
This is a repository copy of G-complete reducibility and saturation.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/225148/

Version: Published Version

Article:

Bate, Michael orcid.org/0000-0002-6513-2405, Böhm, Sören, Litterick, Alastair et al. (2 
more authors) (2025) G-complete reducibility and saturation. Pacific Journal of 
Mathematics. pp. 1-24. ISSN 0030-8730

https://doi.org/10.2140/pjm.2025.337.1

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://doi.org/10.2140/pjm.2025.337.1
https://eprints.whiterose.ac.uk/id/eprint/225148/
https://eprints.whiterose.ac.uk/


Pacific

Journal of

Mathematics

G-COMPLETE REDUCIBILITY AND SATURATION

MICHAEL BATE, SÖREN BÖHM, ALASTAIR LITTERICK,
BENJAMIN MARTIN AND GERHARD RÖHRLE

Volume 337 No. 1 July 2025



PACIFIC JOURNAL OF MATHEMATICS
Vol. 337, No. 1, 2025

https://doi.org/10.2140/pjm.2025.337.1

G-COMPLETE REDUCIBILITY AND SATURATION

MICHAEL BATE, SÖREN BÖHM, ALASTAIR LITTERICK,
BENJAMIN MARTIN AND GERHARD RÖHRLE

Let H ⊆ G be connected reductive linear algebraic groups defined over an

algebraically closed field of characteristic p > 0. In our first main theorem

we show that if a closed subgroup K of H is H-completely reducible, then

it is also G-completely reducible in the sense of Serre, under some restric-

tions on p, generalising the known case for G = GL(V ). Our proof uses

R. W. Richardson’s notion of reductive pairs to reduce to the GL(V ) case.

We study Serre’s notion of saturation and prove that saturation behaves

well with respect to products and regular subgroups. Our second main

theorem shows that if K is H-completely reducible, then the saturation of K

in G is completely reducible in the saturation of H in G (which is again a

connected reductive subgroup of G), under suitable restrictions on p, again

generalising the known instance for G = GL(V ). We also study saturation

of finite subgroups of Lie type in G. We show that saturation is compatible

with standard Frobenius endomorphisms, and we use this to generalise a

result due to Nori from 1987 in the case G = GL(V ).

1. Introduction and main results

Let G be a connected reductive linear algebraic group over an algebraically closed
field k of characteristic p > 0. Let H be a closed subgroup of G. Following
Serre [2004], we say that H is G-completely reducible (G-cr for short) provided
that whenever H is contained in a parabolic subgroup P of G, it is contained in
a Levi subgroup of P . Further, H is G-irreducible (G-ir for short) provided H
is not contained in any proper parabolic subgroup of G at all. Clearly, if H is
G-irreducible, it is trivially G-completely reducible; for an overview of this concept,
see [Bate et al. 2005; Serre 1998; 2004]. Note in the case G = GL(V ) a subgroup H
is G-cr exactly when V is a semisimple H -module and it is G-ir precisely when V
is an irreducible H -module. The same equivalence applies to G = SL(V ). The
notion of G-complete reducibility is a powerful tool for investigating the subgroup
structure of G: see [Litterick and Thomas 2018; Litterick et al. 2025].
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Now suppose H is connected and reductive, and let K be a closed subgroup
of H . It is natural to ask the following questions:

Question 1.1. If K is H-completely reducible, must K be G-completely reducible?

Question 1.2. If K is G-completely reducible, must K be H-completely reducible?

The answer to Question 1.1 is no in general. For instance, if H is a non-G-cr
subgroup of G and K = H then K is H -ir but K is not G-cr. For a more complicated
example showing that the answer to both Questions 1.1 and 1.2 is no, see [Bate et al.
2005, Example 3.45] or [Bate et al. 2010, Proposition 7.17]. On the other hand,
if p > 2 and H is either the special orthogonal group SO(V ) or the symplectic
group Sp(V ) with its natural embedding in G := GL(V ) then K is G-cr if and only
if K is H -cr (see [Bate et al. 2005, Example 3.23]).

In this paper we consider some variations on Questions 1.1 and 1.2. To do this
we use two key tools: reductive pairs and saturation. Our first main result shows
that the answer to Question 1.1 is yes if we impose some extra conditions on p.
To state our result we need some notation. We define an invariant d(G) of G as
follows. For G simple let d(G) be as follows:

G An (n ≥ 1) Bn (n ≥ 3) Cn (n ≥ 2) Dn (n ≥ 4) E6 E7 E8 F4 G2

d(G) n + 1 2n + 1 2n 2n 27 56 248 26 7

For G reductive, let d(G) = max(1, d(G1), . . . , d(Gr )), where G1, . . . , Gr are the
simple components of G. For G simple and simply connected and p good for G,
d(G) is the minimal possible dimension of a nontrivial irreducible G-module.

Theorem 1.3. Let H ⊆ G be connected reductive groups and let K be a closed
subgroup of H. Suppose p ≥ d(G). If K is H-completely reducible, then K is
G-completely reducible.

Theorem 1.3 generalises [Bate et al. 2011, Theorem 1.3], which is the special
case when G = GL(V ). We note that Theorem 1.3 is false without the bound on p:
e.g., see [Bate et al. 2005, Example 3.44] or Example 4.5.

To prove Theorem 1.3 we use Richardson’s theory of reductive pairs (see
Definition 3.3) to reduce to the case G = GL(V ), and then we apply [Bate et al.
2011, Theorem 1.3]. We require a careful analysis of when the Lie algebra of G
admits a nondegenerate Ad-invariant bilinear form, building on the discussions in
[Richardson 1967] and [Slodowy 1997] (see also [Bate et al. 2005, Section 3.5]).
We establish the results we need in Theorem 3.6.

Our second main result involves the concept of saturation due to Serre. Let h(G)

and h̃(G) be as defined in Section 2.5 (if G is simple then h(G) is the Coxeter
number of G). If p ≥ h(G) then for any unipotent u ∈ G and any t ∈ k one obtains
a unipotent element ut of G using versions of the matrix exponential and logarithm
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maps; see Section 5 for details. If H is a closed subgroup of G then we call H
saturated if ut ∈ H for every unipotent u ∈ H and every t ∈ k. We denote by H sat

the smallest closed saturated subgroup that contains H . Saturation was used by
Serre [1998; 2004] in his study of G-complete reducibility (see Theorem 5.13).

Theorem 1.4. Let G, H and K be as in Theorem 1.3. Suppose p ≥ d(G) and
p ≥ h̃(G). If K is H-completely reducible then K sat is H sat-completely reducible.
(Note that K is G-cr by Theorem 1.3.)

For a direct application of saturation to Questions 1.1 and 1.2, see Proposition 5.14.
To prove Theorem 1.4 we establish some results on saturation that are of interest

in their own right. These include Remark 5.9, Lemma 5.10 and Corollary 5.11.
We also give some versions of our main results for finite groups of Lie type.

Recall that a Steinberg endomorphism of G is a surjective morphism σ : G → G
such that the corresponding fixed-point subgroup Gσ := {g ∈ G | σ(g) = g} of G is
finite. The latter are the finite groups of Lie type; see Steinberg [1968] for a detailed
discussion. The set of all Steinberg endomorphisms of G is a subset of the set of all
isogenies G → G (see [Steinberg 1968, 7.1(a)]), which encompasses in particular
all generalized Frobenius endomorphisms, i.e., endomorphisms of G some power
of which are Frobenius endomorphisms corresponding to some Fq -rational structure
on G. If H is a connected reductive σ -stable subgroup H of G then σ is also a
Steinberg endomorphism for H with finite fixed-point subgroup Hσ = H ∩ Gσ

[Steinberg 1968, 7.1(b)].

Corollary 1.5. Let H ⊆ G be connected reductive groups. Let σ : G → G be a
Steinberg endomorphism that stabilises H. Suppose p ≥ d(G). Then the fixed-point
subgroup Hσ is G-completely reducible.

Theorem 1.6. Suppose G is simple. Let p ≥ h̃(G). Let σ be a standard Frobenius
endomorphism of G and let H be a connected reductive, σ -stable, and saturated
subgroup of G. Then (Hσ )sat = H.

Theorem 1.6 generalises a theorem of Nori [1987, Theorem B(2)]; Nori’s result
is the special case of Theorem 1.6 for G = GLn and σ = σp the standard Frobenius
endomorphism of G raising the matrix coefficients to the p-th power. In that context
Proposition 6.1 is of independent interest, saying that saturation is compatible with
standard Frobenius endomorphisms.

Section 2 contains some preliminary material and Section 3 deals with reductive
pairs. We prove Theorem 1.3 and Corollary 1.5 in Section 4. Results on saturation,
including the proof of Theorem 1.4, are treated in Section 5. In Section 6 we study
saturation for finite subgroups of Lie type. There we prove Theorem 1.6, among
other results. Finally, Section 7 explores the connection between saturation and the
concept of a semisimplification of a subgroup of G from [Bate et al. 2020].
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2. Preliminaries

Throughout, we work over an algebraically closed field k of characteristic p ≥ 0.
All affine varieties are considered over k and are identified with their k-points.

A linear algebraic group H over k has identity component H◦; if H = H◦, then
we say that H is connected. We denote by Ru(H) the unipotent radical of H ;
if Ru(H) is trivial, then we say H is reductive.

Throughout, G denotes a connected reductive linear algebraic group over k. All
subgroups of G that are considered are closed.

2.1. Good and very good primes. Suppose G is simple. Fix a Borel subgroup B
of G containing a maximal torus T . Let 8 = 8(G, T ) be the root system of G
with respect to T , let 8+ = 8(B, T ) be the set of positive roots of G, and let
6 = 6(G, T ) be the set of simple roots of the root system 8 of G defined by B.
For β ∈ 8+ write β =

∑
α∈6 cαβα with cαβ ∈ N0. A prime p is said to be good

for G if it does not divide cαβ for any α and β. A prime p is said to be very good
for G if p is a good prime for G, and in the case that G is of type An , then p does
not divide n + 1. For G reductive p is good (very good) for G if p is good (very
good) for every simple component of G.

2.2. Limits and parabolic subgroups. Let φ : k∗ → X be a morphism of algebraic
varieties. We say lima→0 φ(a) exists if there is a morphism φ̂ : k → X (necessarily
unique) whose restriction to k∗ is φ; if the limit exists, we set lima→0 φ(a) = φ̂(0).
As a direct consequence of the definition we have the following:

Remark 2.1. If φ : k∗ → X and h : X → Y are morphisms of varieties and
x := lima→0 φ(a) exists then lima→0(h◦φ)(a) exists, and lima→0(h◦φ)(a)= h(x).

For an algebraic group G we denote by Y (G) the set of cocharacters of G. For
λ ∈ Y (G) we define Pλ := {g ∈ G | lima→0 λ(a)gλ(a)−1 exists}.

Lemma 2.2 [Bate et al. 2005, Lemma 2.4]. Given a parabolic subgroup P of G
and any Levi subgroup L of P , there exists a λ ∈ Y (G) such that the following hold:

(i) P = Pλ.

(ii) L = Lλ := CG(λ(k∗)).

(iii) The map cλ : Pλ → Lλ defined by

cλ(g) := lim
a→0

λ(a)gλ(a)−1

is a surjective homomorphism of algebraic groups. Moreover, Lλ is the set of
fixed points of cλ and Ru(Pλ) is the kernel of cλ.

Conversely, given any λ∈ Y (G) the subset Pλ defined above is a parabolic subgroup
of G, Lλ is a Levi subgroup of Pλ and the map cλ as defined in (iii) has the described
properties.
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2.3. G-complete reducibility, products and epimorphisms. Let f : G1 → G2 be
a homomorphism of algebraic groups. We say that f is nondegenerate provided
(ker f )◦ is a torus; see [Serre 2004, Corollary 4.3]. In particular, f is nondegenerate
if f is an isogeny.

Lemma 2.3 [Bate et al. 2005, Lemma 2.12]. Let G1 and G2 be reductive groups.

(i) Let H be a closed subgroup of G1 × G2. Let πi : G1 × G2 → Gi be the
canonical projection for i = 1, 2. Then H is (G1 × G2)-cr if and only if πi (H)

is Gi -cr for i = 1, 2.

(ii) Let f : G1 → G2 be an epimorphism. Let H1 and H2 be closed subgroups of
G1 and G2, respectively.

(a) If H1 is G1-cr, then f (H1) is G2-cr.
(b) If f is nondegenerate, then H1 is G1-cr if and only if f (H1) is G2-cr, and

H2 is G2-cr if and only if f −1(H2) is G1-cr.

2.4. Complete reducibility versus reductivity. Any G-completely reducible sub-
group H of G is reductive [Serre 2004, Proposition 4.1]. The converse is true in
characteristic 0 Ð in particular, the answer to both Questions 1.1 and 1.2 is yes in this
case Ð but is false in positive characteristic: for instance, a nontrivial finite unipotent
subgroup of G is reductive but can never be G-cr [Serre 2004, Proposition 4.1]. The
situation is somewhat nicer for connected H : the converse is true if p is sufficiently
large. To be precise, we have the following theorem due to Serre.

Theorem 2.4 [Serre 2004, Theorem 4.4]. Suppose p ≥ a(G) and (H : H◦) is prime
to p. Then H◦ is reductive if and only if H is G-completely reducible.

Here the invariant a(G) of G is defined as follows [Serre 2004, Section 5.2].
For G simple, set a(G) = rk(G) + 1, where rk(G) is the rank of G. For G
reductive, let a(G) = max(1, a(G1), . . . , a(Gr )), where G1, . . . , Gr are the simple
components of G. In the special case G = GL(V ) we have a(G) = dim(V ), and a
subgroup H of G is G-cr if and only if V is a semisimple H -module. We recover a
basic result of Jantzen [1997, Proposition 3.2]: if ρ : H →GL(V ) is a representation
of a connected reductive group H and p ≥ dim(V ) then ρ is completely reducible.
The finite unipotent example above shows that we cannot expect Theorem 2.4 to
carry over completely, even with extra restrictions on p. Even when H is connected,
H can fail to be G-cr if p is small.

Remark 2.5. Note that if we assume that K is connected then Theorem 1.3 follows
immediately from Theorem 2.4, since d(G)≥a(G). We need a more elaborate proof
with a worse bound on p, as we do not wish to place any restrictions on (K : K ◦);
Theorem 1.3 is only of independent interest when (K : K ◦) is not prime to p. For
an application in such an instance, see Corollary 1.5.
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2.5. Coxeter numbers. The invariant h(G) denotes the maximum of the Coxeter
numbers of the simple components of G [Serre 2004, (5.1)], and we define h̃(G) to
be h(G) if [G, G] is simply connected and h(G) + 1 otherwise. Recall that if G
is simple, we have h(G) + 1 = dim(G)/rk(G); the values of h(G) for the various
Dynkin types are as follows:

G An (n ≥ 1) Bn, Cn (n ≥ 2) Dn (n ≥ 4) E6 E7 E8 F4 G2

h(G) n + 1 2n 2n − 2 12 18 30 12 6

We thus have

(2.6) a(G) ≤ h(G) ≤ d(G)

for any G. But note that we can have h̃(G) > d(G): for instance, take G = PGLn .

3. G-complete reducibility, separability and reductive pairs

Now we consider the interaction of subgroups of G with the Lie algebra Lie G = g

of G. Much of this material is taken from [Bate et al. 2005].

Definition 3.1 [Bate et al. 2005, Definition 3.27]. For a closed subgroup H of G,
the Lie subalgebra Lie(CG(H)) is contained in cg(H), the fixed-point space of H
on g in the adjoint action. In the case of equality (that is, if the scheme-theoretic
centralizer of H in G is smooth), we say that H is separable in G; else H is
nonseparable in G. (See [Bate et al. 2005, Remark 3.32] for an explanation of the
terminology.)

Of central importance is the following observation.

Example 3.2 [Bate et al. 2005, Example 3.28]. Any closed subgroup H of G =

GL(V ) is separable in G.

Definition 3.3. Following Richardson [1967], we call (G, H) a reductive pair
provided that H is a reductive subgroup of G and under the adjoint action, Lie G
decomposes as a direct sum

Lie G = Lie H ⊕m,

for some H -submodule m.

For a list of examples of reductive pairs we refer to P. Slodowy [1997, I.3]. For
further examples, see [Bate et al. 2005, Example 3.33, Remark 3.34].

Our application of reductive pairs to G-complete reducibility goes via the fol-
lowing result.

Proposition 3.4 [Bate et al. 2005, Corollary 3.36]. Suppose that (GL(V ), H) is a
reductive pair and K is a closed subgroup of H. If V is a semisimple K -module,
then K is H-completely reducible.
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We look first at the special case of the adjoint representation.

Example 3.5 [Bate et al. 2005, Example 3.37]. Let H be a simple group of adjoint
type and let G = GL(Lie H). We have a symmetric nondegenerate Ad-invariant
bilinear form on Lie G ∼= End(Lie H) given by the usual trace form and its restric-
tion to Lie H is just the Killing form of Lie H . Since H is adjoint and Ad is a
closed embedding, ad : Lie H → Lie Ad(H) is surjective. Thus it follows from the
arguments in [Bate et al. 2005, Remark 3.34] that if the Killing form of Lie H is
nondegenerate, then (G, H) is a reductive pair.

Suppose first that H is a simple classical group of adjoint type and p > 2. The
Killing form is nondegenerate for sl(V ), so(V ), or sp(V ) if and only if p does
not divide 2 dim V , dim V − 2, or dim V + 2, respectively; see [Bourbaki 1975,
Example, Chapter VIII, Section 13.12]. In particular, for H adjoint of type An ,
Bn , Cn , or Dn , the Killing form is nondegenerate if p > 2 and p does not divide
n + 1, 2n − 1, n + 1, or n − 1, respectively.

Now suppose that H is a simple exceptional group of adjoint type. If p is
good for H , then the Killing form of Lie H is nondegenerate; this was noted by
Richardson [1967, Section 5]. Thus if p satisfies the appropriate condition, then
(GL(Lie H), H) is a reductive pair and Proposition 3.4 applies.

The next result is new, and gives a more general characterisation of reductive
pairs.

Theorem 3.6. For a simply connected simple algebraic group G in characteristic
p ≥ 0, consider the following conditions:

(i) (GL(V ), ρ(G)) is a reductive pair, where ρ : G → GL(V ) is a nontrivial
representation of least dimension.

(ii) (GL(V ), ρ(G)) is a reductive pair, for some nontrivial irreducible representa-
tion ρ : G → GL(V ).

(iii) p is very good for G.

(iv)
(
GL(Lie(G)), Ad(G)

)
is a reductive pair.

(v) The Killing form on Lie(G) is nondegenerate.

(vi) p is very good for G, and if G has classical type, then p ∤ e(G), where e(G) is
as follows:

G An Bn Cn Dn

e(G) 2 2n − 1 n + 1 n − 1

Then (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐H (iv) ⇐H (v) ⇐⇒ (vi).
For G of exceptional type, all these conditions are equivalent.
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Proof. It is clear that (i) implies (ii). If (ii) holds, then every subgroup of ρ(G) is
separable, since every subgroup of GL(V ) is separable, by Example 3.2, and this
descends through reductive pairs. This means that p is pretty good for ρ(G) Ð see
[Herpel 2013, Definition 2.11] Ð which is the same as p being very good for ρ(G)

since G is simple. Note that p being very good is insensitive to the isogeny type
of G, so (ii) implies (iii).

Next, the implication (iii) H⇒ (i) for G of types Bn , Cn and Dn is [Richardson
1967, Lemma 5.1]. For SL(V ), it is well known that the traceless matrices sl(V ) and
the scalar matrices c(gl(V )) are the only proper, nonzero GL(V )-submodules (and
SL(V )-submodules) of gl(V ). Now (iii) means that p is coprime to dim V , which
implies that these submodules intersect trivially, so that sl(V ) is complemented
by c(gl(V )). So (i) holds in type An .

It remains to consider the exceptional cases (G,V )=(G2,V7),(F4,V26),(E6,V27),
(E7,V56) and (E8,V248), where V j is a minimal-dimensional G-module in each case.
Now Lie(GL(V )) = V j ⊗ V ∗

j contains Lie(G) as a submodule, which is irreducible
since (iii) holds. The known weights of low-dimensional irreducible G-modules,
given for instance in [Lübeck 2001], now allow one to calculate the weights of
V j ⊗ V ∗

j and determine its G-composition factors. In each case, it transpires that
Lie(G) is in fact the unique G-composition factor with a particular highest weight.
Since Lie(G) is a submodule and V j ⊗ V ∗

j is self-dual, Lie(G) also occurs as a
quotient of this, and the kernel of this quotient map is then a complement to Lie(G),
so that (i) indeed holds. We illustrate the details in the case that G is of type G2

in Remark 3.7(iv).
This shows that (i), (ii) and (iii) are equivalent. Now it is clear that (iv) H⇒ (ii).

The equivalence of (v) and (vi) follows from Example 3.5. If (v) holds then the
Killing form on Lie(G) is, up to a nonzero scalar, the restriction of the trace form
on Lie

(
GL(Lie(G))

)
, and hence Lie(G) has an orthogonal complement, so that (iv)

holds. Also, (iii) coincides with (vi) when G has exceptional type, which shows
that all the conditions are equivalent in this case. □

Remarks 3.7. (i) For exceptional groups in good characteristic, one can also
check, just as in the case of the minimal module, that Lie(G) is the unique G-
composition factor of Lie(G) ⊗ Lie(G)∗ having a particular high weight, so that
(being a submodule) it is a direct summand; this gives an alternative direct proof
that (iii) H⇒ (iv) in Theorem 3.6 for exceptional G.

(ii) For type An when p = 2 ∤ n + 1, so that Lie(G) is simple and self-dual but the
Killing form vanishes, evidence suggests that

(
GL(Lie(G)), G

)
is nevertheless a

reductive pair. For instance, if n = 2 or 4 and G = SLn+1, the module V = Lie(G)

appears with multiplicity 2 as a direct summand of gl(V ) = V ⊗V ∗; in fact we have
gl(V ) ∼= V ⊕ V ⊕ W for some indecomposable G-module W . With respect to the
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trace form on gl(V ), the image of the embedding Lie(G) → gl(V ) gives a totally
isotropic subspace isomorphic to V , and the natural isomorphism gl(V )/V ⊥ → V ∗

then shows the existence of a second composition factor isomorphic to V . One
can then use the self-duality of V and gl(V ) to deduce that Lie(G) and this second
composition factor are each a direct summand of gl(V ).

(iii) For types Bn , Cn , Dn with p odd but dividing 2n − 1, n + 1, n − 1, respec-
tively, considering such instances in rank up to 6 suggests that

(
GL(Lie(G)), G

)
is

never a reductive pair. In each case, it transpires that Hom
(
Lie(G), gl(Lie(G))

)
is

1-dimensional. Thus gl(Lie(G)) has a unique G-submodule isomorphic to Lie(G),
which turns out to lie in a self-dual indecomposable G-module direct summand of
gl(Lie(G)) also having Lie(G) as its head.

(iv) To illustrate the argument in the proof above, when G has type G2 and p ̸= 2, 3,
the G-module V7 is irreducible of highest weight λ2, and the 49-dimensional module
V7 ⊗ V ∗

7 has high weights 0, λ1, λ2 and 2λ2 when p ̸= 7; or 0, 0, λ1, λ2 and 2λ2

when p = 7. In either case, we find a unique composition factor of high weight λ1,
which is Lie(G).

4. Proofs of Theorem 1.3 and Corollary 1.5

Proof of Theorem 1.3. Let π : G → G/Z(G)◦ be the canonical projection. Owing to
Lemma 2.3(ii)(b), we can replace G with G/Z(G)◦, so without loss we can assume
that G is semisimple. Let G1, . . . , Gr be the simple factors of G. Multiplication
gives an isogeny from G1 × · · · × Gr to G. Again by Lemma 2.3(ii)(b), we can
replace G with G1×· · ·×Gr , so we can assume G is the product of its simple factors.
By Lemma 2.3(i) it is thus enough to prove the result when G is simple and simply
connected. Of course, as well as replacing G with its (pre)image under an isogeny,
we also replace H and K with their (pre)images under that isogeny along the way.

First suppose G is of type A. Then K ⊆ H ⊆ SL(V ) ⊆ GL(V ). By [Bate
et al. 2011, Theorem 1.3], if K is H -cr then K is GL(V )-cr, so K is SL(V )-cr
and we’re done. Next suppose G is not of type A. Then, as p ≥ d(G), p is
good for G. It follows from Theorem 3.6 that (GL(V ), G) is a reductive pair,
where V is an irreducible G-module of least dimension. Since p ≥ d(G) = dim V ,
V is semisimple for K , thanks to [Bate et al. 2011, Theorem 1.3], and therefore
K is G-cr, by Proposition 3.4. □

The following is an immediate consequence of [Springer and Steinberg 1970, III
1.19(a)] and [Bate et al. 2022, Theorem 1.3].

Lemma 4.1. Let σ be a Steinberg endomorphism of G. Then Gσ is G-irreducible.

Proof of Corollary 1.5. By Lemma 4.1, Hσ is H -ir. The result now follows from
Theorem 1.3. □
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Note that Corollary 1.5 is false without the bound on p. See Example 4.5 for an
instance when H is G-cr but Hσ is not, where p = 3 < 8 = d(G).

Our next result gives a particular set of conditions on Hσ to guarantee that Hσ

and H belong to the same parabolic subgroups and the same Levi subgroups of G.
Note that, if σ : H → H is a Steinberg endomorphism of H , then σ stabilises a
maximal torus of H [Steinberg 1968, Corollary 10.10]. Also, for S a torus in G,
we have CG(S) = CG(s) for some s ∈ S; see [Borel 1991, III Proposition 8.18].

Proposition 4.2. Let H ⊆ G be connected reductive groups. Let σ : G → G be a
Steinberg endomorphism that stabilises H and a maximal torus T of H. Suppose

(i) CG(T ) = CG(t) for some t ∈ Tσ , and

(ii) Hσ meets every T -root subgroup of H nontrivially.

Then Hσ and H are contained in precisely the same parabolic subgroups of G,
and the same Levi factors thereof. In particular, H is G-completely reducible if
and only if Hσ is G-completely reducible; similarly, H is G-irreducible if and only
if Hσ is G-irreducible.

Proof. First assume Hσ ⊆ P for some parabolic subgroup P of G. Then t lies in
some maximal torus of P . So we can find a λ ∈ Y (G) such that P = Pλ and λ

centralizes t . But then λ centralizes T , by (i), so T ⊆ P . Now we have a maximal
torus T of H and a nontrivial part of each T -root group of H inside P , by (ii), so we
can conclude that all of H belongs to P . Similarly, if Hσ ⊆ Lλ for some λ ∈ Y (G),
we get H ⊆ Lλ. The reverse conclusions are obvious, since Hσ ⊆ H . □

In the presence of the conditions in Proposition 4.2 we can improve the bound
in Corollary 1.5 considerably; the following is immediate from Theorem 2.4 and
Proposition 4.2.

Corollary 4.3. Suppose G, H and σ satisfy the hypotheses of Proposition 4.2.
Suppose in addition that p ≥ a(G). Then Hσ is G-completely reducible.

Note that condition (ii) in Proposition 4.2 is automatically satisfied provided σ

induces a standard Frobenius endomorphism on H . In that case Example 4.4
below demonstrates that condition (i) above does hold generically. Nevertheless,
Example 4.5 shows that Proposition 4.2 is false in general without condition (i)
even when part (ii) is fulfilled.

The following example shows that the conditions in Proposition 4.2 do hold
generically.

Example 4.4. Let σq : GL(V ) → GL(V ) be a standard Frobenius endomorphism
that stabilises the connected reductive subgroup H of GL(V ) and a maximal torus T
of H . Pick l ∈ N so that firstly all the different T -weights of V are still distinct when
restricted to Tσ l

q
and secondly that there is a t ∈Tσ l

q
, such that CGL(V )(T )=CGL(V )(t).
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Then for every n ≥ l, both conditions in Proposition 4.2 are satisfied for σ = σ n
q .

Thus there are only finitely many powers of σq for which part (i) can fail. The
argument here readily generalises to a Steinberg endomorphism of a connected
reductive G which induces a generalized Frobenius morphism on H .

In contrast to the setting in Example 4.4, our next example demonstrates that the
conclusion of Proposition 4.2 may fail, if condition (i) is not satisfied. Consequently,
the conditions in Theorem 1.3 and Corollary 1.5 are needed in general.

Example 4.5. Let p=3, q =9 and H =SL2. By Steinberg’s tensor product theorem,
the simple H -module V = L(1+q +q2) is isomorphic to L(1)⊗ L(1)[2] ⊗ L(1)[4],
the superscripts denoting p-power twists. Thus, after identifying H with its image
in G = GL(V ), we see that H is G-cr. Let σ = σq be the standard Frobenius on G.
Then Hσ = SL2(9) is H -cr, by Lemma 4.1. Now as an Hσ -module, V is isomorphic
to the H -module L(1)⊗ L(1)⊗ L(1) which admits the nonsimple indecomposable
Weyl module of highest weight 3 as a constituent. As the latter is not semisimple
for Hσ , V is not semisimple as an Hσ -module and so Hσ is not G-cr.

5. Saturation

Let u ∈GL(V ) be unipotent of order p. Then there is a nilpotent element ϵ ∈End(V )

with ϵ p = 0 such that u = 1 + ϵ. For t ∈ Ga we define ut by

(5.1) ut := (1 + ϵ)t = 1 + tϵ +
( t

2

)
ϵ2 + · · · +

( t
p−1

)
ϵ p−1;

see [Serre 1998]. Then {ut | t ∈ Ga} is a closed connected subgroup of GL(V )

isomorphic to Ga .
Following [Nori 1987] and [Serre 1998], a subgroup H of GL(V ) is saturated

provided H is closed and for any unipotent element u of H of order p and any t ∈Ga

also ut given by (5.1) belongs to H . The saturated closure H sat of H is the smallest
saturated subgroup of GL(V ) containing H .

We now recall a notion of saturation for arbitrary connected reductive groups
which generalises the one just given for GL(V ). Suppose that p ≥ h(G). Then every
unipotent element of G has order p; see [Testerman 1995]. Let u be a unipotent
element of G. Then for t ∈ Ga there is a canonical ªt-th powerº ut of u such that
the map t 7→ ut defines a homomorphism of the additive group Ga into G. We
recall some results from Serre [1998; 2004, Section 5].

Let U be the subvariety of G consisting of all unipotent elements of G, and let N
be the subvariety of Lie(G) consisting of all nilpotent elements of Lie(G). Fix a
maximal torus T of G, a Borel subgroup B of G containing T , and let U be the
unipotent radical of B. Since p ≥ h(G) and because the nilpotency class of Lie(U )

is at most h(G), we can view Lie(U ) as an algebraic group with multiplication
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given by the Baker±Campbell±Hausdorff formula (see [Bourbaki 1972, Chapter II,
Section 6]).

Let 8 = 8(G, T ) be the root system of G with respect to T . For α a root
in 8, let xα : Ga → Uα be a parametrization of the root subgroup Uα of G. Let
Xα := d

ds (xα(s))|s=0 be a canonical generator of Lie(Uα). Further, by Aut(G) we
denote the group of algebraic automorphisms of G. We begin with the following
result due to Serre; for a detailed proof, see [Balaji et al. 2017, Section 6]. Recall that
we define h̃(G) to be h(G) if [G, G] is simply connected and h(G) + 1 otherwise.

Theorem 5.2 [Serre 1998, Theorem 3]. Let p ≥ h̃(G). There is a unique isomor-
phism of varieties log : U → N such that the following hold:

(i) log(σu) = dσ(log u) for any σ ∈ Aut(G) and any u ∈ U .

(ii) The restriction of log to U defines an isomorphism of algebraic groups U →

Lie(U ) whose tangent map is the identity on Lie(U ).

(iii) log(xα(t)) = t Xα for any α ∈ 8 and any t ∈ Ga .

Let exp : N → U be the inverse morphism to log. We then define

(5.3) ut := exp(t log u),

for any u ∈ U and any t ∈ Ga .

Definition 5.4 [Nori 1987; Serre 1998]. Let p ≥ h̃(G). A subgroup H of G is
saturated (in G) provided H is closed and for any unipotent element u of H and
any t ∈ Ga also ut belongs to H . For a subgroup H , its saturated closure H sat is
the smallest saturated subgroup of G containing H .

We give various fairly straightforward consequences of Theorem 5.2. The third
is already recorded in [Serre 1998] for centralizers of subgroups of G.

Corollary 5.5. Let p ≥ h̃(G). Let σ ∈ Aut(G). Then the following hold:

(i) σ(ut) = σ(u)t for any u ∈ U and t ∈ Ga .

(ii) If H is a σ -stable subgroup of G, so is H sat.

(iii) For S a subgroup of Aut(G), CG(S) is saturated in G.

Proof. (i) Since exp is the inverse to log, Theorem 5.2(i) gives σ(exp(X)) =

exp(dσ(X)) for all X ∈ N . Hence for any u ∈ U and t ∈ Ga ,

σ(ut) = σ(exp(t log u))

= exp
(
dσ(t log(u))

)
= exp(tdσ(log u)) = exp(t log σ(u)) = σ(u)t .

(ii) If H is σ -stable and M is any saturated subgroup of G containing H , then so
is σ(M): for, if u ∈ σ(M) is unipotent, then u = σ(v) for some v ∈ M unipotent.
Then ut = σ(v)t = σ(vt) ∈ σ(M) also, by (i) and the fact that M is saturated in G.
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Hence H sat, the unique smallest saturated subgroup of G containing H , must also
be σ -stable.

(iii) This is immediate by (i). □

As particular instances of Corollary 5.5(iii), we note that centralizers of graph
automorphisms of G are saturated, and also Levi subgroups of parabolic subgroups
of G are saturated, since they arise as centralizers of tori in G.

One can use Theorem 5.2 directly to show that parabolic subgroups of G are
saturated. The following proof instead uses the language of cocharacters, which
also allows us to observe that the process of ªtaking limits along cocharactersº
commutes with saturation.

Proposition 5.6. Let λ ∈ Y (G) and let P = Pλ. Then for u ∈ P unipotent and
v := lima→0 λ(a)uλ(a)−1, we have lima→0 λ(a)utλ(a)−1 = vt . In particular, P is
saturated.

Proof. Observe that for any t ∈ Ga the map ht : U → U given on points by ht(u) :=

ut = exp(t log(u)) is an isomorphism of varieties, by Theorem 5.2. Furthermore,
by Corollary 5.5(i) we have, for any a ∈ k∗,

(λ(a)uλ(a)−1)t = λ(a)utλ(a)−1.

The result now follows from Remark 2.1 and elementary limit calculations. □

The next result is a slight refinement of a theorem due to Serre.

Theorem 5.7 [Serre 1998, Property 2, Theorem 4]. Let p ≥ h̃(G). Let H be a
saturated connected reductive subgroup of G, and suppose p ≥ h̃(H). Then for any
u ∈ H unipotent, the element ut , with respect to H , coincides with ut , with respect
to G: that is, saturation in H coincides with saturation in G.

Remark 5.8. It follows from [Serre 1998, Theorem 4] that if H is any connected
reductive subgroup of G Ð not necessarily saturated Ð then h(H) ≤ h(G). It can
happen, however, that h̃(H) > h̃(G) = p. For instance, let p be an odd prime
and let G = SLp × SLp. Let M be a semisimple subgroup of SLp such that M is
not simply connected, and let H = SLp ×M . Now h̃(G) = h(G) = h(SLp) = p
and h(H) ≥ h(SLp) = p; but H is not simply connected, so h̃(H) = h(H) + 1 ≥

p + 1 > p = h̃(G). Because of this we have added the hypotheses that p ≥ h̃(G)

and p ≥ h̃(H) to Theorem 5.7, although they were not stated explicitly in [Serre
1998, Property 2]. The proof there still holds.

Remark 5.9. Suppose p ≥ h̃(G) and let H be a connected reductive subgroup of G
normalized by some maximal torus T of G. We claim that H is saturated in G.
Since H and H T contain the same unipotent elements, H is saturated if and only
if H T is saturated, so we may assume that H contains T . By Corollary 5.5(iii)
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and Theorem 5.7 there is no harm in passing to a minimal Levi subgroup of G
containing H , so we may assume that H has maximal semisimple rank in G. Since
p ≥ h̃(G), p is good for G, and hence H arises as the centralizer H = CG(s)◦ in G
of some semisimple element s of G, thanks to Deriziotis’ criterion; see [Humphreys
1995, Section 2.15]. Thus H is saturated by Corollary 5.5(iii).

Note that this result applies to any connected normal subgroup of G, so in
particular to the simple factors of G.

Next we show that saturation is compatible with direct products, in the following
sense.

Lemma 5.10. Suppose G = G1 × · · · × Gr , where each Gi is connected and
reductive. Suppose p ≥ h̃(G). Then p ≥ h̃(Gi ) and Gi is saturated for 1 ≤ i ≤ r .
Moreover, if ui ∈ Gi is unipotent for 1 ≤ i ≤ r then

log(u1 · · · ur ) = log1(u1) + · · · + logr (ur ),

where log denotes the logarithm map for G and logi denotes the logarithm map
for Gi .

Proof. For each i , any simple factor of Gi is also a simple factor of G and [Gi , Gi ]

is simply connected if [G, G] is simply connected, so h̃(G) ≥ h̃(Gi ) and the first
assertion follows. Each Gi is normal in G and hence is saturated by Remark 5.9.
Theorem 5.7 implies that if ui ∈ Gi is unipotent then logi (ui )= log(ui ). If X and X ′

are commuting nilpotent elements of Lie(G) then the Baker±Campbell±Hausdorff
product of X and X ′ is just X + X ′, so exp(X + X ′) = exp(X) exp(X ′). The final
assertion now follows easily. □

Corollary 5.11. Assume the hypotheses of Lemma 5.10, and let πi : G → Gi be the
canonical projection. If H is a saturated subgroup of G then πi (H) is a saturated
subgroup of Gi .

Proof. This follows immediately from Lemma 5.10. □

Proposition 5.12 [Serre 2004, Proposition 5.2]. If H is saturated in G, then
(H : H◦) is prime to p.

Theorem 5.13 [Serre 2004, Theorem 5.3]. Let p ≥ h̃(G). For a closed subgroup H
of G, the following are equivalent:

(i) H is G-completely reducible.

(ii) H sat is G-completely reducible.

(iii) (H sat)◦ is reductive.

The equivalence between (i) and (ii) stems from the fact that both parabolic and
Levi subgroups of G are saturated. The equivalence between (ii) and (iii) is an
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immediate consequence of Theorem 2.4 and Proposition 5.12, since h̃(G) ≥ a(G)

by (2.6).

Proposition 5.14. Let K ⊆ H be closed subgroups of G with H connected reductive
and saturated in G. Suppose p ≥ h̃(G) and p ≥ h̃(H). Then K is H-completely
reducible if and only if K is G-completely reducible.

Proof. By Theorem 5.13, K is H -cr if and only if (K sat)◦ is reductive, where we
saturate in H . But saturation in H is the same as saturation in G thanks to Theorem
5.7, so (K sat)◦ is reductive if and only if K is G-cr, again by Theorem 5.13. □

Note that both implications in the equivalence in Proposition 5.14 may fail
if p < h(G); e.g., see [Bate et al. 2005, Example 3.45] and [Bate et al. 2010,
Proposition 7.17].

For ease of reference, we recall a connectedness result for H sat from [Bate et al.
2011, Corollary 4.2].

Remark 5.15. Let p ≥ h̃(G). If H is a closed connected subgroup of G, then
so is H sat. For, consider the subgroup M of G generated by H and the closed
connected subgroups {ut | t ∈ Ga} ∼= Ga of G for each unipotent element u ∈ G.
Then M is connected. By definition, M ⊆ H sat. If M ̸= H sat, then by repeating
this process with M (possibly several times), we eventually generate all of H sat

by H and closed connected subgroups of G isomorphic to Ga .

Here is a further consequence of Theorem 5.13.

Corollary 5.16. Let p ≥ h̃(G). Let K ⊆ H be closed subgroups of G with H
connected reductive, and suppose that p ≥ h̃(H). Then the following are equivalent:

(i) K is H sat-completely reducible.

(ii) K sat is H sat-completely reducible.

(iii) (K sat)◦ is reductive.

(iv) K sat is G-completely reducible.

(v) K is G-completely reducible.

Proof. Owing to Remark 5.15, H sat is connected. Further, since h̃(G) ≥ a(G), it
follows from Theorems 2.4 and 5.13 that H sat is reductive.

The equivalence of (i) through (iii) follows from Theorem 5.13 applied to K⊆H sat

and Theorem 5.7 and the equivalence of (iii) through (v) is just Theorem 5.13. □

Proof of Theorem 1.4. Thanks to Remark 5.15, H sat is connected. Since d(G) ≥

h(G) ≥ a(G) by (2.6), it follows from Theorems 2.4 and 5.13 that H sat is reductive.
If K is H -cr, then K is G-cr, by Theorem 1.3, and therefore K sat is H sat-cr, by

Corollary 5.16. □
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The following example illustrates that in general connected reductive subgroups
are not saturated.

Example 5.17. With the explicit notion of saturation from (5.1) within GL(V )

it is easy to check that the image H of the adjoint representation of SLp in
G := GL(Lie(SLp)) is not saturated in characteristic p; see [Serre 1998, p. 18].
Evidently, H is contained in the maximal parabolic subgroup P of G that stabilises
the H -submodule z(Lie(SLp)). One checks that its saturation H sat in G includes all
of H but also part of the unipotent radical Ru(P) of P . For instance, when p =2 then
the adjoint representation of H := SL2 with respect to a suitable basis is given by

Ad

((
a b
c d

))
=




a2 b2 0
c2 d2 0
ac bd 1


 .

If

u = Ad

((
1 b
0 1

))
,

then

log u =




0 b2 0
0 0 0
0 b 0


 ,

so

ut = exp(t log u) =




1 tb2 0
0 1 0
0 tb 1


 for any t ∈ Ga.

We see that if b ̸= 0, 1 then

ub2
Ad

((
1 b2

0 1

))
=




1 0 0
0 1 0
0 b2 + b3 1




is a nontrivial element of H sat ∩ Ru(P), where P is the parabolic subgroup of
matrices of shape 


∗ ∗ 0
∗ ∗ 0
∗ ∗ ∗


 .

Since the abelian unipotent radical Ru(P) is an irreducible SLp-module (of
highest weight λ1 + λp−1, or 2λ1 when p = 2), being a nonzero SLp-submodule
of Ru(P), U is in fact all of Ru(P). So H sat is of the form H sat = X Ru(P),
where X is a subgroup of the Levi subgroup of type SLp2−2 of P . In particular,
H sat is not reductive in this case.

We briefly revisit Example 4.5 in the context of saturation.
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Example 5.18. With the hypotheses and notation from Example 4.5, a nontrivial
unipotent element u from Hσ has order p = 3, so we can saturate u in H and in G,
according to (5.1) above. Likewise we can saturate nontrivial unipotent elements
in H . It turns out that H is not saturated in G. Let u =

( 1
0

b
1

)
be in SL2(9) = Hσ

for a fixed b ̸= 1. Then one can check that the saturations of u in H and in G do
not coincide. Thus, the hypotheses of Theorem 5.7 fail on two accounts, for H is
not saturated in G and p = 3 < h(G) = dim V = 8, while p > h(H) = 2.

6. Saturation and finite groups of Lie type

In this section we discuss finite subgroups of Lie type in G and their behaviour under
saturation. To do this we need to prove the compatibility of the saturation map with
standard Frobenius endomorphisms. First recall that if σq : G → G is a standard
q-power Frobenius endomorphism of G, then there exists a σq-stable maximal
torus T and Borel subgroup B ⊇ T , and with respect to a chosen parametrization of
the root groups as above, we have σq(xα(s)) = xα(sq) for each α ∈ 8 and s ∈ Ga;
see [Gorenstein et al. 1998, Theorem 1.15.4(a)].

Proposition 6.1. Let p ≥ h̃(G). Suppose that σq : G → G is a standard q-power
Frobenius endomorphism of G. Then the following hold:

(i) σq(ut) = σq(u)tq
for any u ∈ U and t ∈ Ga .

(ii) If H is a σq -stable subgroup of G, then H sat is also σq -stable.

Proof. (i) Fix a σq-stable Borel subgroup B of G as in the discussion before the
statement of the proposition, with unipotent radical U . Since (gug−1)t = gut g−1

for all u ∈ U and g ∈ G thanks to Corollary 5.5(i), it is enough to show the result
for u ∈ U .

There are two ways to define a Frobenius-type map on Lie(U ). Firstly, since
the Xα form a basis for Lie(U ) as a k-space, we have the map Fq :Lie(U )→Lie(U )

given by ∑

α∈8+

cα Xα 7→
∑

α∈8+

cq
α Xα.

For this map, it is clear that Fq(t X) = tq Fq(X) for every t ∈ Ga and X ∈ Lie(U ).
Alternatively, since exp and log are mutually inverse group isomorphisms between U
and Lie(U ), there is some endomorphism fq : Lie(U ) → Lie(U ) defined by

σq(exp(X)) = exp( fq(X))

for all X ∈ Lie(U ) (or, equivalently, by log σq(u) = fq(log u) for all u ∈ U ). We
claim that fq = Fq .

First, note that Theorem 5.2(iii) gives equality straight away for multiples of
basis elements: since σq(xα(s)) = xα(sq) for each s ∈ Ga and positive root α, we
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have fq(s Xα) = sq Xα = Fq(s Xα) for all such s and α. Now recall that if we fix
some ordering of the positive roots 8+, then each element u ∈ U has a unique
expression as a product u =

∏
α∈8+ xα(sα) with the sα ∈ Ga Ð see [Springer and

Steinberg 1970, Chapter I, 1.2(b)] Ð and hence every X = log(u) ∈ Lie(U ) has
expression X =

∏
α∈8+(sα Xα), where this product is calculated using the Baker±

Campbell±Hausdorff formula, by Theorem 5.2(ii) and (iii). Thus, to show fq = Fq

it is enough to show that Fq is a group homomorphism.
Let X =

∑
α∈8+ sα Xα and Y =

∑
α∈8+ tα Xα be two elements of Lie(U ). In

calculating XY with the Baker±Campbell±Hausdorff formula we get a number of
commutators involving the sα Xα and tβ Xβ for positive roots α and β. Since the Lie
bracket is bilinear, we can pull all the coefficients sα and tβ out to the front of each
commutator, and hence write XY as a linear combination of commutators in the Xα .
All such commutators of degree greater than 1 can be rewritten in Lie(U ) as a
linear combination of the Xα by applying the commutator relations recursively to
write any [Xβ, Xγ ] in terms of the Xα , and then expanding out and repeating. The
coefficients appearing in the commutation relations lie in the finite base field Fp,
and hence are fixed under the q-power map. Thus, for any commutator C in the
root elements Xα, we may conclude that Fq(C) = C . This is enough to conclude
that Fq(XY ) = Fq(X)Fq(Y ) for any X, Y ∈ Lie(U ), as claimed.

We can now deduce that for any t ∈ Ga and any X ∈ Lie(U ), we have fq(t X) =

tq fq(X), and hence for any u ∈ U and any t ∈ Ga ,

σq(u)tq
= exp(tq log σq(u)) = exp(tq fq(log u))

= exp( fq(t log u)) = σq(exp(t log u)) = σq(ut),

which completes the proof of (i).

(ii) This follows quickly from (i), since if H is σq-stable and M is any saturated
subgroup of G containing H , then σq(M) is another saturated subgroup of G
containing H : for, if t ∈ Ga and u ∈ σq(M) is unipotent, then we may find s ∈ Ga

with sq = t (since k = k̄ is perfect) and v ∈ M which is unipotent such that
u = σq(v). Then ut = σq(v)sq

= σq(vs) ∈ σq(M) also. Hence H sat, which is the
smallest saturated subgroup containing H , must also be σq -stable. □

Combining Corollary 5.5 and Proposition 6.1, we obtain the following.

Corollary 6.2. Let p ≥ h̃(G). Suppose σ : G → G is a Steinberg endomorphism
of G such that σ = τσq , where τ ∈ Aut(G) and σq is a standard q-power Frobenius
endomorphism of G. Then the following hold:

(i) σ(ut) = σ(u)tq
for any u ∈ U and t ∈ Ga .

(ii) If H is a σ -stable subgroup of G, then H sat is also σ -stable.
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Proof. (i) By Corollary 5.5(i) and Proposition 6.1(i), we have for any u ∈ U , t ∈ Ga ,

σ(ut) = τ(σq(ut)) = τ(σq(u)tq
) = τ(σq(u))tq

= σ(u)tq
,

as desired.

(ii) This part follows from the arguments in the proofs of Corollary 5.5(ii) and
Proposition 6.1(ii) along with part (i). □

We note that in general, a Steinberg endomorphism of a reductive group G need
not be of the form given in Corollary 6.2; e.g., see Example 6.8.

We now apply Theorem 1.4 to the case when K = Hσ for a Frobenius endomor-
phism σ of G. The next result is immediate from Lemma 4.1 and Theorem 1.4.

Corollary 6.3. Let H ⊆ G be connected reductive groups. Suppose p ≥ d(G) and
p ≥ h̃(G). Let σ : G → G be a Steinberg endomorphism that stabilises H. Then
(Hσ )sat is H sat-completely reducible.

We can potentially improve the bound on p in the last corollary at the expense
of imposing the conditions from Proposition 4.2, as follows.

Corollary 6.4. Suppose G, H and σ satisfy the hypotheses of Proposition 4.2.
Suppose in addition that p ≥ h̃(G). Then (Hσ )sat is H sat-completely reducible.

Proof. Since p ≥ h̃(G) ≥ a(G) by (2.6), H is G-cr, by Theorem 2.4. Thus Hσ is
G-cr, by Proposition 4.2. The result now follows from Corollary 5.16. □

Note that in Theorem 1.4 and Corollaries 6.3 and 6.4, H sat is again connected
reductive. This follows from the fact that h̃(G) ≥ a(G) and Theorems 2.4, 5.13
and Remark 5.15.

Example 4.4 shows that generically the conditions of Corollary 6.4 are fulfilled.
Nevertheless, Example 4.5 and Corollary 5.16 show that Corollary 6.4 is false if
condition (i) of Proposition 4.2 is not satisfied. In the settings of Corollaries 6.3
and 6.4, ((Hσ )sat)◦ is reductive.

Assume G is simple for the rest of this section unless specified otherwise. Let
σ : G → G be a Steinberg endomorphism. Then σ is a generalized Frobenius map,
i.e., a suitable power of σ is a standard Frobenius map (e.g., see [Gorenstein et al.
1998, Theorem 2.1.11]), and the possibilities for σ are well known [Steinberg 1968,
Section 11]: σ is conjugate to either σq , τσq , τ ′σq or τ ′, where σq is a standard
Frobenius morphism, τ is an automorphism of algebraic groups coming from a
graph automorphism of types An , Dn or E6, and τ ′ is a bijective endomorphism
coming from a graph automorphism of type B2 (p = 2), F4 (p = 2) or G2 (p = 3).
The latter instances only occur in bad characteristic, so are not relevant here. If τ =1,
then we say that Gσ is untwisted, else Gσ is twisted. Note that, since G is simple,
τ and σq commute. Note also that CG(τ ) is again simple (e.g., see [Gorenstein
et al. 1998, Theorem 1.15.2(d)]).
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Theorem 6.5. Suppose G is simple. Let σ = τσq be a Steinberg endomorphism
of G and H a connected semisimple σ -stable subgroup of G. Assume p ≥ h̃(G)

and p ≥ h̃(H). Then H sat is also σ -stable, and we have:

(i) If τ = 1, then (Gσ )sat = G.

(ii) If τ = 1 and H is saturated in G, then (Hσ )sat = H.

(iii) (Gσ )sat = CG(τ ).

(iv) If H is saturated in G, and both τ and σq stabilise H separately, then (Hσ )sat =

CH (τ ).

(v) If H is saturated in G, then ((Hσ )sat)σ = Hσ .

Proof. The fact that H sat is σ -stable follows from Corollary 6.2.
For the rest of the proof, there is no loss in assuming that both G and H are

generated by their respective root subgroups relative to some fixed maximal σ -stable
tori TH ⊆ TG = T .

(i) and (ii) If τ = 1, i.e., if σ = σq is standard, then every root subgroup of G
meets Gσ nontrivially. (For, each root subgroup Uα of G is σ -stable and the σ -stable
maximal torus T acts transitively on Uα. So the result follows from the Lang±
Steinberg theorem.) It thus follows from Theorem 5.2(iii) and (5.3) that (Gσ )sat

contains each root subgroup of G; thus (i) follows. The same argument applies
for (ii) by considering the simple components of H and the fact that saturation in H
coincides with saturation in G, by Theorem 5.7(ii).

(iii) Since τ and σq commute, we have Gσ = CG(τ )σq . Since CG(τ ) is saturated
in G, by Corollary 5.5(iii), the result follows from part (ii).

(iv) Again, since τ and σq commute, Hσ = CH (τ )σq . Now CH (τ ) is saturated in H ,
by Corollary 5.5. But since H is saturated in G, saturation in H coincides with
saturation in G, by Theorem 5.7(ii), so the result follows from part (ii).

(v) Thanks to Corollary 6.2, (Hσ )sat is σ -stable. Thus, since Hσ ⊆ (Hσ )sat and
(Hσ )sat ⊆ H sat = H , we have Hσ ⊆ ((Hσ )sat)σ ⊆ Hσ , and equality follows. □

Proof of Theorem 1.6. This follows immediately from Theorem 6.5(iii). □

Remark 6.6. We note that Theorem 6.5(v) generalises [Nori 1987, Theorem B(1)]:
If G = SLn(k), σ = σq is a standard Frobenius endomorphism of G, and H is
a σ -stable subgroup of G, then it follows directly from (5.1) that H sat is again
σ -stable. Thus, in particular, if H is a connected, saturated semisimple σ -stable
subgroup of G, then by Theorem 6.5(v) we have ((Hσ )sat)σ = Hσ ; see [Nori 1987,
Theorem B(1)].

We consider some explicit examples for Theorem 6.5.
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Example 6.7. Let G = SLn and let σ be the Steinberg endomorphism of G given by

g 7→ σq(n0(
tg−1)n−1

0 ),

where tg denotes the transpose of the matrix g and n0 is the antidiagonal permutation
matrix of GLn , normalizing SLn . Note that τ(g) = n0(

tg−1)n−1
0 is the graph

automorphism of G. Then σ 2 = σq2 is a standard Frobenius map of G given by
raising coefficients to the q2-th power. Note that Gσ = SU(q) is the special unitary
subgroup of G. We have SU(q) = Gσ ⊆ Gσ 2 = SL(Fq2), and since σq commutes
with τ , we have (assuming p ≥ n) (Gσ )sat = CG(τ ), by Theorem 6.5(iii), while
(Gσ 2)sat = G, by Theorem 6.5(i).

In the case when G is no longer simple, additional kinds of Steinberg endomor-
phisms are possible.

Example 6.8. Let H be a semisimple group defined over Fq and let σq be the
corresponding standard Frobenius map of H . Let G = H ×· · ·× H (r factors) and
let 1H be the diagonal copy of H in G. Let π be the r -cycle permuting the r direct
copies of H of G cyclically and let f = (σq , idH , . . . , idH ) : G → G. Then σ = π f
is a Steinberg endomorphism of G where π and f do not commute. We have
Gσ = (1H)σq , where by abuse of notation σq is a standard Frobenius map on 1H .
(Note that (1H)σq is isomorphic to Hσq = H(Fq).) Now suppose p ≥ h̃(H)= h̃(G).
Then 1H is saturated in G, by Lemma 5.10. Thus (Gσ )sat = ((1H)σq )

sat = 1H ,
by Theorem 6.5(ii).

We present an instance where Theorem 6.5(i) can be applied even though G is
not simple and σ is a Steinberg endomorphism which is not a generalized Frobenius
endomorphism.

Example 6.9. Let p ≥ 2. Let σp and σp2 be the standard Frobenius maps of SL2

given by raising coefficients to the p-th and p2-th powers, respectively. Let G =

SL2 × SL2. Then the map σ = σp ×σp2 : G → G is a Steinberg morphism of G that
is not a generalized Frobenius morphism (see the remark following [Gorenstein et al.
1998, Theorem 2.1.11]). We have Gσ = SL2(Fp)× SL2(Fp2). The saturation map
in G is given by the formula from (5.1). (If p ≥5 then this follows from Theorem 5.7,
since the image of the canonical embedding of G into GL4(k) is a saturated subgroup
of GL4(k), but it is easily verified for p < 5 also.) By Lemma 5.10, saturating Gσ

inside G amounts to saturating each factor of Gσ inside each factor of G. Now, by
applying Theorem 6.5(i) to each factor of G, we get (Gσ )sat = G.

7. Saturation and semisimplification

Definition 7.1 [Bate et al. 2020, Definition 4.1]. Let H be a subgroup of G. We
say that a subgroup H ′ of G is a semisimplification of H (for G) if there exists
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a parabolic subgroup P = Pλ of G and a Levi subgroup L = Lλ of P such that
H ⊂ Pλ and H ′ = cλ(H), and H ′ is G-completely reducible. We say the pair (P, L)

yields H ′.

The following consequence of Proposition 5.6 shows that passing to a semisim-
plification of a subgroup of G and saturation are naturally compatible.

Corollary 7.2. Suppose that p ≥ h̃(G). Let H ′ be a semisimplification of H yielded
by (P, L). Then a semisimplification of H sat is given by (H ′)sat and is yielded also
by (P, L). Moreover, any semisimplification of H sat is G-conjugate to (H ′)sat.

Proof. By Lemma 2.2 there exists a λ ∈ Y (G) such that P = Pλ, L = Lλ and
H ′ = cλ(H). According to Proposition 5.6, we have (H ′)sat = (cλ(H))sat = cλ(H sat).
Since H ′ is G-cr, by definition, (H ′)sat is G-cr by Theorem 5.13. The final statement
follows from [Bate et al. 2020, Theorem 4.5]. □

In Example 5.17, the subgroup H considered is connected, nonsaturated and not
G-cr. In our next example, we give a connected, nonsaturated but G-cr subgroup.

Example 7.3. Consider the semisimple SL2-module L(1)⊕L(p) = L(1)⊕L(1)[p],
i.e., SL2 acting with a Frobenius twist on the second copy of the natural module
and without such on the first copy. This defines a diagonal embedding of SL2 in
M := SL2 × SL2 ⊆ G = GL4. The image H of SL2 in G is G-cr and it is not
saturated in G (and also not in the saturated G-cr subgroup M of G). The argument
is similar to the one in Example 5.17. Note that M is the saturation of H in G.

We close this section by noting that in general homomorphisms are not com-
patible with saturation. For instance, take the inclusion of a connected reductive,
nonsaturated subgroup H in G. See also Examples 5.17 and 7.3.
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