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Abstract

In order to allow engineers to make decisions regarding laser settings in selective laser sintering and predict the mechani-
cal properties of materials, conventional material models could provide accurate solutions and recommendations, how-
ever, they are potentially expensive and time-consuming. Thus, a number of computational data-driven methodologies 
have been introduced in this article, as alternatives, to formulate cross-correlations between the processing parameters 
and mechanical properties of selective laser sintered (SLS) nylon-12 components. Proposed in this article direct—from 
laser settings to material properties, and inverse—from desired material properties to laser settings, two estimation 
frameworks have provided accurate estimation results. The accuracy of three proposed data-driven methodologies: 
fuzzy inference system (FIS), artificial neural networks (ANN) and adaptive neural fuzzy inference system (ANFIS), have 
been compared and thoroughly analysed, with FIS being the most accurate solution.

Keywords Selective laser sintering · Fuzzy inference system · Neural networks · Adaptive neural fuzzy inference system · 
Polymer additive manufacturing
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EaB  Elongation at break
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1 Introduction

Selective laser sintering (SLS) is one of the powder-based additive manufacturing (AM) techniques which is used to 
manufacture lightweight, rigid components including rapid prototypes and functional production parts. Developed 
in early 2000s, SLS employs a high-power laser to selectively sinter powder particles until they have melted enough for 
the particles to join together, creating the predetermined shape [1, 2]. Once the shape is formed in the current layer, the 
build chamber lowers so that the additional layer of powders can be distributed on top of the finished one for further 
sintering. The process is repeated layer by layer until the build is complete. Different from the conventional subtractive 
manufacturing techniques, SLS allows components to be manufactured additively and selectively, leading to less mate-
rial waste, saving on cost for industry and more flexible design [2].

Despite many advantages of SLS, the additively manufactured parts can still have various unique defects which are 
different from those in their cast and wrought counterparts. These defects include porosity due to unmelted powders 
and gas entrapment, anisotropy of microstructure and tensile strength, and distortion caused by large residual stress 
due to rapid cooling process [3]. Aforementioned defects could potentially lead to undesired and possibly unpredicted 
mechanical behaviour. Hence, it is of great importance to understand the complex relationship between the printing 
process and the mechanical properties of SLS parts. As shown in previous studies [4–7], typical laser-related process 
parameters include laser power (LP), laser speed (LS) and scan spacing (SS), which all have a significant influence on the 
quality of printed parts.

In the past years, multiple studies have been conducted to analyse the individual effect of aforementioned parameters. 
Hou et al. [8, 9] have noted that the increasing LP, i.e. sufficient energy during powder sintering, can lead to a larger tensile 
strength. Gharate et al. [10] have reported that a decreased sinterability can be achieved at greater LP and layer thick-
ness. Besides a tensile strength, Magri et al. [11] have demonstrated that both Young’s modulus (YM) and elongation at 
break (EaB) increase with a higher LP. Ullah and Rehman [12] reported that lower LS allow material powders to absorb 
more heat and melt properly, but molten droplets generated at lower LS may cause unexpected defects between layers. 
Singh et al. [13] concluded in their research that the lower SS can result in significant increase of density and hardness 
of the printed parts.

Analysing the above literature, it can be seen that the effect of individual process parameters on mechanical proper-
ties can already be cumbersome to predict; taking into account multiple process characteristics simultaneously and 
cross-correlation of these process characteristics could become even more convoluted, especially using available to-date 
physics-based constitutive equations.

As an alternative to physics-based equations, data-driven approaches have recently raised increasing interests in the 
research community. These approaches gain knowledge directly from data and “learn” the patterns, which can be used 
to interpret the vagueness in data and predict further behaviour. Typical data-driven methods include artificial neural 
networks (ANN) [14, 15], fuzzy inference system (FIS) [16–18], adaptive neural fuzzy inference system (ANFIS) [19, 20] 
and other techniques.

Several attempts have been made to-date in applying data-driven methods to analyse SLS. For example, Dingal et al. 
[21] applied Taguchi method, together with analysis of variance (ANOVA) to investigate how density, porosity and hard-
ness of SLS parts are affected by process parameters such as LP, LS, layer thickness. Negi et al. [22] applied and compared 
both response surface methodology (RSM) and ANN approach to observe the influence of bed temperature, LS and SS 
on shrinkage. Sohrabpoor et al. [23] employed ANFIS to generate a mapping relationship between process parameters, 
such as bed temperature, LP, LS and SS, and response outputs, including elongation and ultimate tensile strength (UTS). 
FIS approach has also shown its reliability in previous studies to formulate the relationship between fused deposition 
modelling (FDM) process parameters and mechanical properties [16, 17, 24].

Interesting to note, that all aforementioned prior studies have focused on individual methodologies to model relation-
ship between process parameters and mechanical properties. In this work we see the novelty in not only demonstration 
of the ability of the data-driven methodologies to analyse SLS, but also in providing a comparative evaluation of these 
methods for a better understanding of which approach yields the most accurate results.

What is possibly even more appealing beyond the analysis of accuracy, is the investigation of optimal combinations of 
process parameters leading to desired mechanical properties—so-called inverse problem. In this paper, both frameworks 
will be introduced: (i) direct framework, where process parameters are taken as inputs to estimate the corresponding 
mechanical response; and (ii) inverse framework, where mechanical properties, e.g. potential real-life industrial require-
ments, are used as inputs to estimate the optimal combination of SLS process parameters.
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Thus, this research offers a detailed comparative analysis of multiple data-driven approaches, applied to analyse 
SLS process, offering insights into their predictive capabilities with the assist of two novel estimation frameworks. The 
study presented in this paper, evaluates the performance of three specific data-driven approaches: FIS, ANN and ANFIS, 
providing a foundation for more effective decision-making in the application of data-driven solutions to SLS processes.

In the first part of Sect. 2 a brief introduction will be given to the adopted data-driven approaches (FIS, ANN and 
ANFIS). Later in this section the experimental and testing setup will be presented. Section 3 will discuss estimation 
results of all three approaches in both direct and inverse frameworks. A comparative study of all three methodologies 
will be discussed in Sect. 3 as well.

2  Methodologies and experimental setup

Although not novel in itself, for the completeness of the paper, this section starts with a brief introduction to the data-
driven methodologies adopted in the present investigation, namely FIS, ANN and ANFIS.

2.1  Artificial neural networks (ANN)

The first methodology that will be discussed is Artificial Neural Networks (ANN)—this methodology is used more fre-
quently than other data-driven approaches and is often used synonymously with data-driven models. However, as will be 
evident from the discussion below, ANN is a specific example of data-driven models. ANN is a mathematical model which 
simulates the signal-transmitting patterns between biological neurons in human brains [25]. Typically, an ANN consists 
of several interconnected artificial neurons, each containing information from the previous neurons. The information 
from preceding neurons has an associated weighting value and the current neuron’s output is the weighted sum of all 
previous inputs. Initially, these weights may not provide accurate estimations; hence the key idea of ANN is to update 
weight values through iterative calculations aimed at minimising the error between the estimated value and the target 
value until an acceptable accuracy is achieved. Such iterative calculations are normally referred to as the learning process 
of ANN and the final trained network with updated weights can be utilised for estimation purposes.

ANNs excel at modelling complex non-linear relationships in data with intricate dependencies, which in some cases 
cannot be captured by models such as Support Vector Regression (SVR) or traditional Gaussian Process Regression (GPR) 
[26, 27]. Compared with other data-driven methods, ANN benefits from its flexible architectures which can be tailored for 
various types of data, e.g. images and sequential data [28]. Additionally, it demonstrates scalability with large datasets 
when employing deep learning architectures [29]. Thus, ANN is applicable in this research to facilitate the prediction of 
various mechanical properties based on varying manufacturing parameters (direct) and to identify the combination of 
manufacturing parameters with mechanical requirements (inverse).

However, as ANN is one of the “black-box” models, the recursive learning process is difficult to interpret compared 
with models like Fuzzy Inference Systems (FIS) to be introduced later, which offer clear decision-making rules [30]. Fur-
thermore, the requirement of significant computational resources and training time [31], along with the need for large 
datasets to perform effectively [32], poses limitations, especially when compared with fast models like FIS.

2.2  Fuzzy inference system (FIS)

As a compelling alternative to ANN, Fuzzy Inference System is also employed in this research as a prominent data-driven 
approach. FIS is grounded in the theory of fuzzy sets and fuzzy logic, first proposed by Zadeh [33, 34]. Similar to the 
human reasoning process where a description can be partly true or false, FIS allows for degrees of membership in vari-
ables, facilitating a more nuanced representation of uncertainty and vagueness. This makes FIS particularly robust in 
environments where data is imprecise, subjective or noisy [35].

The membership degree in fuzzy logic ranges from 0 to 1, in contrast to traditional binary sets, which only take on 
values of 0 or 1. In a fuzzy system, historical data is translated into fuzzy rules, enabling the estimation of outputs based 
on given new inputs. These rules effectively capture expert knowledge and linguistic descriptions, making FIS particu-
larly valuable in applications where insights about uncertainties are critical. One of the benefits of employing FIS is its 
transparent and interpretable process.
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One prominent model within FIS is the Sugeno fuzzy system, which uses mathematical functions (either linear or 
constant) as output rather than fuzzy sets, as seen in a Mamdani Fuzzy System [16]. This distinction enhances the Sugeno 
model’s compatibility with other machine learning techniques, such as ANN, leading to the development of Adaptive 
Neuro-Fuzzy Inference System (ANFIS). Additionally, the structure of Sugeno model makes it more computationally 
efficient, allowing for faster processing and easier integration with numerical optimisation methods [36]. Hence, FIS 
approach is applicable in this research considering its computational efficiency and imprecision allowance in complex 
manufacturing processes.

However, unlike ANN model, FIS may struggle with scalability when dealing with high-dimensional datasets, which 
may lead to increased computational complexity [37]. Furthermore, compared to ANN, FIS may be less flexible in adapt-
ing to complex, non-linear relationships, as it relies heavily on predefined rules that may not capture all data patterns 
[38]. Therefore, to address some of these limitations, ANFIS will be introduced in the following section.

2.3  Adaptive neural fuzzy inference system

FIS approach is able to handle inaccurate or indeterministic inputs by including engineering uncertainties in the form 
of membership degrees. However, there are no effective standard solutions to transform human knowledge into fuzzy 
rules and data. Hence, with the recursive learning process of ANN, parameters in FIS can be determined more accurately. 
With this idea, Jang [36] first proposed an approach known as Adaptive Neural Fuzzy Inference System (ANFIS), which 
integrates the uncertainty reasoning process of FIS and iterative learning and connection pattern of ANN. ANFIS has a 
similar “layers of neuron” structure to ANN whereas the information in each neuron is linked with every fuzzy rule, i.e. 
membership values. This hybrid approach enables ANFIS to learn from input–output data and adapt its fuzzy rules, 
accordingly, making it particularly effective for complex, non-linear problems. Hence, with the ability to capture complex 
non-linear relationships between varying manufacturing parameters, along with the interpretability of learning process, 
ANFIS is selected in this study as another data-driven approach.

Similar to ANN, training an ANFIS model can be computationally intensive, especially when dealing with large datasets 
using iterative calculations [39]. Furthermore, the performance of ANFIS is dependent on the quality of the initial fuzzy 
rules and membership functions (MF) [40].

All three aforementioned approaches will be tested in this paper and the comparative analysis of these methodologies 
will conclude if any of these approaches could be chosen as the preferred one in analysing and predicting mechanical 
properties, along with the combination of manufacturing parameters of SLS parts.

2.4  Experimental setup and sample tests

SLS samples were produced in PA2200 (nylon-12) powder, at a ratio of 50:50 virgin to ‘used’ powder, on an EOS Formiga 
P100 Laser Sintering system, see Fig. 1. As previous trials within our research team suggested, all samples were printed 
with a layer thickness of 0.1mm and a part bed temperature of 170◦C , the temperature to which powder is preheated. 
To investigate the effects of a range of processing parameters, parts were manufactured at varying combinations (high, 
medium and low) of LP, LS, and SS, see Table 1. The range of printing parameters selected was based upon previous 
(unpublished) research within our team, which confirmed that these parameters would provide a useful variety of 
mechanical properties, while ensuring that all parameter sets were manufacturable and would produce robust parts.

ASTM D638 type I tensile specimens were produced in 15 layers of 6 samples and left to cool to room temperature 
before being removed from the build chamber. Finally, parts were de-powdered using compressed air.

Fig. 1  Building layout of 
specimens being printed
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Tensile testing was carried out on a Tinius Olsen 5K with Laser Extensometer, in accordance with ASTM D638, at a rate 
of 5 mm/min (see results of the tension test in Table 2). Note that each combination of process parameters was repeated 
three times, values presented in Table 2 are the averages of these three repeats. The vertical position (VP) of samples 
also had three different levels—bottom (within the first five layers of parts), middle (within layers 6–10) and top (layers 
11–15), quantified as “1” (bottom), “2” (middle) and “3” (top)” in Table 2. Summarising, each of 4 parameters (LP, LS, SS, VP) 
had three different levels, resulting in 81 tested samples (as also follows from the design of experiment standard practice); 
however, due to an unexpected fault with the tensile test system, some samples have been excluded from the analysis, 
leaving 74 data sets (each representing a unique combination of processing parameters), see Table 2. To maximise the 
accuracy of predictions, and to cover a wide range of parameter combinations, capturing essential features of the design 
space, it has been decided to consider the full 74 data sets in the study. Note, however that the methodology to estimate 
the sufficient size of the data set can be found, for example in [16, 41].

3  Results and discussions

As mentioned in the Introduction, the main focus of this paper is to evaluate the capability of data-driven techniques to 
formulate relationships between mechanical properties of printed parts and SLS process parameters. Mathematically 
speaking, these formulations involve predicting output characteristics based on input data for both the direct and the 
inverse frameworks. In the direct framework, LP, LS, SS, and VP are the input parameters, while UTS, YM, and EaB are the 
output parameters. Conversely, in the inverse framework, UTS, YM and EaB, acting as input parameters, provide users 
with an optimal process parameter (LP, LS, SS and VP) combination ensuring required mechanical response.

However, prior to discussing FIS, ANN and ANFIS performance, it is necessary to explore the relationships (correlations) 
between the SLS parameters (LP, LS, SS and VP) and the mechanical properties (UTS, YM and EaB). This is done through 
the Pearson correlation analysis in the next sub-section.

3.1  Correlation analysis

3.1.1  Pearson’s correlation analysis

As mentioned above, the Pearson correlation analysis was conducted to quantify the strength and direction of linear rela-
tionships between the variables. Pearson’s correlation coefficient, r , represents the degree of linear association between 
two sets of data, with values ranging from -1 to 1, where 0 meaning no linear correlation [42]. The calculated Pearson’s 
correlation coefficients for each parameter are presented in Table 3. According to the established guidelines [43], the 
strength of correlation coefficients can be classified based on their absolute values as: very weak correlation (0–0.2), 
weak correlation (0.2–0.4), moderate correlation (0.4–0.6), strong correlation (0.6–0.8) and very strong correlation (0.8–1).

3.1.2  SLS process parameters correlations

The first part of the analysis focuses on the relationship between the SLS process parameters. Understanding these 
correlations is crucial to identify potential multicollinearity and ensure that the selected SLS process features provide 
distinct and non-redundant information for the modelling. Key observations from the performed correlation analysis are 
summarised in Table 3: LP and LS exhibit a very weak negative correlation; SS shows very weak correlations with both LP 
and LS; VP shows very weak correlations with LP, SS and LS. These results indicate that all analysed parameters are largely 
independent and do not strongly influence each other within the given dataset.

These correlation coefficients suggest that there is minimal multicollinearity between analysed SLS process param-
eters, ensuring that each parameter provides distinct and meaningful information for the modelling process.

Table 1  Processing parameters in the printing process

Laser power (LP) [W] High = 24 Medium = 21 Low = 18 Higher laser power = higher energy input

Laser speed (LS) [mm/s] High = 3000 Medium = 2500 Low = 2000 Higher laser speed = lower energy input

Scan spacing (SS) [mm] High = 0.3 Medium = 0.25 Low = 0.2 Higher scan spacing = lower energy input
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Table 2  Experimental results 
of printed parts

Sample Laser 
power 
(W)

Laser 
speed 
(mm/s)

Scan spac-
ing (mm)

Vertical 
position

Ultimate tensile 
strength (MPa)

Young’s 
modulus 
(MPa)

Elongation 
at break 
(%)

1 18 2000 0.2 1 48.9 1860 25.2

2 18 2000 0.2 2 49.3 1680 31.1

3 18 2000 0.2 3 47.4 1930 31.9

4 18 2000 0.25 1 49.2 1800 25.3

5 18 2000 0.25 2 47.7 1890 23.8

6 18 2000 0.25 3 46.9 1740 27.2

7 18 2000 0.3 1 47.9 1870 22.4

8 18 2000 0.3 2 46.7 1840 19

9 18 2000 0.3 3 46 1820 22.9

10 18 2500 0.2 1 49.8 1700 31.6

11 18 2500 0.2 2 48.2 1900 25.3

12 18 2500 0.2 3 47.8 1660 29.7

13 18 2500 0.25 1 46.9 1720 18.3

14 18 2500 0.25 2 46.3 1710 22

15 18 2500 0.25 3 46.3 1640 18.2

16 18 2500 0.3 1 43.4 1620 13.1

17 18 2500 0.3 2 43 1680 13.1

18 18 2500 0.3 3 42.4 1690 13.9

19 18 3000 0.2 1 48 1760 21

20 18 3000 0.2 2 47.7 1900 20.8

21 18 3000 0.2 3 46.4 1720 22.9

22 18 3000 0.25 1 43.4 1710 11.3

23 18 3000 0.25 2 41.6 1550 12.1

24 18 3000 0.25 3 40.9 1670 10.9

25 18 3000 0.3 1 31.4 1240 8.1

26 18 3000 0.3 2 31.6 1310 8.5

27 18 3000 0.3 3 32.4 1320 8.4

28 21 2000 0.2 1 45.7 1700 26.9

29 21 2000 0.2 2 46.5 1700 24.8

30 21 2000 0.2 3 45 1720 29.2

31 21 2000 0.25 1 48.8 1940 26.9

32 21 2000 0.25 2 48.2 1690 24.2

33 21 2000 0.25 3 47.5 1920 23.9

34 21 2000 0.3 1 48 1690 23.7

35 21 2000 0.3 2 48 1730 27

36 21 2000 0.3 3 47.7 1710 26.4

37 21 2500 0.2 1 48.6 1940 24.6

38 21 2500 0.2 2 48.8 1860 34.4

39 21 2500 0.2 3 47.9 1850 27.3

40 21 2500 0.25 1 48 1740 25.6

41 21 2500 0.25 2 47.5 1740 21.4

42 21 2500 0.25 3 47 1840 25.7

43 21 2500 0.3 1 46.6 1660 19.3

44 21 2500 0.3 2 46.5 1690 16.4

45 21 2500 0.3 3 46 1780 21.3

46 21 3000 0.2 1 47.8 1830 27

47 21 3000 0.2 2 46.9 1820 26

48 21 3000 0.2 3 46.9 1710 25.8

49 21 3000 0.25 1 47.8 1760 19.7



Vol.:(0123456789)

Discover Mechanical Engineering            (2025) 4:10  | https://doi.org/10.1007/s44245-025-00094-7 
 Research

3.1.3  Correlations between SLS process parameters and mechanical characteristics

Understanding these relationships is critical for investigating which input SLS parameter has the strongest influence on 
the specific mechanical property and will validate the feature selection for the models. Key observations from the SLS 
process parameter-mechanical properties correlation analysis are presented in Table 3. To re-iterate: LP exhibits a very 
weak positive correlation with YM, and a weak positive correlation with UTS and EaB, indicating that higher LP can have 
an only minor impact on UTS, YM and EaB; LS shows a moderate negative correlation with UTS, YM and EaB, indicating 
that higher LS tends to reduce all three mechanical properties; SS shows a moderate negative correlation with UTS, YM 
and EaB, implying that with a higher SS, it is expected to observe a lower UTS, YM and EaB; VP shows a very weak nega-
tive correlation with UTS, YM and very weak positive correlation with EaB, indicating that it does not significantly affect 
these mechanical properties.

It is important to note that while a high correlation coefficient indicates a strong linear relationship between two 
parameters, it does not necessarily guarantee accurate estimations in a predictive model [44]. If the true relationship 
between variables is non-linear, a high linear correlation may fail to capture the underlying pattern. In this case, non-linear 

Table 2  (continued) Sample Laser 
power 
(W)

Laser 
speed 
(mm/s)

Scan spac-
ing (mm)

Vertical 
position

Ultimate tensile 
strength (MPa)

Young’s 
modulus 
(MPa)

Elongation 
at break 
(%)

50 21 3000 0.25 2 45 1650 17.7

51 21 3000 0.25 3 45.8 1640 21.7

52 21 3000 0.3 1 40.1 1580 11.8

53 21 3000 0.3 2 40.3 1530 10.6

54 21 3000 0.3 3 35.3 1310 9.3

55 24 2000 0.2 1 45.4 1580 28.3

56 24 2000 0.2 2 47.1 1720 25.6

57 24 2000 0.2 3 44.1 1670 29.3

58 24 2000 0.25 1 47.3 1740 27.6

59 24 2000 0.25 2 48.4 1820 25.9

60 24 2000 0.25 3 48 1790 26.8

61 24 2000 0.3 2 47.9 1740 24.2

62 24 2000 0.3 3 47.1 1770 29.3

63 24 2500 0.2 2 48 1780 28.8

64 24 2500 0.2 3 46.6 1710 25.7

65 24 2500 0.25 2 48.7 1820 26.5

66 24 2500 0.25 3 47.2 1640 27.8

67 24 2500 0.3 2 47.2 1630 25

68 24 2500 0.3 3 45.8 1720 23.7

69 24 3000 0.2 2 48 1630 26.9

70 24 3000 0.2 3 46.9 1660 31

71 24 3000 0.25 2 47.2 1670 19.8

72 24 3000 0.25 3 46.7 1710 19.9

73 24 3000 0.3 2 45.5 1790 15.1

74 24 3000 0.3 3 44.4 1650 17.7

Table 3  Pearson’s correlation 
coefficients for each SLS 
process parameters and 
mechanical characteristics

Feature LP LS SS VP UTS YM EaB

LP 1.00 − 0.05 − 0.02 0.17 0.23 0.04 0.33

LS − 0.05 1.00 0.02 0.05 − 0.44 − 0.42 − 0.54

SS − 0.02 0.02 1.00 0.02 − 0.43 − 0.35 − 0.60

VP 0.17 0.05 0.02 1.00 − 0.10 − 0.06 0.09
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models, such as ANN, is needed to provide accurate predictions [45]. Additionally, a high correlation between two vari-
ables could be spurious as it can be caused by another unobserved variable [46].

Thus, while VP exhibits very weak correlation with mechanical characteristics, it could still interact with other input 
variables during the estimation process. Therefore, VP will be retained for further analysis in the subsequent modelling 
framework to investigate its potential interactions.

3.1.4  Pareto analysis for the SLS process parameters and mechanical characteristics

Building upon the above Pearson’s correlation analysis, a Pareto analysis [47] was conducted to further evaluate the rela-
tive significance of the process parameters (LP, LS, SS and VP) on the mechanical characteristics (UTS, YM and EaB). While 
the Pearson analysis provided insights into the relationships between parameters, the Pareto analysis consolidates this 
information into a ranked assessment of each parameter’s influence, offering a clearer perspective on their cumulative 
contributions.

To take an example of how the Pareto charts are created, the total contribution of LP, LS, SS and VP to UTS is calculated 
as 0.23 + 0.44 + 0.43 + 0.1 = 1.2, based on the coefficients in Table 3. Hence, following a descending order, the individual 
contribution of each process parameter can be calculated as:

LS (UTS) = (0.44/1.2) * 100 = 36.7%, SS (UTS) = (0.43/1.2) * 100% = 35.8%, 
LP (UTS) = (0.23/1.2) * 100 = 19.2%, VP (UTS) = (0.1/1.2) * 100% = 8.3%.
On the other hand, the cumulative contribution of each parameter can be expressed as:
LS = 36.7%, LS + SS = 36.7% + 35.8% = 72.5%,
LS + SS + LP = 72.5% + 19.2% = 91.7%, LS + SS + LP + VP = 91.7% + 8.3% = 100%.
The Pareto chart shown in Fig. 2 highlights notable trends in parameter significance. For UTS, LS (36.7%) and SS (35.8%) 

are the dominant contributors, jointly accounting for over 70% of the total contribution. Similarly, for YM, LS (48.3%) 
exhibits the most substantial influence, followed by SS (40.2%). In the case of EaB, SS (38.5%) and LS (34%) emerge as the 
leading factors, together covering over 70% of the impact. Notably, LP has a moderate impact, particularly on UTS and 
EaB, but is less critical for YM. Last but not least, the consistently small contribution of VP suggests its limited significance 
for all three mechanical characteristics, as previously suggested by the Pearson correlation analysis.

By identifying LS and SS as the primary contributors to mechanical characteristics, the Pareto analysis reinforces the 
findings from the Pearson analysis and serves as a foundation for the subsequent development of direct and inverse 
estimation frameworks.

3.2  Direct estimation framework: from laser printer settings to mechanical properties of printed parts

In order to evaluate the performance of the three proposed data-driven methodologies, it is of great importance to have 
not only enough data to establish the “training” group for the model, but also a separate group of data for validation 
exclusively. To this end, each second of three samples is selected as a part of a validation set (shaded in Table 2), so that the 
training/validation conforms to the 70%/30% split, which is a generally accepted way to train and validate FIS models [48].

Fig. 2  Pareto chart for assessing the significance of process parameters and a UTS, b YM, c EaB



Vol.:(0123456789)

Discover Mechanical Engineering            (2025) 4:10  | https://doi.org/10.1007/s44245-025-00094-7 
 Research

3.2.1  Fuzzy inference system predictions

As stated above, the idea of the direct framework is to predict mechanical properties of SLS parts, for known process 
parameters. The first methodology to be analysed is the fuzzy inference system. The unshaded rows in Table 2 are the 
training data, which are taken to build fuzzy rules; the input parameters of validation data (columns 2–5 in shaded rows 
in Table 2) are then fed into the formulated FIS. Unlike ANN and ANFIS methods, additional data scaling is unnecessary 
in FIS as membership functions essentially normalise variables into degrees of membership (values between 0 and 1).

The estimated results of FIS, E
est

 , are reported in Supplementary Table 1, together with observed experimental results, 
Eexp (taken from columns 6–8 in shaded rows in Table 2). Supplementary Table 1 also reports the calculated percentage 
errors for each analysed mechanical characteristics, indicating the accuracy of the proposed techniques:

With FIS being applied within the direct framework, the reported average estimation errors are 6.16%, 6.17% and 
32.79% for UTS, YM and EaB respectively. Although the estimation accuracy for UTS and YM are good, 32.79% error for 
EaB is less satisfying due to some “outlier” points As presented in Fig. 3a–c, the predictive results using FIS method align 
relatively closely with the experimental results apart from a few notable outlier points.

It is, however, important to point out that although the FIS approach can estimate output parameters accurately in 
most cases, some large errors are still observed. More specifically, samples 26 and 53 have unacceptably high errors for 
all output parameters, compared to other samples.

It should be noted here, that one of the shortcomings of FIS, as mentioned above, is that this methodology may 
struggle when dealing with high-dimensional datasets, and may show less flexibility in adapting to complex, non-linear 
relationships [38]. As follows from Pearson’s correlation study, SLS process parameters and mechanical characteristics 
do not show very strong linear relationships, suggesting that the relations could potentially be non-linear. To this end 
models such as ANN and ANFIS are better candidates to provide accurate predictions [43].

However, prior to testing the performance of ANN and ANFIS, a possible alternative solution is proposed: to combine 
input parameters into a single feature parameter, such as the energy density. Creating a single “composite” feature could 
allow for capturing the combined effects of several input parameters into a single characteristic, which potentially could 
reduce the high error, and the additional complexity caused by the high dimensionality. This hypothesis will be tested 
in the section below.

(1)PctE =
|Eest−Eexp|

Eexp
× 100%

Fig. 3  Comparison of experimental and predictive results for a UTS, b YM, c EaB using individual parameters, and d) UTS, e YM, f EaB using 
combined ED using FIS method
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3.2.2  Alternative input parameter: energy density

Analysis of the experimental results presented in Table 2 shows that some samples appear to have similar mechanical 
properties, however the combination of process parameters were different. More specifically, samples 50 and 74 both 
had similar YM—1650 MPa and EaB—17.7% and very close UTS—45 MPa and 44.4 MPa respectively, whereas the sets of 
process parameters for both samples were different (sample 50: LP—21, LS—3000, SS—0.25, VP—2; sample 74: LP—24, 
LS—3000, SS—0.3, VP—3). Such an ambiguous relationship can be found when various input parameter combinations 
lead to the same output parameter and could cause unexpected inaccuracy in determining the optimal process param-
eters. Thus, together with addressing the issue of added complexity, caused by the high dimensionality, on one hand, 
and potentially help resolving the non-uniqueness, on the other hand, we will argue the case of an alternative input 
parameter—energy density (ED) to combine the effects and replace single parameters LP, LS and SS.

In the application of SLS, ED is often used as a common parameter of interest, representing the energy transferred 
to the powder bed. It was found in previous studies that ED has a significant influence on physical and mechanical 
properties, dimensional accuracy as well as porosity of printed parts [49, 50]. Thus, it is of interest to introduce ED as an 
alternative process parameter in the current study. ED, having units ( J

mm2
 ) by definition includes all previously considered 

process parameters (LP, SS and LS) except for the VP:

Using samples 50 and 74 as examples, it can be seen that ED for both samples have similar calculated values: 

ED_50 = 0.028 J

mm2
 and ED_74 = 0.027 J

mm2
 , albeit as a result of different combinations of the three original input param-

eters. Realising these similarities, the reported above closeness in mechanical properties, i.e. YM, UTS and EaB, seems now 
logical. Interesting to note that the Pearson’s correlation analysis has demonstrated higher degree of correlation between 
a single feature ED and all three mechanical properties (correlation coefficient between ED and UTS, YM and EaB was 
found to be 0.51, 0.39 and 0.78 respectively, i.e. moderate to strong correlation). With LP, SS and LS being combined into a 
single ED parameter, the new updated estimation results using the FIS algorithm are reported in Supplementary Table 2. 
Analysing these new predictions, it can be seen in Supplementary Table 2 that including alternative input parameter 
ED increases estimation accuracy: see errors of 1.72%, 4.63% and 9.51% for UTS, YM and EaB respectively. Figure 3d–f 
also shows a closer alignment between experimental and predictive results when replacing individual parameters with 
a combined input parameter ED.

Interestingly, an increase in accuracy is reported for all three predicted mechanical properties, with a particular 
improvement in EaB, i.e. the estimation error decreased from 32.79% to 9.70%. This could be because combining LP, SS 
and LS with the single ED minimises the non-linearity in the original problem and thus, leads to an increasing estimation 
accuracy. Summarising, replacing LP, SS and LS with ED in the direct estimation framework can remove ambiguity on 
one hand and potentially lead to a good estimation result on the other.

Note that, since replacing LP, SS and LS with ED leads to a better estimation accuracy, the aforementioned three param-
eters will be replaced by ED in the following ANN and ANFIS direct framework sections for better estimation performance.

3.2.3  Artificial neural network predictions

One of the objectives of this paper is the comparative analysis of three data-driven methodologies (FIS, ANN and ANFIS), 
thus in this subsection artificial neural networks (ANN) is evaluated. For consistency, the selection of training and valida-
tion data remains the same as that of the FIS approach: 74 samples are tested in total and 25 of them have been classified 
as the validation group, whose outputs are assumed to be unknown. Following the logic of the FIS approach, the inputs 
of validation data are fed into the ANN, trained with 49 training samples, and the estimation results from the network are 
then compared with the actual experimental results. Based on the conclusion in the previous section, ED and VP have 
been considered here as input parameters.

As for the details of applied ANN model, specifically in this study, a back-propagation ANN is adopted with a gradient 
descent optimisation algorithm, as well as a commonly accepted learning rate of 0.01 [51]. There are two input vari-
ables—ED and VP, three output variables—UTS, YM and EaB. Additionally, there are three different layers—(i) an input 
layer, (ii) an output layer, and (iii) a hidden layer, as it has been proven that a single hidden layer is sufficient for predicting 
non-linear relationships in smaller datasets to prevent unnecessary complexity [52–54]. In order to prevent overfitting, 
which will significantly reduce the estimation accuracy, the number of neurons in the hidden layer is determined to be 

(2)ED =
LP

SS×LS
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5, considering the widely accepted guidelines [55–57]. In the hidden layer, the adopted activation function is the hyper-
bolic tangent sigmoid (Tansig) function, with benefit of faster convergence in training process [58] and being a common 
choice in shallow networks [58]. In the output layer, since the objective is to predict real numbers with few calculations, 
the applied activation function is pure linear function [31].

To ensure consistent and efficient training of the ANN model, both input and output variables are scaled prior to train-
ing using min–max scaling methods [59] and the value of variables are transformed to a normalised range of [0,1]. This 
ensures not only a faster convergence of the network, but also all features contribute equally to the training process and 
avoids dominance of variables with larger magnitudes over those with smaller ones. The scaled variables are calculated as:

where x refers to the original variable, x
min

 and x
max

 are the minimum and maximum values of x in the training dataset. 
After the prediction, the outputs are unscaled as follows to return to their original units for meaningful interpretation:

where y refers to the original meaningful output, ymin and ymax are the minimum and maximum values of y and y′ is the 
standardised predicted output.

As per the training process, Fig. 4 tracks the mean squared error (MSE) change over time and the estimation epoch is 
set to 10,000 after testing different epoch numbers. It is seen that the validation errors stabilised after approximately 6000 
epochs and the least MSE is equal to 0.018098 at epoch 10,000. The MSE over time does not show large fluctuations or 
increasing, which indicates that overfitting is avoided and the model architecture is appropriate for good convergence.

The estimated and unscaled results using ANN and corresponding percentage errors PctEs are presented in Sup-
plementary Table 3: The average estimation error, following ANN methodology, is reported as 5.21% for UTS, 6.49% for 
YM and 23.78% for EaB, respectively. Combined with the close alignment between experimental and predictive results 
using ANN method shown in Fig. 5a–c, it can be concluded that ANN has shown the capability to estimate mechanical 
parameters based on provided processing parameters with good accuracy. It is seen that, similar to the results of the FIS 
approach, UTS has the best accuracy of predictions. With similar high estimation accuracy of UTS and YM, it is notable 
that ANN has resulted in larger estimation error for EaB (ANN—23.78%, FIS—9.7%). Such results will be compared further 
with the alternative data-driven approach (ANFIS).

3.2.4  Adaptive neural fuzzy inference system predictions

In this subsection, again the same experimental data was analysed using adaptive neural fuzzy inference system 
(ANFIS). Similar to previous analysis, 25 samples were classified as validation data and 49 samples were taken as a 
training group. Here once again ED and VP were taken as input parameters. The training data was first fed into the 

(3)x� =
x−xmin

xmax−xmin

(4)y = y� ⋅
(

ymax − ymin

)

+ ymin

Fig. 4  Mean squared error 
of the training process up to 
10,000 epochs
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ANFIS to identify the parameters of the system and then the validation data was brought into the system for estima-
tions. Notably, with an ANN-like structure, both input and output variables in the ANFIS section are scaled prior to 
training following the same method described in the ANN section.

For the adopted ANFIS model, the triangular MFs were chosen for both input variables, due to their computational 
efficiency and simplicity [60, 61]. There were three MFs used for each input variable, allowing for a good balance 
between model complexity and interpretability. A comparative analysis of estimation accuracy for cases of two, 
four and five MFs demonstrated that applying three MFs for each input variable is sufficient for capturing the non-
linear relationship between input and output variables without overcomplicating the model [36]. Thus, there were 

3 × 3 = 9 fuzzy rules formulated in the model. Finally, the hybrid learning algorithm was used for training the ANFIS 
model, which combines least-squares estimation for optimising the consequent parameters and gradient descent 
for tuning the premise parameters, leading to faster convergence and more accurate estimation than using gradient 
descent alone [36].

The estimated (following ANFIS) outputs are again compared to the experimental results, and percentage errors 
as reported in Supplementary Table 4. It can be seen from Supplementary Table 4 that the average estimation error 
of using ANFIS approach is 3.27% for UTS, 7.72% for YM and 9.77% for EaB respectively. With the presented compara-
tive results in Fig. 6a–c using ANFIS method, ANFIS has shown a good estimation accuracy in the direct framework.

3.2.5  FIS, ANN and ANFIS comparative analysis of predictions accuracy

To summarise the results of all three approaches (FIS, ANN and ANFIS) and compare their performances, percentage 
errors of all three predicted mechanical characteristics (UTS, YM and EaB) were collected in Table 4. Figure 7 shows 
the comparative analysis of individual estimation error of using three different methodologies.

Fig. 5  Comparison of experimental and predictive results for a UTS, b YM, c EaB using ANN method

Fig. 6  Comparison of experimental and predictive results for a UTS, b YM, c EaB using ANFIS method

Table 4  Comparison of three 
methodologies in the direct 
estimation framework

PctE UTS (%) PctE YM (%) PctE EaB (%)

FIS 1.72 4.63 9.51

ANN 5.21 6.49 23.78

ANFIS 3.27 7.72 9.77
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Analysing the results presented in the table and the figure, it can be seen that although all three methodologies could 
offer good accuracy of predictions. In the current analysis for the direct framework, FIS is concluded to have the best 
performance, when compared with other two approaches.

3.3  Inverse estimation framework: from desired mechanical properties of printed parts to laser printer 
settings

As previously mentioned, the goal of the inverse framework is to identify the optimal solution of SLS process parameters, 
ensuring the predetermined mechanical characteristics, i.e. UTS, YM and EaB. It has been previously reported [62], that 
the FIS approach has been successfully implemented in a similar type of inverse estimation framework. To formulate the 
inverse estimation framework, in the present investigation, UTS, YM and EaB have now been classified as inputs, and LP, 
LS, SS and VP as output parameters. For the consistency of the investigation, the training and validation data classifica-
tion follows the same strategy adopted in the direct framework. 74 samples were tested in total, 49 of which were put 
in the training group and 25 samples formed the validation group. Data scaling methods prior to training for ANN and 
ANFIS follows the same procedure introduced in previous sections. The observed experimental results, together with the 
inversely estimated process parameters and the inverse estimation errors, are presented in Table 5 for all three method-
ologies and in Supplementary Table 5, Supplementary Table 6 and Supplementary Table 7 for using each methodology.

As it can be seen from Table 5, all three data-driven methodologies have reasonable estimation accuracy also in the 
inverse framework. Analysing the comparative results, for FIS approach, the average estimation error is 10.32% for LP, 
11.8% for LS, 12.48% for SS, 13.93% for VP and 17.23% for ED respectively. As for ANN approach, the average error is 
reported to be 8.75% for LP, 12.24% for LS, 11.65% for SS, 8.89% for VP and 16.14% for ED respectively. Finally for the ANFIS 
approach, the average error is 9.59% for LP, 13.89% for LS, 12.63% for SS, 20.94% for VP and 10.2% for ED respectively. 
Interesting to note, that although all process parameters can be fairly accurately estimated, the LP can be estimated with 
the best accuracy in the inverse framework. Given the previously mentioned weak correlation between VP and mechani-
cal properties, the misalignment observed in the fourth row of Fig. 8 is unsurprising.

Bringing together the aforementioned results with the comparative experimental and predictive results presented 
in Fig. 8, it can be concluded that ANN methodology could potentially offer more stable and accurate predictions in the 
inverse estimation framework for the analysed problem.

Generally, it can be seen that the direct estimation has better accuracy of predictions than the inverse framework. For 
the SLS, process parameters are the “premise” of mechanical properties, which as a “consequence” can be also affected 
by other “premises”, for example, material related and pre/post processing related parameters. Thus, the slight accuracy 
decrease in the inverse estimation is reasonable and foreseeable.

4  Conclusion

The main aim of the present investigation was to evaluate the performance of data-driven methodologies to formu-
late relationships between various process parameters and the mechanical properties of SLS printed components. 
Based on the above analysis and discussion, fuzzy inference system (FIS), artificial neural networks (ANN) and adap-
tive neural fuzzy inference system (ANFIS) have shown their capabilities in the prediction of UTS, YM and EaB, with 

Fig. 7  Direct estimation error for using a FIS, b ANN and c ANFIS
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Table 5  Experimental and estimation results using FIS, ANN and ANFIS (inverse framework)

Experimental results PctE FIS PctE ANN PctE ANFIS

Sample LP (W) LS (mm/s) SS (mm) VP ED LP (%) LS (%) SS (%) VP (%) ED (%) LP (%) LS (%) SS (%) VP (%) ED (%) LP (%) LS (%) SS (%) VP (%) ED (%)

2 18 2000 0.2 2 0.045 16.67 25 25 0 11.11 14.39 2.85 7.95 6.75 30.79 2.46 34.35 0.30 3.00 21.87

5 18 2000 0.25 2 0.036 16.67 0 0 50 16.67 11.28 13.31 10.25 9.39 1.34 6.43 8.65 0.20 6.20 3.00

8 18 2000 0.3 2 0.030 16.67 25 16.67 0 33.33 6.79 29.32 14.25 0.52 6.58 21.37 49.25 5.23 10.20 2.93

11 18 2500 0.2 2 0.036 16.67 0 25 0 11.11 12.96 12.32 10.82 6.07 9.25 9.13 13.24 15.40 21.00 14.56

14 18 2500 0.25 2 0.029 16.67 0 0 0 38.89 15.61 5.41 7.26 3.27 4.35 17.70 2.76 5.68 35.00 0.83

17 18 2500 0.3 2 0.024 0 0 0 50 0.00 6.63 12.28 8.02 1.73 9.53 1.04 9.96 9.90 6.90 1.67

20 18 3000 0.2 2 0.030 16.67 16.67 25 0 33.33 6.17 22.04 15.94 2.58 3.01 2.44 1.73 24.75 24.60 7.33

23 18 3000 0.25 2 0.024 16.67 0 20 50 2.78 6.95 7.48 9.55 7.24 13.31 2.65 8.77 17.92 84.80 8.83

26 18 3000 0.3 2 0.020 8.46 0 0 50 8.46 7.43 0.67 0.53 21.44 20.71 4.47 3.47 2.03 6.60 1.53

29 21 2000 0.2 2 0.053 0 25 25 0 23.81 1.71 24.28 25.20 8.22 28.16 2.43 23.95 31.25 28.80 26.48

32 21 2000 0.25 2 0.042 0 25 0 0 4.76 0.19 21.40 2.45 5.33 15.77 6.77 24.40 8.64 21.80 19.62

35 21 2000 0.3 2 0.035 14.29 0 16.67 50 2.86 0.68 12.40 23.43 0.65 30.89 1.29 20.65 22.87 2.10 11.20

38 21 2500 0.2 2 0.042 0 0 25 0 4.76 1.95 17.45 8.65 4.33 36.62 22.86 19.86 24.55 1.40 6.76

41 21 2500 0.25 2 0.034 0 0 0 0 19.05 2.78 2.17 6.07 3.44 13.37 0.17 2.48 6.12 11.40 10.95

44 21 2500 0.3 2 0.028 0 0 16.67 0 42.86 8.83 8.00 7.79 9.51 14.86 11.62 4.16 3.97 60.80 3.71

47 21 3000 0.2 2 0.035 0 16.67 25 0 14.29 0.66 22.61 13.31 14.07 16.94 6.40 25.57 21.20 33.60 15.66

50 21 3000 0.25 2 0.028 14.29 16.67 0 50 2.86 6.63 8.82 10.37 2.46 15.63 16.61 9.17 2.72 24.50 2.57

53 21 3000 0.3 2 0.023 0 16.67 16.67 0 71.43 8.45 6.08 7.73 8.46 11.09 2.74 3.10 10.00 48.25 3.20

56 24 2000 0.2 2 0.060 4.38 25 8.76 14.95 28.41 11.92 19.16 20.08 6.23 32.59 11.50 21.15 24.70 16.10 35.00

59 24 2000 0.25 2 0.048 12.5 25 0 0 16.67 14.57 9.64 9.78 0.95 16.37 15.05 14.10 5.04 22.90 16.75

62 24 2000 0.3 3 0.040 12.5 25 16.67 33.33 0.00 11.88 11.93 26.49 26.78 26.98 15.18 14.80 33.48 12.67 7.40

65 24 2500 0.25 2 0.038 12.5 0 0 0 4.17 14.75 13.98 10.45 1.89 8.48 12.65 9.00 5.76 29.80 5.83

68 24 2500 0.3 3 0.032 25 20 33.33 0 6.25 11.87 2.57 14.93 25.30 7.20 12.65 1.24 11.33 2.00 11.13

71 24 3000 0.25 2 0.032 12.5 16.67 0 0 25.00 15.33 11.42 11.59 12.77 18.55 7.03 16.03 6.28 7.40 9.63

74 24 3000 0.3 3 0.027 25 16.67 16.67 0 8.00 18.23 8.49 8.37 32.86 11.21 27.11 5.37 16.47 1.67 2.15

Average Pct error 10.32 11.8 12.48 13.93 17.23 8.75 12.24 11.65 8.89 16.14 9.59 13.89 12.63 20.94 10.2
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provided laser settings—LP, LS and SS, or their combined effect, ED, along with the VP. On the other hand, data-driven 
techniques have also shown their abilities to reliably predict laser settings based on above desired mechanical prop-
erties, i.e. an inverse framework, which is potentially more relevant in industrial applications.

The results presented in the paper indicate that all three considered data-driven approaches have a high degree 
of accuracy in their predictions. Interesting to note that for the direct framework, FIS approach provides the most 
accurate estimation results, compared with ANN and ANFIS method. While in the inverse framework, ANN has a bet-
ter estimation accuracy.
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Fig. 8  Comparison of inverse estimation results using FIS (left column), ANN (middle column) and ANFIS (right column) methods to predict 
LP (first row), LS (second row), SS (third row), VP (fourth row) and ED LP (fifth row)
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