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Abstract

Bank market power has far-reaching e¤ects as, among other things, it a¤ects the price

of credit. Even though it is well-known that banks are spatially interdependent due to

rival banks having branches in the same geographical areas, the literature on bank market

power overlooks this. To measure market power spillovers, we set out an approach to

calculate spill-in and spill-out Lerner indices for �rms and their products. To account for the

marked consolidation over the sample, we use unbalanced panel data comprising over 45; 000

observations for large commercial U.S. banks. From spatial stochastic frontier models, we

obtain estimates of these indices (with and without adjustment for ine¢ciency spill-ins and

spill-outs). We observe high spill-in Lerner indices for some banks, which is consistent with

consolidation in the industry leading to concerns about bank market power. In line with

larger agglomeration e¤ects being conducive to higher spillovers, banks with high spillover

Lerner indices tend to have branches in major cities.
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Market power; Lerner index.
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1 Introduction

A �rm has market power if it is able to raise its price to increase its pro�ts. Other things

unchanged, the higher price will reduce the output quantity the �rm sells, which together will

lower consumer bene�t. Accordingly, the importance of measuring the market power of �rms

has long since been recognized. For banks, the implications of market power are far-reaching

because, among other things, it a¤ects the prices of credit to �rms and individuals, which has a

wider e¤ect on the general business environment. In line with such key implications, there is a

vast literature on measuring bank market power that covers a range of countries, e.g., European

Monetary Union (EMU) countries (e.g., Maudos and De Guevara, 2007; Delis and Tsionas,

2009; Wang et al., 2020; Coccorese et al., 2021), the United States (U.S.) (e.g., Sha¤er and

Spierdijk, 2020; Wang et al., 2022; Mi et al., 2024) and emerging countries (Semih Yildirim and

Philippatos, 2007; Efthyvoulou and Yildirim, 2014; Danisman and Demirel, 2019), to name only

a small selection of studies in this large literature. In the U.S. banking industry, consolidation

has substantially reduced the number of banks, which has led to the largest banks having a

much larger share of the industry�s total assets. This consolidation has led to concerns about

the market power of these banks, thereby underlining the practical relevance of our analysis.

Accordingly, rather than analyze market power across the U.S. banking industry or across a

key subset of U.S. banks, we focus on market power at the micro levels of individual large U.S.

banks and their products.

It is well-known that banks are interdependent, which is due to, among other things, rival

banks having branches in the same geographical areas. For individual banks and their mul-

tiple outputs, and using approaches that overlook the spatial interconnectedness between the

banks, the extant literature estimates the usual own market power. However, by overlooking

this interconnectedness these own market power estimates may be biased. This is because these

estimates may be con�ated with the market power spillovers pertaining to the omitted intercon-

nectedness: namely, a bank�s asymmetric market power spill-in and spill-out from and to the

other sampled banks. To address this potential bias, we introduce the �rst method to estimate

bank and product level market power spillovers. Moreover, as our method is not speci�c to

banks, subject to data availability, it can be applied to estimate these micro level market power

spillovers in other industries.

We report bank and product level asymmetric market power spill-ins and spill-outs with

and without adjustment for the corresponding asymmetric ine¢ciency spillovers. We obtain

and compute the ine¢ciency and market power spillovers from a �xed e¤ects spatial stochastic

frontier analysis (SSFA). This involves extending the non-spatial �xed e¤ects stochastic frontier

analysis (SFA) in Chen et al. (2014) to the spatial setting by allowing the spatial lag of the

dependent variable, i.e., the spatial autoregressive (SAR) variable, to impact the frontier (e.g.,

Glass et al., 2016; Jin and Lee, 2020; Lai and Tran, 2022; Tran et al., 2023; Tran and Tsionas,

2023). Consequently, we do not account for the spatial dependence using the spatial lag of (i)

the disturbance (e.g., Druska and Horrace, 2004; Orea and Álvarez, 2019; Hou et al., 2021;

Skevas and Skevas, 2021); (ii) ine¢ciency (e.g., Orea and Álvarez, 2019; Skevas and Skevas,

2021; Hou et al. 2021; Fusco et al. 2024); or (iii) each x regressor (e.g., Adetutu et al.,

2015). This is because a model with the SAR variable yields the asymmetric indirect global
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(i.e., �rst, second, third, etc., order neighbor) spillovers of the x variables, ine¢ciencies and

noise that we need to calculate the asymmetric market power spill-ins and spill-outs.1 Our

model and estimation procedure therefore add to the set of spatial frontier approaches in the

regional literature (Ramajo et al., 2017; Ramajo and Hewings, 2018; Kutlu and Nair-Reichert,

2019; Algeri et al., 2022; Glass and Kenjegalieva, 2024). More generally, for a comprehensive

coverage of the spatial frontier literature that documents its growth and extends beyond the

regional literature, see Ayouba (2023).

In contrast to maximum likelihood estimation of a linear �xed e¤ects model, the usual

demeaning (i.e., within transformation) of the data to eliminate the �xed e¤ects does not yield

a tractable likelihood function for non-linear models, e.g., a stochastic frontier (Wang and Ho,

2010). This has led to three ways of estimating a �xed e¤ects stochastic frontier. The �rst

is to retain the �xed e¤ects dummy variables by not demeaning (Greene, 2005), but this may

lead to inconsistent estimates due to the well-known incidental parameters problem (Neyman

and Scott, 1948). The second involves modeling time-varying ine¢ciency as the product of the

following: a particular function that depends on time-varying exogenous variables, and a time-

invariant ine¢ciency term that has a truncated normal distribution (see Wang and Ho, 2010, for

details). By modeling ine¢ciency in this way, demeaning the data yields a tractable likelihood

function. In the third way, as well as making the usual half-normal and normal distributional

assumptions for the time-varying ine¢ciency and noise components of the error, the error term

is also assumed to have a closed skew normal distribution (see Chen et al., 2014, for details).

This modeling of the error term is a further way of obtaining a tractable likelihood function

with demeaned data. Here we extend the more recent Chen et al. approach to the case of SAR

dependence. Moreover, a further feature of our analysis is the unbalanced panel data.2 This is

key for our analysis as the aforementioned consolidation in the U.S. banking industry relates to

more than a 50% fall in the number of banks over our sample. Turning now to discuss in more

detail the main focus of this paper: namely, the general methodology we introduce to quantify

market power spillovers and the empirical analysis of these spillovers for large commercial U.S.

banks.

We introduce bank and product level asymmetric spill-in and spill-out Lerner indices. To

put this contribution into context we �rst brie�y consider the standard non-spatial product

level Lerner index for a bank (e.g., Sha¤er and Spierdijk, 2020; Wang et al., 2020; Mi et al.,

1From a model with a spatial lag of noise or ine¢ciency, we only obtain asymmetric indirect global noise or
ine¢ciency spillovers. Moreover, a spatial model with only spatial lags of the x variables, i.e., the SLX model
(Halleck Vega and Elhorst, 2015), yields only the impacts of the x variables of a unit�s �rst order neighbors (i.e.,
unidirectional local spillovers in the inward direction). We also gave consideration to augmenting our SAR model
with the spatial lags of the x regressors, i.e., the spatial Durbin model. Whilst this model would yield the required
asymmetric indirect global spillovers of the x variables, ine¢ciencies and noise, we did not pursue this model.
This is because our SAR model is a more parsimonious speci�cation, as the spatial Durbin model would involve
including spatial lags of all the squares and interactions in our translog functions (cost, revenue and output
distance). In addition, as we are primarily interested in the asymmetric market power spill-ins and spill-outs,
our model follows a number of non-spatial and spatial stochastic frontiers that focus on the determinants of the
frontier. For spatial stochastic frontiers that also include determinants of the variance or mean of ine¢ciency,
see Gude et al. (2018), Kutlu et al. (2020) and Galli (2023a; 2023b; 2024).

2More generally, for unbalanced spatial panel data analysis that does not involve ine¢ciency measurement
using spatial frontier methods, see Egger et al. (2005) and Baltagi et al. (2007; 2015).
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2024).

Lkit =
Pkit �MCkit

Pkit
=

Rkit
Qkit

�MCkit
Rkit
Qkit

< 1; (1)

where the banks, time periods and products which the banks o¤er are indexed i 2 1; :::; N ,

t 2 1; :::; T , and k 2 1; :::;K, respectively For product k of bank i in period t, Pkit is the output

price, MCkit is marginal cost, Qkit is the output quantity and Rkit is revenue. For the single

output case, when a �rm has no market power Lit is 0, but when a �rm has some market power

0 < Lit < 1. In the multiple output case Pkit�MCkit � 0 (and hence Lkit � 0) is not guaranteed.

Pkit�MCkit < 0 (and hence Lkit < 0) could be due to the optimal cross-subsidization of product

k by bank i, e.g., a bank may cross-subsidize some o¤-balance sheet activities by pricing them

below MCik to some existing customers that use other products (Sha¤er and Spierdijk, 2020).

Alternatively, Pkit � MCkit < 0 may not represent pro�t maximizing behavior due to the

bank having a sub-optimal business strategy for product k. Frontier analysis caters for both

possibilities as it allows for pro�t maximization or sub-optimal pro�ts by not explicitly imposing

the former.

Both types of non-spatial Lerner index reported in the literature can be obtained from Eq.

1. One type involves an adjustment for ine¢ciency, while the other does not. To obtain the

latter: (i) Rkit and Qkit assume the bank lies on its revenue and output distance frontiers,

respectively; and (ii) MCkit =
Cit
Qkit

@ lnCit
@ lnQkit

(e.g., Sha¤er and Spierdijk, 2020) is calculated using
@ lnCit
@ lnQkit

from a �tted cost function and the data points Cit and Qkit, where Cit is based on

the bank being on its cost frontier. The other type of Lkit is calculated in a similar way and

accounts for ine¢ciencies. This means that the numerator and denominator of Rkit
Qkit

are adjusted

for revenue and output distance ine¢ciencies, and in the calculation ofMCkit, Cit is adjusted for

cost ine¢ciency.3 For further details on adjusting Lerner indices for ine¢ciencies, see subsection

2:2.

Our extension of the Lerner index to introduce asymmetric spill-in and spill-out indices is

motivated by the index being a widely used measure of market power. In the banking literature,

however, other measures of market power are also used. To further motivate our extension by,

among other things, highlighting the practical reporting of banking Lerner indices by the World

Bank, we brie�y review in Appendix 1 the three main measures of bank market power that

were candidates for extension to the case of spill-ins and spill-outs. In terms of more general

motivation of our analysis, to the best of our knowledge, Dix and Orzach (2023) is the only

other study to consider market power spillovers. Their approach, however, di¤ers from ours as

they analyze within airline market power spillovers when an airline operates connecting �ights.

Their approach is also speci�c to an airline�s connecting �ights, whereas our spatial approach

can analyze the general case of market power spillovers between �rms and/or di¤erent �rms�

products.

The calculation of the bank and product level asymmetric spill-in and spill-out Lerner indices

is a two-step process. In the �rst step we estimate spatial cost, alternative revenue and output

distance stochastic frontier models. In the second step, we use these �tted models to calculate

3 In the calculation of the ine¢ciency adjusted estimate of MCkit, Qkit is not adjusted for output distance
ine¢ciency. This is because Qkit is given in the estimation of the cost function.
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two types of asymmetric bidirectional spatial Lerner indices. The �rst type are overall indices

and represent market power spill-ins and spill-outs from and to all other banks. The second

type are partitioned indices and measure the corresponding spill-ins and spill-outs from and to

1st order, 2nd order, etc. neighbors. The partitioned indices are informative as they allow us to

examine how the market power spill-ins and spill-outs die out across higher order neighborhood

sets. As we discuss further in due course, computing the asymmetric spatial Lerner indices

involves obtaining estimates of the unobserved price and marginal cost spill-ins and spill-outs

for individual banks and their products. To obtain the estimates of the asymmetric bidirectional

price spillovers, we obtain revenue and quantity spill-ins and spill-outs from the results for the

spatial alternative revenue and output distance models. By applying the non-spatial approach

in Sha¤er and Spierdijk (2020) to our bank level spatial cost model, we obtain the marginal

cost spill-in and spill-out for each output. We also report further overall and partitioned spatial

Lerner indices that are adjusted for the overall and partitioned ine¢ciency spill-ins and spill-outs

to and from a bank.

Bank interconnectedness is an important phenomenon as it underlies various systemic risks,

e.g., bank run contagion. Accordingly, U.S. bank regulatory authorities dedicate a lot of re-

sources to monitor di¤erent forms of this interconnectedness. Using over 45; 000 observations for

large commercial U.S. banks (1994:Q1 � 2022:Q4), we obtain estimates of bank market power

spillovers. The three key results for these spillovers, which we now preview, represent new

information about the interconnectedness of U.S. banks. First, consistent with consolidation

in the industry leading to concerns about the market power of the largest banks, a number

of banks have relatively high spillover Lerner indices, e.g., two global systemically important

banks (Bank of America and JPMorgan Chase). This �nding suggests that overlooking bank

market power spillovers may result in U.S. competition authorities understating the market

power impact of a large bank merger. The implication being that overlooking these spillovers

may lead to unexpectedly larger increases in the price of credit and, as a result, unexpectedly

bigger negative impacts on the general business environment and household welfare. Therefore,

from a policy perspective, we suggest that U.S. competition authorities should account for such

spillovers when assessing future large bank mergers.

Second, we report a bank level spill-in Lerner index for quintile 5 of the bank size distribution

that is well below that for the pool of quintile 5 banks that are in 95% of the study period.

This emphasizes the importance of unbalanced panel data for our empirical case as the lower

market power spill-ins for the banks outside this pool are intuitive as they may have contributed

to some of these banks dropping out the sample. Third, banks with both spill-in and spill-out

Lerner indices that are in the top thirds of the estimates tend to have branches in major cities.

This stands to reason as the bigger agglomeration e¤ects in major cities will promote market

power spillovers.

The remainder of this paper is organized as follows. Section 2 sets out the two-step empirical

methodology. The �rst step is presented in 2:1 and comprises three parts. (i) The SAR cost,

alternative revenue and output distance stochastic frontiers. (ii) The approaches to spatially

partition the asymmetric (spill-in and spill-out) indirect marginal e¤ects and ine¢ciencies across

1st order, 2nd order, etc. neighborhood sets. The own coe¢cients and ine¢ciencies from the
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models represent the impacts on a single bank. However, a change in an explanatory variable

and a particular bank�s ine¢ciency can potentially a¤ect the dependent variables of all the

other banks. The indirect marginal e¤ects and ine¢ciencies account for this. (iii) How we use

the above overall and partitioned indirect marginal e¤ects and ine¢ciencies to construct the

corresponding indirect translog functions. The second step is presented in 2:2 and focuses how

we use these functions to obtain the (un)partitioned spill-in and spill-out Lerner indices. Section

3 presents the empirical analysis and section 4 summarizes.

2 Modeling framework

2.1 Step 1: SAR stochastic frontiers, marginal e¤ects and ine¢ciencies

We estimate SAR speci�cations of the cost, alternative revenue and output distance stochastic

frontier models. In the standard revenue function, revenue is a function of input quantities

and output prices, whereas in the alternative revenue function, revenue is a function of outputs

and input prices. We use an alternative revenue function as it has well-established merits (e.g.,

Berger and Mester, 2003). Among other things: (i) it accounts for the constraints on a bank�s

ability to change its output quantities in the short-run, which is captured by the inclusion of

these quantities in the function; and (ii) there is less measurement error with an alternative

revenue function as input prices are more accurately measured than output prices.

The SAR cost, alternative revenue and output distance stochastic frontier models are set

out in Eqs. 2� 4, respectively, where in below three models all the variables are logged.

cit = �+ TL (t; qit;mit) + zit

0 + �

NtP
j=1

wijtcjt + bt + di + vit + uit; (2)

rit = �+ TL (t; qit;mit) + zit

0 + �

NtP
j=1

wijtrjt + bt + di + vit � uit; (3)

�qkit = �+ TL (t; eqit; sit) + zit
0 + �
NtP
j=1

wijt (�qkjt) + bt + di + vit + uit: (4)

As we use the estimation results for Eqs. 2 � 4 to calculate market power spillovers, we use

matched unbalanced panel datasets for these models that comprise the same banks for the same

time periods. The banks in period t are indexed i; j 2 1; :::; Nt where i 6= j. For the ith bank

in period t, cit, rit and qkit are the cost, revenue and quantity of the kth output, respectively.

TL denotes the translog functional form, where mit is the vector of input prices, eqit is the
vector of K � 1 outputs and sit is the vector of input quantities. Some of the parameters to be

estimated include the common intercept �, the coe¢cients in TL, and the vector of coe¢cients

(
0) on the non-spatial environment variables (z). The relationships between the dependent

and independent variables collectively represent the frontier. Of the independent variables,

only those in the TL function in�uence the monotonicity and curvature of the frontier. We,

therefore, follow the e¢ciency and productivity literature and refer to the covariates outside

TL as environmental variables as they shift the frontier up or down.
PNt
j=1wijtcjt,

PNt
j=1wijtrjt and

PNt
j=1wijt (�qkjt) are observations of the SAR environmental

variables. To construct these variables we use the exogenous, a priori speci�ed, non-negative
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spatial weights (wijt�s), which are collected in the Nt � Nt matrix Wt. Wt represents which

banks neighbor one another and the strength of the linkages between the banks, where all the

elements on the main diagonal are set to zero to rule out self-in�uence. The feasible range of

values of each SAR coe¢cient is � 2
�

1
min(hmin

1
;:::;hmin

T
)
; 1
max(hmax

1
;:::;hmax

T
)

�
, where hmint and hmaxt are

the most negative and positive real characteristic roots ofWt. Note also thatWt is normalized.

See 3:1 for details of this normalization and the speci�cation ofWt for the empirical analysis,

where the normalizing factor we use yields hmaxt = 1.

We account for the e¤ects of time in Eqs. 2�4 using time period e¤ects (bt) and a non-linear

time trend (as t, t2 and interactions with t are part of TL). By including time period e¤ects

to account for common shocks across the banks, due to, for example, systemic factors, we do

not con�ate these shocks with the e¤ect of the SAR variable. Given the non-linear time trend,

which is a proxy for technical change, is estimated using data over the whole sample, bt captures

a common departure from the time trend in a particular period.

In a stochastic frontier model the composed error is of particular interest, where here this

error is "it = vit � uit. This comprises noise, vit~N
�
0; �2v

�
, and ine¢ciency, which, as is com-

mon, is assumed to be half-normally distributed, uit~N+
�
0; �2u

�
. Note that uit has a positive

(negative) sign in the cost (revenue) frontier model. This is because it measures how much a

bank is above (below) its best practice cost (revenue) frontier. The output distance function

(ODF) assumes that a bank is seeking to maximize multiple outputs using a given quantity of

inputs. A bank�s shortfall, however, from its best practice ODF in Eq. 4 (uit) has a positive

sign, whereas in the single output stochastic production frontier model this sign is negative.

This positive sign is because the negative kth output is on the left-hand side of Eq. 4.

To account for unobserved heterogeneity we use �xed e¤ects (di). Related to this, and as

noted in the introductory section, we estimate Eqs. 2� 4 by adapting the estimation procedure

in Chen et al. (2014) to the case of SAR dependence. This involves drawing on their assumption

that the composed error ("it) has a closed skew normal distribution. For further discussion of

this, see Appendix 2 for the maximum likelihood procedure to estimate Eqs. 2� 4. To simplify

the notation in the presentation of this estimation procedure, we set out this procedure for the

SAR cost frontier in Eq. 5.

cit = �+ xit�
0 + �

NtP
j=1

wijtcjt + bt + di + vit + uit: (5)

In Eq. 5, the vector of observations zit and the observations for the variables in TL in Eq. 2 are

collected in xit. xit relates to the 1 � A vector of non-spatial regressors (indexed a 2 1; :::; A)

and �0 is the associated A� 1 vector of coe¢cients.

Whilst �a represents the own e¤ect of a change in xait on the ith bank, this is not the

marginal e¤ect of this change. This is because this change will also a¤ect other banks via the

SAR variable. The direct, indirect and total e¤ects account for how this spatial interaction

in�uences the e¤ect of xait. Brie�y turning to discuss these spatial e¤ects as the asymmetric

overall indirect spill-in and spill-out e¤ects � and the partitioning of these e¤ects into impacts

pertaining to immediate neighbors, neighbors� neighbors, etc.� are central to the method to

obtain the spill-in and spill-out Lerner indices. The partitioned indirect Lerner indices therefore
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indicate the spatial extent of the propagation of the market power spillovers from a bank to

other banks. The spatial e¤ects relate to the data generating process (DGP) in Eq. 6, which

we obtain by stacking Eq. 5 across successive cross-sections and rearranging.

ct = (It � �Wt)
�1 ���t +Xt�0 + bt + d+ vt + ut

�
; (6)

where �t is the Nt � 1 vector of ones; bold lower case letters are Nt � 1 vectors; Xt denotes the

Nt �A matrix; and It is the Nt �Nt identity matrix.

We obtain the partitioned indirect e¤ects from Eq. 7. This involves expanding the spatial

multiplier matrix, (It � �Wt)
�1, in Eq. 6 to give the series that premultiplies on the right-hand

side of Eq. 7. We then di¤erentiate the new form of Eq. 6 with respect to xat (i.e., the ath

column of Xt) to obtain Eq. 7.

2
664

@c1
@xa;1

� � � @c1
@xa;N

...
. . .

...
@cN
@xa;1

� � � @cN
@xa;N

3
775

t

=
�
It + �Wt + �

2
W

2
t + �

3
W

3
t + ::::

�
2
664

�a � � � 0
...

. . .
...

0 � � � �a

3
775 : (7)

Multiplying each matrix in It+�Wt+::: by theNt�Nt matrixDt=diag(�a) yields the partitioned

e¤ects of xa for the following orders of Wt. ItW
0
tDt = ItDt: the main diagonal of ItDt

comprises direct e¤ects for the ith bank that are net of the impacts of the spatial interaction

(i.e., the usual own e¤ects), where the o¤-diagonal elements are zero. �W1
tDt: the o¤-diagonal

elements of �WtDt represent indirect e¤ects that relate to the banks� 1st order (i.e., immediate)

neighborhood sets, where the main diagonal elements are zero. �2W2
tDt, �3W3

tDt, etc: the main

diagonal elements of these matrices represent further components of the overall direct e¤ects

that rebound to the ith bank from its 1st order, 2nd order, etc. neighbors (i.e., feedback, which

in practice is typically small). The o¤-diagonal elements of these matrices represent indirect

e¤ects that relate to the banks� 2nd order, 3rd order, etc. neighborhood sets.

If we do not expand (It � �Wt)
�1, the right-hand side of Eq. 7 yields a matrix product

comprising overall direct and indirect e¤ects on the main and o¤ diagonals. For ease we report

means of the direct and (un)partitioned indirect e¤ects across the banks and time periods.

Summing the (un)partitioned direct and indirect e¤ects yields the corresponding total e¤ects.

For period t, these indirect e¤ects are the mean column and row sums of the o¤-diagonal elements

of the relevant matrix. When there is a change in xa, the former sum quanti�es the mean spill-

out from a bank to all the other relevant banks, while the latter sum quanti�es the mean spill-in

to a bank from these other banks. Whereas the sample mean spill-out and spill-in e¤ects are

symmetric, using the column and row sums of the o¤-diagonal elements in the relevant matrix

for an individual bank (or the mean of these sums for any subset of the banks in the sample),

we obtain asymmetric indirect spill-out and spill-in e¤ects. The statistical inference for the

direct, indirect and total coe¢cients is via simulation. For this, from the variance-covariance

matrix we draw 200 Halton sequences of parameter values, with each value having a random

component drawn from N(0; 1).

The decomposition on the right-hand side of Eq. 8a yields the unpartitioned direct (Dir) and

pairwise indirect (Ind) ine¢ciencies (e.g., Kutlu, 2018). By summing the pairwise Ind elements
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horizontally and vertically, we obtain the asymmetric unpartitioned indirect ine¢ciency spill-

in and spill-out to and from a bank. By expanding (It � �Wt)
�1 in Eq. 8a, we obtain the

partitioned decomposition of the direct and pairwise indirect ine¢ciencies in Eq. 8b for orders

of Wt, where for simplicity we drop the Dir and Ind superscripts. For W1
t , W

2
t , etc. the

pairwise indirect ine¢ciencies are summed horizontally and vertically. These partitioned Ind

ine¢ciencies are also central to the method for the partitioned indirect Lerner indices to measure

the spatial extent of the propagation of market power spillovers.

(It � �Wt)
�1

0
BB@

u1
...

uN

1
CCA
t

=

0
BB@

uDir11 + � � � +uInd1N
...

. . .
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uIndN1+ � � � +uDirNN

1
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t
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...

. . .
...
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t| {z }
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t

+

0
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0+ � � � +u1N
...

. . .
...

uN1+ � � � +0

1
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t| {z }

W1
t

+

0
BB@

u11+ � � � +u1N
...

. . .
...

u1N+ � � � +uNN

1
CCA
t| {z }

W2
t

+ :::

(8b)

Using the direct and (un)partitioned asymmetric indirect (spill-in and spill-out) measures

of the ine¢ciencies, time period e¤ects, errors and coe¢cients, and the non-spatial independent

variables these coe¢cients pre-multiply, it follows from the DGP in Eq. 6 that we can con-

struct direct and (un)partitioned asymmetric indirect functions. Note that these functions are

constructed, and are not regressions, as the dependent variables are not observed. To obtain

the direct and (un)partitioned asymmetric indirect time period e¤ects and errors, we follow the

method to obtain the corresponding ine¢ciencies.

To illustrate, in Eqs. 9� 11 we present the forms of the functions for direct cost
�
cDirit

�
and

the two asymmetric (un)partitioned indirect costs
�
cIndIn;it and c

Ind
Out;it

�
. We emphasize that Eqs.

9� 11 are constructed, and are not regressions, as we do not observe the dependent variables.

We, therefore, use the right-hand sides of these equations to obtain predictions of cDirit , cIndIn;it and

cIndOut;it. Note that for simplicity in Eqs. 9�11, we drop the notation used in Appendix 2 for the

within transformation of the variables. Additionally, in the indirect functions, the partitioned

and unpartitioned indirect spill-in and spill-out coe¢cients pre-multiply the same non-spatial

variables, so for simplicity in Eqs. 10 and 11 we do not distinguish between unpartitioned and

partitioned parameters, ine¢ciencies and errors. Unlike a SAR stochastic frontier model (e.g.,

Eq. 2), the direct and (un)partitioned indirect functions do not contain any spatial variables.

This is because these spatial impacts are accounted for in the computation of the direct and

9



(un)partitioned indirect parameters, ine¢ciencies and errors.

cDirit = �Diri t+
1

2
�Diri t2 + �Diri q0it +  

Dir
i m0

it +
1

2
q0it�

Dir
i qit +

1

2
m0
it�

Dir
i mit+

q0it	
Dir
i mit + &

Dir
i q0itt+ �

Dir
i m0

itt+ �
Dir
i z0it + b

Dir
t + vDirit + uDirit ; (9)

cIndIn;it = �IndIn;it+
1
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�IndIn;it

2 + �IndIn;iq
0
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Ind
In;im

0
it +

1
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cIndOut;it = �IndOut;it+
1
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0
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Ind
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0
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Ind
Out;iqit +
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In Eqs. 9 � 11, �Diri t + ::: + �Diri m0
itt, �

Ind
In;it + ::: + �IndIn;im

0
itt and �

Ind
Out;it + ::: + �IndOut;im

0
itt

are the direct and indirect spill-in and spill-out translog functions that correspond to the own

TL (t; qit;mit) in Eq. 2. Moreover, in Eqs. 9�11 a direct parameter is denoted by the superscript

Dir and a indirect spill-in (spill-out) parameter is denoted by the superscript Ind and subscript

In (Out). Vectors of direct and indirect spill-in and spill-out parameters pre-multiply vectors

denoted by 0. �, � and 	 are used to denote matrices of direct and indirect spill-in and spill-out

coe¢cients on the interactions and squared terms that relate to the outputs and input prices.

We also distinguish the vector of own parameters 
0 on zit in Eq. 2 from the vectors of direct and

indirect spill-in and spill-out parameters on this variable by using � to denote these parameters

in Eqs. 9� 11. We next in 2:2 turn to discuss how we use Eqs. 9� 11 to obtain the (direct-own

and (un)partitioned asymmetric indirect) Lerner indices.

2.2 Step 2: Measuring market power spill-ins and spill-outs

Computing Lerner indices for banks has involved using average revenues at di¤erent levels of

disaggregation as measures of the prices of a bank�s aggregated and disaggregated outputs.

Sha¤er and Spierdijk (2020) classify the large non-spatial Lerner index banking literature into

three groups. The �rst group reports an aggregate Lerner index for each bank, where in many

studies in this group this index is based on an aggregate average revenue measure that uses

a bank�s total assets as a proxy for its aggregate output. The second group reports a disag-

gregated Lerner index for each bank output and the third reports a weighted average of these

disaggregated indices for each bank. Our study extends the second and third groups, where

we �rst set out how we calculate the asymmetric (un)partitioned spill-in and spill-out Lerner

indices for individual outputs. At the end of this subsection when we pull together the di¤erent

parts of the exposition, we discuss how we obtain a weighted average of the spill-in (spill-out)

indices across a bank�s outputs. In short, this involves applying the approach for consistent

aggregation of non-spatial Lerner indices (Sha¤er and Spierdijk, 2020).

In the empirical analysis, to assess the impact on the results, we report (un)partitioned

spill-in and spill-out Lerner indices with and without ine¢ciency adjustments. As we discuss in

detail further in this subsection, our extension to compute market power spill-ins and spill-outs

requires a number of (un)partitioned spill-in and spill-out measures, which are unobserved and

must, therefore, be predicted (with and without adjustment for ine¢ciency). The approach
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to obtain the Lerner index for partitioned market power spill-ins and spill-outs is the same

as for the corresponding unpartitioned index. We do not therefore distinguish between an

unpartitioned/partitioned index in the below method. We present this method in terms of the

spill-in Lerner index, LIndIn;kit, which we calculate using Eq. 12. Note that whilst we focus on

market power spill-ins and spill-outs, our modeling framework is entirely consistent with the

non-spatial Lerner index. This is because our approach also yields the direct Lerner index

(LDirkit ) measure of a bank�s own market power, where L
Dir
kit is calculated in the same type of

way as LIndIn;kit. Accordingly, L
Dir
kit is < 1 as all the above standard coverage in the introductory

section of the non-spatial Lerner index (Eq. 1) applies.

LIndIn;kit =

RInd
In;kit

QInd
In;kit

�MCIndIn;kit

RInd
In;kit

QInd
In;kit

; (12)

MCIndIn;kit =
CIndIn;it

QIndIn;kit

@cIndIn;it

@qkit
: (13)

Compared to the simple standard own case of fRkit; Qkit;MCkitg > 0 and Lkit < 1 (and us-

ing the corresponding terminology from our modeling framework
�
RDirkit ; Q

Dir
kit ;MCDirkit

	
> 0 and

LDirkit < 1), consideration of spillovers leads to a larger set of possible values of L
Ind
In;kit 7 0. Note

that due to our interest in spillovers, we overlook the case of no market power spill-ins (LIndIn;kit =

0). LIndIn;kit 7 0 is due to the larger set of possible values of
n
RIndIn;kit; Q

Ind
In;kit;MCIndIn;kit

o
7 0,

where here we again overlook a zero value for any of these three spill-ins. When such a spill-in

is positive, this means that the variable for the ith bank tends to move in the same direction

as the corresponding variable of other spatial interdependent banks. Applying reasoning from

the spatial literature, this positive spatial correlation is consistent with banks being impacted

by common economic phenomena at di¤erent spatial scales, such as industrywide regulation,

the Federal Open Market Committee�s (FOMC�s) setting of the federal funds rate, market

conditions, and headline changes in economies at the city, state, regional and national levels.

Conversely, when any of the aforementioned three spill-ins are negative, this means that the

variable for the ith bank tends to move in the opposite direction to the corresponding variable of

other spatially interdependent banks. In the spatial literature, this negative spatial correlation

is attributed to the e¤ects of spatial competition. Note though that whilst LIndIn;kit 7 0 represents

a larger set of possible values, we will see in the empirical results that there are some clear and

plausible patterns in the market power spillovers.

As we do not observe the spill-in measures on the right-hand side of Eq. 12 for LIndIn;kit, we

predict these measures. In the same type of way, we obtain LDirkit and L
Ind
Out;kit by predicting

the corresponding measures. With regard to how we compute MCIndIn;kit in Eq. 13, having

estimated the SAR stochastic cost frontier in Eq. 2, we use the corresponding DGP to obtain

the (un)partitioned indirect spill-in coe¢cients, ine¢ciencies and errors (see subsection 2:1).

We then use these coe¢cients, ine¢ciencies and errors to construct the (un)partitioned spill-in

logged cost function in Eq. 10. From Eq. 10, we get MCIndIn;kit = @cIndIn;it=@qkit for each product.

To predict the (un)partitioned variable CIndIn;it in levels for the ith bank in Eq. 13, we avoid the
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complication of obtaining this using the prediction of the (un)partitioned cIndIn;it from Eq. 10, as

this would involve reversing a number of data transformations. Instead, we follow the approach

to obtain the direct and indirect spill-in and spill-out ine¢ciencies, which involves using the

SAR coe¢cient from the estimated Eq. 2 and the spatial multiplier matrix, (It � �Wt)
�1. We

obtain predictions in levels of CDirit , CIndIn;it and C
Ind
Out;it by decomposing (It � �Wt)

�1Cit. The

relevant element on the main diagonal of this decomposition is the prediction of CDirit and the

relevant o¤-diagonal elements are summed horizontally and vertically to obtain the predictions

of CIndIn;it and C
Ind
Out;it, respectively. These predictions are then adjusted upwards using the bank

level direct and indirect spill-in and spill-out cost ine¢ciencies.

Turning to how we obtain the predictions of the variables QIndIn;kit and R
Ind
In;kit in levels for the

kth product in Eq. 12. To obtain the former and corresponding predictions of QDirkit and Q
Ind
Out;kit

for all the K products of the ith bank, we �rst estimate K speci�cations of the ODF in Eq. 4.

Using the SAR coe¢cient from the �tted ODF with the kth output as the dependent variable

and the above approach that yields the predictions of CDirit , CIndIn;it and C
Ind
Out;it, we obtain the

predictions of QDirkit , Q
Ind
In;kit and Q

Ind
Out;kit by decomposing (It � �Wt)

�1Qkit. The predictions of

QDirkit , Q
Ind
In;kit and Q

Ind
Out;kit for all the K products of the ith bank are then adjusted downwards

using the bank level direct and indirect spill-in and spill-out output distance ine¢ciencies. As

these ine¢ciencies are based on a radial contraction (expansion) of all of a bank�s K outputs,

these ine¢ciencies are used to adjust the predictions of QDirkit , Q
Ind
In;kit and Q

Ind
Out;kit for all K

products of the ith bank.4

Along the same lines, using the SAR coe¢cient from the �tted alternative revenue function

in Eq. 3, we decompose (It � �Wt)
�1Rit to obtain bank level predictions of RDirit , RIndIn;it and

RIndOut;it. Next, we obtain the direct and indirect spill-in and spill-out revenue shares for the

ith bank�s kth product. These shares are the �rst order derivatives of the bank level direct

and indirect spill-in and spill-out alternative revenue functions with respect to the kth output

(see Eqs. 9 � 11 for the corresponding product level cost functions). Multiplying the bank

level predictions of RDirit , RIndIn;it and R
Ind
Out;it by these direct and indirect spill-in and spill-out

revenue shares yields the predictions of the product level direct and asymmetric indirect revenues

(RDirkit , R
Ind
In;kit and R

Ind
Out;kit). These product level revenue predictions are then adjusted using

the bank level direct and indirect spill-in and spill-out altenative revenue ine¢ciencies. As these

ine¢ciencies are based on a radial expansion (contraction) of the real monetary volumes of all

of a bank�s K outputs, these ine¢ciencies are used to adjust the predictions of RDirkit , R
Ind
In;kit

and RIndOut;kit for all K products of the ith bank.

For the non-spatial case, the average of the Lerner indices for a bank�s products weighted

by their revenue shares is the theoretically consistent aggregated bank level index (Sha¤er and

Spierdijk, 2020). As our approach to calculate the spill-in and spill-out indirect product level

Lerner indices follows the non-spatial case, we apply this theoretically consistent aggregation

to calculate indirect bank level Lerner indices.
4 In line with a well-known result in production theory, in the empirical analysis these output distance ine¢-

ciencies are insensitive to which of the K outputs is the dependent variable. It does not matter, therefore, which
of the K speci�cations of the ODF we obtain the ine¢ciencies from to adjust QDirkit , Q

Ind
In;kit and Q

Ind
Out;kit.
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3 Empirical analysis

3.1 Data and the spatial weights matrix

To obtain the market power spill-ins and spill-outs, we �rst estimate the spatial speci�cations of

the cost, alternative revenue and output distance stochastic frontiers (Eqs. 2� 4). There is an

exact correspondence between these models as we draw on a rich data source (Federal Deposit

Insurance Corporation (FDIC) data from the Call Reports) to construct three datasets com-

prising corresponding bank-period observations. Each dataset is large as it comprises 45; 759

quarterly observations for large commercial U.S. banks for the period 1994:Q1 � 2022:Q4. In

contrast to the balanced panel data used in previous spatial banking studies (Glass and Kenje-

galieva, 2019; 2023; Glass et al, 2020a; 2020b), our panel data is unbalanced. This is important

as it accounts for the marked consolidation among U.S. banks due to bank failures and mergers

and acquisitions, which in our sample involves a fall from a high of 591 banks (1994:Q2) to a

low of 272 in the aftermath of the �nancial crisis (2010:Q4).

A key factor that a¤ects the spatial dependence between banks is their branch networks

as they indicate which banks operate in the same geographical markets. Accordingly, and

as we discuss in more detail below, the a priori speci�cation of the spatial weights are based

on the geographical overlap of their branch networks. Unlike the extant balanced panel data

applications of the spatial weights matrix to banking (Glass and Kenjegalieva, 2019; 2023;

Glass et al, 2020a; 2020b), which, as is common in applied spatial econometrics, use a �xed

matrix across the study period (e.g., average of the per period matrices), here this matrix is

time-varying due to the panel data being unbalanced. Hence, in contrast to the above spatial

banking studies, our matrix re�ects the evolution of each bank�s branch network over the study

period.

Capturing this evolution is important as there have been big changes to these networks. This

is because from June 1997, the 1994 Riegle-Neal Interstate Banking and Branching E¢ciency

Act allowed banks to expand their branch networks outside their state of origin. Due to some

deregulations in the 1980s and early 1990s, and some states implementing the Riegle-Neal Act

in advance of the deadline, there were banks with branches outside of their state of origin prior

to June 1997. Our study period, therefore, starts in 1994:Q1 as (i) this is the �rst quarter

when the geographical information on branch networks is available; and (ii) this allows us to

capture the evolution of branch networks in response to the Riegle-Neal Act, as this quarter

represents the �rst early implementation of the Act by a state (Alaska) (Dick, 2006). Of the

commercial U.S. banks, we consider the large ones as they have the largest branch networks, so

there will be a greater overlap between their networks, which is consistent with greater spatial

dependence. This also allows us to focus on how the branch networks of large banks responded

to the Riegle-Neal Act, as these banks were best equipped for branch network expansion. We

de�ne a large U.S. bank using the same real total assets threshold as Berger and Roman (2017).

Having used the GDP de�ator to convert the total assets of the banks into 2012:Q4 U.S. dollars,

we de�ne a bank as large if it has real total assets greater than $3 billion at any point in the

study period. No smaller banks are included as they will likely have a di¤erent best practice

frontier to large banks.
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Table 1: Description of the variables and summary statistics

Variable description
Variable

notation
Mean Std. Dev.

Total operating cost (000s of 2012:Q4 U.S. dollars): Sum of salaries, c 155; 540:7 698; 792:6

interest expenses on deposits, and expenditure on �xed assets
and premises
Total revenue (000s of 2012:Q4 U.S. dollars): Sum of non-interest r 395; 332:1 1; 700; 855:1

income minus service fees on deposits and income from loans and
leases, and securities
Input prices

Cost of deposits: Interest expenses on deposits divided by deposits m1 0:005 0:004

Cost of labor: Salaries divided by the number of full-time equivalent m2 19:526 11:480

employees
Cost of �xed assets and premises: Expenditure on �xed assets and m3 0:830 57:384

premises divided by their value
Inputs

Total deposits (000s of 2012:Q4 U.S. dollars) s1 17; 026; 147:0 92; 684; 257:7

Number of full-time equivalent employees s2 3; 497:7 15; 817:9

Fixed assets and premises (000s of 2012:Q4 U.S. dollars) s3 206; 004:8 884; 389:5

Outputs

Total loans and leases (000s of 2012:Q4 U.S. dollars) q1 12; 860; 747:8 59; 134; 004:2

Total securities (000s of 2012:Q4 U.S. dollars) q2 4; 618; 489:9 26; 473; 630:6

O¤-balance sheet (OBS) items (000s of 2012:Q4 U.S. dollars): q3 21; 203; 926:2 164; 187; 005:1

Measured as non-interest income capitalization credit equivalents
of OBS items, where we calculate this equivalence measure using
the approach in Boyd and Gertler (1994)
Non-spatial environmental variables (z�s)
Loan loss allowance as a share of loans and leases LLA 0:017 0:021

Tier 1 capital ratio: Tier 1 capital divided by total assets Tier1CR 0:091 0:048

Tier 2 capital ratio: Tier 2 capital divided by total assets Tier2CR 0:011 0:008

Equity ratio: Total equity capital divided by total assets Equity 0:104 0:052

Asset quality: Ratio of non-performing loans to total loans NPL 0:012 0:023

Scope of the bank loan portfolio: Hirschman-Her�ndahl Index (HHI) HHI 0:543 0:178

across a bank�s real estate loans, farm loans, commercial and
industrial loans, loans to individuals and other loans as ratios of
total loans
Age: Number of years the institution has been established Age 71:13 50:53

Security share: Securities as a share of of total assets Security 0:215 0:138

Throughout we use FDIC Call Report data for the variables, where we draw on the widely-

used intermediation approach (Sealey and Lindley, 1977) to settle on which variables are outputs,

inputs and input prices. Apart from the input prices as they are ratios, the GDP de�ator is

used to de�ate monetary variables to 2012:Q4 U.S. dollars. We then obtain the data for all

the �ow (income and expenditure) variables by �rst di¤erencing the observations for quarters

2 � 4 (Wheelock and Wilson, 2018). For the summary statistics, descriptions of the variables

and notation, see table 1.

We take logs of all the continuous variables in table 1 and then mean adjust. We mean

adjust so we can interpret the own coe¢cients on the �rst order variables in the TL functions

in Eqs. 2� 4 (and the direct, (un)partitioned indirect and total coe¢cients on these variables)

as elasticities at the sample mean. We are then in a position to estimate the alternative revenue

function. This is because production theory does not require this function to be homogenous

of degree one in input prices, so none of the variables are normalized (Berger et al., 1996;
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Wheelock and Wilson, 2018). In contrast, this homogeneity is a property of the cost function.

We, therefore, use m3 as the normalizing factor for c, m1 and m2. Moreover, as the ODF

function assumes that a bank aims maximize its three outputs using a given quantity of inputs,

we use the left-hand side output as the normalizing factor for the two right-hand side outputs.

We use the same a priori normalized speci�cation ofWt to estimate each spatial stochastic

frontier. Ahead of the presentation of our speci�cation of Wt, we note that it was in�uenced

by the following two factors that informed the spatial weights in the analysis of U.S. banks by

Glass and Kenjegalieva (2023). First, following the vast majority of the spatial econometrics

literature, the spatial weights in Eqs. 2 � 4 are exogenous. In line with this, we specify Wt

using a measure of the geographical links between banks� branch operations. Second, as we

present an economic application, we recognize that the spatial weights matrix should have some

economic foundation (Corrado and Fingleton, 2012).

At the outset we ruled out specifying Wt using the distances between banks� headquar-

ters, as the locations of their headquarters would not re�ect the geographical evolution of the

banks� branch networks following the Riegle-Neal Act. Another possibility, which we ultimately

did not pursue, is to use data on branch deposit levels to construct o¤-diagonal weights that

represent the economic connectivity of banks� branch networks. A possible approach to re�ect

the economic connectivity of the ij-th banks� branch networks is to use the ratio of the jth

and ith banks� branch deposits across the latter�s branch network as the ij-th weight. While

a measure of the economic connectivity between banks� branch networks is informative, we do

not use this ratio (or any other branch deposit based measure) to populateWt. This is because

these economic distance based weights would likely be endogenous and accounting for this by

incorporating an appropriate method from the general non-frontier spatial literature to our new

spatial stochastic frontier framework would be no small development. This development is thus

outside the scope of this paper and an area for further work. Rather than use economic dis-

tance based weights without accounting for their possible endogeneity, we exercise caution using

the following approach, which represents a halfway house between geographical and economic

weights.

As is standard, the elements on the main diagonal of the pre-normalized spatial weights

matrix fWt are set to zero to rule out self-in�uence. To calculate the o¤-diagonal elements of this

matrix, we use the available annual mid-year FDIC information from the �Summary of Deposits�

on the locations of the banks� branches. Annual data is also available for the variables in table

1, but we instead favor a richer, higher frequency quarterly analysis. To combine the quarterly

data for the variables with the annual branch locations, we apply these locations to each quarter

in a year. To calculate each o¤-diagonal element in fWt, we sum across 51 territories (50 states

and the District of Columbia) the ratio of the number of jth bank branches in a territory to the

number of ith bank branches. This sum, therefore, represents the jth bank�s relative branch

intensity. Based on this, we view fWt as being a halfway house between exclusively geographical

and exclusively economic weights matrices. This is based on fWt being geographical in nature,

which is consistent with the weights being exogenous; and the branch geography on which fWt

is based on underpinning the economic links between banks in the form of their branch deposits

in the same markets.
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Summarizing, we formally calculate the elements of fWt as follows, where the territories are

indexed s 2 1; :::; 51.

ewijt =
( P51

s=1
Number of jth bank branches in s in period t
Number of ith bank branches in s in period t for i 6= j

0 for i = j
: (14)

We then normalize fWt by its largest eigenvalue to obtain the Wt we use in the estimations.

This normalizing factor has the advantage of preserving the original information on the relative

branch network intensities, as it leaves the proportional relationships between the elements of
fWt unchanged. In contrast, the common alternative of row-normalizing would not preserve this

information.

3.2 Estimated models and (in)e¢ciencies

In table 2, we present estimates of the models in Eqs. 2 � 4: namely, SAR stochastic cost,

alternative revenue and output distance frontiers, where for the latter the left-hand side output

is securities (�q2). See table A in Appendix 3 for the estimates of the other two SAR output

distance frontiers when the left-hand side output is loans (�q1) and o¤-balance sheet items

(�q3). We can see from the �tted cost and alternative revenue models that the coe¢cients on

the �rst order outputs and input prices have the expected positive signs. From the reported

distance functions, the coe¢cients on the �rst order outputs are, as expected, positive. As the

left-hand side outputs in the distance functions are negative, with one exception (the small

and insigni�cant coe¢cient on �xed assets and premises (s3) in the distance function when the

left-hand side output is �q3), the �tted coe¢cients on the �rst order inputs in these models

have the expected negative signs.

It is not surprising that the coe¢cient on s3 is not signi�cant in the distance function when

the left-hand side output is �q3 (and �q1). This is because this is consistent with the rise in

online banking leading to a decline in the role of brick and mortar branches, which has resulted

in a wave of branch closures. In the cost and alternative revenue models, all the coe¢cients

on the �rst order outputs and input prices are signi�cant at the 1% level. From the reported

ODFs, and with the exception of the two aforementioned coe¢cients on s3, we observe signi�cant

coe¢cients at the 1% level on the �rst order inputs and outputs. Furthermore, based on the

magnitudes of the returns to scale for U.S. banks in the extant literature, the estimates of these

returns at the sample mean from our cost, alternative revenue and ODFs are reasonable (0:91,

0:95 and 1:03� 1:07, respectively).
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Table 2: Selected SAR stochastic frontier models

SAR stochastic cost frontier
SAR stochastic alternative

revenue frontier
SAR stochastic output distance frontier:

Left-hand side output � q2
Model

coe¤

Model

coe¤

Model

coe¤

Model

coe¤

Model

coe¤

Model

coe¤

q1 0:681��� q3t 0:043� 10�2��� q1 0:704��� q3m1 �0:009��� s1 �0:846��� s3t 0:028� 10�2���

q2 0:132��� m1t �0:001��� q2 0:121��� q3m2 0:021��� s2 �0:172��� q1t �0:001���

q3 0:100��� m2t �0:007� 10�2 q3 0:121��� q3m3 0:012��� s3 �0:009��� q3t 0:001���

m1 0:395��� LLA 0:881��� m1 0:124��� t �0:043��� q1 0:743��� LLA 0:614���

m2 0:531��� Tier1CR �0:464��� m2 0:151��� t2 0:001��� q3 0:079��� Tier1CR �1:083���

q2
1

0:031��� Tier2CR �1:885��� m3 0:031��� q1t �0:005��� s2
1

�0:054��� Tier2CR �0:368��

q2
2

0:015��� Equity 0:395��� q2
1

0:044��� q2t �0:001��� s2
2

�0:028��� Equity 0:048
q2
3

0:007��� NPL 0:989��� q2
2

0:012��� q3t 0:002��� s2
3

�0:002��� NPL 0:804���

q1q2 �0:008��� HHI �0:075��� q2
3

0:010��� m1t 0:001��� s1s2 0:106��� HHI �0:153���

q1q3 �0:028��� Agw �0:055��� q1q2 �0:023��� m2t �0:004��� s1s3 �0:010��� Age �0:002
q2q3 0:004��� Security 0:303��� q1q3 �0:037��� m3t �0:002��� s2s3 �0:004� Security 0:024
m2

1
0:030��� Wtc �0:160��� q2q3 0:002��� LLA 1:089��� q2

1
0:027��� Wt (�q2) �0:264���

m2

2
0:052��� � 0:053��� m2

1
0:021��� Tier1CR �0:022 q2

3
0:009��� � 0:050���

m1m2 �0:097��� � 0:890��� m2

2
0:044��� Tier2CR �0:222 q1q3 �0:021��� � 0:675���

q1m1 0:011��� m2

3
�0:004��� Equity 0:825��� s1q1 0:002

q1m2 �0:036� 10�2 LL 31; 660:7 m1m2 0:059��� NPL �0:055 s1q3 0:012��� LL 31; 577:3
q2m1 0:013��� m1m3 �0:010��� HHI �0:038��� s2q1 0:006���

q2m2 �0:006��� m2m3 �0:014��� Age 0:073��� s2q3 �0:014���

q3m1 �0:003��� q1m1 �0:001 Security 0:102��� s3q1 0:013���

q3m2 �0:003�� q1m2 �0:005� Wtr 0:136��� s3q3 �0:007���

t �0:089� 10�2��� q1m3 0:037� 10�2 � 0:027��� t �0:002���

t2 �0:001� 10�2��� q2m1 0:007��� � 0:878��� t2 0:001� 10�2���

q1t �0:018� 10�2�� q2m2 0:003 s1t -0:025� 10�2���

q2t 0:021� 10�2��� q2m3 �0:011��� LL 31; 581:8 s2t �0:002���

Note: *, ** and *** denote statistical signi�cance at the 10%, 5% and 1% levels, respectively.
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Turning to the results for the environmental variables, where we are particularly interested

in the estimates of the SAR coe¢cients. From table 2 and table A, we observe that the SAR

coe¢cient in each model is signi�cant at the 1% level, which supports our modeling approach

to account for the spatial dependence in the datasets. We are the �rst to report a spatial

stochastic distance function for banks, which is an interesting line of inquiry as we �nd that the

SAR variables in the three �tted ODFs have marked negative e¤ects. This is consistent with

output competition between banks with overlapping branch networks (i.e., between �rst order

neighboring banks), where the entry and exit of banks to and from the sample is an aspect

of this competition which our unbalanced panel data captures. While the sample comprises

only large commercial U.S. banks, the negative spatial correlation between neighboring banks�

corresponding outputs that the SAR parameters in the distance functions are picking up may

also re�ect the marked variation in bank sizes in our sample, as measured by their outputs.

Such marked variation is evident as in table 1 the standard deviation of each output is much

larger than its mean.

An interesting picture emerges when we relate the above discussion of spatial output compe-

tition to the SAR coe¢cients from the cost and alternative revenue models. The SAR coe¢cient

is also negative in the cost model and while non-negligible it is smaller in absolute magnitude

than the corresponding estimates from the ODFs. This suggests that while there is spatial cost

competition between banks with overlapping branch networks, which will be impacted by the

aforementioned output competition, this cost competition is not as strong. The implication is

that the SAR coe¢cient in the cost model is capturing some partial o¤setting of the e¤ect of

the output competition on the cost rivalry between �rst order neighboring banks, which is con-

sistent with costs being a¤ected by factors other than outputs, e.g., input prices. This partial

o¤setting points to a positive spatially correlated component of the banks� costs that relates to

these other factors. This is consistent with these other factors across the banks being similarly

impacted due to the banks� exposure to common phenomena, such as the FOMC�s setting of

the federal funds rate and changes in labor and real estate markets at di¤erent spatial scales,

i.e., at the city, state, regional and national levels. Further behavior that would contribute to a

positive spatially correlated component of banks� costs is banks setting deposit rates that mimic

their rivals� rates.

The SAR coe¢cient in the �tted alternative revenue model is positive. As this parameter

will be in�uenced by the above spatial output competition, this positive coe¢cient suggests that

the e¤ect of this competition is dominated by a positive spatially correlated component of the

banks� revenues that relates to factors other than output quantities, e.g., prices of outputs and

inputs. Again this spatially correlated component would be consistent with these other factors

being similarly impacted due to the banks� exposure to common phenomena (e.g., FOMC federal

funds rate setting and market conditions), as well as banks mimicking certain behavior of rivals,

such as their loan rates.

Turning to the �ndings for the other environmental variables. (i) In the cost, output distance

and alternative revenue models, the LLA parameters are positive and signi�cant. This re�ects

that there is a higher cost associated with higher LLA, and recalling that the left-hand side

outputs are negative, to cover these higher costs banks reduce their outputs, but at the same
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time more risky loans are a source of higher revenue. (ii) The signi�cant Tier1CR and Tier2CR

parameters are negative, which we suggest is because banks with higher capital ratios are more

stable and associated with relatively lower costs and higher outputs. (iii) With the exception of

the ODF where the left-hand side output is securities (�q2), the Equity parameter is positive

and signi�cant. This is consistent with relatively more equity �nance at higher revenue banks,

and equity being a more costly source of �nance, leading to banks with relatively high equity

ratios covering this additional cost by reducing two outputs (loans and o¤-balance sheet items).

(iv) In all the models apart from the alternative revenue function, the NPL parameter is

positive and signi�cant, which re�ects the higher costs associated with more bad loans and

suggests that banks reduce their outputs to cover these additional costs. (v) The coe¢cients

on the HHI are all negative and signi�cant. This indicates that the specialization associated

with a less diversi�ed loan portfolio reduces costs and also revenues. Our results suggest that

the latter relates to lower output prices (e.g., lower loan rates), as the ODFs indicate that a

more specialized loan portfolio enables banks to channel their resources to increase all three

outputs. (vi) The Age coe¢cient is negative and signi�cant in the ODF when the left-hand side

output is o¤-balance sheet items (�q3), indicating that older banks are more engaged in this

activity. The signi�cant Age coe¢cients in the cost and alternative revenue models are negative

and positive, where the lower costs of older banks may be due to their established systems and

customer networks, and their higher revenues may be the result of greater trust in older banks

because of the reputation they have built up over a longer period. (vii) Finally, we �nd that the

coe¢cient on Security is positive and signi�cant in the cost and alternative revenue models,

indicating that, on average, if a bank increases its security ratio, rather than, for instance,

increasing its traditional lending, its costs and revenue will both rise. The Security parameters

are also positive and signi�cant in the ODFs when the left-hand side outputs are �q1 and �q3.

This indicates that, on average, an increase in a bank�s security ratio is associated with falls in

its other outputs (loans and o¤-balance sheet items).

We next provide a snapshot of the direct, indirect and total e¤ects. In table 3, we present

these mean e¤ects for (a) the �rst order outputs and input prices from the cost and alternative

revenue models; and (b) the �rst order outputs and inputs from the ODFs. With regard to

the interpretation of these reported e¤ects, they are all elasticities at the sample mean. As

we report means of the partitioned and overall indirect e¤ects across the banks, these e¤ects

represent symmetric spill-ins and spill-outs from and to a bank�s 1st�3rd order neighbors and

the other N � 1 banks in the sample, respectively. To obtain the asymmetric spill-in and spill-

out Lerner indices in 3:3, we use the asymmetric partitioned and overall indirect spill-in and

spill-out e¤ects for individual banks. We can see that the signi�cance and magnitudes of the

direct e¤ects in table 3 are the same as we observe for the corresponding coe¢cients in table 2

and table A. This indicates that there is no spatial feedback in the direct e¤ects, which is not

unexpected as when feedback is observed (i.e., the above corresponding parameters di¤er) it is

usually negligible. All the overall indirect e¤ects are signi�cant in table 3 with the exception

of those for �xed assets and premises (s3) from the ODFs when the left-hand side outputs are

�q1 and �q3. The reason we give for these insigni�cant indirect results for s3 is the same as we

gave above for the same type of �ndings for s3 in table A in Appendix 3. For the models where
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Table 3: Mean direct, indirect and total coe¢cients

Variable Direct coe¤ Indirect spillover coe¤ Total coe¤
1st order 2nd order 3rd order Overall

SAR stochastic cost frontier
q1 0:681��� �0:043��� 0:005��� �0:001��� �0:039��� 0:642���

q2 0:132��� �0:008��� 0:001��� �0:011� 10�2��� �0:007��� 0:125���

q3 0:100��� �0:006��� 0:001��� �0:009��� �0:006��� 0:095���

m1 0:395��� �0:025��� 0:003��� �0:034��� �0:022��� 0:373���

m2 0:531��� �0:033��� 0:004��� �0:045��� �0:030��� 0:501���

SAR stochastic alternative revenue frontier
q1 0:704��� 0:038��� 0:004��� 0:037� 10�2��� 0:042��� 0:746���

q2 0:121��� 0:006��� 0:001��� 0:006� 10�2��� 0:007��� 0:128���

q3 0:121��� 0:007��� 0:001��� 0:006� 10�2��� 0:007��� 0:128���

m1 0:124��� 0:007��� 0:001��� 0:007� 10�2��� 0:007��� 0:132���

m2 0:151��� 0:008��� 0:001��� 0:008� 10�2��� 0:009��� 0:160���

m3 0:031��� 0:002��� 0:016� 10�2��� 0:002� 10�2��� 0:002��� 0:033���

SAR stochastic output distance frontier: Left-hand side output � q1
s1 �0:850��� 0:077��� �0:013��� 0:002��� 0:066��� �0:784���

s2 �0:183��� 0:017��� �0:003��� 0:047� 10�2��� 0:014��� �0:169���

s3 �0:003 0:030� 10�2 -0:005� 10�2 0:001� 10�2 0:026� 10�2 �0:003���

q2 0:170��� �0:015��� 0:003��� �0:043� 10�2��� �0:013��� 0:157���

q3 0:079��� �0:007��� 0:001��� �0:020� 10�2��� �0:006��� 0:073���

SAR stochastic output distance frontier: Left-hand side output � q2
s1 �0:846��� 0:088��� �0:017��� 0:003��� 0:074��� �0:772���

s2 �0:172��� 0:018��� �0:003��� 0:001��� 0:015��� �0:157���

s3 �0:009��� 0:001��� �0:018� 10�2��� 0:004� 10�2��� 0:001��� �0:009���

q1 0:743��� �0:077��� 0:015��� �0:003��� �0:065��� 0:678���

q3 0:079��� �0:008��� 0:002��� �0:031� 10�2��� �0:007��� 0:072���

SAR stochastic output distance frontier: Left-hand side output � q3
s1 �0:860��� 0:100��� �0:021��� 0:005��� 0:083��� �0:777���

s2 �0:209��� 0:024��� �0:005��� 0:001��� 0:020��� �0:189���

s3 0:002 �0:024� 10�2� 0:005� 10�2� �0:001� 10�2� �0:020� 10�2 0:002
q1 0:774��� �0:090��� 0:019��� �0:004��� �0:075��� 0:700���

q2 0:153��� �0:018��� 0:004��� �0:001��� �0:015��� 0:138���

Note: *, ** and *** denote statistical signi�cance at the 10%, 5% and 1% levels, respectively.

the SAR coe¢cient is negative (cost and ODFs, see table 2 and table A), we observe from table

3 that the signs of the corresponding direct and overall indirect e¤ects di¤er.

As expected, we can see from the reported partitioned indirect coe¢cients that the spillovers

die out across higher order neighbors (i.e., immediate neighbors, neighbors� neighbors, etc.).

For the four aforementioned models where the SAR coe¢cient is negative, the signs of the

partitioned indirect e¤ects of a variable di¤er for successive orders ofWt, which we suggest is

due to the following. First, we attribute a negative partitioned indirect e¤ect on a particular

bank of interest to its spatial competition with other banks in a certain neighborhood set (or

put another way, other banks pertaining to a certain order of Wt, e.g., a bank�s immediate

neighbors). Second, these other banks may focus on this competitive rivalry, which may detract

their attention away from competition with banks in the next spatial neighborhood set (e.g.,

neighbors� neighbors), leading to a positive partitioned indirect e¤ect on the particular bank of

interest for the next order ofWt.

Finally on table 3, we can see that there are signi�cant indirect coe¢cients that are non-
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Figure 1: Quarterly mean overall indirect cost of deposits elasticity and the 99 percent con�dence
interval

negligible, such as the partitionedW1
t and overall indirect coe¢cients for s1 (deposits). Other

indirect coe¢cients are smaller and signi�cant, but it does not follow that the corresponding

impacts will be small. This is because we analyze large commercial U.S. banks, so these co-

e¢cients will pre-multiply many large observations in the sample. Nevertheless, the indirect

coe¢cients from all �ve models are typically smaller than those in spatial banking studies that

use balanced panel data (Glass and Kenjegalieva, 2019; 2023; Glass et al, 2020a; 2020b). We

suggest that a contributing factor to this is that when compared to the spatial weights matrices

in these balanced panel data studies, there are a number of additional relatively small weights in

theWt we use here. These additional weights are relatively small as they represent the weaker

links with banks that are not in the dataset for the whole study period, where including these

weaker links in the sample pushes down the magnitudes of the indirect coe¢cients.

It is important to highlight though that the indirect coe¢cients in table 3 are for the sample

average bank, so based on the large standard deviations (vis-à-vis the means) in table 1, there

will be some notably larger indirect elasticities outside the sample mean. To illustrate, for the

sample average bank, the overall indirect cost of deposits (m1) elasticity from the cost model is

on the smaller side (table 3), whereas the lower and upper ends of the 99% con�dence interval

in �gure 1 indicates that, outside the sample mean there are cases where this indirect elasticity

is non-negligible.

Before we turn to the estimates of the market power spillovers, we discuss the (in)e¢ciency

results. In �gure 2, we present the quarterly mean own e¢ciencies from the cost and alternative

revenue models and ODF model when the left-hand side output is securities (�q2). We do not

present the own e¢ciencies from the two other ODFs because, as is the case theoretically, the

results are the same as for the ODF in �gure 2. We make two remarks about the e¢ciencies in

this �gure. First, we can see that over the study period the e¢ciencies are towards the higher

end of the spectrum, which we attribute to the inclusion of time period e¤ects. To account for

the role of time in the evolution of the dependent variable, often only a time trend is included
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Figure 2: Quarterly mean own e¢ciencies

in non-spatial banking e¢ciency studies, previous spatial e¢ciency studies of banks (Glass and

Kenjegalieva, 2019; Glass et al., 2020b), and SFA studies more generally. Whilst we follow

this literature by including a time trend, we also follow the common approach in the spatial

econometrics literature of using time period e¤ects to capture common shocks, and thus do not

con�ate these shocks with the e¤ect of the SAR variable. We also suggest that by including

time period e¤ects, the common negative shocks (e.g., due to systemic factors) that banks face

are not con�ated with ine¢ciency, leading to mean own e¢ciencies that are towards the higher

end of the spectrum.

Second, as expected though, we observe periods from the beginning of the �nancial crisis

(2007:Q3) and during the COVID pandemic where the own cost and alternative revenue e¢-

ciencies decrease. These declines are on the smaller side (a couple of percentage points), which

we suggest is due to our above �rst remark about �gure 2: namely, as the �nancial crisis and the

COVID pandemic were common negative shocks across the banks, the impacts of these shocks

are primarily captured by the time period e¤ects, rather than the e¢ciencies. However, as we

analyze large U.S. banks, there are many large revenue and cost observations in the sample, so

the �nancial implications for the banks of e¢ciency decreases by a couple of percentage points

will not be small.

In table 4, we present quarterly mean spill-in and spill-out ine¢ciencies from the cost and

alternative revenue models and one of the ODFs. We do not present the corresponding results

from the other two distance functions because, as expected, the results are the same as for the

ODF in table 4. Among the reported results are the mean overall and 1st�3rd order partitioned

spill-in and spill-out indirect ine¢ciencies for each size (real total assets) quintile. To put the

indirect ine¢ciencies into context, we also report mean direct ine¢ciencies. Note also to aid

the discussion, all the results in table 4 are the relevant ine¢ciency � 100. Whilst the own

e¢ciencies are the exponential of a bank�s distance above or below the frontier, and not one

minus ine¢ciency, we can see that applying the latter to the sample average direct ine¢ciencies

would yield e¢ciencies that are not too di¤erent from the sample average own e¢ciencies (see
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�gure 2). The mean direct ine¢ciencies for the quintiles indicate that the smallest banks in

the sample are the most ine¢cient, followed by the largest banks, where both �ndings are

reasonable.

Table 4: Mean direct and indirect ine¢ciencies

Direct Indirect ine¢ciency
ine¢ciency 1st order 2nd order 3rd order Overall

Spill-in Spill-out Spill-in Spill-out Spill-in Spill-out Spill-in Spill-out
SAR stochastic cost frontier

1st quintile 9.214 -0.043 -0.553 0.003 0.044 -0.000 -0.004 -0.040 -0.513
2nd quintile 8.389 -0.107 -0.317 0.011 0.034 -0.001 -0.004 -0.098 -0.286
3rd quintile 8.473 -0.175 -0.417 0.021 0.051 -0.003 -0.006 -0.156 -0.372
4th quintile 8.673 -0.316 -0.701 0.038 0.088 -0.005 -0.011 -0.283 -0.623
5th quintile 8.954 -2.284 -0.930 0.262 0.117 -0.032 -0.015 -2.050 -0.827
Sample 8.741 -0.584 -0.584 0.067 0.067 -0.008 -0.008 -0.524 -0.524

SAR stochastic alternative revenue frontier
1st quintile 6.694 0.027 0.347 0.002 0.025 0.000 0.002 0.029 0.374
2nd quintile 6.320 0.068 0.205 0.006 0.019 0.001 0.002 0.075 0.226
3rd quintile 6.397 0.110 0.267 0.011 0.027 0.001 0.003 0.123 0.297
4th quintile 6.353 0.197 0.438 0.020 0.046 0.002 0.005 0.220 0.490
5th quintile 6.474 1.425 0.567 0.139 0.061 0.014 0.007 1.580 0.636
Sample 6.447 0.365 0.365 0.035 0.035 0.004 0.004 0.404 0.404

SAR stochastic output distance frontier: Left-hand side output � q2
1st quintile 6.272 -0.051 -0.682 0.006 0.091 -0.001 -0.013 -0.046 -0.603
2nd quintile 6.098 -0.126 -0.413 0.020 0.072 -0.004 -0.013 -0.109 -0.352
3rd quintile 6.068 -0.202 -0.483 0.040 0.094 -0.008 -0.019 -0.168 -0.405
4th quintile 6.142 -0.363 -0.773 0.070 0.156 -0.014 -0.032 -0.304 -0.643
5th quintile 6.157 -2.643 -1.028 0.487 0.210 -0.097 -0.045 -2.235 -0.854
Sample 6.148 -0.676 -0.676 0.125 0.125 -0.024 -0.024 -0.676 -0.676

We make four remarks about the indirect ine¢ciencies in table 4. First, the overall and

partitioned indirect ine¢ciencies are symmetric for the whole sample and asymmetric for a

subsample, where, as expected, each �rst order indirect ine¢ciency is the largest component of

the corresponding overall measure. Second, where the SAR coe¢cient is negative (cost model

and ODFs), the signs of the partitioned indirect ine¢ciencies di¤er for successive orders ofWt.

The reason we give for this is the same as we gave above for the same type of results for the

partitioned indirect coe¢cients (table 3). Third, the partitioned indirect ine¢ciencies die out

across higher order neighborhood sets, where this tends to e¤ectively stop at the 3rd order set

(i.e., when the ine¢ciency spillovers approach zero). Fourth, for quintiles 1�4 (but interestingly

not quintile 5), the overall spill-out ine¢ciencies are greater than the corresponding spill-in.

3.3 Estimates of the market power spill-ins and spill-outs

In table 5, for the sample and quintiles of the bank size distribution, we report two sets of direct

and indirect (overall and partitioned) bank and product level Lerner indices. One set excludes

the relevant ine¢ciency adjustment and the other accounts for ine¢ciency. While we know

that the values used to obtain the direct-own Lerner indices are substantive for the banks, the

types of values used to obtain the indirect Lerner indices are smaller, but non-negligible. This

is evident as the mean bank level ratio of the overall indirect and direct average revenues is
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5:22%. Turning now to the results in this table.

Table 5: Lerner indices

Not adjusted for ine¢ciency Adjusted for ine¢ciency
Bank size quintile Bank size quintile

1st 2nd 3rd 4th 5th Sample 1st 2nd 3rd 4th 5th Sample
LDir Direct Lerner indices
Loans 47:8 56:4 56:4 55:8 49:4 53:2 42:4 52:5 52:4 51:8 44:5 48:7

Securities 64:4 54:9 53:7 56:3 59:3 57:7 60:9 51:1 49:6 52:5 55:4 53:9
OBS 77:5 59:9 56:2 60:9 71:1 65:1 75:6 56:4 52:1 57:1 68:5 61:9

Bank level 60:7 57:4 56:6 57:4 58:0 58:0 56:8 53:6 52:6 53:6 54:0 54:1

LIndIn Overall indirect spillover Lerner indices
Loans 98:9 97:8 96:8 93:9 32:9 84:1 98:9 97:8 96:8 93:9 28:0 83:1

Securities 99:2 97:7 96:5 93:6 65:4 90:5 99:2 97:7 96:5 93:5 63:0 90:0
OBS 99:5 98:0 96:8 94:5 80:1 93:8 99:5 98:0 96:8 94:4 78:8 93:5

Bank level 99:1 97:8 96:8 94:1 61:0 89:8 99:1 97:8 96:8 94:0 58:5 89:3

LIndOut

Loans 97:2 98:5 98:2 97:3 95:3 97:3 97:1 98:5 98:1 97:2 95:2 97:2
Securities 98:3 98:5 98:0 97:4 96:8 97:8 98:3 98:5 98:0 97:3 96:7 97:8
OBS 99:2 98:7 98:0 97:6 97:6 98:2 99:2 98:6 98:0 97:5 97:6 98:2

Bank level 98:0 98:6 98:1 97:4 96:4 97:7 98:0 98:6 98:1 97:3 96:4 97:7

LIndIn 1st order indirect spillover Lerner indices
Loans 98:7 97:1 95:6 91:9 33:0� 78:5 98:7 97:1 95:6 91:8 29:6� 77:5

Securities 99:0 97:0 95:2 91:5 53:0 87:2 99:0 97:0 95:2 91:4 50:0 86:6
OBS 99:4 97:3 95:6 92:7 73:9 91:8 99:4 97:3 95:5 92:7 72:3 91:4

Bank level 98:9 97:2 95:6 92:1 47:4 86:3 98:9 97:2 95:6 92:0 44:5 85:7

LIndOut

Loans 81:8 90:2 87:4 81:0 67:0 81:5 81:5 90:0 87:2 80:6 66:4 81:1
Securities 88:9 89:8 86:3 81:9 77:8 85:0 88:9 89:6 86:0 81:4 77:3 84:7
OBS 94:2 90:8 86:2 82:9 83:4 87:5 94:1 90:6 85:9 82:4 82:9 87:2

Bank level 87:2 90:5 87:2 81:8 75:1 84:4 87:1 90:3 86:9 81:4 74:6 84:1

LIndIn 2nd order indirect spillover Lerner indices
Loans 99:8 99:4 98:8 97:8 75:5 94:3 99:8 99:4 98:8 97:8 75:5 94:3

Securities 99:8 99:3 98:6 97:8 87:5 96:6 99:8 99:3 98:6 97:8 87:5 96:6
OBS 99:9 99:3 98:7 98:2 93:7 98:0 99:9 99:3 98:7 98:2 93:8 98:0

Bank level 99:8 99:4 98:8 97:9 86:3 96:4 99:8 99:4 98:8 97:9 86:3 96:5

LIndOut

Loans 95:9 97:5 96:5 94:5 90:1 94:9 95:9 97:5 96:5 94:4 90:1 94:9
Securities 97:5 97:3 96:1 94:8 93:8 95:9 97:5 97:3 96:1 94:8 93:8 95:9
OBS 98:3 97:5 95:9 95:0 95:2 96:4 98:3 97:5 95:9 95:0 95:2 96:4

Bank level 97:3 97:6 96:4 94:7 92:7 95:7 97:3 97:6 96:3 94:7 92:7 95:7

Notes: OBS denotes o¤-balance sheet items. � denotes a mean based on 95% of the banks in the 5th
quintile due to outliers.

We can see that when the direct Lerner indices include the ine¢ciency adjustment the

reported indices are lower than when ine¢ciency is overlooked. All the reported direct-own

Lerner indices are also some way above 0 and below 1 and thus not out of line with the non-

spatial Lerner indices for large U.S. banks in the literature. With regard to the magnitudes

of the direct Lerner indices for the quintiles, we can see that for loans these indices are the

lowest for quintiles 1 and 5, where for the latter this could be because the larger banks may

not focus on specialist bespoke loans with high pro�t margins, but on standard types of loans

to their large customer bases. For the former this could be because these banks have smaller

loan market shares and may therefore place a greater emphasis on other activities, which is

in line with quintile 1 having the highest direct Lerner indices for securities and o¤-balance

sheet (OBS) items. The next highest direct Lerner indices for securities and OBS items are for
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quintile 5, where the greater resources of quintile 5 banks is likely to be a contributing factor

to these results.

Of the indirect Lerner indices in table 5, the most notable evidence of a lower index when

ine¢ciency is accounted for is the overall and 1st order spill-in indices for quintile 5. In addition,

we note that the partitioned indirect spill-in Lerner indices have an intuitive pattern. As the

order of the neighborhood set increases (Wt to W2
t ), these partitioned Lerner indices, and

particularly those for quintile 5, increase, where there are a number of other cases where these

indices are approaching 1 (i.e., quintiles 1� 4). To aid the interpretation of these indices recall

that as the order ofWt increases, the magnitudes of the partitioned indirect spill-in coe¢cients

die out. This means that the partitioned marginal cost spill-ins will also die out, giving a

partitioned indirect spill-in Lerner index approaching 1, which points to a high market power

spill-in. The interpretation of the overall indirect spill-in Lerner index is the same, as it is the

collective representation of the corresponding partitioned indices.

For the partitioned indirect spill-in Lerner indices, the picture for quintile 5 di¤ers from what

we observe for the other quintiles. For quintile 5 these indices are smaller than for quintiles

1�4. This points to relatively higher marginal cost spill-ins for quintile 5 banks and thus lower

market power spill-ins. We �nd that this contrasts though with results we present below for a

number of individual quintile 5 banks (see table 6). Given the spill-outs from a bank lead to

spill-ins for other banks, it is no surprise to �nd that the partitioned indirect spill-out Lerner

indices exhibit the same type of pattern as the above corresponding spill-in indices. The only

di¤erence is that the partitioned indirect spill-out Lerner indices for quintile 5 are larger than

the corresponding spill-in index. This indicates that the quintile 5 banks have relatively lower

marginal cost spill-outs, which leads to higher market power spill-outs. To sum up, to di¤erent

degrees, we can see from the overall indirect Lerner indices for the sample that the market

power spillovers tend to be high, which underlines the importance of the interconnectedness in

the banking industry.

Next, as there is marked variation in the number of banks over the sample period, we

consider a core subset of banks that are in the data sample for at least 95% of the time periods.

From this pool, in table 6 we present the top and bottom 5 ine¢ciency adjusted Lerner indices

for banks in the 5th and 1st�4th quintiles of the bank size distribution.5 Looking at the top

and bottom 5 direct Lerner indices indicates that there is a wide di¤erence in the market power

of some of the banks. As we would expect, there are global systemically important banks (Bank

of America and JPMorgan Chase) with a top 5 direct Lerner index. There are, however, banks

with a top 5 direct Lerner index that are much smaller � the smallest being the First Financial

Bank in quintile 2. Interestingly, the collapsed Silicon Valley Bank (March 2023) has a top 5

direct Lerner index. This �nding is likely because it specialized in providing products to venture

capital-backed technology startups, which would involve the bank having a higher markup to

re�ect the greater risks associated with this type of business.

We make three remarks about the indirect Lerner indices in table 6. First, there are a

number of banks with top 5 overall indirect Lerner indices that are in the mid-to-high 90s,

5We present bank level results in table 6 due to space constraints. The corresponding product level results
are available on request.
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Table 6: Lerner indices for selected banks

5th quintile banks 1st-4th quintile banks
Direct Lerner index (ine¢ciency adjusted)

Top 5 Bank of America 64.1 Top 5 Westamerica 69.3
First Hawaiian Bank 62.5 Farmers and Merchants 65.0
U.S. Bank National 62.3 First Financial Bank 64.6
JPMorgan Chase 61.0 FirstBank of Colorado 64.1
Silicon Valley 60.2 NBT Bank 62.3

Bottom 5 State Street Bank 52.0 Bottom 5 Equity Bank 42.8
Union Bank of California 49.6 Central Bank 42.5
First-Citizens Bank 49.0 PlainsCapital 42.5
BMO Bank 48.1 The First 41.4
BancorpSouth 46.1 RCB Bank 40.8
Overall indirect spill-in Lerner index (ine¢ciency adjusted)

Top 5 Bank of America 96.5 Top 5 Enterprise Bank 97.7
JPMorgan Chase 96.2 TIB 97.4
U.S. Bank National 95.7 Pinnacle Bank 97.2
Frost Bank 95.3 Washington Trust 97.2
First Hawaiian Bank 94.3 NBT Bank 97.2

Bottom 5 State Street Bank 87.3 Bottom 5 CNB Bank 73.9
First-Citizens Bank 86.7 Bremer Bank 73.8
Commerce Bank 84.9 Fremont Bank 72.1
Valley National Bank 81.9 First State Community Bank 71.4
Hibernia Bank 79.6 Merchants Bank of Indiana 71.4
Overall indirect spill-out Lerner index (ine¢ciency adjusted)

Top 5 Zions 99.5 Top 5 First Mid 99.5
Comerica 99.5 Bank of Stockton 99.5
State Street Bank 99.4 First Interstate Bank 99.5
BB&T 99.3 Tompkins 99.4
PNC Bank 99.2 First National Bank Texas 99.4

Bottom 5 Bank of Hawaii 97.5 Bottom 5 Amarillo National Bank 96.2
BMO Bank 97.3 The First 95.8
Northern Trust 97.1 Stockman Bank 95.7
Valley National 97.1 Central Bank 95.3
BancorpSouth 96.5 RCB Bank 95.2

Note: Each bank in this table is in the data sample for a least 95% of the study period

e.g., Bank of America and JPMorgan Chase. This indicates that these banks have high market

power spill-ins and spill-outs, which is consistent with concerns about the market power of the

very large U.S. banks. Second, the reported bottom 5 overall spill-in Lerner indices range from

71:4 � 87:3, which, to di¤erent degrees, indicates that these banks have lower market power

spill-ins. Third, the bottom 5 overall spill-in indices for the quintile 5 banks are above the

corresponding mean in table 5 (61:0). This indicates that, on average, the quintile 5 banks that

do not survive for 95% of the study period have lower market power spill-ins. This highlights

the value of unbalanced panel data for our empirical case as the lower market power spill-ins

for these banks may have contributed to some of them dropping out of the sample.

The �nal set of bank level results we present is the geographical distribution of the overall

indirect (spill-in and spill-out) Lerner indices. For 2022:Q4, �gure 3 overlays the bivariate heat

map of these two indices onto the banks� branch locations. In this map, the top, middle and

bottom thirds of the distributions are used to group the bank level pairs of these indices.6 We can

see that only 1:9% of pairs comprise values that are in the middle thirds of the distributions. It

is also evident that banks with pairs of values in the top thirds (13:7%) tend to have branches in

6The three corresponding product level heat maps are similar to �gure 3 and so are not presented for brevity.
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Figure 3: Bank-branch geographical distribution of the overall indirect Lerner indices for
2022:Q4

densely populated metropolitan statistical areas (MSAs) (e.g., New York; Boston; Minneapolis-

St. Paul; Chicago; Detroit; Atlanta; Houston; Dallas-Forth Worth; Los Angeles; San Diego; San

Francisco; Seattle; Portland). This is in line with our expectations as the larger agglomeration

e¤ects in densely populated areas is conducive to larger market power spillovers.

4 Summary and policy relevance

It is well-known that U.S. banks are interconnected. There are a number of reasons for this, a

key one being rival banks with branches in the same geographical areas. This points to spatial

dependence between neighboring banks, which represents the net e¤ect of the negative bank

correlation due to their competitive rivalry and positive correlation because banks face com-

mon economic phenomena. Key examples of these phenomena are industrywide regulation, the

FOMC�s setting of the federal funds rate, market conditions, and headline changes in economies

at the city, state, regional and national levels. Studies have shown that signi�cant SAR depen-

dence between U.S. banks leads to spillovers of total factor productivity (TFP) growth (Glass

and Kenjegalieva, 2019; Glass et al. 2020b) and returns to scale spillovers (Glass et al., 2020a;

Glass and Kenjegalieva, 2023). It is reasonable to therefore consider market power spillovers

between U.S. banks and their corresponding products. This is an important issue because bank

market power a¤ects, among other things, the price and availability of credit, which has a wider

e¤ect on the general business environment.

There are large bodies of non-spatial banking studies on productivity and e¢ciency, scale

economies and market power, where the methods to analyze all but the latter have been extended

to spillovers at the bank level. Accordingly, at the micro levels of banks and their products,

we introduce a method to obtain asymmetric bidirectional spillover Lerner indices (with and

without adjustment for ine¢ciency spill-ins and spill-outs). Rather than follow the extant

banking spatial SFA studies, which all use relatively small balanced panel datasets, we estimate

these indices for large commercial U.S. banks using a large unbalanced panel dataset. Whilst
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this means the estimation is more computationally demanding, unbalanced panel data is a

better empirical representation as it re�ects the marked consolidation in the industry.

Bank interconnectedness is very important as it contributes to a number of risks, e.g., bank

run contagion. Accordingly, U.S. bank regulatory authorities extensively monitor di¤erent forms

of bank interconnectedness. The following key empirical �ndings use the market power spillovers

to provide new information about bank interconnectedness. First, consistent with consolidation

in the industry leading to concerns about the market power of the largest U.S. banks, we �nd

that a number of banks have high indirect spillover Lerner indices, e.g., two global systemi-

cally important banks (Bank of America and JPMorgan Chase). This �nding suggests that

overlooking bank market power spillovers may result in U.S. competition authorities understa-

ting the market power impact of a large bank merger. The implication being that overlooking

these spillovers may lead to unexpectedly larger increases in the price of credit and, as a result,

unexpectedly bigger negative impacts on the general business environment and household wel-

fare. From a policy perspective, we therefore suggest that U.S. competition authorities should

account for such spillovers when assessing future large bank mergers.

Second, the mean bank level overall spill-in Lerner index for quintile 5 of the size distribution

is well below the bottom 5 corresponding indices from the pool of quintile 5 banks that are in

the sample for the vast majority of the study period. This underlines the bene�t of unbalanced

panel data for our empirical case, as the lower market power spill-ins for the banks outside

this pool are intuitive as they may have contributed to some of these banks dropping out of

the sample. Third and �nally, we �nd that the banks with bidirectional overall indirect Lerner

indices in the top thirds of the distributions tend to have branches in densely populated cities.

This is also intuitive as the larger agglomeration e¤ects in major cities will facilitate higher

market power spillovers.
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Appendix 1
Candidate bank market power measures for extension to the spatial setting

We review the three main approaches to measure non-spatial bank market power. As all three
measures are model-based they can be extended to the spatial setting. This is because for our
spatial extension we need to use a model-based approach to estimate unobserved spillovers. For
brevity, we list a small selection of studies for illustrative purposes that have applied the three
approaches.

The �rst approach is the Panzar and Rosse H statistic (e.g., Coccorese, 2009; Bikker et al.,
2012; Mi et al., 2024). Hi is calculated using the alternative revenue function, TRi = f(Qi;Mi),
where TRi is the total revenue of the ith bank, Mi is the vector of input prices indexed g 2
1; :::; G and Qi is as de�ned for Eq. 1. Hi =

P
g
@ lnTRi
@ lnMig

represents the ratio of the change in
the output price to the change in input prices as outputs are held constant. The lower limit of
H is negative and the upper limit is 1. The higher H is for a bank, the less market power it has
in terms of its ability to set price independently of cost. It would be econometrically feasible to
extend the H statistic to the spatial setting, which would �rst involve estimating an appropriate
spatial alternative revenue function. From thereon the approach would be similar to the one
we propose here for our di¤erent line of inquiry. We follow a di¤erent course because, �rst,
we want to calculate market power spillovers with and without an adjustment for ine¢ciency.
It not possible though to incorporate an adjustment for ine¢ciency into the above approach
to calculate the H statistic. This is because the revenue elasticities with respect to the input
prices are not a¤ected by the presence of ine¢ciency. Second, Sha¤er and Spierdijk (2015) show
that the H statistic cannot reliably measure market power. They reach this conclusion based
on counterintuitive results of H > 0 for �ve standard highly non-competitive oligopoly settings.

The second approach uses the Conduct parameter at the level of bank loans (e.g., Coccorese,
2009; Delis and Tsionas, 2009) and across banks at the country level (e.g., Coccorese et al.,
2021). Coccorese (2009) reports mean Conduct parameters across the sampled banks for the
full study period and subperiods, while Delis and Tsionas (2009) estimate time-varying Conduct
parameters for each bank. The conduct measure is the conjectured response of the industry�s
kth output to variation in the same output at the ith bank (Degryse et al., 2019). This is
a spillover to a more aggregate level and, therefore, di¤ers from the usual interpretation of
spillovers between units at the same level of aggregation we consider here, i.e., spillovers between
banks and between the corresponding products of banks.

To tie in with the brief below discussion of the Lerner index in the third approach, we
recognize that the conduct measure can be expressed as Conductik = eikLik (e.g., Degryse et
al., 2019). eik is the price elasticity of demand for the bank�s kth product and Lik =

Pik�MCik
Pik

is the non-spatial Lerner index de�ned in Eq. 1. Conductik is therefore an elasticity-adjusted
Lerner index and so the higher the Conductik parameter for a bank, the more market power
it has. MCik is at the bank product level and can be estimated from a multi-product bank
level cost model (e.g., Sha¤er and Spierdijk, 2020). In line with the discussion of Lik in Eq.
1, for Pik � MCik, the value of Conductik will be in the range 0 to 1, and for Pik < MCik,
Conductik < 0. Whilst a case can equally be made to extend Conductik to the spatial setting,
we extend the well-established Lerner index. A motivation for this is the practical usage of the
Lerner index. This is because of the three main approaches to measure non-spatial bank market
power we review, the Lerner index is the only (country-level) bank market power measure which
the World Bank reports in its Global Financial Development Database.

We refer to Lik (e.g., Sha¤er and Spierdijk, 2020; Wang et al., 2020; Mi et al., 2024) and
Markupik =

Pik�MCik
MCik

as the third approach as the latter is interpreted in the same way as
Lik (see the above discussion of Eq. 1). There are some di¤erences though between these two
measures. To illustrate, as a cost function is monotonically increasing in each outputMCik > 0,
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so Lik < 1, but Markupik < 1 may or may not be the case. Whilst we consider only the Lerner
index due to space constraints and its appeal and widespread use, the spatial approach we
introduce can also be applied to obtain markup spill-ins and spill-outs.

Appendix 2
Estimation procedure for the SAR stochastic frontier models

We estimate Eq. 5 using within maximum likelihood (ML) estimation with the closed skew
normal distribution. This involves adapting the non-spatial estimation procedure in Chen et
al. (2014) to the case of SAR dependence. The procedure begins with the following within
transformation of Eq. 5.

ecit = exit�0 + �
NtP
j=1

wijtecjt + e"it; (A1)

where the within transformed observations and composed error (ecit, exit and e"it) are deviations
from their respective means (ecit = cit �

1
Ti

P
t cit and similarly for exit and e"it). This trans-

formation removes di and �, where we do not then demean by time period to eliminate bt as
this would also eliminate the important t and t2 components of the non-linear time trend. To
simplify the notation in Eq. A1 we subsume bt into exit. As noted previously, the closed skew
normally distributed error term "it has two components, vit + uit. As is standard, let � = �u

�v

and �2uv = �2u + �
2
v . The probability density of the composed error is then

f(e") = 2

�
'

� e"
�

�
�

�
�
�e"
�

�
; (A2)

where ' and � are the standard normal probability and cumulative density functions (pdf and
cdf), respectively.

Denote two vectors of within transformed composed errors for the ith bank as e"i = (e"i1; :::; e"iTi)0
and e"�i = (e"i1; :::; e"iTi�1)0, where the number of periods which the ith bank is in the sample for is
Ti. Using Theorem 3 in Chen et al. (2014), the log-likelihood function for the within transformed
model is as follows.

lnLwithin = � +
P
i

"
ln'Ti�1

 
ec�it � ex�it�0 � �

NtP
j=1

wijtec�jt; 0; �2
�
ITi�1 �

1

Ti

Ti�1

�!#
+

P
i

"
ln�Ti

 
�
�

�
(ecit � exit�0 � �

NtP
j=1

wijtecjt); 0Ti ; ITi +
�2

Ti

Ti

!#
+ ln jI� � �W�j ; (A3)

where to �x ideas the �rst summation sums the Ti � 1 residuals across all the banks. � is the
constant, 
Ti�1 = �Ti�1�

0
Ti�1

is the Ti�1� Ti�1 matrix of ones, and ITi�1 is the corresponding
identity matrix. To account for the endogeneity of the SAR variable and e" being unobserved,
Eq. A3 includes ln jI� � �W�j, which is the logged determinant of the Jacobian of the transfor-
mation from e" to ec (e.g., Elhorst, 2009). I� is the block diagonal identity matrix with T blocks
comprising the Nt dimensional INt for all t 2 1; :::; T . Likewise,W

� is the block diagonal spatial
weights matrix, where the T blocks are the Nt dimensionalWt for all t 2 1; :::; T . This within
log-likelihood function is maximized with respect to �, �, � and �2.

To evaluate the within log-likelihood function we use the following approach. We estimate
the cdf in Eq. A3 by following appendix C in Chen et al. (2014), which involves evaluating a
single integral. As suggested by Pace and Barry (1997), we also pre-calculate ln jI� � �W�j for a

vector of values of � based on 0:001 increments over the interval
�

1
min(hmin

1
;:::;hmin

T
)
; 1
max(hmax

1
;:::;hmax

T
)

�
.

The estimate of the asymptotic variance is obtained by taking the inverse of the information
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matrix of the ML estimate of Eq. A3. To estimate uit, we use the standard approach in the
literature in Eq. A4 to predict uit conditional on "it (Jondrow et al., 1982).

buit = E (uitje"it) =
�u�v
�uv

�
'it

1� �it
�
e"it�
�uv

�
; (A4)

where �it = �(e"it�=�uv) and 'it = ' (e"it�=�uv).

Appendix 3
Table A: Further SAR stochastic frontier models

SAR stochastic output distance frontier:
Left-hand side output � q1

SAR stochastic output distance frontier:
Left-hand side output � q3

Model

coe¤

Model

coe¤

Model

coe¤

Model

coe¤

s1 �0:850��� t �0:002��� s1 �0:860��� t �0:002���

s2 �0:183��� t2 0:001� 10�2��� s2 �0:209��� t2 0:003� 10�2���

s3 �0:003 s1t �0:001��� s3 0:002 s1t �0:002���

q2 0:170��� s2t �0:002��� q1 0:774��� s2t �0:002���

q3 0:079��� s3t 0:015� 10�2�� q2 0:153��� s3t �0:018� 10�2�

s21 �0:052��� q2t �0:004� 10�3 s21 �0:050��� q1t �0:001���

s22 �0:031��� q3t 0:001��� s22 �0:039��� q2t 0:008� 10�2

s23 �0:002��� LLA 0:664��� s23 �0:002�� LLA 0:564���

s1s2 0:104��� Tier1CR �1:353��� s1s2 0:100��� Tier1CR �1:934���

s1s3 �0:009��� Tier2CR 0:233 s1s3 �0:003 Tier2CR 1:369���

s2s3 �0:001 Equity 0:268��� s2s3 0:028� 10�2 Equity 0:720���

q22 0:014��� NPL 0:883��� q21 0:027��� NPL 0:670���

q23 0:009��� HHI �0:171��� q22 0:012��� HHI �0:196���

q2q3 0:004��� Age �0:008 q1q2 �0:031��� Age �0:022��

s1q2 �0:017��� Security 0:073�� s1q1 0:008��� Security 0:138���

s1q3 0:014��� Wt(�q1) �0:231��� s1q2 �0:024��� Wt(�q3) �0:296���

s2q2 0:007��� � 0:056��� s2q1 0:010��� � 0:120���

s2q3 �0:014��� � 0:663��� s2q2 0:005�� � 0:675���

s3q2 �0:006��� s3q1 0:016���

s3q3 �0:006��� LL 31; 565:0 s3q2 �0:009��� LL 31; 619:1

Note: *, ** and *** denote statistical signi�cance at the 10%, 5% and 1% levels, respectively.
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