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A B S T R A C T

E-scooters are an emerging transport mode that is transforming urban mobility; however, their proliferation has 
raised concerns about safety. This study combines UK e-scooter crash data with built environment characteristics 
from the crash locations. A two-stage framework was followed: first, a typology of built environments was 
developed using K-means++; second, crash severity within each cluster was analysed using a random parameter 
binary logit model. Four built environment clusters were identified: (1) car-centric and mixed-use zones, (2) 
commercial and industrial zones, (3) intersection-dense areas, and (4) residential and central areas. Collisions 
with motor vehicles, younger e-scooter riders, and higher speed limits were the most common risk factors across 
the clusters, with the first two clusters showing a higher impact of these factors on the likelihood of severe 
crashes. In the first and second clusters, riding on the carriageway significantly increased injury severity. In the 
second cluster, three collision types were significant, more than in other clusters where only side-impact colli
sions were significant. This indicates high e-scooter–motor vehicle friction in the second cluster. Among all 
collision types, head-on collisions increased the likelihood of severe outcomes more than others. In the third and 
fourth clusters, peak hours were associated with a lower likelihood of severe crashes, while this variable showed 
the opposite impact in the first cluster. The results highlight that consideration of the surrounding built envi
ronment is paramount when analysing e-scooter crash severity, as unique contributing factors were identified 
specific to each built environment type, along with varying magnitudes or directions of marginal effects.

1. Introduction

Given their simple designs, convenience, and affordability, micro
mobility vehicles have experienced a rapid increase in popularity, 
which, as a result, is reshaping urban mobility (O’Hern and Estgfaeller, 
2020). Among the available options, electric scooters (e-scooters) have 
gained notable popularity, both privately owned and used through 
sharing schemes (Lee et al., 2021). Concurrently there has been growth 
in e-scooter-related crashes (Badeau et al., 2019; Brauner et al., 2022), 
and there is a need to understand the risk factors associated with e- 
scooter usage to facilitate safer uptake.

Studies have investigated the injury risk factors of e-scooter crashes 
using a variety of data sources, including emergency presentations and 
hospital admissions, crash reports, and other sources such as news re
ports, naturalistic riding data, and surveys. In the early stages of e- 
scooters emergence, hospital and emergency department reports were 
studied predominantly. Such studies have provided fruitful information 

on the nature of the severity of the injuries and some widespread 
influential factors, including demographics of injured riders, nighttime 
riding, alcohol consumption, and helmet use (Kleinertz et al., 2021; 
Lavoie-Gagne et al., 2021; Moftakhar et al., 2021; Stigson et al., 2021; 
Vernon et al., 2020). With the increased number of e-scooter involved 
incidents and frictions with vehicles on the roads, e-scooters have star
ted to attract the attention of road safety analysts more than before. The 
results of mining crash records reflect somewhat similar findings to the 
hospital and emergency room analysis, but with some enhancements, 
including crash datasets from police reports that provide additional 
details on crash scene circumstances, vehicle interactions, and roadway 
and environmental conditions at crash time and location (Cicchino et al., 
2021; Gao and Zhang, 2024; Longo et al., 2024; Shah et al., 2021). Other 
sources have facilitated elaboration on riders risk-taking and driving 
behaviours as well as e-scooter performance and manoeuvrability in 
different scenarios (Brauner et al., 2022; Ma et al., 2021; White et al., 
2023).
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In addition to the above-discussed factors, the built environment is 
shown to significantly shape crash risk. Research on micromobility 
safety has identified that road design, land use patterns, and infra
structure influence crash frequency and severity (Azimian and Jiao, 
2022; Costa et al., 2024; Saha et al., 2020). Despite this, crash datasets 
often lack such detailed built environment variables, requiring the use of 
external data sources and data fusion techniques (Costa et al., 2024). 
While studies on cycling crashes have merged built environment data 
sources with crash reports (Bi et al., 2023; Heydari et al., 2022), research 
on e-scooters remains limited as Mehranfar and Jones (2024) emphasise 
that this gap limits the ability to develop targeted safety interventions 
for e-scooters and call for further research integrating built environment 
data.

To date, from a methodological perspective, research on e-scooter 
rider safety has primarily relied on generalized linear statistical models, 
such as discrete outcome models (Cicchino et al., 2021; Gao and Zhang, 
2024; Gioldasis et al., 2021) and count data models (Azimian and Jiao, 
2022; Heydari et al., 2022). These techniques, which incorporate fixed 
and random parameters, aim to identify significant crash risk factors 
based on crash reports and address potential underlying heterogeneity. 
However, the heterogeneity in crash data arising from the varying 
characteristics of e-scooter crash locations has not been explored and 
requires an additional level of analysis alongside crash modelling. This 
paper addresses this gap by retaining the highly interpretable random 
parameter discrete outcome models for crash severity analysis while 
introducing another layer of heterogeneity exploration for built envi
ronment factors. Using a two-stage hybrid approach, K-means++ is first 
applied as a clustering method to partition continuous features, a suit
able choice given that all built environment factors in the dataset are 
continuous (Aggarwal and Reddy, 2018; Arthur and Vassilvitskii, 2007; 
Ikotun et al., 2023). Discrete outcome models specific to each identified 
group of crash locations are then applied in the next stage to analyse the 
varying effects of risk factors and possible heterogeneity among them 
(Mannering et al., 2016).

Considering this, the main objectives of this paper are: (1) to inte
grate e-scooter crash data with built environment characteristics around 
crash sites using OpenStreetMap; (2) to apply a two-stage framework 
that first identifies built environment clusters using an unsupervised 
machine learning technique; (3) to subsequently identify risk factors 
specifically influencing crash severity through interpretable random 
parameter discrete outcome models. Fig. 1 summarises the workflow of 
this research based on the described objectives.

2. Literature review

The growing role of e-scooters in urban transport has raised safety 
concerns, urging researchers to explore their underlying risk factor so 
that targeted safety strategies can be developed (Mehranfar and Jones, 
2024). Micromobility safety research has identified crashes to be the 
result of complex interactions among numerous factors, including 
human factors, vehicle-related factors, and infrastructural and 

environmental conditions at the time and place of the crash (Costa et al., 
2024; Gao and Zhang, 2024). Table 1 lists commonly reported e-scooter 
crash severity risk factors, based on a review of the literature. From a 
general viewpoint, current research on e-scooter safety can be reviewed 
under three categories: studies using emergency presentation and hos
pital admission data (Section 2.1), studies focused on crash datasets 
(Section 2.2), and research relying on surveys, naturalistic riding data, 
and observations (Section 2.3).

Because the field of research on e-scooter safety is in its infancy, most 
studies have relied on hospital admission and emergency data, as e- 
scooter crash records are scarce. The structure used in this section allows 
for a comprehensive examination of existing studies while recognising 
that over time, research based on crash datasets alone will become more 
frequent. Also, consistent with the focus of this research, we have 
reviewed works on micromobility safety that have fused the built 
environment with crash data, as well, in Section 2.2. Finally, Section 2.4
delineates the research gaps that this investigation seeks to address, 
drawing upon the analysed literature.

2.1. Emergency presentation and hospital admission data

Multiple studies from around the world have analysed e-scooter in
juries using hospital data. For instance, Vernon et al. (2020) in Atlanta, 
Georgia; Kleinertz et al. (2021) in Hamburg, Germany; and Moftakhar 
et al. (2021) in Vienna, Austria, reported a significant rise in injuries 
during nighttime and weekends. Moftakhar et al. (2021) found that in
juries peaked between 8:00p.m. and 1:59 a.m., often involving riders 
under the influence of alcohol. Notably, Vernon et al. (2020) identified 
that 32 % of injuries occurred during a nighttime ban between 9p.m. and 
4 a.m. Kleinertz et al. (2021) compared temporal patterns of e-scooter 
and bicycle crashes and found that bicycle crashes were more commonly 
associated with commuting, while e-scooter crashes were increasingly 
associated with leisure, leading to an increase in injuries during week
ends and nighttime.

When considering spatial factors, in Helsinki, Finland, Dibaj et al. 
(2024) found that injuries are more concentrated in the city centre, 
however, as service areas expanded crashes became more dispersed. In 
Washington, D.C., Cicchino et al. (2021), identified that injuries were 
more commonly sustained on sidewalks (58 %) as opposed to on the 
roads (23 %). However, injuries sustained on the road were on average 
more severe. Both Kleinertz et al. (2023) and Stigson et al. (2021)
further highlighted poorly maintained and uneven road surfaces as 
contributing factors.

Demographic characteristics, like age and gender, along with helmet 
use were associated with injury severity. Numerous studies have found 
males constitute a higher proportion of injured e-scooter riders (Jones 
et al., 2023; Kleinertz et al., 2023; Lavoie-Gagne et al., 2021; Moftakhar 
et al., 2021; Stigson et al., 2021). Two studies identified specific age 
groups as being more prone to severe outcomes. Stigson et al. (2021)
found that males aged 15–34 were more frequently involved in crashes, 
with their low rate of helmet-wearing contributing to the increased 

Fig. 1. Research design and workflow.
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severity of head injuries. In San Diego, California, Lavoie-Gagne et al. 
(2021) reported that individuals over 40 years and under the influence 
of alcohol or other substances had an increased risk of severe injuries. 
Additionally, when comparing e-scooter and bike users, Kleinertz et al. 
(2021), observed that e-scooter riders involved in crashes were younger 
and used helmets less frequently than cyclists.

Alcohol consumption is another risk factor associated with e-scooter 
crashes. In Essex, UK, Jones et al. (2023) found that intoxicated riders 
had more severe injuries and required more comprehensive medical care 
post-crash. Alcohol was also mentioned in association with other risky 
behaviours; for instance, riders under the influence of alcohol demon
strated a lack of helmet use (Kleinertz et al., 2021). Further, the litera
ture indicates that riding under the influence of alcohol most often 
happens at night and over weekends (Kleinertz et al., 2021; Moftakhar 
et al., 2021).

The increase in e-scooter injuries over time is a concern highlighted 
by Moftakhar et al. (2021) who documented a sharp rise in injuries from 
13 cases in 2018 to 116 in 2019. This increase in cases represents the 
growing popularity of e-scooters as well as emerging safety concerns, 
leading some jurisdictions to implement bans and restrictions on e- 
scooters (Dibaj et al., 2024).

2.2. Crash dataset studies

E-scooters safety literature based on analysis of crash datasets tends 
to align with studies using hospital datasets, however, it also provides 
some further insights due to the factors present in crash records. Shah 
et al. (2021) analysed police-reported e-scooter crashes in Nashville, US. 
They found that e-scooter crashes were mainly concentrated in down
town areas. In addition, nighttime conditions, and younger riders were 
increasingly prone to crashes, consistent with the trends seen with 
emergency room admissions (e.g., Dibaj et al. (2024)). When consid
ering crash types, Shah et al. (2021), identified cross traffic and crashes 
with right turning motor vehicles as common crash mechanisms.

Longo et al. (2024) examined e-scooter collisions in Bari, Italy, based 
on the application of a binary logit model for the outcome of non-injury 
and injury collision categories. Again, the results found that nighttime 
and road surface problems are associated with an increased likelihood of 
injury, consistent with the studies conducted by Kleinertz et al. (2023, 
2021), Moftakhar et al. (2021), Stigson et al. (2021), and Vernon et al. 
(2020). The results also showed that, compared with single e-scooter 
crashes, e-scooter collisions with pedestrians have significantly higher 
odds of injury. Regarding the crash location, crashes frequently occurred 
on undivided road segments, though the severity was higher for divided 

Table 1 
Summary of e-scooter crash severity risk factors.

Risk Factor Data Source Finding(s) Author(s)

Nighttime and 
Darkness

EPHA* dataset Associated with 
increased injury 
severity

(Kleinertz et al., 
2021; Lavoie- 
Gagne et al., 2021; 
Moftakhar et al., 
2021; Vernon 
et al., 2020)

Crash dataset (Gao and Zhang, 
2024; Longo et al., 
2024)

Other (News 
reports)

(Yang et al., 2020)

Alcohol 
Consumption

EPHA dataset Associated with 
increased injury 
severity

(Jones et al., 
2023; Kleinertz 
et al., 2023, 2021; 
Lavoie-Gagne 
et al., 2021; 
Moftakhar et al., 
2021)

Other (Public 
press portal)

(Brauner et al., 
2022)

Gender EPHA dataset Male riders are more 
frequently involved 
in severe injury 
crashes

(Stigson et al., 
2021; Vernon 
et al., 2020)

Crash dataset (Gao and Zhang, 
2024)

Other (News 
reports)

(Yang et al., 2020)

Age EPHA dataset Age is found to be a 
significant factor; 
however, the cohorts 
used by researchers 
vary, with some 
studies including 
younger cohorts and 
others including 
older adults as risk 
factors for injury

(Lavoie-Gagne 
et al., 2021; 
Moftakhar et al., 
2021)

Crash dataset (Gao and Zhang, 
2024)

Weekday vs. 
Weekend

EPHA dataset Results differ among 
studies: Weekend 
crashes are reported 
to be more frequent 
and severe (Stigson 
et al., 2021; Vernon 
et al., 2020), while 
some studies find 
that weekday 
crashes tend to be 
more severe (Gao 
and Zhang, 2024)

(Stigson et al., 
2021; Vernon 
et al., 2020)

Crash dataset (Gao and Zhang, 
2024)

Helmet Use EPHA dataset Reduces the severity 
of head injuries, 
though usage is low 
across studies, and 
its impact on overall 
injury severity varies

(Jones et al., 
2023; Kleinertz 
et al., 2023; 
Lavoie-Gagne 
et al., 2021; 
Moftakhar et al., 
2021; Stigson 
et al., 2021; 
Vernon et al., 
2020)

Pavement 
Condition

EPHA dataset Poor pavement 
conditions generally 
increase the risk of 
injury; however, a 
study by Gao and 
Zhang (2024) found 
that poor pavement 
was associated with 
lower injury severity 
in collisions 
involving motor 
vehicles. 
Nonetheless, this 
relationship was not 
significant in single- 

(Kleinertz et al., 
2023)

Crash dataset (Gao and Zhang, 
2024; Longo et al., 
2024)

Other 
(Naturalistic 
riding data)

(Ma et al., 2021)

Table 1 (continued )

Risk Factor Data Source Finding(s) Author(s)

vehicle e-scooter 
crashes

Location of 
Incident

EPHA dataset Injuries on roads (i. 
e., on the 
carriageway) tend to 
be more severe 
compared to off-road 
sites such as 
sidewalks

(Cicchino et al., 
2021)

Crash dataset (Gao and Zhang, 
2024)

Interaction with 
Motor Vehicles

Crash dataset Associated with 
increased injury 
severity (Shah et al., 
2021; Yang et al., 
2020).

(Shah et al., 2021)

​ Other (News 
reports)

(Yang et al., 2020)

Frequent Riders EPHA dataset Associated with 
more severe injuries

(Cicchino et al., 
2021)

Handling Issues 
and 
Malfunctioning 
Scooters

EPHA dataset Associated with 
increased risk and 
injury severity

(Kleinertz et al., 
2023; Stigson 
et al., 2021)

*EPHA: Emergency presentation and hospital admission
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roads and was associated with their higher operating speeds.
Gao and Zhang (2024) studied UK e-scooter collisions within a two- 

year period. Random parameter models were developed for single e- 
scooter and two-vehicle e-scooter collisions. The application of the 
random parameter models improved earlier works, since it accounted 
for unobserved heterogeneity. Results of both single- and two- vehicle 
crashes identify nighttime, darkness, weekdays, males, and older riders 
as common risk factors. Also, adverse road surfaces increased the like
lihood of severe outcomes in single vehicle crashes, while decreasing the 
severity for two vehicle crashes. Junctions and higher speed limit roads 
were also influential factors for the severity of e-scooter motor vehicle 
collisions.

In addition to the factors discussed above, the built environment 
plays an important role in the safety of e-scooter users; however, built 
environment characteristics are rarely recorded in crash reports (Chen 
and Shen, 2016). Road infrastructure is particularly important, for 
example, studies conducted by Morrison et al. (2019) and Gao and 
Zhang (2024) suggested that separated cycling lanes with protected 
infrastructure reduce the risks of crash involvement as well as severity 
levels for both cyclists and e-scooter riders.

Beyond road infrastructure, according to Chen and Shen (2016) and 
Branion-Calles et al. (2020), mixed land use and dense built environ
ments are associated with increased crash rates. This is likely due to 
increased pedestrian and traffic flow through such areas. Similarly, 
Azimian and Jiao (2022) found that areas with increased activity, such 
as with more restaurants and educational centres experience more e- 
scooter crashes, while areas with higher incomes and better sidewalks 
were associated with fewer crashes. Similar results were observed by 
Heydari et al. (2022) who found that higher crash frequencies correlated 
with increased walking, cycling, higher crime rates, and larger Black, 
Asian, and Minority Ethnic populations, while areas with more green
space saw fewer incidents.

2.3. Other works

In addition to crash records and emergency room visits, a range of 
other data sources and research methods have been used to enhance the 
understanding of e-scooter safety.

Yang et al. (2020) extracted news reports on 169 e-scooter crashes 
that took place in the United States over three years. Their results re
flected a notable rise in reporting of crashes from 2018, with the highest 
proportion of news reports from California, Indiana, Texas, Florida, and 
Georgia. Articles predominantly involved male riders, particularly those 
aged 18–40 years, with incidents mainly reported on arterial roads and 
at intersections. Over half of these crashes involved severe injuries or 
death, particularly amongst children and teenagers, although this may 
reflect some reporting bias. Nighttime riding was increasingly reported 
for fatal crashes, and helmet non-use and alcohol were associated with 
higher injury severity cases. In a more recent content mining work, 
Brauner et al. (2022) extracted police reports on e-scooter crashes from a 
public German press portal. They found similar risk factors including 
nighttime riding, riding while intoxicated with alcohol, not wearing a 
helmet, as well as riding in pairs.

Several studies have used instrumented and naturalistic approaches 
to study e-scooter safety. Ma et al. (2021) describes instrumenting an e- 
scooter with a kinematic data acquisition system in Norfolk, Virginia. 
The findings from this study provided an environmental impact evalu
ation of riding behaviour and established that e-scooter riders are 
exposed to worse vibration events compared to cyclists, particularly on 
concrete pavements and sidewalks. Work by Ma et al. (2021) was 
limited to only one rider and performed under limited scenarios, which 
was addressed in a more recent work by White et al. (2023) at Virginia 
Tech, US. In their naturalistic riding study 3500 h of riding data was 
passively recorded over a six-month period. Analysis revealed infra
structural factors, including surface transitions and fixed element con
flicts, caused a significant portion of all incidents. Aggressive riding and 

group riding increased risk, as did riding in conditions other than 
daylight. Additionally, dry road surface conditions were shown to raise 
risk, which was attributed to less cautious riding.

Gioldasis et al. (2021) conducted a survey among e-scooter riders in 
Paris, France, investigating risk-taking behaviours including riding 
under the influence of alcohol or drugs and using smartphone devices 
while riding. The results indicate that risky behaviours were more likely 
to be performed by younger and male riders, and riders undertaking 
longer trips. In another study concerning unsafe rider behaviour, 
Haworth et al. (2021) observed shared and privately owned e-scooters in 
Brisbane, Australia. The findings showed that e-scooters were mostly 
ridden on footpaths, which created frequent interactions with pedes
trians (about 40 % of cases), however, actual conflicts which may turn 
into collisions were rare (less than 2 %). Amongst riders using shared e- 
scooters, half were performing an illegal behaviour, including not 
wearing a helmet, riding in pairs, and riding on the road. Observations of 
illegal behaviours were notably less amongst private owners (12.2 %).

2.4. Identified gaps in e-scooter safety research

Despite the growing popularity of e-scooters and the corresponding 
increase in hospital reported injuries, research on e-scooter safety re
mains limited. As demonstrated by the literature review, previous 
studies have primarily focused on post-crash reports from police and 
hospital datasets. Furthermore, these studies rarely address unobserved 
heterogeneity, with the exception of some notable studies like Gao and 
Zhang (2024). This paper builds on these efforts by developing random 
parameter models, enabling a more accurate assessment of the risk 
factors for e-scooters while considering built environment factors.

The built environment plays a crucial role in the safety of vulnerable 
road users. However, the existing literature on e-scooter crash severity 
has predominantly focused on temporal factors, demographics, and 
risky behaviours. A significant challenge in this area is that crash records 
often lack detailed contextual information, hindering analysis and 
leading to the underrepresentation of built environment factors in the 
literature (Costa et al., 2022). To address this challenge in this paper, we 
use data fusion techniques to combine crash data with open-source built 
environment data. Additionally, while our review of the literature 
highlights that some studies have examined frequency of e-scooter 
crashes from a built environment perspective (Azimian and Jiao, 2022; 
Heydari et al., 2022), limited analysis has been conducted in this respect 
for e-scooter crash severity. This study fills this gap by identifying built 
environment types and their associated risk factors for e-scooter crash 
injury severity.

A further limitation of previous studies examining the impact of built 
environment factors on road safety is the use of traditional generalized 
linear models (Azimian and Jiao, 2022; Heydari et al., 2022), treating 
environmental factors as contributors to crashes. In contrast, our 
research takes a different approach by exploring the types of built en
vironments surrounding crash sites and then identifying the significant 
risk factors associated with each environmental context. To this aim, we 
applied a hybrid modelling approach, integrating an unsupervised ma
chine learning technique, which identifies built environment types with 
a random parameter discrete outcome model. This approach allows us to 
identify significant factors associated with e-scooter crashes for each 
identified built environment cluster.

3. Data

3.1. Crash data

The study analysed e-scooter crash data from the UK between 2020 
and 2023, obtained from the Department for Transport’s STATS19 
dataset (Department for Transport, 2024). Fig. 2 (a) shows the locations 
of e-scooter crashes across the UK, and Fig. 2 (b) illustrates the city-wise 
distribution of crashes categorized by severity level. The database 
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categorizes crash severity into three levels: slight, serious, and fatal 
crashes. A fatal crash is defined where a person (here, the e-scooter 
rider) dies within 30 days of the collision. Serious injury crashes involve 
a person who is hospitalised and requires medical treatment. Slight in
juries do not require hospital treatment (Rella Riccardi et al., 2022).

In this study, the data quality was improved through a three-step 
method. First records with a large amount of missing information 
were filtered and removed; such records represented less than 5 % of the 
dataset. Next cases with missing values which could be replaced from 
other data sources, were addressed. For example, we used weather APIs, 
such as OpenWeatherMap (OpenWeatherMap, 2024) and Open-Meteo 
(Open-Meteo Team, 2024) to supplement cases with missing weather 
conditions, and a Python library called Astral (Kennedy, 2022) to 
impute diurnal times. Finally, missing data which could not be supple
mented were treated using the KNN imputation technique. This 
approach had been previously applied by Abdi and O’Hern (2024) for 
imputation of crash datasets. This method computes the mean of the 
closest k neighbours for continuous variables, while for categorical 
variables, it assigns the most frequent value observed among the 
neighbours (Zhang, 2012). If no frequent value is clear, a value is chosen 
randomly. The final dataset contained 3,550 entries, including 2,352 
minor injury crashes, 1,146 serious injury crashes, and 52 fatal crashes. 
Table 2 summarises the variables extracted from the crash dataset, cross- 
tabulated by injury severity level.

3.2. Measuring the built environment

As demonstrated in the review of the literature, the built environ
ment is closely linked to e-scooter rider safety. However, where previous 
studies have included the built environment as regression variables, in 
this study we aim to translate the built environment variables by 

creating a typology of environments for e-scooter crashes. In this 
approach, first we selected the dimensions of the built environment to 
include in the development of the clusters. Next, we selected a buffer 
size for cases, which influences the range of built environment variables 
included in the analysis. In reviewing the literature, a range of buffer 
sizes have been previously applied. Costa et al. (2024) used a 25-meter 
radius because the variables of interest were primarily related to im
mediate surroundings, such as urban designs and nearby buildings. 
However, broader contextual factors like land use and road network 
factors have led researchers to use larger buffers, as seen by Abdi et al. 
(2022), Mathew et al. (2022), and Wu et al. (2023), who utilized radii 
from 200 to 3000 m. The nature of variables in this study aligns more 
closely with the works of Mathew et al. (2022), and Wu et al. (2023), as 
such we obtained data on the built environment within the radius of 250 
m around crash sites and validated this choice using clustering perfor
mance measures, as discussed in the Results and Discussion Section. 
Using the geographic coordinates of crash locations, we extracted in
formation from OpenStreetMap (OSM). Table 3 summarizes the 
descriptive statistics of the built environment variables used and pro
vides their definitions.

4. Methodology

In this study, the innovation lies in applying clustering and random 
parameter modelling to an unexplored problem, where the built envi
ronment surrounding e-scooter crashes shapes its risk factors in terms of 
their significance and magnitude of effect on crash severity. This re
quires the identification of homogeneous clusters of crash sites that are 
similar in terms of their built environment characteristics. Latent class 
models, including Latent Class Analysis (LCA) and Latent Profile Anal
ysis (LPA), are widely used for data clustering in the field of accident 

Fig. 2. (a) E-scooter crash locations across the UK (b) City-wise distribution of e-scooter crashes by severity level.
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research. According to Li et al. (2024), the primary focus of LCA is on 
categorical variables; conversely, LPA is applicable to continuous data 
yet faces some challenges, including the tendency to converge on local 
optima and complications in satisfying statistical assumptions, espe
cially when the number of input variables expands. In light of the 19 
continuous variables analysed in this study, the K-means++ clustering 
algorithm was selected due to its higher efficiency compared to tradi
tional K-means, its assumption-free nature as a machine learning 
method, and its ability to deal with continuous data (Aggarwal and 
Reddy, 2018; Arthur and Vassilvitskii, 2007).

Despite these advantages, there is still a need to carefully address 
potential misleading results arising from the increased number of input 
factors and their varying scales. To handle this, specific steps were taken 
during data preparation and modelling. First, all variables were rescaled 
to a unified range. Second, the K-means++ method was preferred over 
traditional K-means since it inherently improves seed initialization and 
reduces the risk of falling into local optima in such a variable space 
(Arthur and Vassilvitskii, 2007). Third, suitable cluster validation 
measures, like the Silhouette Score and Davies-Bouldin Index, which 
focus on maximizing similarity within clusters and dissimilarity between 
clusters, were adopted to ensure the most homogenous groups of crash 
surroundings were identified.

Once identified, the study employed a highly interpretable statistical 
discrete outcome model with random parameters specific to each group 
of built environments and explored how influential factors’ significance, 
magnitude, and direction of effect change among the built environment 
types. Additionally, given the low number of fatal crashes in the dataset, 
we integrated fatal and serious injury severity together to achieve more 
reliable estimates (Ye and Lord, 2014). Therefore, a binary logit model 
with random parameters is employed. The following subsections explain 
the mathematical relationships behind the methods used.

Table 2 
Descriptive statistics of crash factors cross-tabulated by severity levels.

Explanatory Variables Slight 
Injury

Serious 
Injury

Fatal

n (%) n (%) n (%)

Road Type ​ ​ ​
roundabout 102 (4.34 

%)
52 (4.53 
%)

2 (3.85 
%)

one-way street 151 (6.42 
%)

79 (6.89 
%)

4 (7.69 
%)

carriageway 2039 
(86.69 %)

1004 
(87.61 %)

45 
(86.54 %)

slip road 60 (2.55 
%)

11 (0.96 
%)

1 (1.92 
%)

Speed Limit (mph) ​ ​ ​
equal or less than 30 1186 

(50.42 %)
405 
(35.34 %)

15 
(28.85 %)

31–49 962 
(40.89 %)

602 
(52.52 %)

28 
(53.85 %)

equal or greater than 50 204 (8.67 
%)

139 
(12.13 %)

9 (17.31 
%)

Road Surface Condition ​ ​ ​
adverse condition (road surface in a poor 

condition, e.g., being wet, snowy, 
flooded, oily, muddy, or frosted)

206 (8.76 
%)

166 
(14.49 %)

16 
(30.77 %)

normal condition 2146 
(91.24 %)

980 
(85.51 %)

36 
(69.23 %)

Light Condition ​ ​ ​
daylight 1602 

(68.11 %)
705 
(61.51 %)

29 
(55.77 %)

darkness − lights lit 504 
(21.43 %)

299 
(26.09 %)

15 
(28.85 %)

darkness − lights unlit 196 (8.34 
%)

101 (8.81 
%)

6 (11.54 
%)

darkness − no lighting 50 (2.12 
%)

41 (3.58 
%)

2 (3.85 
%)

Weather Condition ​ ​ ​
clear 1499 

(63.73 %)
500 
(43.62 %)

17 
(32.69 %)

cloudy 699 
(29.71 %)

402 
(35.08 %)

18 
(34.62 %)

adverse (snow/rain/fog) 154 (6.55 
%)

244 
(21.30 %)

17 
(32.69 %)

Crash Time ​ ​ ​
late night/early morning (00:00–05:59) 151 (6.42 

%)
101 (8.81 
%)

8 (15.38 
%)

morning commute hours (06:00–09:59) 502 
(21.34 %)

298 
(26.00 %)

15 
(28.85 %)

midday (10:00–14:59) 698 
(29.68 %)

299 
(26.09 %)

10 
(19.23 %)

afternoon commute hours (15:00–17:59) 594 
(25.25 %)

202 
(17.62 %)

9 (17.31 
%)

evening (18:00–20:59) 303 
(12.88 %)

142 
(12.39 %)

6 (11.54 
%)

night (21:00–23:59) 104 (4.42 
%)

104 (9.07 
%)

4 (7.69 
%)

Day of Week ​ ​ ​
weekday 1854 

(78.83 %)
903 
(78.80 %)

41 
(78.85 %)

weekend 498 
(21.17 %)

243 
(21.20 %)

11 
(21.15 %)

Season ​ ​ ​
spring 608 

(25.85 %)
298 
(25.96 %)

14 
(26.92 %)

summer 797 
(33.89 %)

401 
(34.98 %)

17 
(32.69 %)

autumn 595 
(25.30 %)

300 
(26.17 %)

13 
(25.00 %)

winter 352 
(14.97 %)

147 
(12.82 %)

8 (15.38 
%)

E-scooter Rider Sex ​ ​ ​
male 1701 

(72.38 %)
798 
(69.65 %)

35 
(67.31 %)

female 651 
(27.62 %)

348 
(30.35 %)

17 
(32.69 %)

E-scooter Rider Age ​ ​ ​

Table 2 (continued )

Explanatory Variables Slight 
Injury 

Serious 
Injury 

Fatal

n (%) n (%) n (%)

less than 35 1234 
(52.47 %)

626 
(54.62 %)

29 
(55.77 %)

35–45 768 
(32.65 %)

367 
(32.02 %)

18 
(34.62 %)

greater than 45 350 
(14.88 %)

153 
(13.35 %)

5 (9.62 
%)

Second Party Type ​ ​ ​
e-scooter only crash 545 

(23.17 %)
308 
(26.88 %)

0 (0.00 
%)

pedestrian 184 (7.82 
%)

46 (4.01 
%)

0 (0.00 
%)

bicycle 94 (4.00 
%)

21 (1.83 
%)

0 (0.00 
%)

motorcycle 103 (4.38 
%)

49 (4.28 
%)

8 (15.38 
%)

car/heavy vehicle 1426 
(60.63 %)

722 
(63.00 %)

44 
(84.62 %)

Manners of Collision with Vehicle ​ ​ ​
head-on 282 

(18.44 %)
103 
(13.36 %)

10 
(19.23 %)

side-impact with front of the e-scooter 338 
(22.11 %)

155 
(20.10 %)

7 (13.46 
%)

side-impact with front of the 2nd party 
vehicle

292 
(19.10 %)

149 
(19.33 %)

11 
(21.15 %)

sideswipe with opposite direction 126 (8.24 
%)

68 (8.82 
%)

11 
(21.15 %)

sideswipe with same direction 219 
(14.32 %)

61 (7.91 
%)

9 (17.31 
%)

rear-end with front end of the e-scooter 122 (7.98 
%)

111 
(14.40 %)

3 (5.77 
%)

rear-end with front end of the 2nd party 
vehicle

150 (9.81 
%)

124 
(16.08 %)

1 (1.92 
%)

A. Abdi and S. O’Hern                                                                                                                                                                                                                        



Accident Analysis and Prevention 215 (2025) 108018

7

4.1. Unsupervised Machine learning

In this research, the K-means++ algorithm, an enhanced version of 
K-means technique, is used. The advantage of using an unsupervised 
method is that there is no dependent variable, allowing for automatic 
searching for clusters in the dataset; this aligns with our objective of 
identifying built environment categories surrounding e-scooter crashes. 
To ensure each variable contributes proportionately to the clustering 
process, we first normalized the variables using the min–max technique. 
The mathematical formula for min–max normalization is as follows: 

xʹ =
x − min(x)

max(x) − min(x)
(1) 

In Eq. (1), x́  is the scaled value, and x is the actual value. The K-means 
algorithm clusters the data by separating observations into K groups of 
equal variance by minimizing a criterion known as the inertia or within- 
cluster sum-of square (Aggarwal and Reddy, 2018). The mathematical 
expression of the criterion is as follows (Shutaywi and Kachouie, 2021): 

D
(
{Ck}

K
k=1

)
=

∑K

k=1

∑

xi∈Ck

||xi − μk||
2 (2) 

Eq. (2) represents the total within-cluster variance or distortion, where 
Ck denotes k − th built environment cluster in the set of clusters k = {1, 2,
⋯,K}, xi represents the i − th individual data point (in this case, the built 
environment characteristics around the crash location), μk is the 
centroid (mean) of the k − th cluster, and ||.||2 is the squared Euclidean 
distance. K-means++, proposed by Arthur and Vassilvitskii (2007), 
follows the same criterion as K-means but overcomes two of its short
comings. Firstly, initiation in K-means++ is done by choosing well- 
separated centroids (μk) to possibly avoid falling into a local optimum. 
Secondly, compared with the previous algorithm, K-means++ requires 
fewer iterations to converge, resulting in reduced run time. In this paper, 
K-means++ clustering quality was evaluated using the Silhouette Score 
and the Davies-Bouldin (DB) Index, which are recommended measures 
for determining the appropriate number of clusters (Aggarwal and 
Reddy, 2018).

The Silhouette Score calculates the average similarity of data points 
within a cluster relative to their distance from data points in other 
clusters (Aggarwal and Reddy, 2018). The values range between − 1 and 
+ 1. A higher value is preferred as it signifies a better fit within its own 
cluster and a weaker association with neighbouring clusters. Mathe
matically, the Silhouette Score for the i − th individual data point (xi) in 
cluster πk is defined as follows (Shutaywi and Kachouie, 2021): 

SilhouetteScorei =
b(xi) − a(xi)

max(b(xi), a(xi))
(3) 

In Eq. (3), a(xi) is the average distance xi to all other elements in the 
cluster πk (within dissimilarity), and b(xi) represents the minimum 
average distance from the data point xi to all points in clusters other than 
its own cluster (between dissimilarity), which can be expressed as: 

b(xi) = minl∕=k(dl(xi)) (4) 

where dl(xi)) denotes the average distance between the data point xi and 
all points in the l − th cluster, and the minimum is taken over all clusters l 
that are not equal to k.

The Davies-Bouldin (DB) Index measures the ratio of within-cluster 
dispersion to between-cluster separation, with a lower value indi
cating better clustering quality (Davies and Bouldin, 1979). The DB 
Index is defined as follows: 

DB(C) =
1
K
∑K

k=1
max

k∕=l

{
Δ(Ck) + Δ(Cl)

δ(CkCl)

}

(5) 

Δ(Ck) is the intra-cluster distance for cluster k, representing the average 
distance between each point in the cluster and its centroid, thus 
measuring cluster compactness. Similarly, Δ(Cl) is the intra-cluster 
distance for cluster l. δ(CkCl) is the inter-cluster distance between the 
centroids of clusters k and l, measuring how well-separated the clusters 
are. In this study, the scikit-learn package, a Python package, is used for 
developing K-means++ clustering (Pedregosa, F. and Varoquaux, G. and 
Gramfort, A. and Michel et al., 2011).

4.2. Random parameter binary logit model

Given the binary variable outcome for severity considered in this 
study, we employed a random parameter binary logit model to investi

Table 3 
Descriptive Statistics of Built Environment Variables.

Built Environment Definition Mean (SD)

Land Use ​ ​
Share of Residential 

Land Use
Residential land use percentage in the 
crash buffer zone

38.57 % 
(9.73 %)

Share of Commercial 
Land Use

Commercial land use percentage in the 
crash buffer zone

18.36 % 
(7.52 %)

Share of Industrial 
Land Use

Industrial land use percentage in the crash 
buffer zone

4.21 % 
(3.68 %)

Share of Recreational 
Land Use

Recreational land use percentage in the 
crash buffer zone

11.49 % 
(5.12 %)

Share of Retail Land 
Use

Retail land use percentage in the crash 
buffer zone

13.76 % 
(5.84 %)

Share of Educational 
Land Use

Educational land use percentage in the 
crash buffer zone

9.28 % 
(4.37 %)

Entropy Index* ∑n
i=1pilogpi

logn
; pi: percentage of land use i, n: 

total number of the land uses in the crash 
buffer zone

0.45 (0.17)

Infrastructure and Road 
Network Density

​ ​

Density of 
Intersections

Number of intersections within the crash 
buffer zone divided by its area (km2)

32.36 
(19.71)

Density of Bike-lanes The summation of bike lane length (km) 
within the crash buffer zone divided by its 
area (km2)

2.06 (1.37)

Density of Sidewalks The summation of sidewalk length (km) 
within the crash buffer zone divided by its 
area (km2)

3.98 (1.50)

Motorway Density The summation of motorway road type 
length (km) within the crash buffer zone 
divided by its area (km2)

0.47 (0.28)

Trunk Density The summation of trunk road type length 
(km) within the crash buffer zone divided 
by its area (km2)

1.06 (0.55)

Primary Density The summation of primary road type 
length (km) within the crash buffer zone 
divided by its area (km2)

1.79 (0.63)

Secondary Density The summation of secondary road type 
length (km) within the crash buffer zone 
divided by its area (km2)

2.07 (0.87)

Tertiary Density The summation of tertiary road type length 
(km) within the crash buffer zone divided 
by its area (km2)

2.34 (1.24)

Residential Street 
Density

The summation of residential street road 
type length (km) within the crash buffer 
zone divided by its area (km2)

1.61 (0.76)

Accessibility and 
Amenities

​ ​

Distance to the City 
Centre

The distance between the crash location 
and the centre of the city using Haversine 
Formula (km) (GeeksforGeeks, 2022)

2.97 (1.37)

Bar/Cafe/Restaurant 
Density

Number of bar/cafe/restaurant within the 
crash buffer zone divided by its area (km2)

4.57 (3.71)

Density of Transit 
(Train/Bus) Stations

Number of transit stations within the crash 
buffer zone divided by its area (km2)

3.60 (2.08)

* Entropy ranges from 0 to 1, indicating land use diversity. Zero signifies a 
single use, while one reflects a balanced and varied distribution (Song et al., 
2013).
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gate crash severity, its influential factors, and to account for underlying 
unobserved heterogeneity in the dataset. For this purpose, the response 
variable for the i − th crash instance could be considered fatal or serious 
injury (Yi = 1) or slight injury (Yi = 0). Eq. (6) represents the general 
form of severity equation (Washington et al., 2020): 

Yi = βnXni + εni + ηni (6) 

where βn denotes the estimated parameter for n − th variable. Xni rep
resents n − th indicator variable for crash instance i. εni denotes the error 
term and assumed to follow a Gumbel distribution. ηni is the random 
parameter component with a mean of zero and a distribution that de
termines respective parameters. The probability function for crash 
severity is defined as Eq. (7) (Washington et al., 2020): 

Pr =
∫

expβnXni

∑
jexpβnXni

f(β|φ)dβ (7) 

Here, f(β|φ) is the density function of β, and φ is the vector of density 
parameters. the index of summation is j and is defined based on levels of 
severity. When β remains fixed, the equation represents a typical binary 
logit model. In this study, each estimated parameter was examined for 
randomness across observations to address unobserved heterogeneity. 
Variables with statistically significant mean and standard deviation 
values were treated as random across all crash instances. The inclusion 
of random parameters increases computational complexity in the nu
merical integration during maximum likelihood estimation (Train, 
2001). Therefore, maximum simulated likelihood estimation with Hal
ton draws is used to achieve accurate estimates (Halton, 1960; Train, 
2001).

The overall fit of the model is evaluated using the Pseudo-R-squared 
value, ρ2, as shown in Eq. (8). Higher values of ρ2 indicate a better fit of 
the model to the data. 

ρ2 = 1 − LL(β)/LL(0) (8) 

Here, LL(0) represents the log-likelihood of the null model, and LL(β)
denotes the log-likelihood of the converged model. The estimation of 
discrete outcome models in our work is conducted using the Pan
dasBiogeme package in Python (Bierlaire, 2020).

4.3. Marginal effects

Eq. (9) illustrates how marginal effects are calculated for the indi
cator variables. The marginal effect for an indicator variable is described 
as the change in the probability of a particular severity outcome when 
the indicator variable transitions from 0 to 1 (Washington et al., 2020). 

MPij
xijn = Pij

[
whenxijn = 1

]
− Pij

[
whenxijn = 0

]
(9) 

Pij represents the probability of severity outcome j for crash instance i, 
while xijn denotes the n –th indicator variable given severity level j and 
observation i. Eq. (9) determines the change in probability for each in
dividual crash observation. To obtain the overall marginal effect, the 
individual probabilities can be aggregated.

5. Results and discussion

This section presents the outcomes of the analysis of e-scooter 
crashes using the two-stage clustering and discrete outcome model. 
First, the clustering results are presented, along with a discussion of the 
identified built environment factors within each cluster. Subsequently, 
crash severity models are estimated specific to each cluster to discuss 
how crash characteristics differ across different environments.

5.1. Built environment clustering

Using the variables in Table 3, we first validated the appropriate 
buffer size through various clustering scenarios. To do so, we imple
mented the clustering algorithm on the crash-built environment sets, 
capturing crash surroundings with varying sizes from 25 m to 3000 m. 
As shown in Fig. 3 (a), the 250 m buffer size produces the most homo
geneous built environment clusters. Smaller buffer sizes result in more 
localised clustering of crash site environments as their buffers are likely 
to share fewer commonalities due to a lower chance of overlapping 
areas, as illustrated by the example of two crash points with 25 m buffers 
in Fig. 3 (b). Larger buffer sizes, on the other hand, create overly 
generalised clusters, decreasing dissimilarity between crash surround
ings as the overlapping area of buffers increases for the crash points 
(Fig. 3 (c)). Both extremes negatively impact clustering performance. 
Smaller buffers gradually reduce the similarity between crash points 
within clusters, whereas larger buffers decrease the dissimilarity be
tween clusters, which both ultimately leads to poorer overall perfor
mance measures (high Davies-Bouldin (DB) Index and a low Silhouette 
Score).

Having identified 250 m as the suitable buffer size for analysis, Fig. 4
illustrates the optimal number of clusters for this buffer based on the 
performance measures. K-means++ models with cluster counts ranging 
from 2 to 10 were evaluated. The Silhouette Score reached its maximum, 
and the DB Index its minimum, with four clusters. Additional optimal 
cluster counts were identified at 7 and 8 clusters, which performed well 
but were less well-separated than the four-cluster model due to lower 
performance metrics. Moreover, these extra clusters increased compu
tational costs because they required additional discrete outcome models 
to be estimated, while considerably smaller sample sizes made it 
infeasible to achieve reliable estimates using 7 or 8 segments of crash 
data (Naghizadeh and Metaxas, 2020; Ye and Lord, 2014). Conse
quently, the four-cluster model was selected.

Fig. 5 exemplifies the spatial distribution of crash locations in Lon
don as the major area where e-scooter incidents occur, both before and 
after clustering the built environment of crashes. Table 4 also summa
rises the distribution of the crash indicator variables across four clusters.

Fig. 6 presents the results of the optimal model with four clusters, 
using radar plots to compare values across clusters and heat maps to 
display the variables in three categories: land use factors (Fig. 6 (a)), 
infrastructure and road network density factors (Fig. 6 (b)), and acces
sibility and amenities factors (Fig. 6 (c)). Plot values are normalized 
between 0 and 1 to facilitate comparisons. Given that urban spaces are 
shaped by a mix of environmental factors; some clusters share similar
ities in some aspects. The built environment clusters are categorised 
based on notable distinctions as follows: car-centric and mixed-use 
zones (C1), commercial and industrial zones (C2), intersection-dense 
areas (C3), and residential and central areas (C4). A brief description 
of each built environment cluster is provided below:

Car-centric and Mixed-use Zones (C1): The first cluster contains 
sites with balanced densities of land use types. This land use composition 
resulted in the highest entropy index (0.89), which indicates a diverse 
range of activities. The infrastructure supports mixed modes of trans
portation with moderate densities of intersections (0.62), bike lanes 
(0.47), and sidewalks (0.65). This cluster has the second highest 
motorway density (0.63) and the highest primary streets (0.86) density, 
supporting vehicular traffic. Residential street density is moderate 
(0.50), balancing residential and other uses. The cluster represents areas 
that are moderately distant from the city centre (0.68). It has moderate 
densities of bars, cafes, restaurants (0.57), and transit stations (0.58).

Commercial and Industrial Zones (C2): Cluster two has high 
commercial (0.83) and industrial activities (0.92), with the lowest res
idential (0.20), recreational (0.16), educational (0.15), and retail (0.41) 
land uses. The unbalanced land use results in the lowest entropy index 
(0.54). This cluster shows the lowest densities of intersections (0.53), 
bike lanes (0.36), and sidewalks (0.39). Compared to other clusters, 
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motorway density is the highest (0.74), while trunk (0.61), primary 
(0.69), and secondary street densities (0.58) are moderate to high. 
Residential street density is low (0.27). Similarly, there are low densities 
of bars, cafes, restaurants (0.35), and transit stations (0.42), with the 
sites having the furthest distance from the city centre (0.83).

Intersection-Dense Areas (C3): This cluster features low residential 
land use (0.31), higher commercial (0.61) and industrial (0.43) activ
ities and moderate recreational (0.46) and educational (0.42) land uses. 

The land use mixture is reflected in the entropy index (0.66). These areas 
are distinguished by their high density of intersections (0.92). Bike lanes 
(0.68) and sidewalks (0.81) are higher, while motorway (0.25) and 
trunk density (0.36) are lower than in earlier clusters. The road network 
shows the highest density of primary (0.74) and secondary (0.81) roads, 
and tertiary street densities are also high (0.77). The residential street 
density is moderate (0.46), but higher than the first two clusters. The 
area is moderately distant from the city centre (0.54) with moderate to 

Fig. 3. (a) Selection of buffer size (b) Example of two crash points with a 25 m buffer (c) Example of two crash points with a 3000 m buffer.

Fig. 4. Silhouette Score and DB Index across cluster numbers.
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high densities of bars, cafes, restaurants (0.67), and transit stations 
(0.81).

Residential and Central Areas (C4): This cluster has the highest 
share of residential land use (0.91), with low shares of commercial 
(0.23) and industrial land use (0.17). Recreational land use is moderate 
(0.64); as are retail (0.58) and educational land use (0.52. The entropy 
index (0.78) indicates a relatively high diversity of land uses. High 
densities of intersections (0.81), bike lanes (0.76), and sidewalks (0.92), 
high scores for bars, cafes, restaurants (0.79), and transit stations (0.73) 
and low densities of motorways (0.11) and trunks (0.23) in this cluster 
suggest less focus on high-speed travel. However, the primary (0.53), 
secondary (0.71), and tertiary street densities (0.78) indicate a well- 
connected local network. The residential street density (0.81) re
inforces this clusters residential focus. This cluster contains data points 
with substantially the lowest distance from the city centre (0.35).

5.2. E-scooter crash severity analysis

After the identification of built environment types, we estimated a 
crash severity model for each cluster. First, we applied a range of fixed 
parameter binary logit models for the identified clusters and then 
developed them toward a random parameter model to quantify the 
impact of crash characteristics on severity level. In this process, we 
tested normal, log-normal, triangular, and uniform distributions for 
random parameters. The normal distribution provided the best statisti
cal fit for the random parameter density function, aligning with previous 
research findings (Gao and Zhang, 2024). Variables associated with t- 
statistics at or over a 90 % confidence level in a two-tailed t-test and for 
random parameters with significant standard deviations were kept for 
the final model specification.

As shown in Table 5, the comparison of model fit measures indicates 
slightly better performance of random parameter models over fixed 
parameter ones, which are presented as the optimal outputs of this 
research through Tables 6–9. Additionally, as presented in the last col
umn of Table 5, to validate the soundness of homogeneities within 
clusters in a way that significantly enhances modelling performance, we 
estimated a model on the dataset containing the crashes from four 
identified clusters and compared it with four separate models using the 
Likelihood Ratio (LR) test. The calculated statistic follows a χ2 distri
bution with degrees of freedom equal to the summation of the number of 
estimated parameters in all cluster-specific models minus the number of 
estimated parameters in the model that does not use clustering results. 
Results show statistically significant improvements when the data is 
segmented prior to severity analyses in both binary logit models with 

fixed and random parameters.

5.2.1. Car-centric and mixed-use zones
Table 6 shows that crashes on carriageways increase the probabilities 

of serious and fatal injury outcome by 0.261. Higher speeds are another 
dominant risk-increasing factor, increasing serious and fatal outcomes of 
riders by 0.252. The statistically significant standard deviation shows 
variance in how the factor influenced the outcome of severity. The 
findings are in line with Gao and Zhang (2024), who identified that e- 
scooter users are prone to severe crashes on carriageways and roads with 
higher speed limits, highlighting the need for e-scooters to operate in 
safe speed environments such as the measures proposed in Helsinki 
(Dibaj et al. 2024).

Adverse road conditions were found to significantly raise the likeli
hood of serious and fatal injuries 0.035. Similar to this finding, the role 
of surface condition in e-scooter safety research is noted by Ma et al. 
(2021), Stigson et al. (2021), and White et al. (2023). Adverse weather 
had a protective effect in this cluster. This might be a result of more 
cautious behaviour and decreasing speeds in adverse weather. Also, the 
discomfort of riding under such conditions might decrease the rate of 
usage. These findings align with Sun et al. (2024), who investigated 
negative relations between micro-mobility crash severity and adverse 
weather.

Temporal indicators, such as morning and afternoon peak hours and 
weekdays, were statistically significant in increasing the probability of 
severe crashes. Such results can be attributed to the mixed-use nature of 
crash sites in this cluster, which see high traffic volume and activity 
levels in these periods. Besides, the morning commute hours’ indicator 
was found to be a significant random parameter representing variation 
of this factor on the crash severity.

Regarding riders’ demographics, young riders were more prone to 
increased serious and fatal injuries than other age groups, with a sta
tistically significant standard deviation unveiling heterogeneity in this 
group. Females had reduced risk of serious and fatal injuries by 0.068, 
aligning with findings by Gao and Zhang (2024).

Rider collisions with cars and heavy vehicles raise the likelihood of a 
severe crash by 0.310. Side-impact collisions between e-scooters and the 
front of the second-party vehicle increase the likelihood of severe 
outcome by 0.267. Across all models in Tables 6-9, side-impact colli
sions are the most common significant collision type. In this regard, 
Pérez-Zuriaga et al. (2023) previously identified side impacts as an 
important collision type for e-scooter crashes, often resulting in more 
severe injuries than for bicycle riders. As seen in the literature review, 
Morrison et al. (2019) and Gao and Zhang (2024) highlight the 

Fig. 5. Spatial distribution of e-scooter crash locations in London (a) before and (b) after clustering.
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importance of separating infrastructure that is sharable by e-scooters 
and bicycles as a potential approach to reducing motor vehicle crashes.

5.2.2. Commercial and industrial zones
As shown in Table 7, like the first cluster, higher speed limits 

Table 4 
Summary of crash indicator variables by cluster.

Explanatory Variables C1 C2 C3 C4

n (%) n (%) n (%) n (%)

Road Type ​ ​ ​ ​
roundabout 13 (1.05 

%)
16 (2.62 
%)

98 (9.93 
%)

29 (4.09 
%)

one-way street 21 (1.69 
%)

10 (1.64 
%)

126 
(12.77 
%)

77 
(10.86 
%)

carriageway 1205 
(96.94 
%)

583 
(95.42 
%)

756 
(76.60 
%)

544 
(76.73 
%)

slip road 4 (0.32 
%)

2 (0.33 
%)

7 (0.71 
%)

59 (8.32 
%)

Speed Limit (mph) ​ ​ ​ ​
equal or less than 30 701 

(56.40 
%)

346 
(56.63 
%)

363 
(36.78 
%)

196 
(27.64 
%)

31–49 340 
(27.35 
%)

171 
(27.99 
%)

583 
(59.07 
%)

498 
(70.24 
%)

equal or greater than 50 202 
(16.25 
%)

94 
(15.38 
%)

41 (4.15 
%)

15 (2.12 
%)

Road Surface Condition ​ ​ ​ ​
adverse condition (road surface 

in a poor condition, e.g., being 
wet, snowy, flooded, oily, 
muddy, or frosted)

201 
(16.17 
%)

31 (5.07 
%)

111 
(11.25 
%)

45 (6.35 
%)

normal condition 1042 
(83.83 
%)

580 
(94.93 
%)

876 
(88.75 
%)

664 
(93.65 
%)

Light Condition ​ ​ ​ ​
daylight 818 

(65.81 
%)

409 
(66.94 
%)

650 
(65.86 
%)

459 
(64.74 
%)

darkness − lights lit 341 
(27.43 
%)

94 
(15.38 
%)

179 
(18.14 
%)

204 
(28.77 
%)

darkness − lights unlit 65 (5.23 
%)

83 
(13.58 
%)

121 
(12.26 
%)

34 (4.80 
%)

darkness − no lighting 19 (1.53 
%)

25 (4.09 
%)

37 (3.75 
%)

12 (1.69 
%)

Weather Condition ​ ​ ​ ​
clear 674 

(54.22 
%)

377 
(61.70 
%)

553 
(56.03 
%)

412 
(58.11 
%)

cloudy 402 
(32.34 
%)

156 
(25.53 
%)

336 
(34.04 
%)

225 
(31.73 
%)

adverse (snow/rain/fog) 167 
(13.44 
%)

78 
(12.77 
%)

98 (9.93 
%)

72 
(10.16 
%)

Crash Time ​ ​ ​ ​
late night/early morning 

(00:00–05:59)
80 (6.44 
%)

59 (9.66 
%)

77 (7.80 
%)

44 (6.21 
%)

morning commute hours 
(06:00–09:59)

291 
(23.41 
%)

102 
(16.69 
%)

214 
(21.68 
%)

208 
(29.34 
%)

midday (10:00–14:59) 356 
(28.64 
%)

204 
(33.39 
%)

292 
(29.58 
%)

155 
(21.86 
%)

afternoon commute hours 
(15:00–17:59)

283 
(22.77 
%)

105 
(17.18 
%)

206 
(20.87 
%)

211 
(29.76 
%)

evening (18:00–20:59) 156 
(12.55 
%)

103 
(16.86 
%)

137 
(13.88 
%)

55 (7.76 
%)

night (21:00–23:59) 77 (6.19 
%)

38 (6.22 
%)

61 (6.18 
%)

36 (5.08 
%)

Day of Week ​ ​ ​ ​
weekday 1021 

(82.14 
%)

524 
(85.76 
%)

732 
(74.16 
%)

521 
(73.48 
%)

Table 4 (continued )

Explanatory Variables C1 C2 C3 C4

n (%) n (%) n (%) n (%)

weekend 222 
(17.86 
%)

87 
(14.24 
%)

255 
(25.84 
%)

188 
(26.52 
%)

Season ​ ​ ​ ​
spring 336 

(27.03 
%)

150 
(24.55 
%)

231 
(23.40 
%)

203 
(28.63 
%)

summer 412 
(33.15 
%)

208 
(34.04 
%)

353 
(35.76 
%)

242 
(34.13 
%)

autumn 315 
(25.34 
%)

166 
(27.17 
%)

251 
(25.43 
%)

176 
(24.82 
%)

winter 180 
(14.48 
%)

87 
(14.24 
%)

152 
(15.40 % 
)

88 
(12.41 
%)

E-scooter Rider Sex ​ ​ ​ ​
male 848 

(68.22 
%)

420 
(68.74 
%)

710 
(71.94 
%)

556 
(78.42 
%)

female 395 
(31.78 % 
s)

191 
(31.26 
%)

277 
(28.06 
%)

153 
(21.58 
%)

E-scooter Rider Age ​ ​ ​ ​
less than 35 687 

(55.27 
%)

342 
(55.97 
%)

515 
(52.18 
%)

345 
(48.66 
%)

35–45 421 
(33.87 
%)

208 
(34.04 
%)

304 
(30.80 
%)

220 
(31.03 
%)

greater than 45 135 
(10.86 
%)

61 (9.98 
%)

168 
(17.02 
%)

144 
(20.31 
%)

Second Party Type ​ ​ ​ ​
e-scooter only crash 296 

(23.81 
%)

114 
(18.66 
%)

237 
(24.01 
%)

206 
(29.06 
%)

pedestrian 75 (6.03 
%)

33 (5.40 
%)

64 (6.48 
%)

58 (8.18 
%)

bicycle 33 (2.65 
%)

19 (3.11 
%)

34 (3.44 
%)

29 (4.09 
%)

motorcycle 61 (4.91 
%)

30 (4.91 
%)

44 (4.46 
%)

25 (3.53 
%)

car/heavy vehicle 778 
(62.59 
%)

415 
(67.92 
%)

608 
(61.60 
%)

391 
(55.15 
%)

Manners of Collision with Vehicle ​ ​ ​ ​
head-on 111 

(13.23 
%)

142 
(31.91 
%)

83 
(12.77 
%)

59 
(14.11 
%)

side-impact with front of the e- 
scooter

126 
(15.02 
%)

54 
(12.13 
%)

187 
(28.77 
%)

133 
(31.82 
%)

side-impact with front of the 2nd 
party vehicle

259 
(30.87 
%)

11 (2.47 
%)

109 
(16.77 
%)

73 
(17.46 
%)

sideswipe with opposite 
direction

75 (8.94 
%)

37 (8.31 
%)

55 (8.46 
%)

38 (9.09 
%)

sideswipe with same direction 101 
(12.04 
%)

63 
(14.16 
%)

89 
(13.69 
%)

36 (8.61 
%)

rear-end with front end of the e- 
scooter

88 
(10.49 
%)

41 (9.21 
%)

63 (9.69 
%)

44 
(10.53 
%)

rear-end with front end of the 
2nd party vehicle

79 (9.42 
%)

97 
(21.80 
%)

64 (9.85 
%)

35 (8.37 
%)
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Fig. 6. Radar plots and heat maps comparing cluster values for (a) land use, (b) infrastructure and road network density, and (c) accessibility and amenities at 
crash locations.
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significantly increased the probability of serious and fatal injuries. 
Another common significant risk factor is the indicator variable repre
senting collisions with cars and trucks, raising the likelihood of serious 
and fatal outcomes by 0.419. Despite the same direction of effect for the 
mentioned variables in clusters 1 and 2, the marginal effects are 
noticeably more pronounced here. This may be due to the increased 
presence of high-speed roads and low density of intersections, which 
could indicate higher vehicle speeds. While there have been some efforts 
to lower speeds in the UK, with campaigns for 20mph zones, more work 
is needed to create safer road environments for vulnerable road users 
(Ekmekci et al., 2024).

Other common significant factors between the first and second 
clusters include the indicator variable for carriageways, which increases 
the severe crash risk by 0.228, the inclement weather indicator being 
associated with a lower likelihood of severe crashes, the weekday in
dicator variable being associated with a 0.021 increase in the likelihood 
of fatal and serious injury crashes, and female riders and younger 

cohorts showing a lower and higher likelihood of sustaining serious or 
fatal injuries, respectively.

With respect to significant factors specific to the crash sites in this 
cluster, nighttime lighting, either riding in unlit or poorly lit conditions 
posed a significant risk. As a random parameter, it greatly increases the 
probability of serious and fatal injuries by 0.335. Similarly, Shah et al. 
(2021) emphasized that inadequate lighting on suburban roads is a high- 
risk factor for riders, and the provision of further street lighting could 
help to reduce this issue.

Three types of collisions were identified as risk factors: head-on, side- 
swipes, and rear-end collisions, with head-on collisions showing the 
highest rise in fatal and serious injury levels, increasing the likelihood by 
0.293, followed by side-swipes at 0.271. Another point worth noting is 
that compared to other clusters, this cluster has the highest number of 
significant collision types, which is possibly due to the dominance of 
vehicular traffic facilities, and further stresses the need for separate 
infrastructure in areas with high volumes of motor vehicle traffic.

Table 5 
Model comparison results.

Model ρ2
LR* = − 2

[
LL

(
βwithoutclustering

)
−
∑4

k=1
LL

(
βcluster(k)

) ]

C1 C2 C3 C4

Fixed parameter binary logit 0.188 0.189 0.193 0.165 (LR = 51.17) > ( χ2
0.99,27 = 46.96)

Random parameter binary logit 0.207 0.214 0.211 0.171 (LR = 65.15) > ( χ2
0.99,33 = 54.78)

*Note: The log-likelihood values of the cluster-specific models use the same variables and specifications as the model without clustering to ensure that differences in 
LL(β) values arise solely from the clustering of the data.

Table 6 
Estimated parameters and marginal effects for e-scooter crashes (built envi
ronment type: car-centric and mixed-use zones).

Variable Coefficient t- 
statistics

Marginal 
Effects 
(Serious 
Injury/ 
Fatal)

Constant − 1.64*** − 6.78

Road Type: carriageway 1.72*** 3.60
0.261

Speed Limit: greater than 50 mph 
(standard deviation of parameter 
distribution)

2.21** 

(4.87**)
2.29 
(2.11) 0.252

Road Surface Condition: adverse 0.32* 1.82
0.035

Weather Condition: adverse − 0.78* − 1.81
− 0.063

Crash Time: morning commute hours 
(standard deviation of parameter 
distribution)

1.08*** 

(1.83*)
3.29 
(1.71) 0.046

Crash Time: afternoon commute hours 0.56*** 2.94
0.061

Day of Week: weekday 0.49*** 2.63
0.032

Rider Age: less than 35 (standard 
deviation of parameter distribution)

2.33*** 

(4.11*)
2.73 
(1.88) 0.275

Rider Sex: female − 1.12* − 1.70
− 0.068

Second Party Type: car/heavy vehicle 1.72*** 4.37
0.310

Manner of Collision with Vehicle: 
side-impact with front of the 2nd 
party vehicle

1.26*** 4.90
0.267

Model Statistics ​ ​ ​ ​ ​
Number of observations 1243 ​ ​ ​ ​
LL(0) − 1134.672 ​ ​ ​ ​
LL(β) − 899.875 ​ ​ ​ ​
ρ2 0.207 ​ ​ ​ ​

***, ** and * represent 99%, 95%, and 90% confidence level, respectively.

Table 7 
Estimated parameters and marginal effects for e-scooter crashes (built envi
ronment type: commercial and industrial zones).

Variable Coefficient t- 
statistics

Marginal 
Effects 
(Serious 
Injury/ 
Fatal)

Constant − 1.38*** − 4.65

Road Type: carriageway 1.46*** 3.57
0.228

Speed Limit: greater than 50 mph 
(standard deviation of parameter 
distribution)

2.47*** 

(4.64**)
2.37 
(2.11) 0.405

Light Condition: darkness lights unlit/ 
no lighting (standard deviation of 
parameter distribution)

2.05** 

(3.23**)
2.01 
(2.40) 0.335

Weather Condition: adverse − 0.51* − 1.71
− 0.026

Day of Week: weekday 0.26** 2.32
0.021

Rider Age: less than 35 (standard 
deviation of parameter distribution)

2.17** 2.29
0.243

Rider Sex: female − 1.92** − 2.20
− 0.347

Second Party Type: car/heavy vehicle 3.45*** 3.14
0.419

Manner of Collision with Vehicle: 
head-on

1.62*** 3.85
0.293

Manner of Collision with Vehicle: 
sideswipe with same direction

1.55** 2.31
0.271

Manner of Collision with Vehicle: 
rear-end with front end of the 2nd 
party vehicle

0.66** 2.02
0.038

Model Statistics ​ ​ ​ ​ ​
Number of observations 611 ​ ​ ​ ​
LL(0) − 1346.891 ​ ​ ​ ​
LL(β) − 1059.238 ​ ​ ​ ​
ρ2 0.214 ​ ​ ​ ​

***, ** and * represent 99%, 95%, and 90% confidence level, respectively.
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5.2.3. Intersection-Dense areas
As presented in Table 8, side-impact collisions, including those 

involving the front of either an e-scooter or a motor vehicle, contribute 
highly to injury severity, with side-impacts involving the front of a 
motor vehicle having a higher probability of severe injuries. Lighting 
condition is also an important random parameter in this cluster, which 
shows that under unlit and poorly lit conditions, the probability of 
serious and fatal injuries increases by 0.241.

Speed limit is a significant random parameter with 30–50 mph roads, 
increasing the probability of serious and fatal outcomes by 0.162. 
Compared to severity analysis discussed for previous clusters, here, the 
speed limits with lower bounds are significant, and the marginal effects 
are relatively lower. This could be explained by the high density of in
tersections and low hierarchy roads compared to the first and second 
clusters, representing slower vehicular traffic.

Temporal indicators, namely morning and afternoon commute 
hours, were found to be significant, with marginal effects of − 0.039 and 
− 0.025, showing a decreasing effect on severe outcomes, in contrast to 
their direction of effect in the first cluster. This might be explained by 
the fact that locations with many intersections may experience more 
congestion and thus have lower vehicle speed making high-speed col
lisions between e-scooters and motor vehicles less probable, resulting in 
lower likelihood for high injury severity.

Finally, and consistent with earlier clusters, younger riders tend to 
have more severe outcomes. As shown by the statistically significant 
random parameter that increased the likelihood of serious and fatal 
injuries by 0.153. Again, in line with other clusters, collisions with cars 
and heavy vehicles are significant and increase the probability of serious 
and fatal injuries by 0.137.

5.2.4. Residential and central areas
As presented in Table 9, side-impact collisions were significant fac

tors for this cluster. The calculated marginal effects show that side- 
impacts with the front of the vehicle and the front of the e-scooter in
crease severe crash likelihood by 0.361 and 0.175, respectively.

In a similar pattern to the previous cluster, morning and afternoon 
peak hours reduce the likelihood of severe crashes by 0.118, and 0.109, 
respectively. This effect can be attributed to notable characteristics of 
this built environment type, such as high land use entropy, and the 
density of intersections, which can hinder fast vehicular flow during 
rush hours. Also, similar to the previous cluster, the 30–50 mph roads 
were shown to significantly increase severe outcomes by 0.164. The 
similarity in the significance of this variable between the third and 
fourth clusters, while the first two had shown greater than 50 mph roads 
as significant factors, can be rooted in their differences in built envi
ronment characteristics, as the first two were shown to include more 
fast-speed facilities on average.

Another temporal factor contributing to this cluster is the weekend 
indicator, which exhibits a significant standard deviation and marginal 
effects of 0.182 for serious and fatal outcomes. Similar findings on se
vere crashes happening over the weekends due to leisure activities and 
alcohol consumption are also reported in studies by Vernon et al. (2020)
and Stigson et al. (2021).

Similar to the previous models, collisions with cars and heavy ve
hicles are significant and increase the probability of serious and fatal 
injuries by 0.139. The younger rider indicator has also shown a signif
icant random parameter, raising the probabilities of serious and fatal 
outcomes by 0.194.

5.3. Comparative analysis of crash risk factors and interactions across 
and within clusters

This section provides a comparative analysis of crash risk factors and 
their relationships, both within and between the identified built envi
ronment clusters. By exploring these patterns in this manner, this part 
seeks to identify relationships between the severity of crashes and 

Table 8 
Estimated parameters and marginal effects for e-scooter crashes (built envi
ronment type: intersection-dense areas).

Variable Coefficient t- 
statistics

Marginal 
Effects 
(Serious 
Injury/ 
Fatal)

Constant − 1.15*** − 3.71

Speed Limit: 30–50 mph (standard 
deviation of parameter distribution)

1.12*** 

(4.43**)
2.78 
(2.15) 0.162

Road Surface Condition: adverse 0.51** 1.92
0.030

Light Condition: darkness lights unlit/ 
no lighting (standard deviation of 
parameter distribution)

1.70* 
(2.53*)

1.84 
(1.68) 0.241

Crash Time: morning commute hours − 0.83** − 2.23
− 0.039

Crash Time: afternoon commute hours − 0.59* − 1.76
− 0.025

Rider Age: less than 35 (standard 
deviation of parameter distribution)

1.05** 

(2.18*)
2.41 
(1.90) 0.153

Second Party Type: car/heavy vehicle 0.95** 2.26
0.137

Manner of Collision with Vehicle: 
side-impact with front of the e- 
scooter

1.18*** 3.81
0.182

Manner of Collision with Vehicle: 
side-impact with front of the 2nd 
party vehicle

2.19*** 3.10
0.342

Model Statistics ​ ​ ​ ​ ​
Number of observations 987 ​ ​ ​ ​
LL(0) − 987.534 ​ ​ ​ ​
LL(β) − 779.125 ​ ​ ​ ​
ρ2 0.211 ​ ​ ​ ​

***, ** and * represent 99%, 95%, and 90% confidence level, respectively.

Table 9 
Estimated parameters and marginal effects for e-scooter crashes (built envi
ronment type: residential and central areas).

Variable Coefficient t- 
statistics

Marginal 
Effects 
(Serious 
Injury/ 
Fatal)

Constant − 1.02*** − 4.51

Speed Limit: 30–50 mph (standard 
deviation of parameter 
distribution)

1.14*** 3.20
0.164

Crash Time: morning commute hours − 1.14** − 2.25
− 0.118

Crash Time: afternoon commute 
hours

− 0.95** − 2.06
− 0.109

Day of Week: weekend (standard 
deviation of parameter 
distribution)

1.19*** 

(3.14**)
2.83 
(2.44) 0.182

Rider Age: less than 35 (standard 
deviation of parameter 
distribution)

1.33*** 

(2.35***)
3.54 
(3.22) 0.194

Second Party Type: car/heavy vehicle 0.85* 1.72
0.139

Manner of Collision with Vehicle: 
side-impact with front of the e- 
scooter

1.10 *** 3.28
0.175

Manner of Collision with Vehicle: 
side-impact with front of the 2nd 
party vehicle

2.49*** 4.29
0.361

Model Statistics ​ ​ ​ ​ ​
Number of observations 709 ​ ​ ​ ​
LL(0) − 1256.782 ​ ​ ​ ​
LL(β) − 1041.325 ​ ​ ​ ​
ρ2 0.171 ​ ​ ​ ​

***, ** and * represent 99%, 95%, and 90% confidence level, respectively.
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contributing factors within and across the clusters. At the same time, it 
may also help to further justify the validity of the grouping of the crash 
environments performed prior to the analysis of crashes.

Across all clusters, certain indicators, such as speed limits, collisions 
with motor vehicles, and rider age, were reportedly identified as sig
nificant and consistently showed an increasing effect on crash severity. 
Assuming a built environment typology of crash locations as a system, 
such factors can act as shared principles within this system, demon
strating consistent impacts. That being said, despite showing the same 
direction of effect on severity levels, the magnitude of the coefficients is 
not uniform, which indicates the role of the built environment in causing 
differences in this aspect. For instance, in areas with a higher density of 
high-speed facilities (as seen in the first two clusters), speeds greater 
than 50 mph increase severity to a greater magnitude than in other 
areas. In contrast, in intersection-dense areas, speeds between 30–50 
mph act as a significant risk factor. This demonstrates that, while speed 
is a shared risk factor increasing severity, the built environment can 
adjust its magnitude depending on the context in which crashes occur. A 
similar interpretation applies to sociodemographic factors. As seen in 
this study, in car-centric locations (with a lower density of bike lanes) in 
the first cluster, the risk of severe injuries among younger riders esca
lates compared to other contexts, where marginal effects are lower. This, 
again, provides an example of how the built environment can shape the 
impact of risk factors.

In some cases, variables can even show more dissimilar patterns 
across built environments, losing their significance in some locations 
while retaining their role in others. For instance, the carriageway indi
cator variable is shown to be a significant factor, increasing the likeli
hood of severe crashes in the first two clusters while being insignificant 
in the others. This discrepancy may be explained by the clustering 
findings, which show that data points in the first two clusters have a 
higher density of vehicular facilities, particularly high-speed ones, and 
simultaneously a lower density of bike lanes. These infrastructural 
characteristics make e-scooter–motor vehicle frictions on carriageways 
more likely and severe than in areas that are more micromobility- 
friendly. Due to such infrastructural characteristics, various collision 
types like head-on, rear-end, and sideswipe crashes are shown to be 
significant in the second cluster, indicating a higher likelihood of 
vehicular interactions. In contrast, in the other clusters, interactions 
between motor vehicles and micromobility devices are primarily limited 
to side impacts, which are a frequent collision type at junctions where 
riders and drivers often meet even in the presence of divided micro
mobility lanes (as seen in the third cluster with a high density of 
junctions).

Another situation identified in our analysis, is when crash factors 
change their direction of effect on crash severity in different clusters. 

Morning and afternoon rush hours decreased the likelihood of serious 
and fatal crashes in the third and fourth clusters, while revealing an 
increasing effect in the first cluster. The answer to such a pattern lies in 
the characteristics of the environments. Areas with a higher density of 
intersections (third and fourth clusters) likely experience lower speeds 
and higher congestion during rush hours compared to the first cluster.

Fig. 7 gives a summary of the recognised patterns. These three 
possible situations and inferred patterns, within and across clusters, 
demonstrate how significantly the crash environment affects risk factors 
and emphasis the need for considering built environment types when 
addressing e-scooter crashes.

6. Conclusion and limitations

This paper identifies influential factors of e-scooter crash severity 
over different built environment types by integrating an unsupervised 
machine learning approach with random parameter binary logit models. 
The results are that car-centric areas and commercial/industrial areas 
have high risk of severe injury in higher speed zone environments and in 
collisions with motor vehicles. Central residential areas and areas with 
high densities of intersections show the same findings but with a lower 
magnitude of marginal effects compared to previous clusters. Moreover, 
the severe outcomes increase for the young riders, with car-centric and 
mixed-use locations found to be the most dangerous areas based on 
marginal effects.

Peak hours lower the likelihood of severe injuries in clusters repre
senting central areas as well as intersection-dense zones. However, the 
converse effect was seen for the cluster containing car-centric and 
mixed-use areas. Considering manner of collision, side-impacts are the 
most common significant collision type across identified clusters; how
ever, head-on collisions, which were shown to be significant in the 
commercial and industrial cluster, have the highest likelihood of serious 
and fatal outcomes.

Several limitations apply to this study. It is based on UK e-scooter 
crash data, which may limit the generalisability of the findings to set
tings outside of the UK and beyond areas where e-scooters currently 
operate. Furthermore, e-scooters have limited use in the UK, and except 
for some ongoing trials, they are not currently legal to operate on roads 
or footpaths. This may influence the characteristics of crashes, and the 
factors identified in this research may change if e-scooter legislation is 
relaxed and an increase in usage occurs.

Regarding the built environment, it is acknowledged that only select 
built environment factors have been considered in this study, which 
could be extended to include more variables. More importantly, aug
menting crash data with other sources could further enhance the anal
ysis, for example imagery data and computer vision could be utilised to 

Fig. 7. Summary of crash risk factor comparisons.
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extract further built environment characteristics at crash sites. None
theless, an increased number of factors could lead to high collinearity 
between potential factors and cause computational complexity in terms 
of clustering a high dimensional feature space. In this context, the 
application of dimensionality reduction techniques is proposed. Addi
tionally, this study does not address the modifiable aerial unit problem, 
which may introduce potential sensitivity in crash severity analyses 
related to the buffer area size used for extracting built environment 
factors. Future studies could systematically investigate the impact of 
buffer size on e-scooter safety.

The results of crash severity analysis in this research are dependent 
on the clustering outcome in the previous stage. Therefore, the choice of 
clustering algorithm and the number of clusters can considerably affect 
the outcomes. In this respect, K-means++, despite its popularity as a K- 
means-based technique, has some limitations, such as assuming clusters 
have a spherical shape in the feature space and being incapable of 
identifying noise data, as noted by Behara et al. (2021). This requires 
future work in the application of advanced techniques. Such algorithms, 
for instance, are Density-Based Spatial Clustering of Applications with 
Noise (DBSCAN) and Hierarchical Density-Based Spatial Clustering of 
Applications with Noise (HDBSCAN). These methods were not applied in 
this study due to sample size limitations, as they reduce the sample size 
used in the crash severity models by leaving some crashes unlabelled as 
noise, which requires larger samples for their application.

Finally, this research does not cover the longitudinal aspects of e- 
scooter safety. A future research avenue could consider temporal vari
ations in the built environment and e-scooter safety, as well as the 
linkage between usage patterns and crashes. The latter requires usage 
data provided by city managers or operators to be analysed in parallel 
with crash trends. As micromobility travel modes continue to evolve, it 
is necessary to keep examining their effects on urban traffic safety.

The raw dataset used in this study is based on data from the 
Department for Transport (DfT) (Department for Transport, 2024). The 
cleaned and processed dataset is available upon request by contacting 
the first author.
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