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Adaptive production strategy in 
vertical farm digital twins with 
Q-learning algorithms
Yujia Luo1,2 & Peter Ball1

Urban food production can contribute to sustainable development goals by reducing land use and 

shortening transportation distances. Despite its advantages, the implementation of digital twin 
(DT) technology for urban food systems has received less investigation compared to manufacturing. 

This article examines the influence of DT technology on adaptive decision-making in urban food 
production, focusing on the “Grow It York” case study. Utilising mixed integer linear programming 
(MILP) and Q-learning models, this study explores how DT data enhances production decisions 
regarding service level and resource utilisation under demand fluctuations. The findings highlight that 
the Q-learning model achieves up to 78.5% demand fulfillment compared to 58.5% for the MILP 
model, demonstrating a significant improvement in operational efficiency. Additionally, electricity 
usage per fulfilled demand is reduced by approximately 15%, advocating for broader DT application to 
the synergy between economic resilience and environmental sustainability. Future research directions 

include scaling DT implementation to manage complex supply chains, including advancing real-time 
data integration and incorporating sustainability considerations at supply chain level.

Keywords Digital twin, Urban food system, Adaptive production strategies, Q-learning network

The intensification of urbanisation and climate change poses significant challenges to global food security, 
prompting the exploration of innovative agricultural solutions such as urban vertical farming. Utilising 
technologies like hydroponics and aeroponics, urban vertical farms capitalise on underused spaces (e.g., rooftops 
and basements) to bring food production closer to consumption centres1. This approach not only optimises land 
use but also minimises the reliance on extensive rural farmland and reduces transportation-related emissions2. 
Research into smart urban food systems is gaining traction, with recent discussions focusing on how digital 
twin (DT) technology can be adapted from traditional manufacturing to increase efficiency and digitalisation 
in urban agriculture (Agriculture 4.0). A DT is a virtual representation of a physical system that is updated 
with real-time data to mirror and predict the performance and behaviours of the physical counterpart3. Despite 
the potential of DT technology in urban food production, significant research gaps remain. Existing studies 
have primarily focused on the theoretical potential of DTs, with limited empirical evidence on their practical 
implementation and effectiveness in real-world settings4. Moreover, there is a scarcity of research on how DTs 
can be integrated with advanced optimisation models to handle the complexities of demand uncertainty and 
resource constraints in urban vertical farms. Additionally, the application of reinforcement learning techniques, 
such as Q-learning, to enhance adaptive decision-making in DT-driven production scheduling has not been 
thoroughly explored. This study addresses these gaps by providing empirical evidence of the benefits of DT 
integration with Q-learning models in improving demand fulfillment and resource efficiency in urban vertical 
farming. However, the unique attributes of urban farming mean that direct application of DT technology from 
manufacturing may not always be appropriate.

In the context of vertical aeroponics farms, the basic structural and operational components are core to 
ensure the system’s functionality, such as growth towers, nutrient delivery systems, and environmental control 
units1.The process flow, level of monitoring and control and the level of technology deployment mean such 
farming is conceptually close to typical production systems. The farming process steps that follow planting, 
such as nutrient delivery and environmental control, often vary and can lead to hybrid operations combining 
automated and manual interventions. The supply and maintenance of these core components are critical and 
often unpredictable in terms of performance and wear. The quality of grown plants is regularly related to optimal 
controlled environmental conditions, but its classification and monitoring are often performed manually or 
with basic automation, which may not fully utilise the potential of smart technologies. Additionally, the demand 
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for fresh product from urban farms is also volatile. Variability in supply and demand creates complex business 
models and production scheduling that require flexibility, which until recently, could only be managed manually5.

However, as DT technology advances and become more accessible, new opportunities arise to improve the 
management of uncertainties by providing near real-time information about crop performance, predicting 
optimal harvest times and conditions, and autonomously adjusting the growing environment to meet 
multidimensional needs of the crops and the business67. The unique attributes of urban food production, such 
as the use of controlled environment and advanced farming techniques, make DT integration ideal. This sector 
has not exploited DTs to the same extent as traditional manufacturing. In this context, the advent of DT offers 
transformative potential for urban food production systems. DTs-dynamic virtual models of physical systems-
enhance decision-making by providing insights into operations dynamics8.

This study focuses on the “Grow It York” case study to investigate the application of DTs in urban food 
production, with a particular emphasis on optimal production scheduling and demand fulfillment. By 
integrating mixed integer linear programming (MILP) and Q-learning models, this research explores how real-
time data signalling through DT can optimise decisions related to demand fulfillment and resource efficiency. 
These advanced models allow for precise adjustments in the growing environment, leading to improved crop 
yields, better alignment with demand, and more efficient resource management. The findings demonstrate that 
DT technology can markedly improve operational efficiency and robustness, underscoring the need for broader 
adoption in food production systems to boost resilience and sustainability.

Following a literature review on DT technology and its applications in urban food production, this paper 
provides a detailed description of the employed MILP and Q-learning models. The results section presents the 
findings from the “Grow It York” case study, highlighting the improvements in resource efficiency, and demand 
fulfillment. The discussion section interprets these results in the context of existing literature, responding to the 
benefits and challenges of implementing DT technology in urban food production. The conclusion summarises 
the key insights and suggests directions for future research, including scaling models to handle complex DT data 
and incorporating environmental and social impact considerations.

Literature review
The domain application field of DTs is manufacturing, and there is limited research looking at applying DT for 
modelling biological or flow processes or systems such as agriculture. Current DT applications in agriculture are 
emerging from creating DTs for crops, farm units, or cultivated landscapes. Kampker et al.9 explore the creation 
of a “Digital Potato” as a smart service for optimising potato harvester calibration using sensors and machine 
learning to minimise damage and ensure efficiency. Skobelev et al.10 extend this by developing a DT for wheat 
using a multi-agent system and a comprehensive knowledge base to address the limitations of traditional data-
driven models, particularly under changing climatic conditions. Laryukhin et al.11 propose a cyber-physical 
multi-agent approach to manage the complexity of agricultural systems. This involves entities such as soil, 
fertilizer, and crops, represented as agents within a virtual market, optimising resource use and cost. Kim and 
Heo12 applied DT for mandarins farms to visualise and analyse at regional, inter-orchard, and intra-orchard 
scales and used machine learning to predict performance output (e.g., sugar content and fruit size). While these 
approaches enhance localised decision-making, they often focus narrowly on crop-specific monitoring, lacking 
the integration of adaptive decision-making capabilities across broader agricultural systems.

Adaptive decision-making frameworks in agriculture are critical for addressing resource and demand 
variability. A promising approach integrates simulation modelling, machine learning, and advanced algorithms, 
outperforming traditional production scheduling by improving the delivery of products and services, especially 
during disruptive events13. Traditional optimisation techniques, such as MILP, are foundational in production 
scheduling due to their ability to model constraints and allocate resources efficiently. For example, Ghandar et 
al.2 successfully applied advanced DT production planning across different scales in a regional aquaponic farm 
system. Li et al.14 conducted a system modelling of a vertical farm in Singapore regarding crop yield, energy, and 
energy flow, and sustainability assessment into a mixed integer nonlinear programming (MINLP) optimisation 
model to maximise the economic profits. In food supply chain contexts, Maheshwari et al.15 and Corsini et 
al.13 demonstrated MILP’s capacity to optimise procurement, production, and distribution under constraints. 
However, its static nature and computational demands under dynamic and uncertain conditions highlight its 
limitations.

Q-learning offers adaptability by learning from evolving environmental conditions, excelling in dynamic 
decision-making scenarios16. However, its computational intensity and need for extensive training data 
present challenges. Research by Du et al.17 emphasises combining reinforcement learning with optimisation 
models to enhance performance in environments characterised by uncertainty and variability. To address the 
limitations of standalone methods, hybrid approaches integrating MILP, simulation, and machine learning are 
gaining traction. Badakhshan and Ball5 presented a hybrid framework combining discrete-event simulation, 
optimisation, and machine learning for supply chain disruptions. Similarly, Maheshwari et al.15 utilised agent-
based simulations with optimisation to improve scheduling and reduce disruptions in food supply chains. These 
frameworks demonstrate significant improvements in adaptability and computational efficiency, paving the way 
for their adoption in agricultural systems.

Recent advancements have begun to address interdisciplinary gaps, focusing on integrated models for farm-
level optimisation. For example, Li et al.14 employed system modeling and optimisation for vertical farms, 
integrating sustainability metrics into economic optimisation. Their model, although effective, lacked real-time 
adaptability, a limitation addressed by dynamic DT frameworks. Rosario Corsini et al.13 highlighted the potential 
of DTs to integrate real-time monitoring with adaptive decision-making, ensuring resilience in production-
distribution systems under disruptions.
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While prior research has demonstrated the utility of MILP for resource allocation in urban farming14 and 
the application of DTs in aquaponics for enhanced monitoring2, these methods remain limited by their reliance 
on static optimisation and lack of real-time adaptability. Efforts in food supply chains have achieved significant 
progress in real-time monitoring and control but often overlook adaptive decision-making and real-time 
customer order prioritisation15. Similarly, energy efficiency improvements in vertical farming have highlighted 
sustainability challenges but fail to dynamically incorporate energy costs into optimisation processes1. To 
address these gaps, this study introduces a hybrid MILP-Q-learning digital twin framework specifically tailored 
for urban farming systems, responding effectively to the identified need for DT applications in agriculture4. 
This approach integrates robust optimisation with dynamic adaptability, enabling real-time demand fulfillment, 
energy-efficient resource allocation, and enhanced scalability. By actively responding to changing environmental 
and operational conditions, the proposed framework outperforms previous methods that primarily focus on 
monitoring or static optimisation, demonstrating superior performance in meeting demand fluctuations and 
reducing energy costs. Table 1 presents a summary of the related studies regarding research focus and methods 
deployed.

Case description
Grow It York is a vertical aeroponic farm where plants are grown in a soil-free environment and nutrients 
are delivered via a mist18. This study focuses on leveraging DT technology to enhance proactive and adaptive 
production modelling with the case study of Grow It York. By investigating the DT configuration and data 
integration scheme of the farm, we aim to demonstrate the value of DT data for optimising production scheduling.

Figure 1 presents the physical farm and its DT configuration, including digital layer and information fusion 
layer. The physical farm maintains a controlled indoor environment to create optimal growing conditions 
for various crops. The physical setup ( see the left part of Figure 1) includes vertically stacked growing trays, 
LED lighting systems, environmental monitor units, and a central nutrient delivery system. Sensors, including 
temperature and humidity sensors, pH and electrical conductivity (EC) sensors, and irrigation sensors, are used 
to monitor the indoor environment and irrigation schedules. Sensor data is collected and used to monitor crop 
growth in the operating system Ostara, which is technically supported by LettUs Grow ltd.19.

The digital layer represents the virtual farm through the Ostara platform and the simulation software Witness 
Horizon (Witness). Ostara and Witness mirror real-time data flows and production activities, enabling what-if 
simulations based on predefined crop production scenarios. Witness complements the Ostara system with its 
visualisation and simulation functions. The information fusion layer acts as an analysis engine for the farm’s 
DTs, where real-time DT data related to crops, the indoor environment, production operations, and supply 
chains are integrated and synchronised for production optimisation. Real-time optimal solutions generated in 
the information layer using Python (a programming language) update simulation scenarios and estimations in 
Ostara and Witness for real-time monitoring and adaptation. The bidirectional data automation between the 
physical and virtual layers, and between the virtual and information layers, is essential for monitoring farm 
operations. APIs among Ostara, Witness, and Python ensure seamless data exchanges.

DT data automation can facilitate the estimation of crop growth. Initially, predefined crop growth recipes, 
established through biological experiments and references, are used as default settings in Ostara. These recipes 
include ideal environmental parameters for crop growth, such as lighting duration, temperature, humidity, 
nutrient levels, minimum growing time to harvest, and expected yield, which are adopted for production 
scheduling. Ostara and Witness (the digital layer) fetch real-time sensor data from the physical farm and compare 
actual parameters with default ones to manage the crop nutrition delivery system, including monitoring LED 
lighting patterns, delivering nutrients, and controlling irrigation schedules. With complete records of real-time 

Research 
Stream Reference Application context Focus Hybrid Modeling Approach

Dt in 
agriculture

Kampket et al.9 Potato harvesting Business model of potato DT NA

Skobelev et al.10 Wheat farming Multi-agent DT ontology for wheat growth and yield forecast Agent-based simulation and traditional optimisation

Kim and Heo12 Mandarin orchards
Multi-scale DTs of orchards for sugar content and fruit size 
prediction

Automated machine learing algorithm

Li et al.14 Vertical farming
MINLP optimisation with sustainability assessment; system 
modeling

MINLP optimisation

Ghandaret al.2 Aquaponic systems Fish and plant growth predicton
Comparisons among Linear regression, support vector 
regression, decision trees, XGBoost with decision trees

DT in 
production 
and supply 
chains

Badakhshan & 
Ball5

Supply chain planning Decision-making under disruptions Discrete-event simulation and decision-tree algorithm

Corsiniet al.13 Manufacturing supply 
chain

Replenishment and storage resilience under disruptions
Artificial neural network and particle swarm 
optimisation

Maheswariet al.15 Food supply chain Supply chain productivity Agent-based simulation and MILP

Du et al.17 Flow shop scheduling Assembly completion time and energy efficiency
Knowledge-based bi-objective collaborative 
optimisation and Q learning

Current Study Urban vertical farming
DT implementation for yield with demand fluctuation and 
energy consideration

MILP and Q-learning algorithms

Table 1. Summary of relevant literature.
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data, the information layer continuously analyses the growth patterns against actual environmental factors and 
proactively suggests adjustments to farm operations.

Further investigation into the historical operations of the farm provides essential information for developing 
a DT-enhanced production scheduling strategy. The maximum growing capacity is limited to 48 trays. Six main 
crops and five major customers were identified from customer orders. Each type of crop seeds has a different 
minimum growing time to harvest and a conversion factor from seed weight to crop weight. Customer orders 
vary, with fluctuations of 10 to 20 percent. Under high demand, the farm priorities crop scheduling based on 
customer loyalty and profitability. Customers who place more consistent orders to profitable crops would receive 
higher priority.

Mathematical model
The vertical farm operates with standard cultivation practices to balance resource utilisation with fluctuating 
demand patterns. It is equipped with vertically stacked growing trays, capable of supporting optimal growth for 
a variety of crop seeds (seeds in short). Each tray has a limited seed capacity, with control over planting density 
and distribution.

A diverse range of seeds is grown on the farm, each selected on the basis of its growth characteristics and 
market value. Each seed type has a specific growth cycle, initial weight, and yield potential for planning planting 
schedules. Growth cycles vary, with some requiring shorter periods and others needing more extended periods 
to reach maturity.

The yield of each seed type is influenced by growth factors (e.g., light, humidity, irrigation patterns). These 
factors determine how efficiently a seed converts into a harvestable crop after reaching its minimum growth time, 
with additional growth yielding further benefits under optimal conditions. The objective encompasses fulfilling 
demand promptly, maximising resource efficiency when capacity exceeds demand, and ensuring optimal tray 
utilisation to avoid downtime. Information about the indoor environment, the capacity of the farm, and the 
demand from the customer is integrated into decision-making. For instance, given the characteristics of indoor 
farming, environmental factors are adjusted to estimate growth cycles for adaptive production scheduling.

Model variables and parameters:

• xi,t: Quantity of seed type i planted at the beginning of period t (kg).
• hi,t: Duration (in days) that seed type i is kept growing when planted in period t.
• yi,t: Yield of seed type i harvested at period t (kg).
• SWi: Initial seed weight for type i (kg).
• GTi: Minimum growing time for seed type i (days).
• CFi: Baseline conversion factor from seed to product for seed type i at GTi.

Fig. 1. Digital twin configuration in the vertical farm.
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• Ci: Additional daily conversion factor per seed type i post GTi.
• Di,t: Demand for seed type i in period t (kg).
• Bi: Benefit factor reflecting profitability and priority for seed type i.
• E: Electricity cost per day per kg of seed.
• CAP : Total capacity of growing trays.

where i, and t represent the index for seed type, and time period respectively.

MILP optimisation model
The objective function of the MILP optimisation approach aims to maximise resource efficiency and profitability 
while minimising the total mismatch between production and demand over all types of seeds throughout the 
planning period.

Objective functions: For scenarios where total demand is less than or equal to capacity, crops would be 
harvested after the minimum growing time since there is no urgency to free up the growing trays. In this 
situation, the objective is to optimise resource efficiency by minimising electricity usage while ensuring that 
demand is met: 

 

min

∑

i,t

E · xi,t · hi,t

subject to the constraint that production fulfils the demand:

 

∑

t

yi,t ≥ Di,t ∀i

For scenarios where demand exceeds capacity, the objective is to maximise profitability adjusted for electricity 
costs: For scenarios where demand exceeds capacity, the objective is to maximise profitability adjusted for 
electricity costs, prioritising crops with higher benefit factors.

 

max
∑

i,t

(Bi · yi,t − β · E · xi,t · hi,t)

where β is weighting factor for electricity costs.
Constraints:
1. Capacity constraint: Ensures that the total seeds planted at any time do not exceed the available capacity.

 

∑

i

xi,t ≤ CAP ∀t

2. Growth and yield constraints: Yield is calculated based on whether the seed is harvested after reaching its 
minimum growth time:

 yi,t = CFi · SWi + Ci · SWi · (hi,t − GTi)
γ

if hi,t > GTi

Here, γ introduces nonlinearity, reflecting diminishing returns on additional growth time. Non-linearity is 
introduced through γ, which represents diminishing returns on extended growth time, as described in the yield 
equation. This is addressed using a piecewise-linear approximation to ensure computational tractability.

3. Harvesting time window: Ensure that all seeds are harvested within or at the end of the 4-week period:

 t + GTi ≤ 28 · k + 28 for seed i planted at time t in cycle k

This constraint allows strategic planting within each cycle to meet current or upcoming demand.

Q-learning for demand fulfillment optimisation
Q-learning is a reinforcement learning algorithm that estimates the optimal state-action value function, Q(s, a)
, which represents the expected cumulative reward of taking action a in state s and following the optimal policy 
thereafter. The Q-function is defined as:

 

Q(s, a) = E

[

∞
∑

t=0

γ
t
rt | s0 = s, a0 = a

]

where γ is the discount factor that balances the importance of immediate and future rewards, and rt is the 
reward received at time t.

The Q-learning update rule iteratively refines the Q-values based on the observed rewards and estimated 
future rewards, as follows:
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Qnew(s, a) = Q(s, a) + α

[

r + γ max
a

′

Q(s′

, a
′) − Q(s, a)

]

where α is the learning rate, r is the immediate reward, s′ is the next state, and a′ is the action that maximises 
the Q-value in the next state.

In the context of demand fulfillment optimisation, states s represent the current configuration of growing 
trays and the remaining demand for each customer, while actions a correspond to planting specific crops in 
particular trays at designated time periods. The reward r is designed to reflect the degree of demand fulfillment, 
incorporating both positive rewards for meeting demand and penalties for unmet demand or inefficient resource 
usage.

The reward function can be expressed as:

 

r =
∑

c∈customers

∑

s∈seeds

(min(D(s, c, t), p(s, c, t)) − λ × penalty terms)

where D(s, c, t) is the demand for seed s from customer c at time t, p(s, c, t) is the production or fulfillment 
of seed s for customer c at time t, and λ is a weighting factor for penalty terms. The penalty terms can include 
various inefficiencies, such as the overuse of trays or planting seeds at suboptimal times. By incorporating these 
penalties, the reward function encourages the agent to make decisions that not only meet demand but also 
optimise resource utilisation.

Additionally, the reward function incorporates the benefit factor with consistency to prioritise crops based 
on their profitability and customer order consistency. The adjusted benefit factor Bs,c is calculated as:

 

V c =
1

T

T∑

t=1

Vs,c,t

 

κc =
V c

1

N

∑
N

c=1
V c

 Bs,c = Bs × (1 + α × κc)

where V c is the average order volume for customer c, κc is the consistency of the customer’s orders, Bs is the 
base benefit factor for crop type s, and α is a weighting factor for the consistency adjustment.

During training, the Q-learning algorithm iteratively updates the Q-values based on the observed rewards 
and transitions. The training process involves initialising the Q-table, selecting actions based on an exploration-
exploitation strategy (such as the ϵ-greedy policy), executing actions, observing rewards, and updating Q-values. 
This process is repeated over multiple episodes until the Q-values converge, indicating that the agent has learned 
the optimal policy.

Mathematically, the Q-value update during training can be written as:

 
Qnew(s, a) = (1 − α)Q(s, a) + α

[

r + γ max
a

′

Q(s′

, a
′)

]

where Q(s, a) is the current Q-value, r is the observed reward, s′ is the next state, and max
a

′ Q(s′, a′) is the 
maximum Q-value for the next state.

The demand fulfillment is then calculated as the sum of the fulfilled demands over the planning horizon, 
normalised to a scale of 0 to 100 for comparison purposes. The normalisation is done by dividing the achieved 
fulfillment by the maximum possible demand and scaling it by 100:

 
Normalised demand fulfillment(s, c) =

(

Demand fulfillment(s, c)

max(D(s, c, t))

)

× 100

where max(D(s, c, t)) is the total demand for seed s from the customer c for all time periods.
By training the Q-learning model with this approach, the algorithm learns to make production decisions that 

maximise demand fulfillment while minimising inefficiencies. A flow chart in Figure 2 demonstrate the MILP-Q 
learning modelling process.

Results
Initial setting of variables and parameters
The farm investigation summarises the average monthly demand in kilograms from each customer, as shown in 
Table 2. The monthly demand fluctuates by +/- 10 to 20 percent of the previous period’s demand for each seed 
type and customer. The prioritisation of customers is ranked on a scale where a value of 1 indicates the highest 
priority and a value of 5 the lowest, based on the order consistency and profitability. Figure 3 presents an example 
of the priority distribution of customers with respect to each type of crop in a calendar year.
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Optimisation results
Following the farm and crop settings of the case, the MILP optimisation model and the MILP-Q learning 
model optimise crop production scheduling over a calendar year, considering demand uncertainty and capacity 
constraints. A sample of the optimal planting and harvesting schedule is presented in Figure 4, which illustrates 
the planting and harvesting time, tray location and volume of crops for each crop on a monthly basis.

Given the varying priorities of crops and their respective customer demands, the Q-learning model 
outperforms the MILP optimisation model in terms of demand fulfillment across different crops. Figure 5 
illustrates the satisfaction of demand for each seed type under two models: the MILP model (solid lines) and 

Fig. 3. A sample distribution of customer priority by crop types.

 

Crop types Growing time (days) Seeds weight (kg) Conversion factor Customer 1 (kg) Customer 2 (kg) Customer 3 (kg) Customer 4 (kg) Customer 5 (kg)

Garlic chive 7 0.01 10 7 8.5 6.5 9 10.5

Sunflower 4 0.012 12 8 7.5 5.5 6.5 8.2

Radish 8 0.01 11 9.5 10 6 8.8 9.2

Coriander 6 0.015 14 7.8 6.5 5.2 6.9 5.8

Micro parsley 9 0.007 9 9 6 4.5 6.2 5.7

Basil 11 0.018 13 8.2 8.5 6 7.3 9.1

Table 2. variables and initial values.

 

Fig. 2. A flow chart of the MILP-Q-learning optimisation process.
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the Q-learning model (dashed lines).This figure compares performance across five different customers for each 
type of crop, clearly showing that the Q-learning model consistently achieves higher demand fulfillment than the 
MILP approach for all seed types across all customers. Figure 6 provides a detailed comparison of production 
and demand for each seed type (Garlic Chive, Sunflower, Radish, Coriander, Micro Parsley, Basil) across five 
different customers. It includes the actual demand (solid blue lines), production using the MILP model (dash 
orange lines), and production using the Q-learning model (dash green lines). In Figure 6, the MILP model shows 

Fig. 5. Demand fulfillment comparison by crop types: MILP V.S. Q-learning.

 

Fig. 4. A sample of optimal planting and harvesting schedule.
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a variation between demand and production, often falling short of meeting the exact demand due to capacity 
pressure, while the Q-learning model aligns more closely with the actual demand, indicating a better adaptation 
to demand uncertainty.

Table 3 provides a comprehensive comparison between the MILP and Q-learning models, focusing on 
production quantities and demand fulfillment rates across different crops and customers. This analysis takes 
into account variations in crop demand and electricity costs over 100 iterations. In contrast, Table 4 summarises 
the overall system performance of both models across 100 one-year iterations. The results consistently show 
that the Q-learning model achieves higher demand fulfillment rates than the MILP model across various 
demand scenarios. Overall, the Q-learning model demonstrates higher fulfillment rates than the MILP model. 
For example, for Garlic Chive (Customer 1), the fulfillment rate is 57.0 percent with Q-learning compared to 
46.0 percent with MILP. Similarly, for Basil (Customer 2), the fulfillment rate is 78.5 percent with Q-learning 
compared to 58.5 percent with MILP. These results suggest that the Q-learning model is more effective in 
meeting customer demands, potentially leading to higher customer satisfaction and reduced stockouts. The 
Q-learning model consistently performs better in scenarios with varying demand, as evidenced by its higher and 
more consistent fulfillment rates across different customers and seed types. Additionally, while the operational 
costs are relatively similar between the two models, the Q-learning model often achieves higher fulfillment rates 
without significantly increasing electricity costs. The consistency of the Q-learning model in achieving higher 
fulfillment rates and effectively managing production towards demand fluctuations underscores its robustness 
and potential as a preferred method.

Q-learning model’s performance underscores the potential of DT-based optimisation in complex agricultural 
systems. From the perspective of DT configuration (see Figure 1, the Q-learning model functions as the analysis 
engine in the information layer, utilising the continuously updated farm data to perform adaptive learning. 
The learning results are then used to update the farm’s production decision-making processes, ensuring that 
the farm can dynamically adjust production plans to changing conditions and demands. The higher fulfillment 
rates achieved by the Q-learning model indicate its ability to adapt to varying demand scenarios, leveraging 
(near) real-time DT data for adaptive learning and decision-making. This adaptability is a critical feature of DTs, 
enabling them to provide robust solutions in dynamic environments. The consistent success of the Q-learning 
model in managing production and responding to demand fluctuations underscores the robustness and potential 
of DTs in urban and controlled environment agriculture.

Discussion
This research addresses the critical need for digital innovation in urban food production, focusing on the 
integration of DT technology in vertical farming, exemplified by the Grow It York case. We propose a proactive 
production strategy driven by DT data through MILP-Q learning modelling to optimise resource use and 
enhance decision-making processes. Our findings demonstrate that the integration of real-time historical 
production data into food production scheduling, complemented by a reward system in the Q-learning model for 
closed-loop feedback automation (see Figure 1), shows significant advantages for operational performance2015. 
Our findings demonstrate that the DT-enhanced scheduling model (the Q-learning model) maintains resilient 
demand fulfillment and resource utilisation under compound demand and priority uncertainties. This study sets 

Fig. 6. Difference between demand and production by crop types: the MILP V.S. Q-learning.
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a precedent for the integration of advanced DT technologies in urban food systems, emphasising production 
behaviour modelling and practical utility.

Our hybrid MILP-Q learning method offers a fresh take on tackling the challenges of urban vertical farming. 
By blending MILP’s knack for managing things like capacity and resources with Q-learning’s ability to handle 
uncertainties such as crop growth changes and fluctuating demand, we create a versatile solution. By integrating 
DT technology, we can continuously receive real-time data, which lets us keep optimising our processes on 
the go. This approach works really well in controlled environment agriculture because it relies on precise 
environmental settings and regular harvest cycles-perfect conditions for our reinforcement learning to do its job.

Future research should further investigate real-time DT data integration approaches to enhance the scalability 
and efficiency of DT models in larger urban agricultural systems, considering multiscale DT data attributes, the 
environmental paradox, and social engagement. Below, we discuss these three future work streams in details 
(see Figure 7).

Advanced real-time integration
Our results demonstrate that integrating data from farm operations, crop growth, demand variations, and 
priorities for adaptive production scheduling significantly enhances production decision-making in dynamic 
environments. The DT-enhanced scheduling model ensures that demand fulfillment and resource utilisation 
remain resilient to compound demand and priority uncertainties2015. This practical implementation of DTs 
showcases their utility in real-world settings, enhancing urban food production efficiency and resilience.

In comparison to the literature, our findings align with studies highlighting the benefits of DTs in industrial 
applications and extend this understanding to the context of urban food production. While previous research 
has focused on the theoretical potential of DTs in production and supply chains14, our study provides empirical 
evidence of their feasibility and effectiveness in streamlining operations of a real-world case, making production 
more flexible and efficient. This contributes to the body of knowledge by offering a replicable model for urban 
food production.

However, our study primarily focuses on production activities, including crop planting operations, demand 
variations, and farm conditions. Future research should explore specifics types of real-time farm data necessary 

Crop Customer Demand Production (MILP) Production (Q_Learning) Fulfillment rate (MILP) Fulfillment rate (Q_Learning) Electricity_Cost

Garlic chive 1 67 31 38.08 46.00 57.00 0.37

Garlic chive 2 92 60 78.46 65.00 85.00 0.35

Garlic chive 3 86 47 57.34 55.00 66.50 0.70

Garlic chive 4 95 27 46.39 29.00 49.00 0.57

Garlic chive 5 75 30 37.86 40.50 50.50 0.13

Sunflower 1 124 59 71.86 48.00 58.00 0.51

Sunflower 2 64 42 43.47 65.00 67.50 0.49

Sunflower 3 69 31 38.56 45.00 55.50 0.02

Sunflower 4 76 27 35.50 35.00 46.50 0.87

Sunflower 5 59 28 34.23 48.20 58.20 0.80

Radish 1 108 49 53.54 45.00 49.50 0.80

Radish 2 147 88 103.01 60.00 70.00 0.77

Radish 3 45 25 25.17 56.00 56.00 0.84

Radish 4 86 25 41.87 28.80 48.80 0.77

Radish 5 89 35 52.70 39.20 59.20 0.02

Coriander 1 102 39 59.21 37.80 57.80 0.09

Coriander 2 62 16 41.07 26.50 66.50 0.56

Coriander 3 55 19 30.31 35.20 55.20 1.00

Coriander 4 93 25 43.41 26.90 46.90 0.91

Coriander 5 68 24 37.90 35.80 55.80 0.02

Micro parsley 1 67 33 39.76 49.00 59.00 0.45

Micro parsley 2 122 79 92.50 65.00 76.00 0.60

Micro parsley 3 54 24 29.26 44.50 54.50 0.10

Micro parsley 4 96 25 44.51 26.20 46.20 0.74

Micro parsley 5 66 24 36.92 35.70 55.70 0.51

Basil 1 64 24 37.22 38.20 58.20 0.09

Basil 2 105 61 82.16 58.50 78.50 0.82

Basil 3 92 42 60.69 46.00 66.00 0.96

Basil 4 174 30 89.39 17.30 51.30 0.25

Basil 5 67 26 39.31 39.10 59.10 0.17

Table 3. Accumulative comparison between MILP and Q-learning models over 100 iterations.
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for DTs, such as sensors for irrigation schedules, lighting data, temperature, and humidity. These additional data 
types could improve the accuracy of forecasting crop growth patterns and the conversion factor of seed to crop 
weight for real-time estimation. Therefore, there is a need for data fusion and model fusion considerations at the 
subsystem level of DTs.

Environmental impact and energy efficiency
Urban vertical farms are energy-intensive due to the precise control required over the growing environment1. 
This setup significantly affects energy use. While DTs can potentially reduce this impact through precise control 
mechanisms, there is a paradox: urban vertical farming enables shorter food supply chains, reducing carbon 
emissions from delivery and transportation, yet the high energy costs of maintaining controlled environments 
are often underassessed compared to traditional farming methods1. The literature on the net environmental 
impact of digitalised urban food production is limited, indicating a significant gap2. Future research should 
assess and optimise DTs from a carbon perspective, examining the trade-offs between traditional and urban 
farming practices.

This study considers the energy costs associated with crop growing times in trays, which require controlled 
environments for lighting, irrigation, and temperature. Linking actual energy consumption to DT optimisation 
models is a crucial extension. By integrating real-time energy consumption data with farm operation data, we can 
obtain real-time energy consumption patterns for different crop types and growth stages, enabling adjustments 
to energy assumptions in mathematical models. Another critical consideration is comparing the benefits of 
using DTs for energy reduction-such as carbon footprint from shorter delivery distances and better production 
scheduling-with the energy consumption required to maintain farm operations and DT-oriented devices.

No. Demand FR (MILP) FR (Q-Learning) No. Demand FR (MILP) FR (Q-Learning) No. Demand FR (MILP) FR (Q-Learning)

1 126 65.83% 72.55% 35 86 65.77% 72.05% 69 143 70.92% 78.45%

2 139 63.33% 68.41% 36 131 60.04% 66.41% 70 150 56.83% 63.60%

3 130 73.78% 80.72% 37 131 64.94% 71.24% 71 158 73.55% 80.45%

4 126 56.94% 64.79% 38 131 56.78% 63.40% 72 145 63.90% 69.91%

5 117 58.97% 63.96% 39 156 65.94% 72.55% 73 120 73.56% 81.38%

6 133 58.06% 64.37% 40 136 72.66% 78.38% 74 144 66.49% 73.07%

7 118 67.41% 73.78% 41 112 61.05% 68.64% 75 94 69.05% 74.74%

8 152 59.81% 66.10% 42 118 67.68% 73.15% 76 133 55.74% 62.17%

9 157 63.86% 68.75% 43 137 57.50% 63.25% 77 96 60.37% 64.45%

10 114 59.64% 67.46% 44 90 68.61% 76.18% 78 156 57.28% 62.49%

11 144 58.02% 63.81% 45 135 60.50% 67.72% 79 124 60.63% 67.27%

12 125 57.10% 64.48% 46 135 58.48% 65.30% 80 116 57.26% 62.42%

13 128 67.47% 74.27% 47 101 66.14% 70.54% 81 105 61.04% 67.51%

14 154 57.63% 62.82% 48 95 55.38% 63.06% 82 143 62.87% 68.59%

15 90 58.74% 65.99% 49 109 70.75% 77.61% 83 119 56.22% 60.76%

16 92 62.01% 67.59% 50 112 55.09% 63.08% 84 128 68.16% 73.35%

17 87 70.60% 78.12% 51 126 65.83% 72.55% 85 86 65.77% 72.05%

18 147 56.84% 63.17% 52 139 63.33% 68.41% 86 131 60.04% 66.41%

19 143 70.92% 78.45% 53 130 73.78% 80.72% 87 131 64.94% 71.24%

20 150 56.83% 63.60% 54 126 56.94% 64.79% 88 131 56.78% 63.40%

21 158 73.55% 80.45% 55 117 58.97% 63.96% 89 156 65.94% 72.55%

22 145 63.90% 69.91% 56 133 58.06% 64.37% 90 136 72.66% 78.38%

23 120 73.56% 81.38% 57 118 67.41% 73.78% 91 112 61.05% 68.64%

24 144 66.49% 73.07% 58 152 59.81% 66.10% 92 118 67.68% 73.15%

25 94 69.05% 74.74% 59 157 63.86% 68.75% 93 137 57.50% 63.25%

26 133 55.74% 62.17% 60 114 59.64% 67.46% 94 90 68.61% 76.18%

27 96 60.37% 64.45% 61 144 58.02% 63.81% 95 135 60.50% 67.72%

28 156 57.28% 62.49% 62 125 57.10% 64.48% 96 135 58.48% 65.30%

29 124 60.63% 67.27% 63 128 67.47% 74.27% 97 101 66.14% 70.54%

30 116 57.26% 62.42% 64 154 57.63% 62.82% 98 95 55.38% 63.06%

31 105 61.04% 67.51% 65 90 58.74% 65.99% 99 109 70.75% 77.61%

32 143 62.87% 68.59% 66 92 62.01% 67.59% 100 112 55.09% 63.08%

33 119 56.22% 60.76% 67 87 70.60% 78.12%

34 128 68.16% 73.35% 68 147 56.84% 63.17%

Table 4. Overall demand fulfillment rate of MILP and Q-learning model.
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Social engagement and community integration
This study does not yet consider social effects, though DT holds the potential for sustainable agricultural 
systems21,22. However, during the investigation of the Grow It York vertical farm, a hybrid business model 
emerged, incorporating food donations to food banks and public education and exhibitions to engage the 
community with environmental considerations.

Based on real-world practices, future work could combine social engagement with DT technologies to 
facilitate real-time integration across supply chain members and social entities, thereby enhancing social welfare. 
DTs extend multistage supply chains by connecting stakeholders through a unified digital platform23,24, enabling 
real-time sharing of farm operations for better decision-making and coordination. This also allows the public to 
engage in the process of digital farming.

Future research should consider DT data integration on a wider scale across business entities to support 
comprehensive cradle-to-grave sustainability analysis. Developing DT models informed by community insights 
and crafting social welfare strategies that utilise DT data to promote sustainable urban farming practices are 
essential pathways for future research. Engaging local communities in the development and implementation of 
DT-driven urban farming can enhance the social acceptance and effectiveness of these technologies.

Conclusion
This research addresses the critical need to explore digital innovation in urban food production, focusing 
on the integration of DT in vertical farming decision making, as exemplified by the Grow It York case. This 
study proposes a proactive productions strategy driven by DT data - MILP-Q learning modelling- to optimise 
resource use and enhancing decision-making processes. The findings will set a precedent for the data integration 
of advanced DT technologies in urban food production systems focusing on production behaviour modelling. 
The results echo that the real-time integration of historical production activities feed into farm scheduling with 
a reward system designed for desired operational performance (i.e., demand fulfillment or resource efficiency) 
can enhance production efficiency and resilience towards demand and production uncertainties. In conclusion, 
our research highlights the transformative potential of DT-based optimisation in urban food production. By 
integrating real-time data collection and adaptive learning through Q-learning, we demonstrate the practical 
utility and scalability of DTs. Future research should continue to explore these themes, focusing on energy 
efficiency, multiscale data fusion, and community engagement to advance the field of digital regenerative food 
systems.

Data availability
The datasets used and analysed during the current study are available from the corresponding author on rea-
sonable request.
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Fig. 7. Future research streams.
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