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 A B S T R A C T

Bank market power has far-reaching effects as, among other things, it affects the price of credit. Even though 
it is well-known that banks are spatially interdependent due to rival banks having branches in the same 
geographical areas, the literature on bank market power overlooks this. To measure market power spillovers, 
we set out an approach to calculate spill-in and spill-out Lerner indices for firms and their products. To 
account for the marked consolidation over the sample, we use unbalanced panel data comprising over 45,000 
observations for large commercial U.S. banks. From spatial stochastic frontier models, we obtain estimates of 
these indices (with and without adjustment for inefficiency spill-ins and spill-outs). We observe high spill-in 
Lerner indices for some banks, which is consistent with consolidation in the industry leading to concerns about 
bank market power. In line with larger agglomeration effects being conducive to higher spillovers, banks with 
high spillover Lerner indices tend to have branches in major cities.

1. Introduction

A firm has market power if it is able to raise its price to increase its 
profits. Other things unchanged, the higher price will reduce the output 
quantity the firm sells, which together will lower consumer benefit. 
Accordingly, the importance of measuring the market power of firms 
has long since been recognized. For banks, the implications of market 
power are far-reaching because, among other things, it affects the prices 
of credit to firms and individuals, which has a wider effect on the 
general business environment. In line with such key implications, there 
is a vast literature on measuring bank market power that covers a range 
of countries, e.g., European Monetary Union (EMU) countries (e.g., 
Maudos and De Guevara, 2007; Delis and Tsionas, 2009; Wang et al., 
2020; Coccorese et al., 2021), the United States (U.S.) (e.g., Shaffer 
and Spierdijk, 2020; Wang et al., 2022; Mi et al., 2024) and emerg-
ing countries (Semih Yildirim and Philippatos, 2007; Efthyvoulou and 
Yildirim, 2014; Danisman and Demirel, 2019), to name only a small 
selection of studies in this large literature. In the U.S. banking industry, 
consolidation has substantially reduced the number of banks, which has 
led to the largest banks having a much larger share of the industry’s 
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total assets. This consolidation has led to concerns about the market 
power of these banks, thereby underlining the practical relevance of 
our analysis. Accordingly, rather than analyze market power across the 
U.S. banking industry or across a key subset of U.S. banks, we focus 
on market power at the micro levels of individual large U.S. banks and 
their products.

It is well-known that banks are interdependent, which is due to, 
among other things, rival banks having branches in the same geograph-
ical areas. For individual banks and their multiple outputs, and using 
approaches that overlook the spatial interconnectedness between the 
banks, the extant literature estimates the usual own market power. 
However, by overlooking this interconnectedness these own market 
power estimates may be biased. This is because these estimates may be 
conflated with the market power spillovers pertaining to the omitted 
interconnectedness: namely, a bank’s asymmetric market power spill-
in and spill-out from and to the other sampled banks. To address this 
potential bias, we introduce the first method to estimate bank and 
product level market power spillovers. Moreover, as our method is 
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not specific to banks, subject to data availability, it can be applied to 
estimate these micro level market power spillovers in other industries.

We report bank and product level asymmetric market power spill-
ins and spill-outs with and without adjustment for the corresponding 
asymmetric inefficiency spillovers. We obtain and compute the in-
efficiency and market power spillovers from a fixed effects spatial 
stochastic frontier analysis (SSFA). This involves extending the non-
spatial fixed effects stochastic frontier analysis (SFA) in Chen et al. 
(2014) to the spatial setting by allowing the spatial lag of the dependent 
variable, i.e., the spatial autoregressive (SAR) variable, to impact the 
frontier (e.g., Glass et al., 2016; Jin and Lee, 2020; Lai and Tran, 
2022; Tran and Tsionas, 2023; Tran et al., 2023). Consequently, we do 
not account for the spatial dependence using the spatial lag of (i) the 
disturbance (e.g., Druska and Horrace, 2004; Orea and Álvarez, 2019; 
Hou et al., 2023; Skevas and Skevas, 2021); (ii) inefficiency (e.g., Orea 
and Álvarez, 2019; Skevas and Skevas, 2021; Hou et al., 2023; Fusco 
et al., 2024); or (iii) each 𝑥 regressor (e.g., Adetutu et al., 2015). 
This is because a model with the SAR variable yields the asymmetric 
indirect global (i.e., first, second, third, etc., order neighbor) spillovers 
of the 𝑥 variables, inefficiencies and noise that we need to calculate 
the asymmetric market power spill-ins and spill-outs.1 Our model and 
estimation procedure therefore add to the set of spatial frontier ap-
proaches in the regional literature (Ramajo et al., 2017; Ramajo and 
Hewings, 2018; Kutlu and Nair-Reichert, 2019; Algeri et al., 2022; Glass 
and Kenjegalieva, 2024). More generally, for a comprehensive coverage 
of the spatial frontier literature that documents its growth and extends 
beyond the regional literature, see Ayouba (2023).

In contrast to maximum likelihood estimation of a linear fixed 
effects model, the usual demeaning (i.e., within transformation) of the 
data to eliminate the fixed effects does not yield a tractable likelihood 
function for non-linear models, e.g., a stochastic frontier (Wang and Ho, 
2010). This has led to three ways of estimating a fixed effects stochastic 
frontier. The first is to retain the fixed effects dummy variables by not 
demeaning (Greene, 2005), but this may lead to inconsistent estimates 
due to the well-known incidental parameters problem (Neyman and 
Scott, 1948). The second involves modeling time-varying inefficiency 
as the product of the following: a particular function that depends 
on time-varying exogenous variables, and a time-invariant inefficiency 
term that has a truncated normal distribution (see Wang and Ho (2010), 
for details). By modeling inefficiency in this way, demeaning the data 
yields a tractable likelihood function. In the third way, as well as 
making the usual half-normal and normal distributional assumptions 
for the time-varying inefficiency and noise components of the error, the 
error term is also assumed to have a closed skew normal distribution 
(see Chen et al., 2014, for details). This modeling of the error term is a 
further way of obtaining a tractable likelihood function with demeaned 
data. Here we extend the more recent Chen et al. approach to the 

1 From a model with a spatial lag of noise or inefficiency, we only 
obtain asymmetric indirect global noise or inefficiency spillovers. Moreover, 
a spatial model with only spatial lags of the 𝑥 variables, i.e., the SLX model 
(Halleck Vega and Elhorst, 2015), yields only the impacts of the 𝑥 variables of 
a unit’s first order neighbors (i.e., unidirectional local spillovers in the inward 
direction). We also gave consideration to augmenting our SAR model with 
the spatial lags of the 𝑥 regressors, i.e., the spatial Durbin model. Whilst this 
model would yield the required asymmetric indirect global spillovers of the 
𝑥 variables, inefficiencies and noise, we did not pursue this model. This is 
because our SAR model is a more parsimonious specification, as the spatial 
Durbin model would involve including spatial lags of all the squares and 
interactions in our translog functions (cost, revenue and output distance). 
In addition, as we are primarily interested in the asymmetric market power 
spill-ins and spill-outs, our model follows a number of non-spatial and spatial 
stochastic frontiers that focus on the determinants of the frontier. For spatial 
stochastic frontiers that also include determinants of the variance or mean of 
inefficiency, see Gude et al. (2018), Kutlu et al. (2020) and Galli (2023a,?, 
2024)).

case of SAR dependence. Moreover, a further feature of our analysis 
is the unbalanced panel data.2 This is key for our analysis as the 
aforementioned consolidation in the U.S. banking industry relates to 
more than a 50% fall in the number of banks over our sample. Turning 
now to discuss in more detail the main focus of this paper: namely, the 
general methodology we introduce to quantify market power spillovers 
and the empirical analysis of these spillovers for large commercial U.S. 
banks.

We introduce bank and product level asymmetric spill-in and spill-
out Lerner indices. To put this contribution into context we first briefly 
consider the standard non-spatial product level Lerner index for a bank 
(e.g., Shaffer and Spierdijk, 2020; Wang et al., 2020; Mi et al., 2024). 

𝐿𝑘𝑖𝑡 =
𝑃𝑘𝑖𝑡 −𝑀𝐶𝑘𝑖𝑡

𝑃𝑘𝑖𝑡
=

𝑅𝑘𝑖𝑡
𝑄𝑘𝑖𝑡

−𝑀𝐶𝑘𝑖𝑡

𝑅𝑘𝑖𝑡
𝑄𝑘𝑖𝑡

< 1, (1)

where the banks, time periods and products which the banks offer 
are indexed 𝑖 ∈ 1,… , 𝑁 , 𝑡 ∈ 1,… , 𝑇 , and 𝑘 ∈ 1,… , 𝐾, respectively 
For product 𝑘 of bank 𝑖 in period 𝑡, 𝑃𝑘𝑖𝑡 is the output price, 𝑀𝐶𝑘𝑖𝑡 is 
marginal cost, 𝑄𝑘𝑖𝑡 is the output quantity and 𝑅𝑘𝑖𝑡 is revenue. For the 
single output case, when a firm has no market power 𝐿𝑖𝑡 is 0, but when 
a firm has some market power 0 < 𝐿𝑖𝑡 < 1. In the multiple output case 
𝑃𝑘𝑖𝑡−𝑀𝐶𝑘𝑖𝑡 ≥ 0 (and hence 𝐿𝑘𝑖𝑡 ≥ 0) is not guaranteed. 𝑃𝑘𝑖𝑡−𝑀𝐶𝑘𝑖𝑡 < 0

(and hence 𝐿𝑘𝑖𝑡 < 0) could be due to the optimal cross-subsidization of 
product 𝑘 by bank 𝑖, e.g., a bank may cross-subsidize some off-balance 
sheet activities by pricing them below 𝑀𝐶𝑖𝑘 to some existing customers 
that use other products (Shaffer and Spierdijk, 2020). Alternatively, 
𝑃𝑘𝑖𝑡 −𝑀𝐶𝑘𝑖𝑡 < 0 may not represent profit maximizing behavior due to 
the bank having a sub-optimal business strategy for product 𝑘. Frontier 
analysis caters for both possibilities as it allows for profit maximization 
or sub-optimal profits by not explicitly imposing the former.

Both types of non-spatial Lerner index reported in the literature 
can be obtained from Eq.  (1). One type involves an adjustment for 
inefficiency, while the other does not. To obtain the latter: (i) 𝑅𝑘𝑖𝑡 and 
𝑄𝑘𝑖𝑡 assume the bank lies on its revenue and output distance frontiers, 
respectively; and (ii) 𝑀𝐶𝑘𝑖𝑡 =

𝐶𝑖𝑡
𝑄𝑘𝑖𝑡

𝜕 ln𝐶𝑖𝑡
𝜕 ln𝑄𝑘𝑖𝑡

 (e.g., Shaffer and Spierdijk, 
2020) is calculated using 𝜕 ln𝐶𝑖𝑡

𝜕 ln𝑄𝑘𝑖𝑡
 from a fitted cost function and the 

data points 𝐶𝑖𝑡 and 𝑄𝑘𝑖𝑡, where 𝐶𝑖𝑡 is based on the bank being on its 
cost frontier. The other type of 𝐿𝑘𝑖𝑡 is calculated in a similar way and 
accounts for inefficiencies. This means that the numerator and denomi-
nator of 𝑅𝑘𝑖𝑡

𝑄𝑘𝑖𝑡
 are adjusted for revenue and output distance inefficiencies, 

and in the calculation of 𝑀𝐶𝑘𝑖𝑡, 𝐶𝑖𝑡 is adjusted for cost inefficiency.3 
For further details on adjusting Lerner indices for inefficiencies, see 
Section 2.2.

Our extension of the Lerner index to introduce asymmetric spill-in 
and spill-out indices is motivated by the index being a widely used 
measure of market power. In the banking literature, however, other 
measures of market power are also used. To further motivate our 
extension by, among other things, highlighting the practical reporting 
of banking Lerner indices by the World Bank, we briefly review in 
Appendix  A the three main measures of bank market power that 
were candidates for extension to the case of spill-ins and spill-outs. In 
terms of more general motivation of our analysis, to the best of our 
knowledge, Dix and Orzach (2023) is the only other study to consider 
market power spillovers. Their approach, however, differs from ours 
as they analyze within airline market power spillovers when an airline 
operates connecting flights. Their approach is also specific to an air-
line’s connecting flights, whereas our spatial approach can analyze the 

2 More generally, for unbalanced spatial panel data analysis that does not 
involve inefficiency measurement using spatial frontier methods, see Egger 
et al. (2005) and Baltagi et al. (2007, 2015)).

3 In the calculation of the inefficiency adjusted estimate of 𝑀𝐶𝑘𝑖𝑡, 𝑄𝑘𝑖𝑡 is 
not adjusted for output distance inefficiency. This is because 𝑄𝑘𝑖𝑡 is given in 
the estimation of the cost function.
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general case of market power spillovers between firms and/or different 
firms’ products.

The calculation of the bank and product level asymmetric spill-in 
and spill-out Lerner indices is a two-step process. In the first step we 
estimate spatial cost, alternative revenue and output distance stochastic 
frontier models. In the second step, we use these fitted models to 
calculate two types of asymmetric bidirectional spatial Lerner indices. 
The first type are overall indices and represent market power spill-
ins and spill-outs from and to all other banks. The second type are 
partitioned indices and measure the corresponding spill-ins and spill-
outs from and to 1st order, 2nd order, etc. neighbors. The partitioned 
indices are informative as they allow us to examine how the market 
power spill-ins and spill-outs die out across higher order neighborhood 
sets. As we discuss further in due course, computing the asymmetric 
spatial Lerner indices involves obtaining estimates of the unobserved 
price and marginal cost spill-ins and spill-outs for individual banks and 
their products. To obtain the estimates of the asymmetric bidirectional 
price spillovers, we obtain revenue and quantity spill-ins and spill-outs 
from the results for the spatial alternative revenue and output distance 
models. By applying the non-spatial approach in Shaffer and Spierdijk 
(2020) to our bank level spatial cost model, we obtain the marginal cost 
spill-in and spill-out for each output. We also report further overall and 
partitioned spatial Lerner indices that are adjusted for the overall and 
partitioned inefficiency spill-ins and spill-outs to and from a bank.

Bank interconnectedness is an important phenomenon as it under-
lies various systemic risks, e.g., bank run contagion. Accordingly, U.S. 
bank regulatory authorities dedicate a lot of resources to monitor dif-
ferent forms of this interconnectedness. Using over 45,000 observations 
for large commercial U.S. banks (1994:Q1 − 2022:Q4), we obtain esti-
mates of bank market power spillovers. The three key results for these 
spillovers, which we now preview, represent new information about the 
interconnectedness of U.S. banks. First, consistent with consolidation in 
the industry leading to concerns about the market power of the largest 
banks, a number of banks have relatively high spillover Lerner indices, 
e.g., two global systemically important banks (Bank of America and 
JPMorgan Chase). This finding suggests that overlooking bank market 
power spillovers may result in U.S. competition authorities understat-
ing the market power impact of a large bank merger. The implication 
being that overlooking these spillovers may lead to unexpectedly larger 
increases in the price of credit and, as a result, unexpectedly bigger 
negative impacts on the general business environment and household 
welfare. Therefore, from a policy perspective, we suggest that U.S. com-
petition authorities should account for such spillovers when assessing 
future large bank mergers.

Second, we report a bank level spill-in Lerner index for quintile 5
of the bank size distribution that is well below that for the pool of 
quintile 5 banks that are in 95% of the study period. This emphasizes 
the importance of unbalanced panel data for our empirical case as 
the lower market power spill-ins for the banks outside this pool are 
intuitive as they may have contributed to some of these banks dropping 
out the sample. Third, banks with both spill-in and spill-out Lerner 
indices that are in the top thirds of the estimates tend to have branches 
in major cities. This stands to reason as the bigger agglomeration effects 
in major cities will promote market power spillovers.

The remainder of this paper is organized as follows. Section 2 sets 
out the two-step empirical methodology. The first step is presented in 
2.1 and comprises three parts. (i) The SAR cost, alternative revenue 
and output distance stochastic frontiers. (ii) The approaches to spatially 
partition the asymmetric (spill-in and spill-out) indirect marginal ef-
fects and inefficiencies across 1st order, 2nd order, etc. neighborhood 
sets. The own coefficients and inefficiencies from the models represent 
the impacts on a single bank. However, a change in an explanatory 
variable and a particular bank’s inefficiency can potentially affect the 
dependent variables of all the other banks. The indirect marginal 
effects and inefficiencies account for this. (iii) How we use the above 
overall and partitioned indirect marginal effects and inefficiencies to 

construct the corresponding indirect translog functions. The second step 
is presented in 2.2 and focuses how we use these functions to obtain the 
(un)partitioned spill-in and spill-out Lerner indices. Section 3 presents 
the empirical analysis and Section 4 summarizes.

2. Modeling framework

2.1. Step 1: SAR stochastic frontiers, marginal effects and inefficiencies

We estimate SAR specifications of the cost, alternative revenue and 
output distance stochastic frontier models. In the standard revenue 
function, revenue is a function of input quantities and output prices, 
whereas in the alternative revenue function, revenue is a function of 
outputs and input prices. We use an alternative revenue function as 
it has well-established merits (e.g., Berger and Mester, 2003). Among 
other things: (i) it accounts for the constraints on a bank’s ability to 
change its output quantities in the short-run, which is captured by 
the inclusion of these quantities in the function; and (ii) there is less 
measurement error with an alternative revenue function as input prices 
are more accurately measured than output prices.

The SAR cost, alternative revenue and output distance stochastic 
frontier models are set out in Eqs.  (2)–(4), respectively, where in below 
three models all the variables are logged.

𝑐𝑖𝑡 = 𝛼 + 𝑇𝐿
(
𝑡, 𝑞𝑖𝑡, 𝑚𝑖𝑡

)
+ 𝑧𝑖𝑡𝛾

′ + 𝛿

𝑁𝑡∑
𝑗=1

𝑤𝑖𝑗𝑡𝑐𝑗𝑡 + 𝑏𝑡 + 𝑑𝑖 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡, (2)

𝑟𝑖𝑡 = 𝛼 + 𝑇𝐿
(
𝑡, 𝑞𝑖𝑡, 𝑚𝑖𝑡

)
+ 𝑧𝑖𝑡𝛾

′ + 𝛿

𝑁𝑡∑
𝑗=1

𝑤𝑖𝑗𝑡𝑟𝑗𝑡 + 𝑏𝑡 + 𝑑𝑖 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡, (3)

−𝑞𝑘𝑖𝑡 = 𝛼 + 𝑇𝐿
(
𝑡, 𝑞𝑖𝑡, 𝑠𝑖𝑡

)
+ 𝑧𝑖𝑡𝛾

′ + 𝛿

𝑁𝑡∑
𝑗=1

𝑤𝑖𝑗𝑡
(
−𝑞𝑘𝑗𝑡

)
+ 𝑏𝑡 + 𝑑𝑖 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡.

(4)

As we use the estimation results for Eqs.  (2)–(4) to calculate market 
power spillovers, we use matched unbalanced panel datasets for these 
models that comprise the same banks for the same time periods. The 
banks in period 𝑡 are indexed 𝑖, 𝑗 ∈ 1,… , 𝑁𝑡 where 𝑖 ≠ 𝑗. For the 𝑖𝑡ℎ
bank in period 𝑡, 𝑐𝑖𝑡, 𝑟𝑖𝑡 and 𝑞𝑘𝑖𝑡 are the cost, revenue and quantity of 
the 𝑘𝑡ℎ output, respectively. 𝑇𝐿 denotes the translog functional form, 
where 𝑚𝑖𝑡 is the vector of input prices, 𝑞𝑖𝑡 is the vector of 𝐾 −1 outputs 
and 𝑠𝑖𝑡 is the vector of input quantities. Some of the parameters to be 
estimated include the common intercept 𝛼, the coefficients in 𝑇𝐿, and 
the vector of coefficients (𝛾 ′) on the non-spatial environment variables 
(𝑧). The relationships between the dependent and independent vari-
ables collectively represent the frontier. Of the independent variables, 
only those in the 𝑇𝐿 function influence the monotonicity and curvature 
of the frontier. We, therefore, follow the efficiency and productivity 
literature and refer to the covariates outside 𝑇𝐿 as environmental 
variables as they shift the frontier up or down.∑𝑁𝑡

𝑗=1
𝑤𝑖𝑗𝑡𝑐𝑗𝑡, 

∑𝑁𝑡
𝑗=1

𝑤𝑖𝑗𝑡𝑟𝑗𝑡 and 
∑𝑁𝑡
𝑗=1

𝑤𝑖𝑗𝑡
(
−𝑞𝑘𝑗𝑡

) are observations of 
the SAR environmental variables. To construct these variables we use 
the exogenous, a priori specified, non-negative spatial weights (𝑤𝑖𝑗𝑡’s), 
which are collected in the 𝑁𝑡 × 𝑁𝑡 matrix 𝐖𝑡. 𝐖𝑡 represents which 
banks neighbor one another and the strength of the linkages between 
the banks, where all the elements on the main diagonal are set to 
zero to rule out self-influence. The feasible range of values of each 
SAR coefficient is 𝛿 ∈

(
1

min(ℎmin
1

,…,ℎmin
𝑇

)
, 1

max(ℎmax
1

,…,ℎmax
𝑇

)

)
, where ℎmin

𝑡

and ℎmax
𝑡  are the most negative and positive real characteristic roots 

of 𝐖𝑡. Note also that 𝐖𝑡 is normalized. See 3.1 for details of this 
normalization and the specification of 𝐖𝑡 for the empirical analysis, 
where the normalizing factor we use yields ℎmax

𝑡 = 1.
We account for the effects of time in Eqs.  (2)–(4) using time period 

effects (𝑏𝑡) and a non-linear time trend (as 𝑡, 𝑡2 and interactions with 𝑡
are part of 𝑇𝐿). By including time period effects to account for common 
shocks across the banks, due to, for example, systemic factors, we do 
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not conflate these shocks with the effect of the SAR variable. Given 
the non-linear time trend, which is a proxy for technical change, is 
estimated using data over the whole sample, 𝑏𝑡 captures a common 
departure from the time trend in a particular period.

In a stochastic frontier model the composed error is of particular 
interest, where here this error is 𝜀𝑖𝑡 = 𝑣𝑖𝑡 ± 𝑢𝑖𝑡. This comprises noise, 
𝑣𝑖𝑡 ∼ N(0, 𝜎2𝑣

)
, and inefficiency, which, as is common, is assumed to be 

half-normally distributed, 𝑢𝑖𝑡 ∼ N+
(
0, 𝜎2𝑢

)
. Note that 𝑢𝑖𝑡 has a positive 

(negative) sign in the cost (revenue) frontier model. This is because 
it measures how much a bank is above (below) its best practice cost 
(revenue) frontier. The output distance function (ODF) assumes that a 
bank is seeking to maximize multiple outputs using a given quantity of 
inputs. A bank’s shortfall, however, from its best practice ODF in Eq. 
(4)

(
𝑢𝑖𝑡

) has a positive sign, whereas in the single output stochastic 
production frontier model this sign is negative. This positive sign is 
because the negative 𝑘𝑡ℎ output is on the left-hand side of Eq.  (4).

To account for unobserved heterogeneity we use fixed effects (𝑑𝑖). 
Related to this, and as noted in the introductory section, we esti-
mate Eqs.  (2)–(4) by adapting the estimation procedure in Chen et al. 
(2014) to the case of SAR dependence. This involves drawing on their 
assumption that the composed error (𝜀𝑖𝑡

) has a closed skew normal 
distribution. For further discussion of this, see Appendix  B for the 
maximum likelihood procedure to estimate Eqs.  (2)–(4). To simplify 
the notation in the presentation of this estimation procedure, we set 
out this procedure for the SAR cost frontier in Eq.  (5). 

𝑐𝑖𝑡 = 𝛼 + 𝑥𝑖𝑡𝛽
′ + 𝛿

𝑁𝑡∑
𝑗=1

𝑤𝑖𝑗𝑡𝑐𝑗𝑡 + 𝑏𝑡 + 𝑑𝑖 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡. (5)

In Eq.  (5), the vector of observations 𝑧𝑖𝑡 and the observations for the 
variables in 𝑇𝐿 in Eq.  (2) are collected in 𝑥𝑖𝑡. 𝑥𝑖𝑡 relates to the 1 × 𝐴

vector of non-spatial regressors (indexed 𝑎 ∈ 1,… , 𝐴) and 𝛽′ is the 
associated 𝐴 × 1 vector of coefficients.

Whilst 𝛽𝑎 represents the own effect of a change in 𝑥𝑎𝑖𝑡 on the 𝑖𝑡ℎ
bank, this is not the marginal effect of this change. This is because this 
change will also affect other banks via the SAR variable. The direct, 
indirect and total effects account for how this spatial interaction influ-
ences the effect of 𝑥𝑎𝑖𝑡. Briefly turning to discuss these spatial effects 
as the asymmetric overall indirect spill-in and spill-out effects − and 
the partitioning of these effects into impacts pertaining to immediate 
neighbors, neighbors’ neighbors, etc.− are central to the method to 
obtain the spill-in and spill-out Lerner indices. The partitioned indirect 
Lerner indices therefore indicate the spatial extent of the propagation 
of the market power spillovers from a bank to other banks. The spatial 
effects relate to the data generating process (DGP) in Eq.  (6), which 
we obtain by stacking Eq.  (5) across successive cross-sections and 
rearranging. 
𝐜𝑡 =

(
𝐈𝑡 − 𝛿𝐖𝑡

)−1 (
𝛼𝜾𝑡 + 𝐗𝑡𝛽

′ + 𝐛𝑡 + 𝐝 + 𝐯𝑡 + 𝐮𝑡

)
, (6)

where 𝜾𝑡 is the 𝑁𝑡 × 1 vector of ones; bold lower case letters are 𝑁𝑡 × 1

vectors; 𝐗𝑡 denotes the 𝑁𝑡 × 𝐴 matrix; and 𝐈𝑡 is the 𝑁𝑡 × 𝑁𝑡 identity 
matrix.

We obtain the partitioned indirect effects from Eq.  (7). This involves 
expanding the spatial multiplier matrix, (𝐈𝑡 − 𝛿𝐖𝑡

)−1
, in Eq.  (6) to give 

the series that premultiplies on the right-hand side of Eq.  (7). We then 
differentiate the new form of Eq.  (6) with respect to 𝐱𝑎𝑡 (i.e., the 𝑎𝑡ℎ
column of 𝐗𝑡) to obtain Eq.  (7).
⎡⎢⎢⎢⎣

𝜕𝑐1
𝜕𝑥𝑎,1

⋯
𝜕𝑐1
𝜕𝑥𝑎,𝑁

⋮ ⋱ ⋮

𝜕𝑐𝑁
𝜕𝑥𝑎,1

⋯
𝜕𝑐𝑁
𝜕𝑥𝑎,𝑁

⎤⎥⎥⎥⎦
𝑡

=
(
𝐈𝑡 + 𝛿𝐖𝑡 + 𝛿

2
𝐖

2
𝑡 + 𝛿

3
𝐖

3
𝑡 +⋯ .

) ⎡⎢⎢⎣

𝛽𝑎 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ 𝛽𝑎

⎤⎥⎥⎦
. (7)

Multiplying each matrix in 𝐈𝑡 + 𝛿𝐖𝑡 + ⋯ by the 𝑁𝑡 × 𝑁𝑡 matrix 
𝐃𝑡=diag

(
𝛽𝑎
) yields the partitioned effects of 𝐱𝑎 for the following orders 

of 𝐖𝑡. 𝐈𝑡𝐖0
𝑡𝐃𝑡 = 𝐈𝑡𝐃𝑡: the main diagonal of 𝐈𝑡𝐃𝑡 comprises direct effects 

for the 𝑖𝑡ℎ bank that are net of the impacts of the spatial interaction 
(i.e., the usual own effects), where the off-diagonal elements are zero. 
𝛿𝐖1

𝑡𝐃𝑡: the off-diagonal elements of 𝛿𝐖𝑡𝐃𝑡 represent indirect effects 
that relate to the banks’ 1st order (i.e., immediate) neighborhood sets, 
where the main diagonal elements are zero. 𝛿2𝐖2

𝑡𝐃𝑡, 𝛿3𝐖3
𝑡𝐃𝑡, etc: the 

main diagonal elements of these matrices represent further components 
of the overall direct effects that rebound to the 𝑖𝑡ℎ bank from its 1st 
order, 2nd order, etc. neighbors (i.e., feedback, which in practice is 
typically small). The off-diagonal elements of these matrices represent 
indirect effects that relate to the banks’ 2nd order, 3rd order, etc. 
neighborhood sets.

If we do not expand (𝐈𝑡 − 𝛿𝐖𝑡

)−1
, the right-hand side of Eq.  (7) 

yields a matrix product comprising overall direct and indirect effects 
on the main and off diagonals. For ease we report means of the 
direct and (un)partitioned indirect effects across the banks and time 
periods. Summing the (un)partitioned direct and indirect effects yields 
the corresponding total effects. For period 𝑡, these indirect effects are 
the mean column and row sums of the off-diagonal elements of the 
relevant matrix. When there is a change in 𝑥𝑎, the former sum quantifies 
the mean spill-out from a bank to all the other relevant banks, while the 
latter sum quantifies the mean spill-in to a bank from these other banks. 
Whereas the sample mean spill-out and spill-in effects are symmetric, 
using the column and row sums of the off-diagonal elements in the rel-
evant matrix for an individual bank (or the mean of these sums for any 
subset of the banks in the sample), we obtain asymmetric indirect spill-
out and spill-in effects. The statistical inference for the direct, indirect 
and total coefficients is via simulation. For this, from the variance–
covariance matrix we draw 200 Halton sequences of parameter values, 
with each value having a random component drawn from N(0, 1).

The decomposition on the right-hand side of Eq.  (8a) yields the un-
partitioned direct (𝐷𝑖𝑟) and pairwise indirect (𝐼𝑛𝑑) inefficiencies (e.g., 
Kutlu, 2018). By summing the pairwise 𝐼𝑛𝑑 elements horizontally and 
vertically, we obtain the asymmetric unpartitioned indirect inefficiency 
spill-in and spill-out to and from a bank. By expanding (𝐈𝑡 − 𝛿𝐖𝑡

)−1
in Eq.  (8a), we obtain the partitioned decomposition of the direct and 
pairwise indirect inefficiencies in Eq.  (8b) for orders of 𝐖𝑡, where for 
simplicity we drop the 𝐷𝑖𝑟 and 𝐼𝑛𝑑 superscripts. For 𝐖1

𝑡 , 𝐖2
𝑡 , etc. the 

pairwise indirect inefficiencies are summed horizontally and vertically. 
These partitioned 𝐼𝑛𝑑 inefficiencies are also central to the method for 
the partitioned indirect Lerner indices to measure the spatial extent of 
the propagation of market power spillovers. 

(
𝐈𝑡 − 𝛿𝐖𝑡

)−1 ⎛⎜⎜⎝

𝑢1
⋮

𝑢𝑁

⎞⎟⎟⎠
𝑡

=

⎛⎜⎜⎝

𝑢𝐷𝑖𝑟
11

+ ⋯ +𝑢𝐼𝑛𝑑
1𝑁

⋮ ⋱ ⋮

𝑢𝐼𝑛𝑑
𝑁1

+ ⋯ +𝑢𝐷𝑖𝑟
𝑁𝑁

⎞⎟⎟⎠
𝑡

(8a)

=

⎛⎜⎜⎝

𝑢11+ ⋯ +0

⋮ ⋱ ⋮

0+ ⋯ +𝑢𝑁𝑁

⎞⎟⎟⎠
𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐖

0
𝑡

+

⎛⎜⎜⎝

0+ ⋯ +𝑢1𝑁
⋮ ⋱ ⋮

𝑢𝑁1+ ⋯ +0

⎞⎟⎟⎠
𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐖

1
𝑡

+

⎛
⎜⎜⎝

𝑢11+ ⋯ +𝑢1𝑁
⋮ ⋱ ⋮

𝑢1𝑁+ ⋯ +𝑢𝑁𝑁

⎞
⎟⎟⎠
𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐖

2
𝑡

+⋯

(8b)

Using the direct and (un)partitioned asymmetric indirect (spill-
in and spill-out) measures of the inefficiencies, time period effects, 
errors and coefficients, and the non-spatial independent variables these 
coefficients pre-multiply, it follows from the DGP in Eq.  (6) that we 
can construct direct and (un)partitioned asymmetric indirect functions. 
Note that these functions are constructed, and are not regressions, as 
the dependent variables are not observed. To obtain the direct and 
(un)partitioned asymmetric indirect time period effects and errors, we 
follow the method to obtain the corresponding inefficiencies.
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To illustrate, in Eqs.  (9)–(11) we present the forms of the functions 
for direct cost (𝑐𝐷𝑖𝑟𝑖𝑡

) and the two asymmetric (un)partitioned indirect 
costs 

(
𝑐𝐼𝑛𝑑
𝐼𝑛,𝑖𝑡

 and 𝑐𝐼𝑛𝑑
𝑂𝑢𝑡,𝑖𝑡

)
. We emphasize that Eqs.  (9)–(11) are con-

structed, and are not regressions, as we do not observe the dependent 
variables. We, therefore, use the right-hand sides of these equations to 
obtain predictions of 𝑐𝐷𝑖𝑟𝑖𝑡 , 𝑐𝐼𝑛𝑑

𝐼𝑛,𝑖𝑡
 and 𝑐𝐼𝑛𝑑

𝑂𝑢𝑡,𝑖𝑡
. Note that for simplicity in 

Eqs.  (9)–(11), we drop the notation used in Appendix  B for the within 
transformation of the variables. Additionally, in the indirect functions, 
the partitioned and unpartitioned indirect spill-in and spill-out coef-
ficients pre-multiply the same non-spatial variables, so for simplicity 
in Eqs.  (10) and (11) we do not distinguish between unpartitioned 
and partitioned parameters, inefficiencies and errors. Unlike a SAR 
stochastic frontier model (e.g.,  Eq.  (2)), the direct and (un)partitioned 
indirect functions do not contain any spatial variables. This is because 
these spatial impacts are accounted for in the computation of the direct 
and (un)partitioned indirect parameters, inefficiencies and errors.

𝑐𝐷𝑖𝑟𝑖𝑡 = 𝜃𝐷𝑖𝑟𝑖 𝑡 +
1

2
𝜉𝐷𝑖𝑟𝑖 𝑡2 + 𝜅𝐷𝑖𝑟𝑖 𝑞′𝑖𝑡 + 𝜓

𝐷𝑖𝑟
𝑖 𝑚′

𝑖𝑡 +
1

2
𝑞′𝑖𝑡𝛤

𝐷𝑖𝑟
𝑖 𝑞𝑖𝑡 +

1

2
𝑚′
𝑖𝑡𝛶

𝐷𝑖𝑟
𝑖 𝑚𝑖𝑡+

𝑞′𝑖𝑡𝛹
𝐷𝑖𝑟
𝑖 𝑚𝑖𝑡 + 𝜍

𝐷𝑖𝑟
𝑖 𝑞′𝑖𝑡𝑡 + 𝜌

𝐷𝑖𝑟
𝑖 𝑚′

𝑖𝑡𝑡 + 𝜁
𝐷𝑖𝑟
𝑖 𝑧′𝑖𝑡 + 𝑏

𝐷𝑖𝑟
𝑡 + 𝑣𝐷𝑖𝑟𝑖𝑡 + 𝑢𝐷𝑖𝑟𝑖𝑡 , (9)

𝑐𝐼𝑛𝑑𝐼𝑛,𝑖𝑡 = 𝜃𝐼𝑛𝑑𝐼𝑛,𝑖 𝑡 +
1

2
𝜉𝐼𝑛𝑑𝐼𝑛,𝑖 𝑡

2 + 𝜅𝐼𝑛𝑑𝐼𝑛,𝑖 𝑞
′
𝑖𝑡 + 𝜓

𝐼𝑛𝑑
𝐼𝑛,𝑖𝑚

′
𝑖𝑡 +

1

2
𝑞′𝑖𝑡𝛤

𝐼𝑛𝑑
𝐼𝑛,𝑖 𝑞𝑖𝑡

+
1

2
𝑚′
𝑖𝑡𝛶

𝐼𝑛𝑑
𝐼𝑛,𝑖 𝑚𝑖𝑡+

𝑞′𝑖𝑡𝛹
𝐼𝑛𝑑
𝐼𝑛,𝑖𝑚𝑖𝑡 + 𝜍

𝐼𝑛𝑑
𝐼𝑛,𝑖 𝑞

′
𝑖𝑡𝑡 + 𝜌

𝐼𝑛𝑑
𝐼𝑛,𝑖𝑚

′
𝑖𝑡𝑡 + 𝜁

𝐼𝑛𝑑
𝐼𝑛,𝑖 𝑧

′
𝑖𝑡 + 𝑏

𝐼𝑛𝑑
𝐼𝑛,𝑡 + 𝑣

𝐼𝑛𝑑
𝐼𝑛,𝑖𝑡 + 𝑢

𝐼𝑛𝑑
𝐼𝑛,𝑖𝑡, (10)

𝑐𝐼𝑛𝑑𝑂𝑢𝑡,𝑖𝑡 = 𝜃𝐼𝑛𝑑𝑂𝑢𝑡,𝑖𝑡 +
1

2
𝜉𝐼𝑛𝑑𝑂𝑢𝑡,𝑖𝑡

2 + 𝜅𝐼𝑛𝑑𝑂𝑢𝑡,𝑖𝑞
′
𝑖𝑡 + 𝜓

𝐼𝑛𝑑
𝑂𝑢𝑡,𝑖𝑚

′
𝑖𝑡

+
1

2
𝑞′𝑖𝑡𝛤

𝐼𝑛𝑑
𝑂𝑢𝑡,𝑖𝑞𝑖𝑡 +

1

2
𝑚′
𝑖𝑡𝛶

𝐼𝑛𝑑
𝑂𝑢𝑡,𝑖𝑚+

𝑞′𝑖𝑡𝛹
𝐼𝑛𝑑
𝑂𝑢𝑡,𝑖𝑚𝑖𝑡 + 𝜍

𝐼𝑛𝑑
𝑂𝑢𝑡,𝑖𝑞

′
𝑖𝑡𝑡 + 𝜌

𝐼𝑛𝑑
𝑂𝑢𝑡,𝑖𝑚

′
𝑖𝑡𝑡 + 𝜁

𝐼𝑛𝑑
𝑂𝑢𝑡,𝑖𝑧

′
𝑖𝑡 + 𝑏

𝐼𝑛𝑑
𝑂𝑢𝑡,𝑡 + 𝑣

𝐼𝑛𝑑
𝑂𝑢𝑡,𝑖𝑡 + 𝑢

𝐼𝑛𝑑
𝑂𝑢𝑡,𝑖𝑡.

(11)
In Eqs.  (9)–(11), 𝜃𝐷𝑖𝑟𝑖 𝑡 + ⋯ + 𝜌𝐷𝑖𝑟𝑖 𝑚′

𝑖𝑡𝑡, 𝜃𝐼𝑛𝑑𝐼𝑛,𝑖
𝑡 + ⋯ + 𝜌𝐼𝑛𝑑

𝐼𝑛,𝑖
𝑚′
𝑖𝑡𝑡 and 

𝜃𝐼𝑛𝑑
𝑂𝑢𝑡,𝑖

𝑡 + ⋯ + 𝜌𝐼𝑛𝑑
𝑂𝑢𝑡,𝑖

𝑚′
𝑖𝑡𝑡 are the direct and indirect spill-in and spill-

out translog functions that correspond to the own 𝑇𝐿 (
𝑡, 𝑞𝑖𝑡, 𝑚𝑖𝑡

) in Eq. 
(2). Moreover, in Eqs.  (9)–(11) a direct parameter is denoted by the 
superscript 𝐷𝑖𝑟 and a indirect spill-in (spill-out) parameter is denoted 
by the superscript 𝐼𝑛𝑑 and subscript 𝐼𝑛 (𝑂𝑢𝑡). Vectors of direct and 
indirect spill-in and spill-out parameters pre-multiply vectors denoted 
by ′. 𝛤 , 𝛶  and 𝛹 are used to denote matrices of direct and indirect spill-
in and spill-out coefficients on the interactions and squared terms that 
relate to the outputs and input prices. We also distinguish the vector 
of own parameters 𝛾 ′ on 𝑧𝑖𝑡 in Eq.  (2) from the vectors of direct and 
indirect spill-in and spill-out parameters on this variable by using 𝜁 to 
denote these parameters in Eqs.  (9)–(11). We next in 2.2 turn to discuss 
how we use Eqs.  (9)–(11) to obtain the (direct-own and (un)partitioned 
asymmetric indirect) Lerner indices.

2.2. Step 2: Measuring market power spill-ins and spill-outs

Computing Lerner indices for banks has involved using average 
revenues at different levels of disaggregation as measures of the prices 
of a bank’s aggregated and disaggregated outputs. Shaffer and Spierdijk 
(2020) classify the large non-spatial Lerner index banking literature 
into three groups. The first group reports an aggregate Lerner index 
for each bank, where in many studies in this group this index is based 
on an aggregate average revenue measure that uses a bank’s total 
assets as a proxy for its aggregate output. The second group reports a 
disaggregated Lerner index for each bank output and the third reports 
a weighted average of these disaggregated indices for each bank. Our 
study extends the second and third groups, where we first set out 
how we calculate the asymmetric (un)partitioned spill-in and spill-out 
Lerner indices for individual outputs. At the end of this subsection 
when we pull together the different parts of the exposition, we discuss 
how we obtain a weighted average of the spill-in (spill-out) indices 
across a bank’s outputs. In short, this involves applying the approach 

for consistent aggregation of non-spatial Lerner indices (Shaffer and 
Spierdijk, 2020).

In the empirical analysis, to assess the impact on the results, we 
report (un)partitioned spill-in and spill-out Lerner indices with and 
without inefficiency adjustments. As we discuss in detail further in 
this subsection, our extension to compute market power spill-ins and 
spill-outs requires a number of (un)partitioned spill-in and spill-out 
measures, which are unobserved and must, therefore, be predicted 
(with and without adjustment for inefficiency). The approach to obtain 
the Lerner index for partitioned market power spill-ins and spill-outs 
is the same as for the corresponding unpartitioned index. We do not 
therefore distinguish between an unpartitioned/partitioned index in the 
below method. We present this method in terms of the spill-in Lerner 
index, 𝐿𝐼𝑛𝑑

𝐼𝑛,𝑘𝑖𝑡
, which we calculate using Eq.  (12). Note that whilst we 

focus on market power spill-ins and spill-outs, our modeling framework 
is entirely consistent with the non-spatial Lerner index. This is because 
our approach also yields the direct Lerner index (𝐿𝐷𝑖𝑟

𝑘𝑖𝑡
) measure of a 

bank’s own market power, where 𝐿𝐷𝑖𝑟
𝑘𝑖𝑡

 is calculated in the same type 
of way as 𝐿𝐼𝑛𝑑

𝐼𝑛,𝑘𝑖𝑡
. Accordingly, 𝐿𝐷𝑖𝑟

𝑘𝑖𝑡
 is < 1 as all the above standard 

coverage in the introductory section of the non-spatial Lerner index (Eq. 
(1)) applies. 

𝐿𝐼𝑛𝑑𝐼𝑛,𝑘𝑖𝑡 =

𝑅𝐼𝑛𝑑
𝐼𝑛,𝑘𝑖𝑡

𝑄𝐼𝑛𝑑
𝐼𝑛,𝑘𝑖𝑡

−𝑀𝐶𝐼𝑛𝑑
𝐼𝑛,𝑘𝑖𝑡

𝑅𝐼𝑛𝑑
𝐼𝑛,𝑘𝑖𝑡

𝑄𝐼𝑛𝑑
𝐼𝑛,𝑘𝑖𝑡

, (12)

𝑀𝐶𝐼𝑛𝑑𝐼𝑛,𝑘𝑖𝑡 =
𝐶𝐼𝑛𝑑
𝐼𝑛,𝑖𝑡

𝑄𝐼𝑛𝑑
𝐼𝑛,𝑘𝑖𝑡

𝜕𝑐𝐼𝑛𝑑
𝐼𝑛,𝑖𝑡

𝜕𝑞𝑘𝑖𝑡
. (13)

Compared to the simple standard own case of {𝑅𝑘𝑖𝑡, 𝑄𝑘𝑖𝑡,𝑀𝐶𝑘𝑖𝑡
}
> 0

and 𝐿𝑘𝑖𝑡 < 1 (and using the corresponding terminology from our mod-
eling framework {𝑅𝐷𝑖𝑟

𝑘𝑖𝑡
, 𝑄𝐷𝑖𝑟

𝑘𝑖𝑡
,𝑀𝐶𝐷𝑖𝑟

𝑘𝑖𝑡

}
> 0 and 𝐿𝐷𝑖𝑟

𝑘𝑖𝑡
< 1), consideration 

of spillovers leads to a larger set of possible values of 𝐿𝐼𝑛𝑑
𝐼𝑛,𝑘𝑖𝑡

≶ 0. 
Note that due to our interest in spillovers, we overlook the case of no 
market power spill-ins (𝐿𝐼𝑛𝑑

𝐼𝑛,𝑘𝑖𝑡
= 0). 𝐿𝐼𝑛𝑑

𝐼𝑛,𝑘𝑖𝑡
≶ 0 is due to the larger 

set of possible values of 
{
𝑅𝐼𝑛𝑑
𝐼𝑛,𝑘𝑖𝑡

, 𝑄𝐼𝑛𝑑
𝐼𝑛,𝑘𝑖𝑡

,𝑀𝐶𝐼𝑛𝑑
𝐼𝑛,𝑘𝑖𝑡

}
≶ 0, where here 

we again overlook a zero value for any of these three spill-ins. When 
such a spill-in is positive, this means that the variable for the 𝑖𝑡ℎ bank 
tends to move in the same direction as the corresponding variable of 
other spatial interdependent banks. Applying reasoning from the spatial 
literature, this positive spatial correlation is consistent with banks being 
impacted by common economic phenomena at different spatial scales, 
such as industrywide regulation, the Federal Open Market Committee’s 
(FOMC’s) setting of the federal funds rate, market conditions, and 
headline changes in economies at the city, state, regional and national 
levels. Conversely, when any of the aforementioned three spill-ins are 
negative, this means that the variable for the 𝑖𝑡ℎ bank tends to move in 
the opposite direction to the corresponding variable of other spatially 
interdependent banks. In the spatial literature, this negative spatial 
correlation is attributed to the effects of spatial competition. Note 
though that whilst 𝐿𝐼𝑛𝑑

𝐼𝑛,𝑘𝑖𝑡
≶ 0 represents a larger set of possible values, 

we will see in the empirical results that there are some clear and 
plausible patterns in the market power spillovers.

As we do not observe the spill-in measures on the right-hand side of 
Eq.  (12) for 𝐿𝐼𝑛𝑑

𝐼𝑛,𝑘𝑖𝑡
, we predict these measures. In the same type of way, 

we obtain 𝐿𝐷𝑖𝑟
𝑘𝑖𝑡

 and 𝐿𝐼𝑛𝑑
𝑂𝑢𝑡,𝑘𝑖𝑡

 by predicting the corresponding measures. 
With regard to how we compute 𝑀𝐶𝐼𝑛𝑑

𝐼𝑛,𝑘𝑖𝑡
 in Eq.  (13), having estimated 

the SAR stochastic cost frontier in Eq.  (2), we use the corresponding 
DGP to obtain the (un)partitioned indirect spill-in coefficients, ineffi-
ciencies and errors (see Section 2.1). We then use these coefficients, 
inefficiencies and errors to construct the (un)partitioned spill-in logged 
cost function in Eq.  (10). From Eq.  (10), we get 𝑀𝐶𝐼𝑛𝑑

𝐼𝑛,𝑘𝑖𝑡
= 𝜕𝑐𝐼𝑛𝑑

𝐼𝑛,𝑖𝑡
∕𝜕𝑞𝑘𝑖𝑡

for each product.
To predict the (un)partitioned variable 𝐶𝐼𝑛𝑑

𝐼𝑛,𝑖𝑡
 in levels for the 𝑖𝑡ℎ

bank in Eq.  (13), we avoid the complication of obtaining this using 
the prediction of the (un)partitioned 𝑐𝐼𝑛𝑑

𝐼𝑛,𝑖𝑡
 from Eq.  (10), as this would 
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involve reversing a number of data transformations. Instead, we follow 
the approach to obtain the direct and indirect spill-in and spill-out 
inefficiencies, which involves using the SAR coefficient from the es-
timated Eq.  (2) and the spatial multiplier matrix, (𝐈𝑡 − 𝛿𝐖𝑡

)−1
. We 

obtain predictions in levels of 𝐶𝐷𝑖𝑟𝑖𝑡 , 𝐶𝐼𝑛𝑑
𝐼𝑛,𝑖𝑡

 and 𝐶𝐼𝑛𝑑
𝑂𝑢𝑡,𝑖𝑡

 by decomposing (
𝐈𝑡 − 𝛿𝐖𝑡

)−1
𝐶𝑖𝑡. The relevant element on the main diagonal of this 

decomposition is the prediction of 𝐶𝐷𝑖𝑟𝑖𝑡  and the relevant off-diagonal 
elements are summed horizontally and vertically to obtain the pre-
dictions of 𝐶𝐼𝑛𝑑

𝐼𝑛,𝑖𝑡
 and 𝐶𝐼𝑛𝑑

𝑂𝑢𝑡,𝑖𝑡
, respectively. These predictions are then 

adjusted upwards using the bank level direct and indirect spill-in and 
spill-out cost inefficiencies.

Turning to how we obtain the predictions of the variables 𝑄𝐼𝑛𝑑
𝐼𝑛,𝑘𝑖𝑡

 and 
𝑅𝐼𝑛𝑑
𝐼𝑛,𝑘𝑖𝑡

 in levels for the 𝑘𝑡ℎ product in Eq.  (12). To obtain the former and 
corresponding predictions of 𝑄𝐷𝑖𝑟

𝑘𝑖𝑡
 and 𝑄𝐼𝑛𝑑

𝑂𝑢𝑡,𝑘𝑖𝑡
 for all the 𝐾 products of 

the 𝑖𝑡ℎ bank, we first estimate 𝐾 specifications of the ODF in Eq.  (4). 
Using the SAR coefficient from the fitted ODF with the 𝑘𝑡ℎ output as the 
dependent variable and the above approach that yields the predictions 
of 𝐶𝐷𝑖𝑟𝑖𝑡 , 𝐶𝐼𝑛𝑑

𝐼𝑛,𝑖𝑡
 and 𝐶𝐼𝑛𝑑

𝑂𝑢𝑡,𝑖𝑡
, we obtain the predictions of 𝑄𝐷𝑖𝑟

𝑘𝑖𝑡
, 𝑄𝐼𝑛𝑑

𝐼𝑛,𝑘𝑖𝑡

and 𝑄𝐼𝑛𝑑
𝑂𝑢𝑡,𝑘𝑖𝑡

 by decomposing (𝐈𝑡 − 𝛿𝐖𝑡

)−1
𝑄𝑘𝑖𝑡. The predictions of 𝑄𝐷𝑖𝑟𝑘𝑖𝑡

, 
𝑄𝐼𝑛𝑑
𝐼𝑛,𝑘𝑖𝑡

 and 𝑄𝐼𝑛𝑑
𝑂𝑢𝑡,𝑘𝑖𝑡

 for all the 𝐾 products of the 𝑖𝑡ℎ bank are then 
adjusted downwards using the bank level direct and indirect spill-in 
and spill-out output distance inefficiencies. As these inefficiencies are 
based on a radial contraction (expansion) of all of a bank’s 𝐾 outputs, 
these inefficiencies are used to adjust the predictions of 𝑄𝐷𝑖𝑟

𝑘𝑖𝑡
, 𝑄𝐼𝑛𝑑

𝐼𝑛,𝑘𝑖𝑡

and 𝑄𝐼𝑛𝑑
𝑂𝑢𝑡,𝑘𝑖𝑡

 for all 𝐾 products of the 𝑖𝑡ℎ bank.4
Along the same lines, using the SAR coefficient from the fitted 

alternative revenue function in Eq.  (3), we decompose (𝐈𝑡 − 𝛿𝐖𝑡

)−1
𝑅𝑖𝑡

to obtain bank level predictions of 𝑅𝐷𝑖𝑟𝑖𝑡 , 𝑅𝐼𝑛𝑑𝐼𝑛,𝑖𝑡
 and 𝑅𝐼𝑛𝑑

𝑂𝑢𝑡,𝑖𝑡
. Next, we 

obtain the direct and indirect spill-in and spill-out revenue shares for 
the 𝑖𝑡ℎ bank’s 𝑘𝑡ℎ product. These shares are the first order derivatives 
of the bank level direct and indirect spill-in and spill-out alternative 
revenue functions with respect to the 𝑘𝑡ℎ output (see Eqs.  (9)–(11) 
for the corresponding product level cost functions). Multiplying the 
bank level predictions of 𝑅𝐷𝑖𝑟𝑖𝑡 , 𝑅𝐼𝑛𝑑𝐼𝑛,𝑖𝑡

 and 𝑅𝐼𝑛𝑑
𝑂𝑢𝑡,𝑖𝑡

 by these direct and 
indirect spill-in and spill-out revenue shares yields the predictions of 
the product level direct and asymmetric indirect revenues (𝑅𝐷𝑖𝑟

𝑘𝑖𝑡
, 𝑅𝐼𝑛𝑑

𝐼𝑛,𝑘𝑖𝑡

and 𝑅𝐼𝑛𝑑
𝑂𝑢𝑡,𝑘𝑖𝑡

). These product level revenue predictions are then adjusted 
using the bank level direct and indirect spill-in and spill-out altenative 
revenue inefficiencies. As these inefficiencies are based on a radial 
expansion (contraction) of the real monetary volumes of all of a bank’s 
𝐾 outputs, these inefficiencies are used to adjust the predictions of 𝑅𝐷𝑖𝑟

𝑘𝑖𝑡
, 

𝑅𝐼𝑛𝑑
𝐼𝑛,𝑘𝑖𝑡

 and 𝑅𝐼𝑛𝑑
𝑂𝑢𝑡,𝑘𝑖𝑡

 for all 𝐾 products of the 𝑖𝑡ℎ bank.
For the non-spatial case, the average of the Lerner indices for a 

bank’s products weighted by their revenue shares is the theoretically 
consistent aggregated bank level index (Shaffer and Spierdijk, 2020). As 
our approach to calculate the spill-in and spill-out indirect product level 
Lerner indices follows the non-spatial case, we apply this theoretically 
consistent aggregation to calculate indirect bank level Lerner indices.

3. Empirical analysis

3.1. Data and the spatial weights matrix

To obtain the market power spill-ins and spill-outs, we first es-
timate the spatial specifications of the cost, alternative revenue and 
output distance stochastic frontiers (Eqs.  (2)–(4)). There is an exact 
correspondence between these models as we draw on a rich data 
source (Federal Deposit Insurance Corporation (FDIC) data from the 

4 In line with a well-known result in production theory, in the empirical 
analysis these output distance inefficiencies are insensitive to which of the 𝐾
outputs is the dependent variable. It does not matter, therefore, which of the 
𝐾 specifications of the ODF we obtain the inefficiencies from to adjust 𝑄𝐷𝑖𝑟

𝑘𝑖𝑡
, 

𝑄𝐼𝑛𝑑
𝐼𝑛,𝑘𝑖𝑡

 and 𝑄𝐼𝑛𝑑
𝑂𝑢𝑡,𝑘𝑖𝑡

.

Call Reports) to construct three datasets comprising corresponding 
bank-period observations. Each dataset is large as it comprises 45,759 
quarterly observations for large commercial U.S. banks for the period 
1994:Q1 − 2022:Q4. In contrast to the balanced panel data used in 
previous spatial banking studies (Glass and Kenjegalieva, 2019, 2023; 
Glass et al., 2020a,b), our panel data is unbalanced. This is important as 
it accounts for the marked consolidation among U.S. banks due to bank 
failures and mergers and acquisitions, which in our sample involves a 
fall from a high of 591 banks (1994:Q2) to a low of 272 in the aftermath 
of the financial crisis (2010:Q4).

A key factor that affects the spatial dependence between banks is 
their branch networks as they indicate which banks operate in the same 
geographical markets. Accordingly, and as we discuss in more detail 
below, the a priori specification of the spatial weights are based on the 
geographical overlap of their branch networks. Unlike the extant bal-
anced panel data applications of the spatial weights matrix to banking 
(Glass and Kenjegalieva, 2019, 2023; Glass et al., 2020a,b), which, as 
is common in applied spatial econometrics, use a fixed matrix across 
the study period (e.g., average of the per period matrices), here this 
matrix is time-varying due to the panel data being unbalanced. Hence, 
in contrast to the above spatial banking studies, our matrix reflects the 
evolution of each bank’s branch network over the study period.

Capturing this evolution is important as there have been big changes 
to these networks. This is because from June 1997, the 1994 Riegle-
Neal Interstate Banking and Branching Efficiency Act allowed banks 
to expand their branch networks outside their state of origin. Due 
to some deregulations in the 1980s and early 1990s, and some states 
implementing the Riegle-Neal Act in advance of the deadline, there 
were banks with branches outside of their state of origin prior to June 
1997. Our study period, therefore, starts in 1994:Q1 as (i) this is the 
first quarter when the geographical information on branch networks 
is available; and (ii) this allows us to capture the evolution of branch 
networks in response to the Riegle-Neal Act, as this quarter represents 
the first early implementation of the Act by a state (Alaska) (Dick, 
2006). Of the commercial U.S. banks, we consider the large ones as 
they have the largest branch networks, so there will be a greater 
overlap between their networks, which is consistent with greater spatial 
dependence. This also allows us to focus on how the branch networks 
of large banks responded to the Riegle-Neal Act, as these banks were 
best equipped for branch network expansion. We define a large U.S. 
bank using the same real total assets threshold as Berger and Roman 
(2017). Having used the GDP deflator to convert the total assets of the 
banks into 2012:Q4 U.S. dollars, we define a bank as large if it has real 
total assets greater than $3 billion at any point in the study period. 
No smaller banks are included as they will likely have a different best 
practice frontier to large banks.

Throughout we use FDIC Call Report data for the variables, where 
we draw on the widely-used intermediation approach (Sealey Jr. and 
Lindley, 1977) to settle on which variables are outputs, inputs and input 
prices. Apart from the input prices as they are ratios, the GDP deflator 
is used to deflate monetary variables to 2012:Q4 U.S. dollars. We then 
obtain the data for all the flow (income and expenditure) variables 
by first differencing the observations for quarters 2 − 4 (Wheelock and 
Wilson, 2018). For the summary statistics, descriptions of the variables 
and notation, see Table  1.

We take logs of all the continuous variables in Table  1 and then 
mean adjust. We mean adjust so we can interpret the own coefficients 
on the first order variables in the 𝑇𝐿 functions in Eqs.  (2)–(4) (and the 
direct, (un)partitioned indirect and total coefficients on these variables) 
as elasticities at the sample mean. We are then in a position to estimate 
the alternative revenue function. This is because production theory 
does not require this function to be homogeneous of degree one in 
input prices, so none of the variables are normalized (Berger et al., 
1996; Wheelock and Wilson, 2018). In contrast, this homogeneity is a 
property of the cost function. We, therefore, use 𝑚3 as the normalizing 
factor for 𝑐, 𝑚1 and 𝑚2. Moreover, as the ODF function assumes that a 
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Table 1
Description of the variables and summary statistics.
 Variable description Variable

notation
Mean Std. dev.  

 Total operating cost (000s of 2012:Q4 U.S. dollars): Sum of salaries, 𝑐 155, 540.7 698, 792.6  
 interest expenses on deposits, and expenditure on fixed assets  
 and premises  
 Total revenue (000s of 2012:Q4 U.S. dollars): Sum of non-interest 𝑟 395, 332.1 1, 700, 855.1  
 income minus service fees on deposits and income from loans and  
 leases, and securities  
 Input prices  
 Cost of deposits: Interest expenses on deposits divided by deposits 𝑚1 0.005 0.004  
 Cost of labor: Salaries divided by the number of full-time equivalent 𝑚2 19.526 11.480  
 employees  
 Cost of fixed assets and premises: Expenditure on fixed assets and 𝑚3 0.830 57.384  
 premises divided by their value  
 Inputs  
 Total deposits (000s of 2012:Q4 U.S. dollars) 𝑠1 17, 026, 147.0 92, 684, 257.7 
 Number of full-time equivalent employees 𝑠2 3, 497.7 15, 817.9  
 Fixed assets and premises (000s of 2012:Q4 U.S. dollars) 𝑠3 206, 004.8 884, 389.5  
 Outputs  
 Total loans and leases (000s of 2012:Q4 U.S. dollars) 𝑞1 12, 860, 747.8 59, 134, 004.2 
 Total securities (000s of 2012:Q4 U.S. dollars) 𝑞2 4, 618, 489.9 26, 473, 630.6 
 Off-balance sheet (OBS) items (000s of 2012:Q4 U.S. dollars): 𝑞3 21, 203, 926.2 164, 187, 005.1

 Measured as non-interest income capitalization credit equivalents  
 of OBS items, where we calculate this equivalence measure using  
 the approach in Boyd and Gertler (1994)  
 Non-spatial environmental variables (𝑧’s)  
 Loan loss allowance as a share of loans and leases 𝐿𝐿𝐴 0.017 0.021  
 Tier 1 capital ratio: Tier 1 capital divided by total assets 𝑇 𝑖𝑒𝑟1𝐶𝑅 0.091 0.048  
 Tier 2 capital ratio: Tier 2 capital divided by total assets 𝑇 𝑖𝑒𝑟2𝐶𝑅 0.011 0.008  
 Equity ratio: Total equity capital divided by total assets 𝐸𝑞𝑢𝑖𝑡𝑦 0.104 0.052  
 Asset quality: Ratio of non-performing loans to total loans 𝑁𝑃𝐿 0.012 0.023  
 Scope of the bank loan portfolio: Hirschman–Herfindahl Index (HHI) 𝐻𝐻𝐼 0.543 0.178  
 across a bank’s real estate loans, farm loans, commercial and  
 industrial loans, loans to individuals and other loans as ratios of  
 total loans  
 Age: Number of years the institution has been established 𝐴𝑔𝑒 71.13 50.53  
 Security share: Securities as a share of total assets 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 0.215 0.138  

bank aims maximize its three outputs using a given quantity of inputs, 
we use the left-hand side output as the normalizing factor for the two 
right-hand side outputs.

We use the same a priori normalized specification of 𝐖𝑡 to estimate 
each spatial stochastic frontier. Ahead of the presentation of our spec-
ification of 𝐖𝑡, we note that it was influenced by the following two 
factors that informed the spatial weights in the analysis of U.S. banks 
by Glass and Kenjegalieva (2023). First, following the vast majority of 
the spatial econometrics literature, the spatial weights in Eqs.  (2)–(4) 
are exogenous. In line with this, we specify 𝐖𝑡 using a measure of the 
geographical links between banks’ branch operations. Second, as we 
present an economic application, we recognize that the spatial weights 
matrix should have some economic foundation (Corrado and Fingleton, 
2012).

At the outset we ruled out specifying 𝐖𝑡 using the distances between 
banks’ headquarters, as the locations of their headquarters would not 
reflect the geographical evolution of the banks’ branch networks fol-
lowing the Riegle-Neal Act. Another possibility, which we ultimately 
did not pursue, is to use data on branch deposit levels to construct off-
diagonal weights that represent the economic connectivity of banks’ 
branch networks. A possible approach to reflect the economic connec-
tivity of the 𝑖𝑗-th banks’ branch networks is to use the ratio of the 𝑗𝑡ℎ
and 𝑖𝑡ℎ banks’ branch deposits across the latter’s branch network as the 
𝑖𝑗-th weight. While a measure of the economic connectivity between 
banks’ branch networks is informative, we do not use this ratio (or any 
other branch deposit based measure) to populate 𝐖𝑡. This is because 
these economic distance based weights would likely be endogenous 
and accounting for this by incorporating an appropriate method from 
the general non-frontier spatial literature to our new spatial stochastic 
frontier framework would be no small development. This development 
is thus outside the scope of this paper and an area for further work. 
Rather than use economic distance based weights without accounting 

for their possible endogeneity, we exercise caution using the following 
approach, which represents a halfway house between geographical and 
economic weights.

As is standard, the elements on the main diagonal of the pre-
normalized spatial weights matrix 𝐖𝑡 are set to zero to rule out 
self-influence. To calculate the off-diagonal elements of this matrix, we 
use the available annual mid-year FDIC information from the ‘Summary 
of Deposits’ on the locations of the banks’ branches. Annual data is also 
available for the variables in Table  1, but we instead favor a richer, 
higher frequency quarterly analysis. To combine the quarterly data for 
the variables with the annual branch locations, we apply these locations 
to each quarter in a year. To calculate each off-diagonal element in ̃𝐖𝑡, 
we sum across 51 territories (50 states and the District of Columbia) 
the ratio of the number of 𝑗𝑡ℎ bank branches in a territory to the 
number of 𝑖𝑡ℎ bank branches. This sum, therefore, represents the 𝑗𝑡ℎ
bank’s relative branch intensity. Based on this, we view 𝐖𝑡 as being 
a halfway house between exclusively geographical and exclusively 
economic weights matrices. This is based on 𝐖𝑡 being geographical in 
nature, which is consistent with the weights being exogenous; and the 
branch geography on which ̃𝐖𝑡 is based on underpinning the economic 
links between banks in the form of their branch deposits in the same 
markets.

Summarizing, we formally calculate the elements of 𝐖𝑡 as follows, 
where the territories are indexed 𝑠 ∈ 1,… , 51. 

�̃�𝑖𝑗𝑡 =

{ ∑51
𝑠=1

Number of 𝑗𝑡ℎ bank branches in 𝑠 in period 𝑡
Number of 𝑖𝑡ℎ bank branches in 𝑠 in period 𝑡 for 𝑖 ≠ 𝑗

0 for 𝑖 = 𝑗
.

(14)

We then normalize 𝐖𝑡 by its largest eigenvalue to obtain the 𝐖𝑡 we 
use in the estimations. This normalizing factor has the advantage of 
preserving the original information on the relative branch network 
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Table 2
Selected SAR stochastic frontier models.
 SAR stochastic cost frontier SAR stochastic alternative

revenue frontier
SAR stochastic output distance frontier:
Left-hand side output -𝑞2

 Model
coeff

Model
coeff

Model
coeff

Model
coeff

Model
coeff

Model
coeff

 

 𝑞1 0.681∗∗∗ 𝑞3𝑡 0.043 × 10−2∗∗∗ 𝑞1 0.704∗∗∗ 𝑞3𝑚1 −0.009∗∗∗ 𝑠1 −0.846∗∗∗ 𝑠3𝑡 0.028 × 10−2∗∗∗  
 𝑞2 0.132∗∗∗ 𝑚1𝑡 −0.001∗∗∗ 𝑞2 0.121∗∗∗ 𝑞3𝑚2 0.021∗∗∗ 𝑠2 −0.172∗∗∗ 𝑞1𝑡 −0.001∗∗∗  
 𝑞3 0.100∗∗∗ 𝑚2𝑡 −0.007 × 10−2 𝑞3 0.121∗∗∗ 𝑞3𝑚3 0.012∗∗∗ 𝑠3 −0.009∗∗∗ 𝑞3𝑡 0.001∗∗∗  
 𝑚1 0.395∗∗∗ 𝐿𝐿𝐴 0.881∗∗∗ 𝑚1 0.124∗∗∗ 𝑡 −0.043∗∗∗ 𝑞1 0.743∗∗∗ 𝐿𝐿𝐴 0.614∗∗∗  
 𝑚2 0.531∗∗∗ 𝑇 𝑖𝑒𝑟1𝐶𝑅 −0.464∗∗∗ 𝑚2 0.151∗∗∗ 𝑡2 0.001∗∗∗ 𝑞3 0.079∗∗∗ 𝑇 𝑖𝑒𝑟1𝐶𝑅 −1.083∗∗∗  
 𝑞2

1
0.031∗∗∗ 𝑇 𝑖𝑒𝑟2𝐶𝑅 −1.885∗∗∗ 𝑚3 0.031∗∗∗ 𝑞1𝑡 −0.005∗∗∗ 𝑠2

1
−0.054∗∗∗ 𝑇 𝑖𝑒𝑟2𝐶𝑅 −0.368∗∗  

 𝑞2
2

0.015∗∗∗ 𝐸𝑞𝑢𝑖𝑡𝑦 0.395∗∗∗ 𝑞2
1

0.044∗∗∗ 𝑞2𝑡 −0.001∗∗∗ 𝑠2
2

−0.028∗∗∗ 𝐸𝑞𝑢𝑖𝑡𝑦 0.048  
 𝑞2

3
0.007∗∗∗ 𝑁𝑃𝐿 0.989∗∗∗ 𝑞2

2
0.012∗∗∗ 𝑞3𝑡 0.002∗∗∗ 𝑠2

3
−0.002∗∗∗ 𝑁𝑃𝐿 0.804∗∗∗  

 𝑞1𝑞2 −0.008∗∗∗ 𝐻𝐻𝐼 −0.075∗∗∗ 𝑞2
3

0.010∗∗∗ 𝑚1𝑡 0.001∗∗∗ 𝑠1𝑠2 0.106∗∗∗ 𝐻𝐻𝐼 −0.153∗∗∗  
 𝑞1𝑞3 −0.028∗∗∗ 𝐴𝑔𝑒 −0.055∗∗∗ 𝑞1𝑞2 −0.023∗∗∗ 𝑚2𝑡 −0.004∗∗∗ 𝑠1𝑠3 −0.010∗∗∗ 𝐴𝑔𝑒 −0.002  
 𝑞2𝑞3 0.004∗∗∗ 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 0.303∗∗∗ 𝑞1𝑞3 −0.037∗∗∗ 𝑚3𝑡 −0.002∗∗∗ 𝑠2𝑠3 −0.004∗ 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 0.024  
 𝑚2

1
0.030∗∗∗ 𝑊𝑡𝑐 −0.160∗∗∗ 𝑞2𝑞3 0.002∗∗∗ 𝐿𝐿𝐴 1.089∗∗∗ 𝑞2

1
0.027∗∗∗ 𝑊𝑡

(
−𝑞2

)
−0.264∗∗∗  

 𝑚2
2

0.052∗∗∗ 𝜎 0.053∗∗∗ 𝑚2
1

0.021∗∗∗ 𝑇 𝑖𝑒𝑟1𝐶𝑅 −0.022 𝑞2
3

0.009∗∗∗ 𝜎 0.050∗∗∗  
 𝑚1𝑚2 −0.097∗∗∗ 𝜆 0.890∗∗∗ 𝑚2

2
0.044∗∗∗ 𝑇 𝑖𝑒𝑟2𝐶𝑅 −0.222 𝑞1𝑞3 −0.021∗∗∗ 𝜆 0.675∗∗∗  

 𝑞1𝑚1 0.011∗∗∗ 𝑚2
3

−0.004∗∗∗ 𝐸𝑞𝑢𝑖𝑡𝑦 0.825∗∗∗ 𝑠1𝑞1 0.002  
 𝑞1𝑚2 −0.036 × 10−2 𝐿𝐿 31, 660.7 𝑚1𝑚2 0.059∗∗∗ 𝑁𝑃𝐿 −0.055 𝑠1𝑞3 0.012∗∗∗ 𝐿𝐿 31, 577.3  
 𝑞2𝑚1 0.013∗∗∗ 𝑚1𝑚3 −0.010∗∗∗ 𝐻𝐻𝐼 −0.038∗∗∗ 𝑠2𝑞1 0.006∗∗∗  
 𝑞2𝑚2 −0.006∗∗∗ 𝑚2𝑚3 −0.014∗∗∗ 𝐴𝑔𝑒 0.073∗∗∗ 𝑠2𝑞3 −0.014∗∗∗  
 𝑞3𝑚1 −0.003∗∗∗ 𝑞1𝑚1 −0.001 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 0.102∗∗∗ 𝑠3𝑞1 0.013∗∗∗  
 𝑞3𝑚2 −0.003∗∗ 𝑞1𝑚2 −0.005∗ 𝑊𝑡𝑟 0.136∗∗∗ 𝑠3𝑞3 −0.007∗∗∗  
 𝑡 −0.089 ×

10−2∗∗∗
𝑞1𝑚3 0.037 × 10−2 𝜎 0.027∗∗∗ 𝑡 −0.002∗∗∗  

 𝑡2 −0.001 ×

10−2∗∗∗
𝑞2𝑚1 0.007∗∗∗ 𝜆 0.878∗∗∗ 𝑡2 0.001 × 10−2∗∗∗  

 𝑞1𝑡 −0.018×10−2∗∗ 𝑞2𝑚2 0.003 𝑠1𝑡 -0.025×10−2∗∗∗  
 𝑞2𝑡 0.021 × 10−2∗∗∗ 𝑞2𝑚3 −0.011∗∗∗ 𝐿𝐿 31, 581.8 𝑠2𝑡 −0.002∗∗∗  
Note: *, ** and *** denote statistical significance at the 10%, 5% and 1% levels, respectively.

intensities, as it leaves the proportional relationships between the 
elements of 𝐖𝑡 unchanged. In contrast, the common alternative of 
row-normalizing would not preserve this information.

3.2. Estimated models and (in)efficiencies

In Table  2, we present estimates of the models in Eqs.  (2)–(4): 
namely, SAR stochastic cost, alternative revenue and output distance 
frontiers, where for the latter the left-hand side output is securities 
(−𝑞2). See Table  4 in Appendix  C for the estimates of the other two 
SAR output distance frontiers when the left-hand side output is loans 
(−𝑞1) and off-balance sheet items (−𝑞3). We can see from the fitted cost 
and alternative revenue models that the coefficients on the first order 
outputs and input prices have the expected positive signs. From the 
reported distance functions, the coefficients on the first order outputs 
are, as expected, positive. As the left-hand side outputs in the distance 
functions are negative, with one exception (the small and insignificant 
coefficient on fixed assets and premises (𝑠3) in the distance function 
when the left-hand side output is −𝑞3), the fitted coefficients on the 
first order inputs in these models have the expected negative signs.

It is not surprising that the coefficient on 𝑠3 is not significant in the 
distance function when the left-hand side output is −𝑞3 (and −𝑞1). This 
is because this is consistent with the rise in online banking leading to a 
decline in the role of brick and mortar branches, which has resulted 
in a wave of branch closures. In the cost and alternative revenue 
models, all the coefficients on the first order outputs and input prices 
are significant at the 1% level. From the reported ODFs, and with the 
exception of the two aforementioned coefficients on 𝑠3, we observe 
significant coefficients at the 1% level on the first order inputs and 
outputs. Furthermore, based on the magnitudes of the returns to scale 
for U.S. banks in the extant literature, the estimates of these returns 
at the sample mean from our cost, alternative revenue and ODFs are 
reasonable (0.91, 0.95 and 1.03 − 1.07, respectively).

Turning to the results for the environmental variables, where we 
are particularly interested in the estimates of the SAR coefficients. From 

Table  2 and Table  4, we observe that the SAR coefficient in each model 
is significant at the 1% level, which supports our modeling approach 
to account for the spatial dependence in the datasets. We are the first 
to report a spatial stochastic distance function for banks, which is an 
interesting line of inquiry as we find that the SAR variables in the 
three fitted ODFs have marked negative effects. This is consistent with 
output competition between banks with overlapping branch networks 
(i.e., between first order neighboring banks), where the entry and exit 
of banks to and from the sample is an aspect of this competition which 
our unbalanced panel data captures. While the sample comprises only 
large commercial U.S. banks, the negative spatial correlation between 
neighboring banks’ corresponding outputs that the SAR parameters 
in the distance functions are picking up may also reflect the marked 
variation in bank sizes in our sample, as measured by their outputs. 
Such marked variation is evident as in Table  1 the standard deviation 
of each output is much larger than its mean.

An interesting picture emerges when we relate the above discussion 
of spatial output competition to the SAR coefficients from the cost and 
alternative revenue models. The SAR coefficient is also negative in the 
cost model and while non-negligible it is smaller in absolute magnitude 
than the corresponding estimates from the ODFs. This suggests that 
while there is spatial cost competition between banks with overlapping 
branch networks, which will be impacted by the aforementioned output 
competition, this cost competition is not as strong. The implication is 
that the SAR coefficient in the cost model is capturing some partial 
offsetting of the effect of the output competition on the cost rivalry 
between first order neighboring banks, which is consistent with costs 
being affected by factors other than outputs, e.g., input prices. This 
partial offsetting points to a positive spatially correlated component of 
the banks’ costs that relates to these other factors. This is consistent 
with these other factors across the banks being similarly impacted due 
to the banks’ exposure to common phenomena, such as the FOMC’s 
setting of the federal funds rate and changes in labor and real estate 
markets at different spatial scales, i.e., at the city, state, regional and 
national levels. Further behavior that would contribute to a positive 
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spatially correlated component of banks’ costs is banks setting deposit 
rates that mimic their rivals’ rates.

The SAR coefficient in the fitted alternative revenue model is posi-
tive. As this parameter will be influenced by the above spatial output 
competition, this positive coefficient suggests that the effect of this 
competition is dominated by a positive spatially correlated compo-
nent of the banks’ revenues that relates to factors other than output 
quantities, e.g., prices of outputs and inputs. Again this spatially cor-
related component would be consistent with these other factors being 
similarly impacted due to the banks’ exposure to common phenomena 
(e.g., FOMC federal funds rate setting and market conditions), as well 
as banks mimicking certain behavior of rivals, such as their loan rates.

Turning to the findings for the other environmental variables. (i) 
In the cost, output distance and alternative revenue models, the 𝐿𝐿𝐴
parameters are positive and significant. This reflects that there is a 
higher cost associated with higher 𝐿𝐿𝐴, and recalling that the left-
hand side outputs are negative, to cover these higher costs banks reduce 
their outputs, but at the same time more risky loans are a source of 
higher revenue. (ii) The significant 𝑇 𝑖𝑒𝑟1𝐶𝑅 and 𝑇 𝑖𝑒𝑟2𝐶𝑅 parameters 
are negative, which we suggest is because banks with higher capital 
ratios are more stable and associated with relatively lower costs and 
higher outputs. (iii) With the exception of the ODF where the left-
hand side output is securities (−𝑞2), the 𝐸𝑞𝑢𝑖𝑡𝑦 parameter is positive 
and significant. This is consistent with relatively more equity finance 
at higher revenue banks, and equity being a more costly source of 
finance, leading to banks with relatively high equity ratios covering 
this additional cost by reducing two outputs (loans and off-balance 
sheet items). (iv) In all the models apart from the alternative revenue 
function, the 𝑁𝑃𝐿 parameter is positive and significant, which reflects 
the higher costs associated with more bad loans and suggests that banks 
reduce their outputs to cover these additional costs. (v) The coefficients 
on the 𝐻𝐻𝐼 are all negative and significant. This indicates that the 
specialization associated with a less diversified loan portfolio reduces 
costs and also revenues. Our results suggest that the latter relates to 
lower output prices (e.g., lower loan rates), as the ODFs indicate that a 
more specialized loan portfolio enables banks to channel their resources 
to increase all three outputs. (vi) The 𝐴𝑔𝑒 coefficient is negative and 
significant in the ODF when the left-hand side output is off-balance 
sheet items (−𝑞3), indicating that older banks are more engaged in 
this activity. The significant 𝐴𝑔𝑒 coefficients in the cost and alternative 
revenue models are negative and positive, where the lower costs of 
older banks may be due to their established systems and customer 
networks, and their higher revenues may be the result of greater trust in 
older banks because of the reputation they have built up over a longer 
period. (vii) Finally, we find that the coefficient on 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 is positive 
and significant in the cost and alternative revenue models, indicating 
that, on average, if a bank increases its security ratio, rather than, for 
instance, increasing its traditional lending, its costs and revenue will 
both rise. The 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 parameters are also positive and significant 
in the ODFs when the left-hand side outputs are −𝑞1 and −𝑞3. This 
indicates that, on average, an increase in a bank’s security ratio is 
associated with falls in its other outputs (loans and off-balance sheet 
items).

We next provide a snapshot of the direct, indirect and total effects. 
In Table  3, we present these mean effects for (a) the first order outputs 
and input prices from the cost and alternative revenue models; and 
(b) the first order outputs and inputs from the ODFs. With regard to 
the interpretation of these reported effects, they are all elasticities at 
the sample mean. As we report means of the partitioned and overall 
indirect effects across the banks, these effects represent symmetric spill-
ins and spill-outs from and to a bank’s 1st−3rd order neighbors and the 
other 𝑁−1 banks in the sample, respectively. To obtain the asymmetric 
spill-in and spill-out Lerner indices in 3.3, we use the asymmetric par-
titioned and overall indirect spill-in and spill-out effects for individual 
banks. We can see that the significance and magnitudes of the direct 
effects in Table  3 are the same as we observe for the corresponding 

coefficients in Table  2 and Table  A. This indicates that there is no 
spatial feedback in the direct effects, which is not unexpected as when 
feedback is observed (i.e., the above corresponding parameters differ) 
it is usually negligible. All the overall indirect effects are significant in 
Table  3 with the exception of those for fixed assets and premises (𝑠3) 
from the ODFs when the left-hand side outputs are −𝑞1 and −𝑞3. The 
reason we give for these insignificant indirect results for 𝑠3 is the same 
as we gave above for the same type of findings for 𝑠3 in Table  A in 
Appendix  C. For the models where the SAR coefficient is negative (cost 
and ODFs, see Table  2 and Table  4), we observe from Table  3 that the 
signs of the corresponding direct and overall indirect effects differ.

As expected, we can see from the reported partitioned indirect 
coefficients that the spillovers die out across higher order neighbors 
(i.e., immediate neighbors, neighbors’ neighbors, etc.). For the four 
aforementioned models where the SAR coefficient is negative, the signs 
of the partitioned indirect effects of a variable differ for successive 
orders of 𝐖𝑡, which we suggest is due to the following. First, we 
attribute a negative partitioned indirect effect on a particular bank 
of interest to its spatial competition with other banks in a certain 
neighborhood set (or put another way, other banks pertaining to a 
certain order of 𝐖𝑡, e.g., a bank’s immediate neighbors). Second, these 
other banks may focus on this competitive rivalry, which may detract 
their attention away from competition with banks in the next spatial 
neighborhood set (e.g., neighbors’ neighbors), leading to a positive 
partitioned indirect effect on the particular bank of interest for the next 
order of 𝐖𝑡.

Finally on Table  3, we can see that there are significant indirect co-
efficients that are non-negligible, such as the partitioned 𝐖1

𝑡  and overall 
indirect coefficients for 𝑠1 (deposits). Other indirect coefficients are 
smaller and significant, but it does not follow that the corresponding 
impacts will be small. This is because we analyze large commercial U.S. 
banks, so these coefficients will pre-multiply many large observations in 
the sample. Nevertheless, the indirect coefficients from all five models 
are typically smaller than those in spatial banking studies that use 
balanced panel data (Glass and Kenjegalieva, 2019, 2023; Glass et al., 
2020a,b). We suggest that a contributing factor to this is that when 
compared to the spatial weights matrices in these balanced panel data 
studies, there are a number of additional relatively small weights in the 
𝐖𝑡 we use here. These additional weights are relatively small as they 
represent the weaker links with banks that are not in the dataset for the 
whole study period, where including these weaker links in the sample 
pushes down the magnitudes of the indirect coefficients.

It is important to highlight though that the indirect coefficients in 
Table  3 are for the sample average bank, so based on the large standard 
deviations (vis-à-vis the means) in Table  1, there will be some notably 
larger indirect elasticities outside the sample mean. To illustrate, for the 
sample average bank, the overall indirect cost of deposits (𝑚1) elasticity 
from the cost model is on the smaller side (Table  3), whereas the lower 
and upper ends of the 99% confidence interval in Fig.  1 indicates that, 
outside the sample mean there are cases where this indirect elasticity 
is non-negligible.

Before we turn to the estimates of the market power spillovers, we 
discuss the (in)efficiency results. In Fig.  2, we present the quarterly 
mean own efficiencies from the cost and alternative revenue models 
and ODF model when the left-hand side output is securities (−𝑞2). We 
do not present the own efficiencies from the two other ODFs because, 
as is the case theoretically, the results are the same as for the ODF in 
Fig.  2. We make two remarks about the efficiencies in this figure. First, 
we can see that over the study period the efficiencies are towards the 
higher end of the spectrum, which we attribute to the inclusion of time 
period effects. To account for the role of time in the evolution of the 
dependent variable, often only a time trend is included in non-spatial 
banking efficiency studies, previous spatial efficiency studies of banks 
(Glass and Kenjegalieva, 2019; Glass et al., 2020b), and SFA studies 
more generally. Whilst we follow this literature by including a time 
trend, we also follow the common approach in the spatial econometrics 
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Table 3
Mean direct, indirect and total coefficients.
 Variable Direct coeff Indirect spillover coeff Total coeff 
 1st order 2nd order 3rd order Overall  
 SAR stochastic cost frontier
 𝑞1 0.681∗∗∗ −0.043∗∗∗ 0.005∗∗∗ −0.001∗∗∗ −0.039∗∗∗ 0.642∗∗∗  
 𝑞2 0.132∗∗∗ −0.008∗∗∗ 0.001∗∗∗ −0.011 × 10−2∗∗∗ −0.007∗∗∗ 0.125∗∗∗  
 𝑞3 0.100∗∗∗ −0.006∗∗∗ 0.001∗∗∗ −0.009∗∗∗ −0.006∗∗∗ 0.095∗∗∗  
 𝑚1 0.395∗∗∗ −0.025∗∗∗ 0.003∗∗∗ −0.034∗∗∗ −0.022∗∗∗ 0.373∗∗∗  
 𝑚2 0.531∗∗∗ −0.033∗∗∗ 0.004∗∗∗ −0.045∗∗∗ −0.030∗∗∗ 0.501∗∗∗  
  
 SAR stochastic alternative revenue frontier
 𝑞1 0.704∗∗∗ 0.038∗∗∗ 0.004∗∗∗ 0.037 × 10−2∗∗∗ 0.042∗∗∗ 0.746∗∗∗  
 𝑞2 0.121∗∗∗ 0.006∗∗∗ 0.001∗∗∗ 0.006 × 10−2∗∗∗ 0.007∗∗∗ 0.128∗∗∗  
 𝑞3 0.121∗∗∗ 0.007∗∗∗ 0.001∗∗∗ 0.006 × 10−2∗∗∗ 0.007∗∗∗ 0.128∗∗∗  
 𝑚1 0.124∗∗∗ 0.007∗∗∗ 0.001∗∗∗ 0.007 × 10−2∗∗∗ 0.007∗∗∗ 0.132∗∗∗  
 𝑚2 0.151∗∗∗ 0.008∗∗∗ 0.001∗∗∗ 0.008 × 10−2∗∗∗ 0.009∗∗∗ 0.160∗∗∗  
 𝑚3 0.031∗∗∗ 0.002∗∗∗ 0.016 × 10−2∗∗∗ 0.002 × 10−2∗∗∗ 0.002∗∗∗ 0.033∗∗∗  
  
 SAR stochastic output distance frontier: Left-hand side output -𝑞1 𝑠1 −0.850∗∗∗ 0.077∗∗∗ −0.013∗∗∗ 0.002∗∗∗ 0.066∗∗∗ −0.784∗∗∗  
 𝑠2 −0.183∗∗∗ 0.017∗∗∗ −0.003∗∗∗ 0.047 × 10−2∗∗∗ 0.014∗∗∗ −0.169∗∗∗  
 𝑠3 −0.003 0.030 × 10−2 -0.005 × 10−2 0.001 × 10−2 0.026 × 10−2 −0.003∗∗∗  
 𝑞2 0.170∗∗∗ −0.015∗∗∗ 0.003∗∗∗ −0.043 × 10−2∗∗∗ −0.013∗∗∗ 0.157∗∗∗  
 𝑞3 0.079∗∗∗ −0.007∗∗∗ 0.001∗∗∗ −0.020 × 10−2∗∗∗ −0.006∗∗∗ 0.073∗∗∗  
  
 SAR stochastic output distance frontier: Left-hand side output -𝑞2 𝑠1 −0.846∗∗∗ 0.088∗∗∗ −0.017∗∗∗ 0.003∗∗∗ 0.074∗∗∗ −0.772∗∗∗  
 𝑠2 −0.172∗∗∗ 0.018∗∗∗ −0.003∗∗∗ 0.001∗∗∗ 0.015∗∗∗ −0.157∗∗∗  
 𝑠3 −0.009∗∗∗ 0.001∗∗∗ −0.018 × 10−2∗∗∗ 0.004 × 10−2∗∗∗ 0.001∗∗∗ −0.009∗∗∗  
 𝑞1 0.743∗∗∗ −0.077∗∗∗ 0.015∗∗∗ −0.003∗∗∗ −0.065∗∗∗ 0.678∗∗∗  
 𝑞3 0.079∗∗∗ −0.008∗∗∗ 0.002∗∗∗ −0.031 × 10−2∗∗∗ −0.007∗∗∗ 0.072∗∗∗  
  
 SAR stochastic output distance frontier: Left-hand side output -𝑞3 𝑠1 −0.860∗∗∗ 0.100∗∗∗ −0.021∗∗∗ 0.005∗∗∗ 0.083∗∗∗ −0.777∗∗∗  
 𝑠2 −0.209∗∗∗ 0.024∗∗∗ −0.005∗∗∗ 0.001∗∗∗ 0.020∗∗∗ −0.189∗∗∗  
 𝑠3 0.002 −0.024 × 10−2∗ 0.005 × 10−2∗ −0.001 × 10−2∗ −0.020 × 10−2 0.002  
 𝑞1 0.774∗∗∗ −0.090∗∗∗ 0.019∗∗∗ −0.004∗∗∗ −0.075∗∗∗ 0.700∗∗∗  
 𝑞2 0.153∗∗∗ −0.018∗∗∗ 0.004∗∗∗ −0.001∗∗∗ −0.015∗∗∗ 0.138∗∗∗  
Note: *, ** and *** denote statistical significance at the 10%, 5% and 1% levels, respectively.

Fig. 1. Quarterly mean overall indirect cost of deposits elasticity and the 99 percent 
confidence interval.

literature of using time period effects to capture common shocks, and 
thus do not conflate these shocks with the effect of the SAR variable. We 
also suggest that by including time period effects, the common negative 
shocks (e.g., due to systemic factors) that banks face are not conflated 

with inefficiency, leading to mean own efficiencies that are towards the 
higher end of the spectrum.

Second, as expected though, we observe periods from the beginning 
of the financial crisis (2007:Q3) and during the COVID pandemic where 
the own cost and alternative revenue efficiencies decrease. These de-
clines are on the smaller side (a couple of percentage points), which 
we suggest is due to our above first remark about Fig.  2: namely, as the 
financial crisis and the COVID pandemic were common negative shocks 
across the banks, the impacts of these shocks are primarily captured 
by the time period effects, rather than the efficiencies. However, as 
we analyze large U.S. banks, there are many large revenue and cost 
observations in the sample, so the financial implications for the banks 
of efficiency decreases by a couple of percentage points will not be 
small.

In Table  4, we present quarterly mean spill-in and spill-out inef-
ficiencies from the cost and alternative revenue models and one of 
the ODFs. We do not present the corresponding results from the other 
two distance functions because, as expected, the results are the same 
as for the ODF in Table  4. Among the reported results are the mean 
overall and 1st−3rd order partitioned spill-in and spill-out indirect 
inefficiencies for each size (real total assets) quintile. To put the indirect 
inefficiencies into context, we also report mean direct inefficiencies. 
Note also to aid the discussion, all the results in Table  4 are the relevant 
inefficiency × 100. Whilst the own efficiencies are the exponential of 
a bank’s distance above or below the frontier, and not one minus 
inefficiency, we can see that applying the latter to the sample average 
direct inefficiencies would yield efficiencies that are not too different 
from the sample average own efficiencies (see Fig.  2). The mean direct 
inefficiencies for the quintiles indicate that the smallest banks in the 
sample are the most inefficient, followed by the largest banks, where 
both findings are reasonable.
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Table 4
Mean direct and indirect inefficiencies.
 Direct Indirect inefficiency
 inefficiency 1st order 2nd order 3rd order Overall

 Spill-in Spill-out Spill-in Spill-out Spill-in Spill-out Spill-in Spill-out 
 SAR stochastic cost frontier
 1st quintile 9.214 −0.043 −0.553 0.003 0.044 −0.000 −0.004 −0.040 −0.513  
 2nd quintile 8.389 −0.107 −0.317 0.011 0.034 −0.001 −0.004 −0.098 −0.286  
 3rd quintile 8.473 −0.175 −0.417 0.021 0.051 −0.003 −0.006 −0.156 −0.372  
 4th quintile 8.673 −0.316 −0.701 0.038 0.088 −0.005 −0.011 −0.283 −0.623  
 5th quintile 8.954 −2.284 −0.930 0.262 0.117 −0.032 −0.015 −2.050 −0.827  
 Sample 8.741 −0.584 −0.584 0.067 0.067 −0.008 −0.008 −0.524 −0.524  
  
 SAR stochastic alternative revenue frontier
 1st quintile 6.694 0.027 0.347 0.002 0.025 0.000 0.002 0.029 0.374  
 2nd quintile 6.320 0.068 0.205 0.006 0.019 0.001 0.002 0.075 0.226  
 3rd quintile 6.397 0.110 0.267 0.011 0.027 0.001 0.003 0.123 0.297  
 4th quintile 6.353 0.197 0.438 0.020 0.046 0.002 0.005 0.220 0.490  
 5th quintile 6.474 1.425 0.567 0.139 0.061 0.014 0.007 1.580 0.636  
 Sample 6.447 0.365 0.365 0.035 0.035 0.004 0.004 0.404 0.404  
  
 SAR stochastic output distance frontier: Left-hand side output -𝑞2 1st quintile 6.272 −0.051 −0.682 0.006 0.091 −0.001 −0.013 −0.046 −0.603  
 2nd quintile 6.098 −0.126 −0.413 0.020 0.072 −0.004 −0.013 −0.109 −0.352  
 3rd quintile 6.068 −0.202 −0.483 0.040 0.094 −0.008 −0.019 −0.168 −0.405  
 4th quintile 6.142 −0.363 −0.773 0.070 0.156 −0.014 −0.032 −0.304 −0.643  
 5th quintile 6.157 −2.643 −1.028 0.487 0.210 −0.097 −0.045 −2.235 −0.854  
 Sample 6.148 −0.676 −0.676 0.125 0.125 −0.024 −0.024 −0.676 −0.676  

Fig. 2. Quarterly mean own efficiencies.

We make four remarks about the indirect inefficiencies in Table  4. 
First, the overall and partitioned indirect inefficiencies are symmetric 
for the whole sample and asymmetric for a subsample, where, as ex-
pected, each first order indirect inefficiency is the largest component of 
the corresponding overall measure. Second, where the SAR coefficient 
is negative (cost model and ODFs), the signs of the partitioned indirect 
inefficiencies differ for successive orders of 𝐖𝑡. The reason we give 
for this is the same as we gave above for the same type of results for 
the partitioned indirect coefficients (Table  3). Third, the partitioned 
indirect inefficiencies die out across higher order neighborhood sets, 
where this tends to effectively stop at the 3rd order set (i.e., when 
the inefficiency spillovers approach zero). Fourth, for quintiles 1 − 4

(but interestingly not quintile 5), the overall spill-out inefficiencies are 
greater than the corresponding spill-in.

3.3. Estimates of the market power spill-ins and spill-outs

In Table  5, for the sample and quintiles of the bank size distribution, 
we report two sets of direct and indirect (overall and partitioned) 
bank and product level Lerner indices. One set excludes the relevant 
inefficiency adjustment and the other accounts for inefficiency. While 
we know that the values used to obtain the direct-own Lerner indices 

are substantive for the banks, the types of values used to obtain the 
indirect Lerner indices are smaller, but non-negligible. This is evident 
as the mean bank level ratio of the overall indirect and direct average 
revenues is 5.22%. Turning now to the results in this table.

We can see that when the direct Lerner indices include the inef-
ficiency adjustment the reported indices are lower than when ineffi-
ciency is overlooked. All the reported direct-own Lerner indices are 
also some way above 0 and below 1 and thus not out of line with the 
non-spatial Lerner indices for large U.S. banks in the literature. With 
regard to the magnitudes of the direct Lerner indices for the quintiles, 
we can see that for loans these indices are the lowest for quintiles 1
and 5, where for the latter this could be because the larger banks may 
not focus on specialist bespoke loans with high profit margins, but on 
standard types of loans to their large customer bases. For the former 
this could be because these banks have smaller loan market shares 
and may therefore place a greater emphasis on other activities, which 
is in line with quintile 1 having the highest direct Lerner indices for 
securities and off-balance sheet (OBS) items. The next highest direct 
Lerner indices for securities and OBS items are for quintile 5, where 
the greater resources of quintile 5 banks is likely to be a contributing 
factor to these results.

Of the indirect Lerner indices in Table  5, the most notable evidence 
of a lower index when inefficiency is accounted for is the overall and 
1st order spill-in indices for quintile 5. In addition, we note that the par-
titioned indirect spill-in Lerner indices have an intuitive pattern. As the 
order of the neighborhood set increases (𝐖𝑡 to 𝐖2

𝑡 ), these partitioned 
Lerner indices, and particularly those for quintile 5, increase, where 
there are a number of other cases where these indices are approaching 1
(i.e., quintiles 1−4). To aid the interpretation of these indices recall that 
as the order of 𝐖𝑡 increases, the magnitudes of the partitioned indirect 
spill-in coefficients die out. This means that the partitioned marginal 
cost spill-ins will also die out, giving a partitioned indirect spill-in 
Lerner index approaching 1, which points to a high market power spill-
in. The interpretation of the overall indirect spill-in Lerner index is 
the same, as it is the collective representation of the corresponding 
partitioned indices.

For the partitioned indirect spill-in Lerner indices, the picture for 
quintile 5 differs from what we observe for the other quintiles. For 
quintile 5 these indices are smaller than for quintiles 1 − 4. This points 
to relatively higher marginal cost spill-ins for quintile 5 banks and 
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Table 5
Lerner indices.
 Not adjusted for inefficiency Adjusted for inefficiency
 bank size quintile bank size quintile  
 1st 2nd 3rd 4th 5th Sample 1st 2nd 3rd 4th 5th Sample 
 𝐿𝐷𝑖𝑟 Direct Lerner indices  
 Loans 47.8 56.4 56.4 55.8 49.4 53.2 42.4 52.5 52.4 51.8 44.5 48.7  
 Securities 64.4 54.9 53.7 56.3 59.3 57.7 60.9 51.1 49.6 52.5 55.4 53.9  
 OBS 77.5 59.9 56.2 60.9 71.1 65.1 75.6 56.4 52.1 57.1 68.5 61.9  
 Bank level 60.7 57.4 56.6 57.4 58.0 58.0 56.8 53.6 52.6 53.6 54.0 54.1  
 𝐿𝐼𝑛𝑑

𝐼𝑛
Overall indirect spillover Lerner indices

 Loans 98.9 97.8 96.8 93.9 32.9 84.1 98.9 97.8 96.8 93.9 28.0 83.1  
 Securities 99.2 97.7 96.5 93.6 65.4 90.5 99.2 97.7 96.5 93.5 63.0 90.0  
 OBS 99.5 98.0 96.8 94.5 80.1 93.8 99.5 98.0 96.8 94.4 78.8 93.5  
 Bank level 99.1 97.8 96.8 94.1 61.0 89.8 99.1 97.8 96.8 94.0 58.5 89.3  
 𝐿𝐼𝑛𝑑

𝑂𝑢𝑡
 

 Loans 97.2 98.5 98.2 97.3 95.3 97.3 97.1 98.5 98.1 97.2 95.2 97.2  
 Securities 98.3 98.5 98.0 97.4 96.8 97.8 98.3 98.5 98.0 97.3 96.7 97.8  
 OBS 99.2 98.7 98.0 97.6 97.6 98.2 99.2 98.6 98.0 97.5 97.6 98.2  
 Bank level 98.0 98.6 98.1 97.4 96.4 97.7 98.0 98.6 98.1 97.3 96.4 97.7  
 𝐿𝐼𝑛𝑑

𝐼𝑛
1st order indirect spillover Lerner indices

 Loans 98.7 97.1 95.6 91.9 33.0∗ 78.5 98.7 97.1 95.6 91.8 29.6∗ 77.5  
 Securities 99.0 97.0 95.2 91.5 53.0 87.2 99.0 97.0 95.2 91.4 50.0 86.6  
 OBS 99.4 97.3 95.6 92.7 73.9 91.8 99.4 97.3 95.5 92.7 72.3 91.4  
 Bank level 98.9 97.2 95.6 92.1 47.4 86.3 98.9 97.2 95.6 92.0 44.5 85.7  
 𝐿𝐼𝑛𝑑

𝑂𝑢𝑡
 

 Loans 81.8 90.2 87.4 81.0 67.0 81.5 81.5 90.0 87.2 80.6 66.4 81.1  
 Securities 88.9 89.8 86.3 81.9 77.8 85.0 88.9 89.6 86.0 81.4 77.3 84.7  
 OBS 94.2 90.8 86.2 82.9 83.4 87.5 94.1 90.6 85.9 82.4 82.9 87.2  
 Bank level 87.2 90.5 87.2 81.8 75.1 84.4 87.1 90.3 86.9 81.4 74.6 84.1  
 𝐿𝐼𝑛𝑑

𝐼𝑛
2nd order indirect spillover Lerner indices

 Loans 99.8 99.4 98.8 97.8 75.5 94.3 99.8 99.4 98.8 97.8 75.5 94.3  
 Securities 99.8 99.3 98.6 97.8 87.5 96.6 99.8 99.3 98.6 97.8 87.5 96.6  
 OBS 99.9 99.3 98.7 98.2 93.7 98.0 99.9 99.3 98.7 98.2 93.8 98.0  
 Bank level 99.8 99.4 98.8 97.9 86.3 96.4 99.8 99.4 98.8 97.9 86.3 96.5  
 𝐿𝐼𝑛𝑑

𝑂𝑢𝑡
 

 Loans 95.9 97.5 96.5 94.5 90.1 94.9 95.9 97.5 96.5 94.4 90.1 94.9  
 Securities 97.5 97.3 96.1 94.8 93.8 95.9 97.5 97.3 96.1 94.8 93.8 95.9  
 OBS 98.3 97.5 95.9 95.0 95.2 96.4 98.3 97.5 95.9 95.0 95.2 96.4  
 Bank level 97.3 97.6 96.4 94.7 92.7 95.7 97.3 97.6 96.3 94.7 92.7 95.7  
Notes: OBS denotes off-balance sheet items. ∗ denotes a mean based on 95% of the banks in the 5th quintile due to outliers.

thus lower market power spill-ins. We find that this contrasts though 
with results we present below for a number of individual quintile 5
banks (see Table  6). Given the spill-outs from a bank lead to spill-
ins for other banks, it is no surprise to find that the partitioned 
indirect spill-out Lerner indices exhibit the same type of pattern as 
the above corresponding spill-in indices. The only difference is that the 
partitioned indirect spill-out Lerner indices for quintile 5 are larger than 
the corresponding spill-in index. This indicates that the quintile 5 banks 
have relatively lower marginal cost spill-outs, which leads to higher 
market power spill-outs. To sum up, to different degrees, we can see 
from the overall indirect Lerner indices for the sample that the market 
power spillovers tend to be high, which underlines the importance of 
the interconnectedness in the banking industry.

Next, as there is marked variation in the number of banks over the 
sample period, we consider a core subset of banks that are in the data 
sample for at least 95% of the time periods. From this pool, in Table 
6 we present the top and bottom 5 inefficiency adjusted Lerner indices 
for banks in the 5th and 1st−4th quintiles of the bank size distribution.5 
Looking at the top and bottom 5 direct Lerner indices indicates that 
there is a wide difference in the market power of some of the banks. As 
we would expect, there are global systemically important banks (Bank 
of America and JPMorgan Chase) with a top 5 direct Lerner index. 
There are, however, banks with a top 5 direct Lerner index that are 
much smaller − the smallest being the First Financial Bank in quintile 
2. Interestingly, the collapsed Silicon Valley Bank (March 2023) has a 
top 5 direct Lerner index. This finding is likely because it specialized 

5 We present bank level results in Table  6 due to space constraints. The 
corresponding product level results are available on request.

in providing products to venture capital-backed technology startups, 
which would involve the bank having a higher markup to reflect the 
greater risks associated with this type of business.

We make three remarks about the indirect Lerner indices in Table 
6. First, there are a number of banks with top 5 overall indirect Lerner 
indices that are in the mid-to-high 90s, e.g., Bank of America and 
JPMorgan Chase. This indicates that these banks have high market 
power spill-ins and spill-outs, which is consistent with concerns about 
the market power of the very large U.S. banks. Second, the reported 
bottom 5 overall spill-in Lerner indices range from 71.4−87.3, which, to 
different degrees, indicates that these banks have lower market power 
spill-ins. Third, the bottom 5 overall spill-in indices for the quintile 
5 banks are above the corresponding mean in Table  5 (61.0). This 
indicates that, on average, the quintile 5 banks that do not survive 
for 95% of the study period have lower market power spill-ins. This 
highlights the value of unbalanced panel data for our empirical case as 
the lower market power spill-ins for these banks may have contributed 
to some of them dropping out of the sample.

The final set of bank level results we present is the geographical 
distribution of the overall indirect (spill-in and spill-out) Lerner indices. 
For 2022:Q4, Fig.  3 overlays the bivariate heat map of these two indices 
onto the banks’ branch locations. In this map, the top, middle and 
bottom thirds of the distributions are used to group the bank level 
pairs of these indices.6 We can see that only 1.9% of pairs comprise 
values that are in the middle thirds of the distributions. It is also 
evident that banks with pairs of values in the top thirds (13.7%) tend 

6 The three corresponding product level heat maps are similar to Fig.  3 and 
so are not presented for brevity.
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Table 6
Lerner indices for selected banks.
 5th quintile banks 1st-4th quintile banks
 Direct Lerner index (inefficiency adjusted)
 Top 5 Bank of America 64.1 Top 5 Westamerica 69.3 
 First Hawaiian Bank 62.5 Farmers and Merchants 65.0 
 U.S. Bank National 62.3 First Financial Bank 64.6 
 JPMorgan Chase 61.0 FirstBank of Colorado 64.1 
 Silicon Valley 60.2 NBT Bank 62.3 
 Bottom 5 State Street Bank 52.0 Bottom 5 Equity Bank 42.8 
 Union Bank of California 49.6 Central Bank 42.5 
 First-Citizens Bank 49.0 PlainsCapital 42.5 
 BMO Bank 48.1 The First 41.4 
 BancorpSouth 46.1 RCB Bank 40.8 
 Overall indirect spill-in Lerner index (inefficiency adjusted)
 Top 5 Bank of America 96.5 Top 5 Enterprise Bank 97.7 
 JPMorgan Chase 96.2 TIB 97.4 
 U.S. Bank National 95.7 Pinnacle Bank 97.2 
 Frost Bank 95.3 Washington Trust 97.2 
 First Hawaiian Bank 94.3 NBT Bank 97.2 
 Bottom 5 State Street Bank 87.3 Bottom 5 CNB Bank 73.9 
 First-Citizens Bank 86.7 Bremer Bank 73.8 
 Commerce Bank 84.9 Fremont Bank 72.1 
 Valley National Bank 81.9 First State Community Bank 71.4 
 Hibernia Bank 79.6 Merchants Bank of Indiana 71.4 
 Overall indirect spill-out Lerner index (inefficiency adjusted)
 Top 5 Zions 99.5 Top 5 First Mid 99.5 
 Comerica 99.5 Bank of Stockton 99.5 
 State Street Bank 99.4 First Interstate Bank 99.5 
 BB&T 99.3 Tompkins 99.4 
 PNC Bank 99.2 First National Bank Texas 99.4 
 Bottom 5 Bank of Hawaii 97.5 Bottom 5 Amarillo National Bank 96.2 
 BMO Bank 97.3 The First 95.8 
 Northern Trust 97.1 Stockman Bank 95.7 
 Valley National 97.1 Central Bank 95.3 
 BancorpSouth 96.5 RCB Bank 95.2 
Note: Each bank in this table is in the data sample for a least 95% of the study period.

Fig. 3. Bank-branch geographical distribution of the overall indirect Lerner indices for 2022:Q4.

to have branches in densely populated metropolitan statistical areas 
(MSAs) (e.g., New York; Boston; Minneapolis-St. Paul; Chicago; Detroit; 
Atlanta; Houston; Dallas-Forth Worth; Los Angeles; San Diego; San 
Francisco; Seattle; Portland). This is in line with our expectations as the 
larger agglomeration effects in densely populated areas is conducive to 
larger market power spillovers.

4. Summary and policy relevance

It is well-known that U.S. banks are interconnected. There are a 
number of reasons for this, a key one being rival banks with branches in 
the same geographical areas. This points to spatial dependence between 
neighboring banks, which represents the net effect of the negative bank 
correlation due to their competitive rivalry and positive correlation 
because banks face common economic phenomena. Key examples of 
these phenomena are industrywide regulation, the FOMC’s setting of 
the federal funds rate, market conditions, and headline changes in 
economies at the city, state, regional and national levels. Studies have 

shown that significant SAR dependence between U.S. banks leads to 
spillovers of total factor productivity (TFP) growth (Glass and Ken-
jegalieva, 2019; Glass et al., 2020b) and returns to scale spillovers 
(Glass et al., 2020a; Glass and Kenjegalieva, 2023). It is reasonable 
to therefore consider market power spillovers between U.S. banks and 
their corresponding products. This is an important issue because bank 
market power affects, among other things, the price and availability of 
credit, which has a wider effect on the general business environment.

There are large bodies of non-spatial banking studies on produc-
tivity and efficiency, scale economies and market power, where the 
methods to analyze all but the latter have been extended to spillovers 
at the bank level. Accordingly, at the micro levels of banks and their 
products, we introduce a method to obtain asymmetric bidirectional 
spillover Lerner indices (with and without adjustment for inefficiency 
spill-ins and spill-outs). Rather than follow the extant banking spatial 
SFA studies, which all use relatively small balanced panel datasets, 
we estimate these indices for large commercial U.S. banks using a 
large unbalanced panel dataset. Whilst this means the estimation is 
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more computationally demanding, unbalanced panel data is a better 
empirical representation as it reflects the marked consolidation in the 
industry.

Bank interconnectedness is very important as it contributes to a 
number of risks, e.g., bank run contagion. Accordingly, U.S. bank 
regulatory authorities extensively monitor different forms of bank in-
terconnectedness. The following key empirical findings use the market 
power spillovers to provide new information about bank interconnect-
edness. First, consistent with consolidation in the industry leading to 
concerns about the market power of the largest U.S. banks, we find 
that a number of banks have high indirect spillover Lerner indices, 
e.g., two global systemically important banks (Bank of America and 
JPMorgan Chase). This finding suggests that overlooking bank market 
power spillovers may result in U.S. competition authorities understat-
ing the market power impact of a large bank merger. The implication 
being that overlooking these spillovers may lead to unexpectedly larger 
increases in the price of credit and, as a result, unexpectedly bigger 
negative impacts on the general business environment and household 
welfare. From a policy perspective, we therefore suggest that U.S. com-
petition authorities should account for such spillovers when assessing 
future large bank mergers.

Second, the mean bank level overall spill-in Lerner index for quintile 
5 of the size distribution is well below the bottom 5 corresponding 
indices from the pool of quintile 5 banks that are in the sample for 
the vast majority of the study period. This underlines the benefit of 
unbalanced panel data for our empirical case, as the lower market 
power spill-ins for the banks outside this pool are intuitive as they may 
have contributed to some of these banks dropping out of the sample. 
Third and finally, we find that the banks with bidirectional overall 
indirect Lerner indices in the top thirds of the distributions tend to have 
branches in densely populated cities. This is also intuitive as the larger 
agglomeration effects in major cities will facilitate higher market power 
spillovers.
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Appendix A. Candidate bank market power measures for exten-
sion to the spatial setting

We review the three main approaches to measure non-spatial bank 
market power. As all three measures are model-based they can be ex-
tended to the spatial setting. This is because for our spatial extension we 
need to use a model-based approach to estimate unobserved spillovers. 
For brevity, we list a small selection of studies for illustrative purposes 
that have applied the three approaches.

The first approach is the Panzar and Rosse 𝐻 statistic (e.g., Coc-
corese, 2009; Bikker et al., 2012; Mi et al., 2024). 𝐻𝑖 is calculated 
using the alternative revenue function, 𝑇𝑅𝑖 = 𝑓 (𝑄𝑖,𝑀𝑖), where 𝑇𝑅𝑖
is the total revenue of the 𝑖𝑡ℎ bank, 𝑀𝑖 is the vector of input prices 
indexed 𝑔 ∈ 1,… , 𝐺 and 𝑄𝑖 is as defined for Eq.  (1). 𝐻𝑖 =

∑
𝑔
𝜕 ln 𝑇𝑅𝑖
𝜕 ln𝑀𝑖𝑔

represents the ratio of the change in the output price to the change 
in input prices as outputs are held constant. The lower limit of 𝐻 is 

negative and the upper limit is 1. The higher 𝐻 is for a bank, the less 
market power it has in terms of its ability to set price independently of 
cost. It would be econometrically feasible to extend the 𝐻 statistic to 
the spatial setting, which would first involve estimating an appropriate 
spatial alternative revenue function. From thereon the approach would 
be similar to the one we propose here for our different line of inquiry. 
We follow a different course because, first, we want to calculate market 
power spillovers with and without an adjustment for inefficiency. It 
not possible though to incorporate an adjustment for inefficiency into 
the above approach to calculate the 𝐻 statistic. This is because the 
revenue elasticities with respect to the input prices are not affected 
by the presence of inefficiency. Second, Shaffer and Spierdijk (2015) 
show that the 𝐻 statistic cannot reliably measure market power. They 
reach this conclusion based on counterintuitive results of 𝐻 > 0 for five 
standard highly non-competitive oligopoly settings.

The second approach uses the 𝐶𝑜𝑛𝑑𝑢𝑐𝑡 parameter at the level of 
bank loans (e.g., Coccorese (2009), Delis and Tsionas (2009)) and 
across banks at the country level (e.g., Coccorese et al. (2021)). Coc-
corese (2009) reports mean 𝐶𝑜𝑛𝑑𝑢𝑐𝑡 parameters across the sampled 
banks for the full study period and subperiods, while Delis and Tsionas 
(2009) estimate time-varying 𝐶𝑜𝑛𝑑𝑢𝑐𝑡 parameters for each bank. The 
conduct measure is the conjectured response of the industry’s 𝑘𝑡ℎ
output to variation in the same output at the 𝑖𝑡ℎ bank (Degryse et al., 
2019). This is a spillover to a more aggregate level and, therefore, 
differs from the usual interpretation of spillovers between units at the 
same level of aggregation we consider here, i.e., spillovers between 
banks and between the corresponding products of banks.

To tie in with the brief below discussion of the Lerner index in 
the third approach, we recognize that the conduct measure can be 
expressed as 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑘 = 𝑒𝑖𝑘𝐿𝑖𝑘 (e.g., Degryse et al., 2019). 𝑒𝑖𝑘 is the 
price elasticity of demand for the bank’s 𝑘𝑡ℎ product and 𝐿𝑖𝑘 = 𝑃𝑖𝑘−𝑀𝐶𝑖𝑘

𝑃𝑖𝑘
is the non-spatial Lerner index defined in Eq.  (1). 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑘 is therefore 
an elasticity-adjusted Lerner index and so the higher the 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑘
parameter for a bank, the more market power it has. 𝑀𝐶𝑖𝑘 is at the 
bank product level and can be estimated from a multi-product bank 
level cost model (e.g., Shaffer and Spierdijk, 2020). In line with the 
discussion of 𝐿𝑖𝑘 in Eq.  (1), for 𝑃𝑖𝑘 ≥𝑀𝐶𝑖𝑘, the value of 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑘 will 
be in the range 0 to 1, and for 𝑃𝑖𝑘 < 𝑀𝐶𝑖𝑘, 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑘 < 0. Whilst a 
case can equally be made to extend 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑘 to the spatial setting, we 
extend the well-established Lerner index. A motivation for this is the 
practical usage of the Lerner index. This is because of the three main 
approaches to measure non-spatial bank market power we review, the 
Lerner index is the only (country-level) bank market power measure 
which the World Bank reports in its Global Financial Development 
Database.

We refer to 𝐿𝑖𝑘 (e.g., Shaffer and Spierdijk, 2020; Wang et al., 2020; 
Mi et al., 2024) and 𝑀𝑎𝑟𝑘𝑢𝑝𝑖𝑘 =

𝑃𝑖𝑘−𝑀𝐶𝑖𝑘
𝑀𝐶𝑖𝑘

 as the third approach as the 
latter is interpreted in the same way as 𝐿𝑖𝑘 (see the above discussion 
of Eq.  (1)). There are some differences though between these two 
measures. To illustrate, as a cost function is monotonically increasing 
in each output 𝑀𝐶𝑖𝑘 > 0, so 𝐿𝑖𝑘 < 1, but 𝑀𝑎𝑟𝑘𝑢𝑝𝑖𝑘 < 1 may or may 
not be the case. Whilst we consider only the Lerner index due to space 
constraints and its appeal and widespread use, the spatial approach we 
introduce can also be applied to obtain markup spill-ins and spill-outs.

Appendix B. Estimation procedure for the SAR stochastic frontier 
models

We estimate Eq.  (5) using within maximum likelihood (ML) estima-
tion with the closed skew normal distribution. This involves adapting 
the non-spatial estimation procedure in Chen et al. (2014) to the case 
of SAR dependence. The procedure begins with the following within 
transformation of Eq.  (5). 

𝑐𝑖𝑡 = 𝑥𝑖𝑡𝛽
′ + 𝛿

𝑁𝑡∑
𝑗=1

𝑤𝑖𝑗𝑡𝑐𝑗𝑡 + 𝜀𝑖𝑡, (B.1)
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Table A
Further SAR stochastic frontier models.
 SAR stochastic output distance frontier: 
Left-hand side output -𝑞1

SAR stochastic output distance frontier: 
Left-hand side output -𝑞3

 Model
coeff

Model
coeff

Model
coeff

Model
coeff

 

 𝑠1 −0.850∗∗∗ 𝑡 −0.002∗∗∗ 𝑠1 −0.860∗∗∗ 𝑡 −0.002∗∗∗  
 𝑠2 −0.183∗∗∗ 𝑡2 0.001 × 10−2∗∗∗ 𝑠2 −0.209∗∗∗ 𝑡2 0.003 × 10−2∗∗∗  
 𝑠3 −0.003 𝑠1𝑡 −0.001∗∗∗ 𝑠3 0.002 𝑠1𝑡 −0.002∗∗∗  
 𝑞2 0.170∗∗∗ 𝑠2𝑡 −0.002∗∗∗ 𝑞1 0.774∗∗∗ 𝑠2𝑡 −0.002∗∗∗  
 𝑞3 0.079∗∗∗ 𝑠3𝑡 0.015 × 10−2∗∗ 𝑞2 0.153∗∗∗ 𝑠3𝑡 −0.018 × 10−2∗  
 𝑠2

1
−0.052∗∗∗ 𝑞2𝑡 −0.004 × 10−3 𝑠2

1
−0.050∗∗∗ 𝑞1𝑡 −0.001∗∗∗  

 𝑠2
2

−0.031∗∗∗ 𝑞3𝑡 0.001∗∗∗ 𝑠2
2

−0.039∗∗∗ 𝑞2𝑡 0.008 × 10−2  
 𝑠2

3
−0.002∗∗∗ 𝐿𝐿𝐴 0.664∗∗∗ 𝑠2

3
−0.002∗∗ 𝐿𝐿𝐴 0.564∗∗∗  

 𝑠1𝑠2 0.104∗∗∗ 𝑇 𝑖𝑒𝑟1𝐶𝑅 −1.353∗∗∗ 𝑠1𝑠2 0.100∗∗∗ 𝑇 𝑖𝑒𝑟1𝐶𝑅 −1.934∗∗∗  
 𝑠1𝑠3 −0.009∗∗∗ 𝑇 𝑖𝑒𝑟2𝐶𝑅 0.233 𝑠1𝑠3 −0.003 𝑇 𝑖𝑒𝑟2𝐶𝑅 1.369∗∗∗  
 𝑠2𝑠3 −0.001 𝐸𝑞𝑢𝑖𝑡𝑦 0.268∗∗∗ 𝑠2𝑠3 0.028 × 10−2 𝐸𝑞𝑢𝑖𝑡𝑦 0.720∗∗∗  
 𝑞2

2
0.014∗∗∗ 𝑁𝑃𝐿 0.883∗∗∗ 𝑞2

1
0.027∗∗∗ 𝑁𝑃𝐿 0.670∗∗∗  

 𝑞2
3

0.009∗∗∗ 𝐻𝐻𝐼 −0.171∗∗∗ 𝑞2
2

0.012∗∗∗ 𝐻𝐻𝐼 −0.196∗∗∗  
 𝑞2𝑞3 0.004∗∗∗ 𝐴𝑔𝑒 −0.008 𝑞1𝑞2 −0.031∗∗∗ 𝐴𝑔𝑒 −0.022∗∗  
 𝑠1𝑞2 −0.017∗∗∗ 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 0.073∗∗ 𝑠1𝑞1 0.008∗∗∗ 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 0.138∗∗∗  
 𝑠1𝑞3 0.014∗∗∗ 𝑊𝑡(−𝑞1) −0.231∗∗∗ 𝑠1𝑞2 −0.024∗∗∗ 𝑊𝑡(−𝑞3) −0.296∗∗∗  
 𝑠2𝑞2 0.007∗∗∗ 𝜎 0.056∗∗∗ 𝑠2𝑞1 0.010∗∗∗ 𝜎 0.120∗∗∗  
 𝑠2𝑞3 −0.014∗∗∗ 𝜆 0.663∗∗∗ 𝑠2𝑞2 0.005∗∗ 𝜆 0.675∗∗∗  
 𝑠3𝑞2 −0.006∗∗∗ 𝑠3𝑞1 0.016∗∗∗  
 𝑠3𝑞3 −0.006∗∗∗ 𝐿𝐿 31, 565.0 𝑠3𝑞2 −0.009∗∗∗ 𝐿𝐿 31, 619.1  
Note: *, ** and *** denote statistical significance at the 10%, 5% and 1% levels, respectively.

where the within transformed observations and composed error (𝑐𝑖𝑡, ̃𝑥𝑖𝑡
and 𝜀𝑖𝑡) are deviations from their respective means (𝑐𝑖𝑡 = 𝑐𝑖𝑡 −

1

𝑇𝑖

∑
𝑡 𝑐𝑖𝑡

and similarly for 𝑥𝑖𝑡 and 𝜀𝑖𝑡). This transformation removes 𝑑𝑖 and 𝛼, 
where we do not then demean by time period to eliminate 𝑏𝑡 as this 
would also eliminate the important 𝑡 and 𝑡2 components of the non-
linear time trend. To simplify the notation in Eq.  (B.1) we subsume 𝑏𝑡
into ̃𝑥𝑖𝑡. As noted previously, the closed skew normally distributed error 
term 𝜀𝑖𝑡 has two components, 𝑣𝑖𝑡 + 𝑢𝑖𝑡. As is standard, let 𝜆 =

𝜎𝑢
𝜎𝑣

 and 
𝜎2𝑢𝑣 = 𝜎2𝑢 + 𝜎

2
𝑣 . The probability density of the composed error is then 

𝑓 (𝜀) =
2

𝜎
𝜑

(
𝜀
𝜎

)
𝛷

(
−
𝜆𝜀
𝜎

)
, (B.2)

where 𝜑 and 𝛷 are the standard normal probability and cumulative 
density functions (pdf and cdf), respectively.

Denote two vectors of within transformed composed errors for the 
𝑖𝑡ℎ bank as 𝜀𝑖 = (𝜀𝑖1,… , 𝜀𝑖𝑇𝑖 )

′ and 𝜀∗𝑖 = (𝜀𝑖1,… , 𝜀𝑖𝑇𝑖−1)
′, where the 

number of periods which the 𝑖𝑡ℎ bank is in the sample for is 𝑇𝑖. Using 
Theorem 3 in Chen et al. (2014), the log-likelihood function for the 
within transformed model is as follows.

ln𝐿𝑤𝑖𝑡ℎ𝑖𝑛 = 𝜂 +
∑
𝑖

[
ln𝜑𝑇𝑖−1

(
𝑐∗𝑖𝑡 − 𝑥

∗
𝑖𝑡𝛽

′ − 𝛿

𝑁𝑡∑
𝑗=1

𝑤𝑖𝑗𝑡𝑐
∗
𝑗𝑡; 0, 𝜎2

×

(
𝐈𝑇𝑖−1

−
1

𝑇𝑖
𝛺𝑇𝑖−1

))]
+

∑
𝑖

[
ln𝛷𝑇𝑖

(
−
𝜆
𝜎
(𝑐𝑖𝑡 − 𝑥𝑖𝑡𝛽

′ − 𝛿

𝑁𝑡∑
𝑗=1

𝑤𝑖𝑗𝑡𝑐𝑗𝑡); 0𝑇𝑖 , 𝐈𝑇𝑖 +
𝜆2

𝑇𝑖
𝛺𝑇𝑖

)]

+ ln ||𝐈∗ − 𝛿𝐖∗|| , (B.3)

where to fix ideas the first summation sums the 𝑇𝑖−1 residuals across all 
the banks. 𝜂 is the constant, 𝛺𝑇𝑖−1

= 𝜄𝑇𝑖−1𝜄
′
𝑇𝑖−1

 is the 𝑇𝑖−1× 𝑇𝑖−1 matrix 
of ones, and 𝐈𝑇𝑖−1 is the corresponding identity matrix. To account 
for the endogeneity of the SAR variable and 𝜀 being unobserved, Eq. 
(B.3) includes ln |𝐈∗ − 𝛿𝐖∗|, which is the logged determinant of the 
Jacobian of the transformation from 𝜀 to 𝑐 (e.g., Elhorst (2009)). 𝐈∗
is the block diagonal identity matrix with 𝑇 blocks comprising the 𝑁𝑡

dimensional 𝐈𝑁𝑡  for all 𝑡 ∈ 1,… , 𝑇 . Likewise, 𝐖∗ is the block diagonal 
spatial weights matrix, where the 𝑇  blocks are the 𝑁𝑡 dimensional 𝐖𝑡

for all 𝑡 ∈ 1,… , 𝑇 . This within log-likelihood function is maximized 
with respect to 𝛽, 𝛿, 𝜆 and 𝜎2.

To evaluate the within log-likelihood function we use the following 
approach. We estimate the cdf in Eq.  (B.3) by following Appendix  C 

in Chen et al. (2014), which involves evaluating a single integral. As 
suggested by Pace and Barry (1997), we also pre-calculate ln |𝐈∗ − 𝛿𝐖∗|
for a vector of values of 𝛿 based on 0.001 increments over the interval (

1

min(ℎmin
1

,…,ℎmin
𝑇

)
, 1

max(ℎmax
1

,…,ℎmax
𝑇

)

)
. The estimate of the asymptotic vari-

ance is obtained by taking the inverse of the information matrix of the 
ML estimate of Eq.  (B.3). To estimate 𝑢𝑖𝑡, we use the standard approach 
in the literature in Eq.  (B.4) to predict 𝑢𝑖𝑡 conditional on 𝜀𝑖𝑡 (Jondrow 
et al., 1982). 

�̂�𝑖𝑡 = E
(
𝑢𝑖𝑡|𝜀𝑖𝑡

)
=
𝜎𝑢𝜎𝑣
𝜎𝑢𝑣

(
𝜑𝑖𝑡

1 −𝛷𝑖𝑡
−
𝜀𝑖𝑡𝜆

𝜎𝑢𝑣

)
, (B.4)

where 𝛷𝑖𝑡 = 𝛷
(
𝜀𝑖𝑡𝜆∕𝜎𝑢𝑣

) and 𝜑𝑖𝑡 = 𝜑
(
𝜀𝑖𝑡𝜆∕𝜎𝑢𝑣

)
.

Appendix C

See Table  A.
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