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Abstract

Classical layout optimization is a well-established structural design tool, however it considers only truss structures composed 

solely of axially loaded bars, limiting its applicability to many structures. To address this limitation, this study introduces 

a novel approach that takes into account moment-resisting beams in the optimization framework. The interaction between 

moment, shear, and axial forces is simplified for inclusion in the optimization problem, solved effectively via a sequential 

conic programming scheme. Various numerical examples show that the proposed approach identifies structures with lower-

volume than the classical layout optimization in problems involving multiple load cases or pre-existing members. Addition-

ally, the method can also be used to solve problems that classical layout optimization cannot address, including constrained 

design spaces and point moment loads. The findings indicate that the proposed approach provides greater flexibility and 

efficiency in designing hybrid truss and beam structures, paving the way for versatile structural solutions.

Keywords Truss layout optimization · Beam structure · Multiple load cases · Sequential conic programming

1 Introduction

Beams are essential structural elements widely employed in 

civil infrastructure, including bridges, tunnels, and build-

ings. Unlike truss bars, which primarily resist axial forces, 

beam elements provide moment resistance capabilities, 

allowing greater flexibility in load transmission and ena-

bling more regularized structural layouts. Consequently, 

the mechanical performance of beam elements has been 

extensively studied, and modern design codes offer detailed 

guidance for their design. However, determining the over-

all structural layout heavily relies on engineering exper-

tise, which is labour-intensive and may lead to suboptimal 

solutions. To address this, this study uses an optimization 

approach to automate the design of structural layouts that 

incorporate beam elements.

One pioneering work of the layout optimization approach 

is based on the ‘ground structure’ discretization proposed 

by Dorn et al. (1964), which identifies (near) optimal truss 

structures. While this method yields structurally efficient 

structures, it assumes that the members carry only axial 

forces, often resulting in complex solutions that are imprac-

tical for real-world engineering applications. To address 

these limitations, subsequent studies have developed vari-

ous approaches to identify efficient and simpler structures 

comprised beam members. These approaches can be broadly 

classified into three distinct categories.

The first category focuses on employing meta-heuristic 

approaches to identify beam structures that satisfy various 

practical engineering constraints. For example, Hasançebi 

et al. (2010) utilized the simulated annealing algorithm to 

identify efficient beam structures that satisfy strength capac-

ity requirements defined by practical design codes. Liu et al. 

(2012) used a genetic algorithm to optimize beam struc-

tures under structural frequency constraints. Gholizadeh and 

Ebadijalal (2018) employed a performance-based update 

scheme to identify the optimized arrangement of brace 

elements for beam structures. Other notable approaches 

include the use of the particle swarm algorithm (Esfandiari 

et al. 2018), the Harmony search algorithm (Bekdaş et al. 

2022) and the Bang-big crunch algorithm (Camp and Huq 

2013). Meta-heuristic approaches are particularly effective 
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for tackling complex structural problems where the gradient 

information is difficult to obtain. Nevertheless, as suggested 

by Sigmund (2011), meta-heuristic approaches are often 

associated with high computational costs. Consequently, the 

target problem is typically ‘size optimization’ rather than 

‘layout optimization’.

The second category utilizes gradient-based update 

schemes and focuses on minimizing structural compliance 

(i.e., 1/stiffness) with a given amount of material. One of the 

early research was carried out by Steven et al. (2000), who 

used a stress-based criterion to iteratively update member 

cross-sectional areas, thereby enhancing structural stiff-

ness. Later Pedersen (2003) extend this approach to consider 

material and geometrical non-linearities; Takezawa et al. 

(2007) incorporated the design of cross-sectional shapes; 

and Changizi and Jalalpour (2017, 2018); Ahmadi et al. 

(2018); Changizi and Warn (2020) included stability and 

uncertainty constraints. In order to reduce the complexity 

of beam structures, Fredricson (2005) considered the pen-

alty of joints by including micro ground structures and Shen 

and Ohsaki (2020) carried out geometry optimization with 

a force density approach. In order to reduce the numeri-

cal cost of the beam structure optimization, Li and Chen 

(2010) proposed a new approach, constructing the ground 

structure with node positions selected based on the princi-

pal stress lines from finite element analysis. To address the 

problem of multiple load cases, Zhang et al. (2017) used a 

stochastic sampling approach to cope with a large number 

of load cases. Tyburec et al. (2021) employed a semidefinite 

programming formulation to identify globally optimal beam 

structures, but the high computational complexity makes it 

suitable only for small-scale problems. Ma et al. (2023) 

employed a post-processing approach to extract the skeleton 

from the continuum topology optimization results. Habash-

neh and Rad (2024) incorporated geometric and material 

nonlinearities into topology optimization of an I-section 

beam, enhancing material utilization by accounting for its 

plastic deformation capacity. These studies can effectively 

lead to high stiffness structure. However, stress constraints 

are often excluded due to the significant computational costs 

they can incur when used in conjunction with the ground 

structure discretization approach.

The third category is rooted in classical plastic layout 

optimization, which employs the ground structure approach 

and assumes rigid-plastic material behaviour. With this 

material assumption, structural optimization problems can 

be formulated to generate minimum-weight designs under 

stress constraints (e.g., Gilbert and Tyas 2003; He and Gil-

bert 2015; He et al. 2019). Unlike classical topology opti-

mization methods, such as the Solid Isotropic Material with 

Penalization (SIMP) method, plastic layout optimization for-

mulates the problem as a linear programming model. This 

formulation utilizes modern interior point solvers, resulting 

in lower computational costs while ensuring globally opti-

mal solutions. Consequently, plastic layout optimization 

is especially well-suited for generating benchmark solu-

tions in large-scale problems. However, surprisingly little 

work has been done to include beams in layout optimiza-

tion using plastic assumptions. A grillage layout optimiza-

tion method was introduced by Bolbotowski et al. (2018). 

However, in this work, the beams were under pure bending, 

with no allowance for axial forces, and shear failure was 

also neglected.

Therefore, this study seeks to extend the classical plastic 

layout optimization approach by incorporating moment-

resisting members, enabling the method to address problems 

involving moment loads and constrained design spaces. To 

achieve this, new assumptions are introduced to automati-

cally account for the interaction between shear force, axial 

force, and moment during the design stage. Additionally, a 

sequential conic programming scheme is implemented to 

efficiently solve the optimization problem. The remainder 

of the paper is structured as follows: Sect. 2 reviews classi-

cal layout optimization formulation and introduces the new 

beam-and-truss optimization approach; Sect. 3 presents a 

few numerical examples; Sect. 4 includes relevant discus-

sions and Sect. 5 concludes the findings.

2  Theory

This section begins with a review of the classical layout 

optimization method, followed by the introduction of the 

new formulation for optimizing hybrid beam-and-truss 

structures. Additionally, a geometry optimization method is 

presented, which further improves optimization solutions by 

refining nodal positions in a post-processing step.

2.1  Classical layout optimization approach

The main steps in classical ‘numerical’ layout optimiza-

tion, which utilizes the ground structure approach, are 

shown in Fig. 1. Firstly, the pre-defined design domain 

is discretized into a nodal grid (Fig. 1a). Secondly, the 

ground structure, which contains all possible members 

connecting every pair of nodes, is created (Fig.  1b). 

Thirdly, the optimal subset of the ground structure is iden-

tified (Fig. 1c) by solving the optimization problem shown 

in Equation (1) [after Gilbert and Tyas (2003) and He and 

Gilbert (2015)].
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 where � = 1, 2, ..., M represents the load case index, and 

M denotes the number of load cases; V is the total struc-

tural volume; B is a 2n × p equilibrium matrix, with n and 

p denoting the number of nodes and members, respec-

tively; a = [a1, a2, ..., a
p
]T , l = [l1, l2, ..., lp]

T are vectors 

containing cross-sectional areas and lengths of members; 

q
� = [q�

1
, q

�

2
, ..., q

�

p
]T and f� = [f

x,�

1
, f

y,�

1
, ..., f x,�

n
, f

y,�

n ]T denotes 

internal and the external force vectors in load case � , respec-

tively; �− and �+ are compressive and tensile stress limits.

Problem (1) is a linear programming problem, which 

can be solved efficiently using modern interior point solv-

ers such as MOSEK (2019). To generate more rational 

designs, an additional rationalization step [He and Gil-

bert 2015)] can be performed (see Fig. 1d). More details 

about geometry optimization are described in Sect. 2.3.

2.2  Beam‑and‑truss optimization approach

In this section, the classical layout optimization problem 

(1) is modified to incorporate bending moments and shear 

forces.

2.2.1  Equilibrium condition

With a beam under axial force q, shear force v and bend-

ing moments m
1
 and m

2
 (Fig. 2), the shear force v can be 

written as v = (m
1
+ m

2
)∕l . If force variables are arranged 

as [q, m1, m2]
T , the local equilibrium matrix B can be writ-

ten as:

where � represents the member’s intersection angle with the 

positive x-axis, as illustrated in Fig. 2.

2.2.2  Review of interactions among moment, axial 

and shear forces in plastic design

The interaction between moment, axial and shear forces can be 

written as (after Duan and Chen 1990, Horne 1979):

 where q, v and m are the axial force, shear force and 

moment, respectively; q
max

 , v
max

 and m
max

 represent the lim-

its for axial force, shear force and moment, respectively; � is 

(2)B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− cos � − sin �∕l − sin �∕l

− sin � cos �∕l cos �∕l

0 1 0

cos � sin �∕l sin �∕l

sin � − cos �∕l − cos �∕l

0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(3)

(
|q|

qmax

)�

+
|m|

mmax

≤ 1,

(4a)q
max

= �a�
max

,

(4b)m
max

= �Z�
max

,

(4c)v
max

= r
v
a�

max
,

Fig. 1  Four steps of the layout optimization approach: a discretize the 

design domain into a node grid; b build the ground structure which 

includes every possible interconnection between the nodes; c use the 

layout optimization formulation to select the optimal subset structure 

from the ground structure; d  rationalize the structure with geometry 

optimization (red and blue bars represent structural elements in ten-

sion and compression, respectively)

Fig. 2  Forces and moments in a beam, where q and v represent the 

axial and shear forces, respectively; m
1
 and m

2
 denote the moments at 

the two ends; � is the intersection angle with the positive x-axis and l 

is the length of the beam
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a shape factor which varies for different section types. For 

example, � = 2 for a solid square section, � = 2.1 for a solid 

circular section and � = 1.75 for a circular hollow section 

(Duan and Chen 1990). a and Z denote the cross-sectional 

area and the plastic section modulus, respectively; �
max

 and 

�
max

 correspond to the normal and shear stress capacities, 

respectively; r
v
 is a section shape factor. The values of r

v
 for 

some common sections are included in Appendix I. � ∈ [0, 1] 

is a reduction factor used to account for interaction with 

shear force. The value of � can be obtained with Equations 

(5), which is also called the 50% rule proposed by Horne 

(1979) and employed by modern design codes, e.g., in BS 

EN 1993-1-1 (2006):

Although the interactions between moment, axial and shear 

forces are given in Constraints (3), (4) and (5), incorporating 

them into optimization problems is challenging due to Equa-

tions (5a, 5b) being a piecewise function.

2.2.3  Approximation of moment, axial and shear force 

interactions

In this section, assumptions are made to approximate and sim-

plify Constraints (3), (4) and (5), so that they can be consid-

ered in optimization.

Firstly, based on a simplified stress distribution from Hey-

man and Dutton (1954), it is assumed that the moment is 

resisted by the top and bottom portions of the section, while 

the axial force is carried by the central area. For example, in 

the square section shown in Fig. 3a, its bending and axial stress 

(5a)𝜉 = 1, if
|v|

vmax

< 0.5

(5b)� = 1 − (
2|v|

vmax

− 1)2, if
|v|

vmax

≥ 0.5.

distributions are illustrated in Figs. 3b and c. This assumption 

can be specifically stated as follows:

Assumption 1 The normal stress caused by bending �
M

 is 

taken by the top and bottom area a
M

 . The axial normal stress 

�
N

 and shear stress � are taken by the central area a
N

 . The 

total cross-sectional area a is equal to the sum of a
M

 and a
N
 

(i.e., a = a
N
+ a

M
).

With Assumption 1, the bending and axial forces can 

be considered in separate constraints. Firstly, to obtain the 

bending stress, the plastic modulus Z of the section can be 

expressed as a function with respect to a
N
 and a

M
 . Appendix 

I shows the expression of Z for some common section types. 

The maximum bending stress �
M

 , can then be calculated using:

Secondly, for the axial and shear force interaction within a
N
 , 

the 50% rule in Sect. 2.2.2 can be used. However, the 50% 

rule needs to be modified so that it can be used in conjunc-

tion with Assumption 1. To clearly present the modified 50% 

rule, the following two terms are introduced: 

 where aQ is the area used to take axial force and a
V
 is the 

area used to take shear force; �
max

 is the maximum shear 

stress. Using the Von Mises criteria, �
max

 can be calculated 

using �
max

=

�
max
√

3

.

With aQ and a
V

 now defined, a second assumption is 

proposed:

Assumption 2 Due to the intersection between axial and 

shear force, the area available to resist axial force should be 

reduced by a factor (i.e., aQ ≤ �′aN ). The reduction factor �′ 

is defined in Equations (8).

Equation (8a) builds on the concept defined in (5b), 

where the portion of the shear area exceeding half of the 

shear capacity (i.e., a
V
−

a

2
 ) is used to calculate the reduction 

factor �′ . Additionally, a factor of two is used to ensure that 

when shear occupies the entire section (i.e., a
V
= a

N
= a ), 

(6)�M =
max(|m1|, |m2|)

Z
.

(7a)aQ ≥
|q|

�max

,

(7b)aV ≥
|v|

r
v
�max

,

(8a)𝜉� = 1, if
aV

a

< 0.5,

(8b)�� = 1 −

(

2aV−a

aN

)2

, if
aV

a

≥ 0.5.

Fig. 3  Assumed stress distribution in a square section under bending 

moment, axial force, and shear force: a The top and bottom areas, a
M

 , 

resist the bending moment, while the middle area, a
N
 , resists axial 

force and shear; b Distribution of normal stresses, �
M

 due to bending 

moment and �
N
 due to axial force; c Distribution of shear stress, �
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the axial capacity is reduced to 0 (i.e., �� = 0 ). In this way, 

the value of �′ in (8) aligns with � when the shear force is 

either less than or equal to 50%, or 100% of the shear capac-

ity. Nevertheless, Equations (8a, 8b) is a piecewise function 

and cannot be directly included in the optimization formula-

tion. To address this, an effective shear area variable aV, eff 

is introduced to represent the portion of the shear area that 

exceeds 50% of the shear capacity:

With aV, eff defined, Equations (8) can be equivalently trans-

formed into:

For clarity, a detailed proof demonstrating the equiva-

lence of Equations (8) to Constraints (9) and (10) is pro-

vided in Appendix II.

In order to evaluate the influence of the approximations 

made in Assumptions 1 and 2, the bending moment and 

axial force interaction envelopes at different shear occu-

pancies are obtained for a circular hollow section. The 

section envelopes for the two approaches are shown in 

Fig. 4, with dashed lines correspond to the exact design 

(9)aV, eff ≥ 2aV − a and aV, eff ≥ 0.

(10a)aN� ≥

√

0.25a
2
Q
+ a

2
V, eff

,

(10b)aN ≥ aN� + 0.5aQ.

constraints [i.e., (3), (4), (5)] and solid lines correspond 

to the approximated design constraints [i.e., (6), (7), (8)]. 

When V∕V
Max

≤ 0.5 , the shear force is neglected accord-

ing to the 50% rule. Therefore, only the approximation 

from Assumption 1 takes effect. In this situation, the exact 

and approximated envelopes are relatively close (i.e., max-

imum difference = 1.82%). The difference between the 

exact and approximated envelopes increases as V∕V
Max

 

increases, reaching a peak 11.10% when V∕V
Max

= 0.8 . 

Note that the peak difference occurs in a situation where 

the shear force occupies most of the cross-sectional area. 

This is rare in optimized structures, as most members will 

either be axial force or moment dominating. A dominat-

ing shear force only occurs when the member length is 

extremely small, which can be avoided with geometry con-

straints (i.e., mentioned later in Sect. 2.3).

2.2.4  Formulation

Integrating expressions (1), (6), (7), (9) and (10) leads to 

the new beam-and-truss optimization problem:

 where � = {1, ..., �, ..., M} is a set of load cases and 

� = {1, ..., i, ..., p} is a set containing indices of members; M 

and p represent the number of load cases and the number of 

potential members, respectively; a
�

N
= [a�

N,1
, ..., a

�

N,p
]T , 

a
�

V, eff
= [a�

V, eff,1
, ..., a

�

V, eff,p
]T  ,  a

�

Q
= [a�

Q,1
, ..., a

�

Q,p
]T  , 

a
�

M
= [a�

M,1
, ..., a

�

M,p
]T represent the area component vectors 

correspond to interacted shear and axial forces, effective 

shear force, axial force and bending moment, respectively. 

Here, the objection function (11a) and Constraint (11b) 

originate from the classical layout optimization; Constraint 

(11d) ensures that the total area is sufficient to account for 

the area components across all load cases; Constraints 

Fig. 4  Simple beam section analysis example; dashed lines show 

envelopes obtained using exact design constraints from Horne (1979) 

and Duan and Chen (1990); solid lines show envelopes obtained 

using approximated constraints ( Q , V and M represent the applied 

axial force, shear force and bending moment; Qmax , Vmax
 and M

max
 

represent the axial, shear and moment capacity)
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(11e–f) address the bending stress at both ends of a member; 

and Constraints (11g–j) handle the interaction between axial 

force and shear.

In this problem, Constraints (11e), (11f) and (11j) are 

non-linear. Specifically, Constraint (11j) is relatively 

straightforward to manage as it is a convex function that 

can be reformulated using a combination of a quadratic 

conic constraint and a linear constraint, as demonstrated in 

Constraints (10a) and (10b). In contrast, Constraints (11e) 

and (11f) are non-convex because the section modulus Z 

is a nonlinear and non-convex function with respect to 

a
N

 and a
M

 . To address this issue, a sequential lineariza-

tion scheme is employed, where the section modulus Z is 

approximated using first-order derivatives from the Taylor 

expansion:

where k denotes the iteration index. Notably, for a structural 

member subjected to multiple load cases, its section modu-

lus Z varies across different load cases due to the differing 

proportions of bending, shear, and axial forces in each load 

case.

In (11), the values of a�

N
 , a�

M
 from the previous iteration 

can be used to compute the coefficients (i.e., Z�

0
 , 
�Z

�

�a
�

Ni

 and 
�Z

�

�a
�

Mi

 ) 

for the current iteration. For the initial coefficient values, 

firstly, 
�Z

�

�a
�

Mi

 cannot be 0. Otherwise, the problem may be 

infeasible if moment resistance is required in the optimized 

structure; secondly, the value of Z
0
 cannot be positive, oth-

erwise, a member with 0 cross-sectional area will have some 

‘free’ moment capacity. Therefore, in the current study, the 

initial values of Z�

0
 , 
�Z

�

�a
�

Ni

 and 
�Z

�

�a
�

Mi

 are selected as 0, 0 and 1.

Using the above linear approximation, Equations (11) can 

now be solved using cone programming, e.g., via MOSEK 

(2019). In order to control the convergence, a historical aver-

aging parameter � with 0 < 𝜂 ≤ 1 can be used in the compu-

tation of Z�

0
 , 
�Z

�

�a
�

Ni

 and 
�Z

�

�a
�

Mi

 for the k-th iteration:

(12)

Z
�

k
≈ (Z0)

�

k−1
+

(

�Z
�

�a
�

N,i

)

k−1

(

a
�

N,i

)

k

+

(

�Z
�

�a
�

M,i

)

k−1

(

a
�

M,i

)

k

,

A smaller value of � can lead to more stable convergence, 

though it may require more iteration steps. In the current 

study, � = 0.5 is used in all the numerical examples.The 

iterative process terminates when the difference in objec-

tive value is smaller than a pre-defined threshold (e.g., 0.5% 

in this paper).

2.3  Geometry optimization

In order to reduce the complexity of the optimized structure, 

the geometry optimization scheme can be used as a post-

processing step after solving problem (11). Following He 

and Gilbert (2015), the formula for geometry optimization 

can be obtained by adding nodal position variables to prob-

lem (11). Constraint (15) is also added to the formulation to 

prevent the inclusion of very short beams with very large 

cross-sections that violate the beam assumption (e.g., a 0.01 

m long bar with a 1 m circular cross-section radius cannot 

be considered a beam).

where � is a parameter used to limit the maximum cross-

sectional area. The value of � used in this study is included 

in Sect. 3.

The geometry optimization problem can be tackled using 

the non-linear interior point solver IPOPT (Wächter and Bie-

gler 2006). The optimized structure found by solving prob-

lem (11) is used to provide the initial values. The first and 

second-order derivatives are required for the interior point 

solver, and they can be obtained via automatic differentiation 

(13)(Z0)
�

k
= (Z0)

�

k−1
+ �(Z�

0
(a�

N,k
, a

�

M,k
) − (Z0)

�

k−1
),

(14)

(

�Z
�

�a
�
N

)

k

=

(

�Z
�

�a
�
N

)

k−1

+ �

(

�Z
�

�a
�
N

(

a
�

N,k
, a

�

M,k

)

−

(

�Z
�

�a
�
N

)

k−1

)

(15)

(

�Z
�

�a
�
M

)

k

=

(

�Z
�

�a
�
M

)

k−1

+ �

(

�Z
�

�a
�
M

(a�

N,k
, a

�

M,k
) −

(

�Z
�

�a
�
M

)

k−1

)

(16)a
i
≤ �l

2

i
,

Fig. 5  Flowchart of the sequential conic scheme for the hybrid truss 

and beam optimization approach, where ΔV  represents the volume 

difference between consecutive iterations; section coefficients refer to 

Z
�

0
 , 
�Z

�

�a
�

Ni

 and 
�Z

�

�a
�

Mi

 , which are initialized as 0, 0 and 1, respectively, and 

are iteratively updated using Eqs. (12), (13) and (14)
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or symbolic calculation packages such as sympy in Python. 

In between iterations, geometry modification steps are 

carried out, including merging close nodes and creating 

cross-over points. Details about the geometry optimization 

approach can be found in He and Gilbert (2015).

2.4  Summary

A flowchart illustrating the workflow of the proposed hybrid 

optimization approach is presented in Fig. 5.

3  Numerical examples

With the optimization formulation for beam-and-truss 

structures established, this section demonstrates its capa-

bility in various scenarios. A circular hollow section with 

� = 0.90 [see Fig. 11d and Equation (19)] is used, and the 

stress limit �
max

 is set to 100 unless specified otherwise. 

� = 5.9690 × 10−3 is used for constraint (15), which ensures 

the beam cross-section diameter cannot be larger than 20% 

of the beam length. All CPU times were recorded on a desk-

top PC equipped with an Intel i5-13600KF processor and 

64GB of RAM.

3.1  Four‑node example with multiple load cases

Classical layout optimization considers truss elements taking 

solely axial force. With bending capacity, a beam structure 

may resist perturbation loads considered in secondary load 

cases. In the simple four-node example as shown in Fig. 6, 

the primary load case (LC1) is a vertical load with magni-

tude P at point A. Perturbation loads are included in the other 

two load cases (LC2 and LC3) with horizontal loads of 0.2P 

in opposite directions. The structure is fixed and supported 

(i.e., fixing x, y and the rotational degree of freedoms) at 

points B, C and D. Figure 6a shows the design obtained 

via standard truss optimization. Since bending capacity is 

not considered, member AC can carry zero axial forces in 

LC2 and LC3, necessitating the inclusion of two side brac-

ing members. However, with the proposed beam-and-truss 

approach, the optimized solution includes only beam AC, 

resulting in a 16.67% reduction in structural volume com-

pared to the pure truss design. This demonstrates the new 

approach’s ability to achieve a simpler and more efficient 

structure by utilizing the members’ moment resistance to 

transfer the horizontal loads to the supports.

3.2  Point moment load

The proposed formulation enables the handling of design 

problems involving point moment loads. In this section, 

four examples are examined, each with a point moment 

applied at the center, while the surrounding boundaries are 

fixed (Fig. 7). Taking into account symmetry conditions, 

only a slice of the design domain (grey areas in Fig. 7) is 

used in the optimization.

Figure  7 illustrates the optimized beam structure 

designed to resist the point moment load. Unlike the solu-

tion shown in Fig. 6b, this design incorporates Michell 

truss patterns extending from the beams to the nearest 

fixed boundaries, rather than solely relying on beams for 

load transfer. This configuration is selected because, in 

single load case scenarios where both truss and beam 

members are viable, truss members provide more efficient 

material utilization. Consequently, in this optimization, 

beams are employed locally to directly counteract the 

applied bending moments, while Michell truss structures 

Fig. 6  Four node example with multiple load cases: a optimized truss 

structure using the classical layout optimization approach; b  opti-

mized beam structure using the hybrid optimization approach (P  = 

1.0000 × 10
7 is used in the numerical implementation; q and m rep-

resent the internal axial force and bending moment of the correspond-

ing bars; red, blue, light grey and brown bars represent structural ele-

ments take tension, compression, zero force, and bending in LC2)
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enhance the overall structural efficiency by providing opti-

mal load paths.

In classical layout optimization, when the support and 

load locations remain unchanged and only the load mag-

nitude is scaled up, the optimized layout remains constant, 

and the structural volume scales linearly with the load 

magnitude. However, this is not the case with the current 

beam-and-truss optimization approach. When the load is 

scaled up by 20 times from Fig. 7a to b, the optimized lay-

out changes. Additionally, the structural volume of Fig. 7b 

is only 18.39 times that of Fig. 7a. This occurs because the 

section modulus of beam elements increases polynomi-

ally with the cross-sectional area (see Appendix I), reduc-

ing the ‘cost’ of beam members as the loading magnitude 

increases. Consequently, the algorithm produces longer 

beam elements in Figs. 7b and d.

3.3  Bridge with pre‑existing curved deck

Structural optimization can also be applied to reinforce 

existing structures. While classical truss layout optimization 

is limited by its ‘moment-free’ assumption, which prevents 

Fig. 7  Point moment load example: a  the applied moment is M and 

the normalized optimized volume is 1.0000; b the applied moment is 

20 M and the normalized optimized volume is 18.3390; c the applied 

moment is M and the normalized optimized volume is 0.9995; 

d the applied moment is 20 M and the optimized volume is 18.1531 

( M = 1.0000 × 10
4 ; red and blue bars represent structural elements 

that take tension and compression forces; brown bars represent ele-

ments that take bending; the grey area represents the design domain 

used in the optimization problem, taking symmetry into account)
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it from fully utilizing the strength of pre-existing structures, 

the new beam-and-truss approach overcomes this limitation. 

In this section, a bridge with a pre-existing parabolic-shaped 

deck is reinforced to withstand three load cases (Fig. 8). A 

parametric study is carried out by varying cross-section 

areas of pre-existing deck members. Both classical layout 

optimization and the proposed approach are considered, with 

the former assuming pin-jointed bridge decks and the latter 

considering rigid joints.

Figure 8 illustrates the relationship between the support-

ing structure volume (i.e., the structure volume excluding the 

pre-existing curved deck) and the volume of the pre-existing 

curved deck. When the deck thickness is small, the loads 

are primarily carried by the supporting structures, result-

ing in similar outcomes for both truss and beam optimiza-

tion approaches. As the deck thickness increases, both the 

truss and beam structures tend to simplify. However, at the 

extreme point where sufficient pre-existing volume is avail-

able, the beam structure fully leverages this volume through 

moment resistance. This eliminates the need for any addi-

tional supporting structure, which is not possible with truss 

optimization.

3.4  Portal structure

Beam elements are often utilized in problems where the 

design space is confined. This scenario is considered in the 

example illustrated in Fig. 9, where pitch portal structures 

are designed with varying design domains. Two load cases 

are considered, both sharing the same vertical loads, but 

with horizontal loads in opposite directions, as shown in 

Fig. 9a. The vertical load V is calculated using a dead load 

G
k
= 0.3kN∕m

2 and a 6 m span (i.e., in out-of-plane direc-

tion) which leads to V = 10.80 kN. The horizontal load H 

Fig. 8  Arch bridge with pre-existing deck under three load cases, 

combining live pattern loads and dead load (the supporting structure 

refers to all structural members except the curved deck; red and blue 

bars represent structural elements that take tension and compression 

forces in all load cases; brown bars represent elements that take bend-

ing in at least one load case; green bars represent members with a 

pre-existing area)
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is set to 30% of the vertical load V, which leads to H = 3.24

kN. The tension and compression stress limits are 355MPa. 

In Fig. 9c, d and e, the design domain consists of the top 

triangular grey area along with the beam elements located 

on the boundary.

In Figs. 9b to d, the design domain is expanded from a 

simple frame to include truss and beam members in the top 

triangular area. As expected, expanding the domain to allow 

greater design freedom results in a reduction in structural 

volume. The smallest volume structure is Fig. 9d, which 

has 51.95% less volume than Fig. 9b. Since Fig. 9d is rela-

tively complex, a simplified structure is obtained by placing 

potential nodes only on the domain boundary, e.g., Fig. 9e, 

which results in only a 2.74% increase in structural volume 

compared to Fig. 9d. In addition, the roofs are treated as 

pre-existing beams with varying volumes in Figs. 9f and 

g. While the inclusion of pre-existing beams increases the 

overall structural volume, it can effectively lead to a simpler 

layout, as demonstrated in Fig. 9g.

The inclusion of supporting roof structures in the por-

tal frame also influences its deformation mode. Figure 10 

illustrates the virtual deformation of the optimized struc-

tures from Figs.  10b and d under load case 1, derived 

from the dual variable values of the optimization problem 

(Gilbert and Tyas 2003). For the portal frame consisting 

only of beams (Fig. 10a), a combined deformation mode is 

observed, characterized by the bending of the top beam and 

the swaying of the side columns. In contrast, in Fig. 10b, the 

Fig. 9  Portal structure example: a  an example with two load cases, 

where  P = 10.80kN; b classical portal frame with no internal design 

domain; c  optimized portal structure with small design domain; 

d  optimized portal structure with large design domain; e  simplified 

portal structure with large design domain; f  optimized portal struc-

ture with 0.2000 normalized pre-existing volume; g  optimized por-

tal structure with 0.5000 normalized pre-existing volume (all of the 

volumes in these examples are normalized to the volume of (b); the 

grey area represents the design domain filled with ground structure; 

red and blue bars represent structural elements that take tension and 

compression forces in all load cases; grey bars represent elements that 

take opposite forces in different load cases; brown bars represent ele-

ments that take bending in at least one load case; green bars represent 

members with a pre-existing area)
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truss structure effectively mitigates the bending of the top 

beam. It is important to note that bending in the top beam is 

undesirable, as it significantly amplifies the reaction bending 

moment (i.e., R
m

 in Fig. 10) and necessitates larger cross-

sectional areas for the side beams.

4  Discussion

The four examples in Sect. 3 demonstrate that beam optimi-

zation can effectively leverage moment resistance capabil-

ity in scenarios involving point moment loads, constrained 

design domains, and pre-existing members. However, it is 

important to note that beam optimization will predominantly 

yield pure truss structures in problems with a single load 

case consisting of point loads. This is to be expected - as 

the cross-sectional area of each member is used to take 

either axial force or bending moment, allowing the mem-

bers to take bending moment does not give the structure 

more strength. Additionally, since using bending moment to 

transmit loads is inefficient, in most cases, truss structures 

are still the most optimal solution.

The CPU times required to obtain the solutions for Figs. 7 

to 9 are summarized in Table 1. For the single load case with 

a relatively small design domain shown in Fig. 7, all com-

putations were completed in under 10 s. As the size of the 

design domain increases and multiple load cases are intro-

duced, the CPU time rises, reaching a maximum of 170.4 s. 

Nevertheless, all examples were solved within 3 min on a 

desktop PC, demonstrating the computational efficiency of 

the proposed approach.

Although not directly related to the numerical examples 

in this study, it is worth mentioning that, in reality, making 

all the joints in a truss structure ‘rigid’ will not effectively 

make the structure stronger. Since the rigid joints cannot 

rotate freely, extra moments will be generated before the 

joints turn into hinges. Consequently, the load capacity of 

rigid jointed structures becomes lower than that of the same 

structure with pinned joints - this is another potential rea-

son for the inefficiency of beam structures. However, this 

aspect is not considered in the current study because these 

extra moments at joints occur during the elastic deformation 

stage, which is inconsistent with the rigid-plastic assump-

tion underlying the numerical layout optimization approach.

In future work, the proposed approach could be extended 

to 3D design problems, although this would require address-

ing additional complexities. For instance, torsion effects 

must be included in the interaction formulation, and cross-

section orientation must be considered for non-circular sec-

tions. In addition, because the proposed approach automati-

cally classifies members as truss or beam elements, it can 

be integrated with methods developed for classical layout 

optimization to incorporate other engineering constraints. 

For instance, global structural stability can be included fol-

lowing the methodology of Weldeyesus et al. (2019), while 

local member buckling requirements can be addressed using 

the approach proposed by Cai et al. (2022).

5  Conclusions

To expand the capabilities of classical truss layout optimi-

zation, this paper introduces a novel hybrid beam-and-truss 

optimization approach. An approximation of the moment, 

shear, and axial force interaction from practical design codes 

is employed, enabling simplification and inclusion in the 

optimization problem. A sequential conic programming 

scheme is then utilized to solve the problem. The effective-

ness of the proposed approach is demonstrated through four 

Fig. 10  Deformed portal structures: a  deformed frame of Fig.  9b in 

load case 1; b deformed structure of Fig. 9d in load case 1 ( R
x
 , Ry , 

R
m

 represent x-, y- and moment reactions for the corresponding sup-

ports in load case 1; red and blue bars represent structural elements 

that take tension and compression forces in all load cases; grey bars 

represent elements that take opposite force in different load cases; 

brown bars represent elements that take bending in at least one load 

case)

Table 1  Recorded CPU times for the numerical examples

Fig. 7(a) Fig. 7(b) Fig. 7(c) Fig. 7(d)

CPU time (s) 5.5 7.0 5.0 4.9

Fig. 8 Fig. 9(b) Fig. 9(c) Fig. 9(d)

CPU Time (s) 47.9–170.4 3.3 26.1 58.9

Fig. 9(e) Fig. 9(f) Fig. 9(g)

CPU time (s) 38.7 52.7 55.5
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examples. The analysis of the results leads to the following 

conclusions:

• The approximated moment, shear, and axial force inter-

actions show a maximum difference of 1.82% compared 

to the exact interaction equations from the design code 

when the shear force occupies less than half of the sec-

tion’s capacity. This discrepancy increases up to 11.10% 

when the shear force occupies 80% of the section’s 

capacity. However, such large errors are less likely to 

occur, as structural members are typically dominated by 

axial force or bending moment.

• In scenarios with one dominant load case and smaller 

secondary load cases, the beam-and-truss optimization 

approach achieves a lower-volume solution compared to 

classical layout optimization by efficiently leveraging the 

moment-resisting capacity of the members.

• In problems involving substantial pre-existing structures, 

the hybrid approach more effectively leverages these exist-

ing members, resulting in solutions with simpler and more 

efficient layouts compared to classical layout optimization.

• In classical layout optimization, the structural layout 

remains unchanged when only the magnitude of loads is 

scaled up. However, this is not the case for hybrid opti-

mization problems, where the layout changes because 

moment resistance increases exponentially with the 

cross-sectional area.

Appendix I: Geometry formulations of solid 
and hollow sections

Shown with several different cross-sections, the assumptions 

for areal distribution and the corresponding formulation of 

the plastic modulus Z
M

 are as follows:

• Square section: 

• Hollow square section (for bi-directional moment): 

 where � = l
0
∕l

M
 and r

v
= 2

• Circular section: 

• Hollow circular section 1: 

 where � = r
0
∕r

M
 and r

v
=

�

2

• Hollow circular section 2 (for bi-directional moment): 

 where � = r
0
∕r

M
 and r

v
=

�

2

Appendix II: Transformation of the piecewise 
function in the 50% rule

In (8), the value of �′ reduces when the shear force occupies 

more than 50% of the shear capacity. Additionally, it is cal-

culated using the portion of the shear area that is more than 

half the shear capacity. Therefore, this portion of the area 

can be defined as the effective shear area (i.e., aV, eff ) using 

the following constraints:

(17)ZM =
1

4
aM(

√

aN + aM +
aN

√

aN + aM

); r
v
= 2

(18)ZM =
1

4(1 − �2)
3

2

[(aN + aM)
3

2 − (aN + aM�2)
3

2 ],

(19)ZM =
2

3
(
aN + aM

�
)

3

2 sin
3 �

2
; r

v
=

�

2

(20)ZM =
4

3
sin(

�aM

2aM + 2aN

)(
aM + aN

�(1 − �2)
)

3

2 (1 − �3),

(21)ZM =
4

3�
3

2 (1 − �2)
3

2

[(aN + aM)
3

2 − (aN + aM�2)
3

2 ],

(22)aV, eff ≥ 2aV − a and aV, eff ≥ 0

Fig. 11  Section area distribution assumptions, where: a  square sec-

tion; b hollow square section (for bi-directional moment); c  circular 

section; d hollow circular section 1; (e) hollow circular section 2 (for 

bi-directional moment) (the dark grey area a
M

 represents the area 

used to take bending moment and the light grey area a
N
 represents the 

area used to take axial and shear force)
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Since aV, eff takes the larger value between 2a
V
− a and 0, (8) 

can be equivalently transformed into (22):

Substituting (22) in aQ ≤ �′aN from Assumption 2 leads to:

Rearrange (23) by putting a
N

 on the left-hand side leads to:

Constraint (24) can be treated as a combination of a lin-

ear constraint and a conic constraint, as shown in (10a) and 

(10b).
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