), 70 °C, 18 h.
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decorated with medicinal chemistry-like functionality in an
underrepresented area of pharmaceutical chemical space.
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