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ROBUST EQUILIBRIA IN GENERIC EXTENSIVE-FORM GAMES: THE

TWO-PLAYER CASE∗

LUCAS PAHL² AND CARLOS PIMIENTA³

ABSTRACT. We prove the 2-player, generic extensive-form case of the conjecture of Govindan

and Wilson (1997a,b) and Hauk and Hurkens (2002) stating that an equilibrium component

is essential in every equivalent game if and only if the index of the component is nonzero.

This provides an index-theoretic characterization of the concept of hyperstable components of

equilibria in generic extensive-form games, first formulated by Kohlberg and Mertens (1986).

We also illustrate how to compute hyperstable equilibria in multiple economically relevant

examples and show how the predictions of hyperstability compare with other solution con-

cepts.

1. INTRODUCTION

Hyperstable equilibria, as formulated in Kohlberg and Mertens (1986), are those Nash

equilibria that are robust to perturbations not only of the payoffs of the given game, but

also to equivalent games of the given game (i.e., games that are obtained by adding dupli-

cate strategies). In other words, it is a solution concept characterized by two simple prop-

erties: (1) robustness to payoff perturbations (strategic essentiality); (2) the principle that

equivalent games should have equivalent solutions (also known as invariance).

Hyperstable equilibria constitute an important step in Kohlberg and Mertens’ stability

program as the first equilibrium concept to satisfy the basic properties of existence, se-

quential rationality, invariance and iterated dominance, making it an appealing refinement

of Nash equilibria. Even if hyperstable equilibria do not always satisfy admissibility, in
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2 LUCAS PAHL AND CARLOS PIMIENTA

generic extensive-form games hyperstable equilibrium outcomes do satisfy all those prop-

erties.1 However, hyperstability is a highly intractable concept. Not only does its defini-

tion require robustness to payoff perturbations in the base gameÐwhich is in itself hard to

checkÐbut also in every equivalent game to the base game.

In this paper we provide a characterization of hyperstable equilibria that makes it a more

operational concept, as we intend to illustrate in the last section with a series of examples.

This characterization dispenses with the need of considering equivalent games to the base

game and, in several instances, makes the problem of checking for robustness to payoff

perturbations almost trivial.

This gain in simplicity is achieved by formulating the characterization in terms of a con-

cept of topological fixed point theory called the index of fixed points, which we now explain.

In algebraic topology, tools such as the fixed point index are developed to study and distin-

guish among fixed points. In particular, when studying fixed points in an abstract setting,

it is also of interest to identify robustness properties of the fixed points with respect to

perturbations of their fixed-point maps. A topologically essential fixed point of a map is a

point such that every nearby map has a close-by fixed point. Topologically essential fixed

points do not always exist,2 but considering the sets of fixed points of a given map, one

can extend the definition of topological essentiality from points to connected components of

fixed points:3 a connected component of the set of fixed points is topologically essential if

for sufficiently small perturbations of the fixed-point map, there are fixed points close to

the component. Topologically essential components can be identified by an integer number

called their index (cf. O’Neill (1953)). The process through which this number is assigned is

rather involved and will be explained later in more detail, but the important fact is that a

component of fixed points is topologically essential if and only if the index is non-zero.

In a game-theoretic context, and for some function whose fixed points coincide with the

Nash equilibria of a game, an index can therefore be assigned to every component of Nash

equilibria in mixed strategies, and simple properties of the index of fixed points guarantee

that at least one topologically essential component of equilibria exists. The conjecture that

the strategically essential components coincide with those with nonzero index (Govindan

and Wilson, 1997a,b), i.e. the topologically essential components, was disproved by Hauk

1In generic extensive-form games, hyperstable equilibrium outcomes are always induced by a Mertens-stable

set (Mertens, 1989) which, in turn, does satisfy all those properties.
2Consider the identity map from the interval [0,1] to itself. Any point in [0,1] is a fixed point of the map, but

if we consider uniform perturbations of this map to near-by maps, none of the points of [0,1] is robust.
3O’Neill (1953) shows that a minimal topologically essential fixed point set of an Euclidean space must be a

connected component of the set of fixed points, thus justifying the formulation of topological essentiality to

connected components of fixed points.
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and Hurkens (2002) by means of a counterexample. They recast the conjecture and hypoth-

esized that the hyperstable components are precisely those that have nonzero index. We

show that this is indeed the case for generic two-player extensive-form games. Our notion of

genericity implies the commonly used property of extensive-form games according to which

each connected component of equilibria in mixed strategies induces a single outcome in an

extensive-form game. Therefore, our characterization can be seen as identifying the Nash

equilibrium outcomes of an extensive-form game which are hyperstable. While intuitively

every topologically essential Nash equilibrium component should be hyperstable, this re-

sult implies that the space of perturbations considered in the definition of hyperstability -

i.e. payoff perturbations - is as rich as the one used by topological essentiality, i.e. the space

of perturbations of a map whose fixed points are the equilibria of a game.

A similar result was proved by Govindan and Wilson (2005), henceforth GW, for arbitrary

games. However, to obtain such a characterization they require a strengthening of hyper-

stability beyond the combination of invariance and robustness to payoff perturbations. GW

call such a concept uniform hyperstability.4

As mentioned above, only information about the game under study is necessary to verify if

a component is topologically essential. Indeed, Shapley (1974) shows that the index of equi-

libria in generic two-player games can be computed by a simple formula that only depends

on parameters of the game. Balthasar (2009) generalized this formula to include non-generic

two player games. Even if such formulas can be useful, for many relevant game-theoretical

applications in the literature, it is enough to use the properties of the index to know if it is

different from zero and, given our result, verify whether a component is hyperstable.5

From an axiomatic perspective, our result can be interpreted as providing an index the-

oretic characterization for the solution concept that, for each (generic two-player extensive-

form) game selects all (closed and connected) subsets of Nash equilibria that satisfy (1)

invariance and (2) robustness to payoff perturbations. A component of equilibria with non-

zero index is known to be robust in every equivalent game, so a solution concept that selects

the collection of equilibrium components with non-zero index is both invariant and robust to

payoff perturbations. Conversely, if a solution concept selects all (closed and connected) sets

of Nash equilibria that are invariant and robust to payoff perturbations then the selected

solutions must be connected components of Nash equilibria.6 Furthermore, our main result

4 We define uniform hyperstability in Section 2.4.
5This is illustrated in Section 6.
6 Suppose that at least one solution is a proper subset of a connected component. Then our arguments imply

that an equivalent game exists in which an equivalent solution is not robust to payoff perturbations.



4 LUCAS PAHL AND CARLOS PIMIENTA

implies that any zero index component is not robust in some equivalent game. Hence, all

selected solutions are connected components with non-zero index.

In parallel to the developments in the strategic stability literature, the index of equilibria

has also been used independently as a tool to select equilibria with interesting properties,

especially with regards to their dynamic stability. Ritzberger (1994) formulated the index of

equilibria for the replicator dynamics and presented some useful applications in game the-

ory, including highlighting that non-zero index components of equilibria satisfy a number

of desirable properties. Demichelis and Ritzberger (2003) obtained a necessary condition

for the asymptotic stability of equilibria in dynamic adjustment processes that is formu-

lated in terms of the index of equilibria. More recently, McLennan (2016) argued for the

selection of equilibria with index +1 on both experimental and theoretical grounds, while

Govindan et al. (2023) provided game-theoretic characterization for these. A natural ques-

tion stemming from this strand of the literature is: what does the index precisely mean

in game-theoretic terms? More precisely, while one can use non-zero index equilibria as

a selection criterion to guarantee interesting properties for the selected equilibria, such a

criterion is purely topological and may imply properties that are game-theoretically unde-

sirable. Our main result provides an answer to this question by formulating the precise

combination of game-theoretical properties that characterize non-zero index equilibria and

define the classical concept of hyperstability.

This paper is organized as follows. Section 2 presents all the required notation and defi-

nitions. In particular, it introduces the necessary properties of the index that will be applied

throughout the paper and states the main result. Section 3 defines one the main objects of

the analysisÐthe excluded game associated to an equilibrium outcome. Section 4 lays down

the precise genericity assumptions under which our main result holds. We prove our main

result in Section 5. Such a proof is divided in three steps and is accompanied by a running

example to illustrate the main ideas. To finalize, Section 6, contains an illustration on how

to compute the index in many economically relevant examples, allowing to identify non-

hyperstable equilibria. The Appendix and Online Appendix contain additional definitions

and proofs that do not appear in the main text.

1.1. An example

To illustrate the main ideas of the result and the proof, consider the entry game in Fig-

ure 1. To analyze the example, we use two simple facts about the index of equilibria. The

first one is that the index of a strict equilibrium is +1. The second is that the sum of the

indexes is always +1. The game in Figure 1 has two components of Nash equilibria. In the
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FIGURE 1. Entry game

II

I

2,2

Out In

I

L R

3,1

ℓ

0,0

r

0,0

ℓ

1,3

r

first component, player 1 moves In and then both players play (L,ℓ) in the subgame. Hence,

this component is made of a single strategy profile that, furthermore, is a strict equilibrium

as any deviation by either player leaves such player with a strictly lower payoff. (Note as

well that (L,ℓ) is also a strict equilibrium in the subgame.) Since the index of a strict equi-

librium is +1 and indexes must add up to one, the second component must have zero index.

This second component is such that player 1 moves Out with probability one and player 2

plays r in the subgame with probability at least 1/3. We call the set of strategy profiles in

the subgame such that player 2 plays in this way the supporting polytope of the component

because it supports on-path play, i.e., at any point in this component player 2 cannot affect

the outcome and player 1 is at most indifferent between Out and L when player 2 plays r

with probability exactly equal to 1/3.

We can think of the ªOutº-component as excluding the subgame, and of the supporting

polytope as containing behavior in the subgame that supports that exclusion. The support-

ing polytope contains two Nash equilibria of the subgame, (R, r) and the mixed strategy

profile (3
4
L+

1
4
R, 1

4
ℓ+ 3

4
r). When considering the subgame in isolation, the former equilib-

rium has index +1 because it is strict, and the latter has index −1 because the sum of the

indexes in the subgame must be +1 and the other two equilibria are strict ((R, r) as just

mentioned, and (L,ℓ)). If we extend the notion of index of a component of equilibria to the

index of a (suitably chosen) neighborhood by adding the indexes of the components included

in the neighborhood, we note that the index of any sufficiently small neighborhood of the

supporting polytope must be zero.

Given a game, we show in Section 5.2 that if the index of a neighborhood is zero, then

there exists a payoff perturbation of an equivalent game with no equilibrium inside the

neighborhood and such that, payoffs outside such a neighborhood are as close as we want

to those in the original game. Figure 2 illustrates. The interval (x1, x2) contains two fixed

points in which the function cuts the 45◦ line from below (index −1) and then from above
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FIGURE 2. Modifying function f to eliminate two fixed points with indexes

adding up to zero.

x

f (x)

x1 x2

(index +1).7 We can pull the graph of f so that the new function whose graph coincides with

the dashed line when x ∈ (x1, x2) has no fixed point in (x1, x2). Thus, if G is the subgame in

Figure 1, there exists an equivalent game ÅG (i.e., a game which is obtained by adding finitely

many pure strategies that are duplicates of mixed strategies of G) and a perturbation of it

ÅGδ with no equilibria in the (subset of the strategy profile equivalent to the) supporting

polytope and such that payoffs outside that polytope are at least δ-close to those in ÅG. 8

With this information, consider the extensive-form game in Figure 3. Nature moves first.

With probability 1−ε players play the original entry game but with the subgame G replaced

by the equivalent subgame ÅG. With probability ε, players play the perturbed game ÅGδ that

does not have an equilibrium in the supporting polytope. Player 1 observes the move of

Nature, but player 2 does not know if she is playing because Nature chose the perturbed

game ÅGδ or because player 1 chose In. This is captured by player 2’s information set con-

necting nodes representing games ÅG and ÅGδ. Note that when ε= 0 this extensive-form game

is equivalent to the game in Figure 1.9 It can be proved that when ε is small enough this

equivalent game does not have any Nash equilibrium component in which player 1 plays

Out. Intuitively, if there were such outcome, player 2 would have to be playing in the (set

equivalent to the) supporting polytope - so that Out is a best reply for player 1. Knowing

7 In this one-dimensional case, if x∗ is a fixed point, the index of x∗ is Ind f (x∗)= sign
(

∂(Id− f )(x)
∂x

∣

∣

∣

x=x∗

)

8The proof of existence of ÅGδ relies on the techniques developed in GW, but it is not an exact application of

their result, as Online Appendix B demonstrates.
9More precisely, the game with ε= 0 is equivalent to the original game in the sense that both have the same

reduced normal forms.
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FIGURE 3. A game equivalent to that in Figure 1 when ε= 0

2

N

1−ε

ÅGδ

ε

1

2,2

Out

ÅG

In

that, in such an equilibrium, if player 2 is called to move, then she knows it is because Na-

ture chose ÅGδ. But such a game does not have an equilibrium in the supporting polytope.

We can similarly prove that there is no sequence of equilibria in which player 1’s strategy

converges to playing Out with probability one as ε converges to zero. Hence, when ε is small

enough, Figure 3 gives us a perturbation of a game equivalent to the entry game of Figure 1

with no equilibrium close to the zero-index ªOutº-component.

In the rest of the paper we show that under some generic conditions every key step in

this example generalizes. In particular, given a two-player game and a component that in-

duces a unique outcome, we can always define an ªexcluded gameº (which is not necessarily

a subgame) whose supporting polytope (capturing behavior in the excluded game that pre-

vents it from being reached) has zero index in such an excluded game. And with that, we

can construct a game equivalent to the original and a perturbation of its payoffs analogous

to Figure 3 with the property that the resulting game has no equilibrium close to the zero

index component.

2. PRELIMINARIES

2.1. Equivalent strategies, equivalent normal-form games

A finite two-player normal-form game G ≡ (S1,S2,G1,G2) is a four-tuple where, for each

n = 1,2, player n’s finite set of pure strategies is Sn and Gn : S1 ×S2 →R is player n’s payoff

function. As usual, Σn ≡ ∆(Sn) is player n’s set of mixed strategies and S ≡ S1 ×S2 and

Σ ≡ Σ1 ×Σ2 are, respectively, the sets of pure and mixed strategy profiles. We also denote

by Gn the multilinear extension of player n’s payoff function to the set of mixed strategy

profiles Σ.

Two strategies σn,σ′
n ∈ Σn are equivalent if for both m = 1,2 we have Gm(σn, s−n) =

Gm(σ′
n, s−n) for all s−n ∈ S−n. Given G = (S1,S2,G1,G2), the reduced normal-form of G is a

normal-form game G
′ = (S′

1,S′
2,G1,G2) that is obtained from G by eliminating pure strategies

that are equivalent to some existing mixed strategy. That is, S′
n ⊆ Sn and if sn ∈ Sn\S′

n then
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there is σn ∈ Σ
′
n ≡ ∆(S′

n) that is equivalent to sn. Note that, up to relabeling of strategies,

the reduced normal-form of a finite game is unique.

Definition 2.1. Two games ÅG and G are equivalent if they have the same reduced normal-

form.

Given two equivalent games G = (S1,S2,G1,G2) and ÅG = ( ÅS1, ÅS2, ÅG1, ÅG2) we extend the no-

tion of equivalence between strategy profiles in the same game to equivalence of strategy

profiles in equivalent games. Say that Åσn ∈ ÅΣn and σn ∈ Σn are equivalent if there exists a

strategy σ′
n in their (common) reduced normal-form game such that Åσn is equivalent to σ′

n

(both viewed as strategy profiles in ÅG) and σn is equivalent to σ′
n (both viewed as strategy

profiles in G). If G and ÅG are two equivalent games we say profile σ ∈ Σ is equivalent to

profile Åσ ∈ ÅΣ if for each player n, the strategy σn is equivalent to Åσn. A subset T ⊂ Σ is

equivalent to ÅT ⊂ ÅΣ, if for each σ ∈ T there exists Åσ ∈ ÅT such that σ is equivalent to Åσ and for

each Åσ ∈ ÅT there exists σ ∈ T such that Åσ is equivalent to σ.

2.2. Extensive-form games

We introduce notation and basic definitions. For a formal definition of extensive-form

game with perfect recall see, e.g., Osborne and Rubinstein (1994). Consider a two-player

finite game tree with perfect recall Γ ≡ (T,≺,U , A,ϱ). The set of nodes is T and ≺ denotes

the precedence relation in the tree. The set of terminal nodes is Z ⊂ T. The collection U

is a partition of T \ Z into information sets of players and Nature. The set Un ⊂ U is the

collection of information sets for player n = 0,1,2, where player 0 represents Nature. (Every

element in U0 is a singleton.) The set of all actions in the game is A and An(u) represents

player n’s set of actions available at her information set u ∈Un. Let An ≡
⋃

u∈Un
An(u) be the

entire set of player n’s actions. Moves of Nature are given by the function ϱ that, to every

u ∈U0, assigns a completely mixed probability distribution on A0(u).

For n = 1,2, player n’s set of pure strategies is Sn ≡
{

s : Un → An | s(u) ∈ An(u)
}

and her

mixed strategy set is Σn ≡ ∆(Sn). Hence, we have the sets of strategy profiles S ≡ S1 ×S2

and Σ= Σ1 ×Σ2. Since we only consider games with perfect recall, Kuhn’s theorem implies

that we can work with behavior strategies whenever convenient. Given player n = 1,2, a

behavior strategy bn = (bn(i))i∈An
satisfies (bn(i))i∈An(u) ∈∆(An(u)) for every u ∈Un. We let

Bn be player n’s set of behavioral strategies.

For a fixed two-player game tree Γ, the space of games is G ≡R
2|Z|. A game G ∈G assigns

payoff Gn(z) to player n at final node z. We refer to the extensive-form game defined by

Γ and terminal payoffs G simply by G. The space of outcomes is ∆(Z), where an outcome

Q ∈∆(Z) assigns probability Q(z) to z.
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Given action a ∈ A the set of terminal nodes that come after action a is Z(a). Similarly,

given an information set u ∈ U we let Z(u) be the set of terminal nodes that come after

some action available at u. We denote expressions Q(Z(a)) and Q(Z(u)) simply as Q(a) and

Q(u). Given a profile of mixed strategies σ ∈ Σ the induced outcome when players play

according to σ is P(· | σ) ∈∆(Z). With abuse of notation we also let G : ∆(Z) → R denote the

expected utility function associated with game G ∈G . The normal-form representation of G

is G= (S1,S2,G1,G2) where, for each n = 1,2, we have Gn(s)=Gn(P(· | s)) for all s ∈ S.

2.3. Index Theory

The fixed point index contains information about the robustness of fixed points of a map

when such a map is perturbed to a nearby map. Since Nash equilibria are fixed points, we

can apply index theory to them (cf. Ritzberger, 1994). The classical introduction to index

theory usually requires some concepts from algebraic topology. For the purposes of this

paper, this can be bypassed without much hindrance. Results in this section can be found

in McLennan (2018, pp 245-265) and Pahl (2023).

Let G be a normal-form game with mixed strategy Σ. Given a neighborhood O of Σ suppose

f : O →Σ is a differentiable map. Let d f be the displacement of f , i.e., d f (σ)=σ− f (σ). Then

the fixed points of f are the zeros of d f . Suppose now that the Jacobian of d f at a zero σ

of f is nonsingular. We assign the index +1 to σ if the determinant of the Jacobian of d f is

positive or −1 if such a determinant is negative. For the next definition, given a subset O of

Σ, we denote by clΣ(O ) the closure of O with respect to Σ.

Definition 2.2. An open neighborhood O ⊂Σ of a component of equilibria (in mixed strate-

gies) K of normal-form game G is admissible if every equilibrium of G in clΣ(O ) belongs to

K .

When a finite game G has a component of equilibria K that consists of more than a single

strategy profile, we extend the definition of the index as follows. Take a continuous map gG :

Σ→Σ such that the fixed points of gG are the Nash equilibria of game G and gG continuously

depends on the payoffs of G. An example of such a map is the map Nash (1951) constructed

to prove existence of equilibria in mixed strategies. Consider a neighborhood O of Σ and

r : O → Σ a retraction to the closest point in Σ. Let O ⊂ O be an open neighborhood of K

in the affine space generated by Σ, whose closure contains no other fixed point of g. We

approximate (gG ◦ r) uniformly by a differentiable function f : O →Σ without fixed points on

the boundary of O and such that the displacement of f at any fixed point has nonsingular

Jacobian. For any sufficiently close approximation, the sum of the indexes of the (isolated)
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fixed points of f in O is constant and can be taken as the definition of the index of the

component K .10

We can now define the index with respect to the best-reply correspondence of game G

following the same procedure as in GW. Consider now O ∩Σ. For notational convenience,

we will denote this intersection from now on as O . Let W be an open neighborhood of

Graph(BRG) such that W ∩
{

(σ,σ) ∈ Σ×Σ | σ ∈ clΣ(O )−O
}

=;. There exists W̃ ⊂ W a neigh-

borhood of Graph(BRG) such that any two continuous functions f0 and f1 from Σ to Σ whose

graphs are in the neighborhood W̃ are homotopic by a homotopy H : [0,1]×Σ → Σ with

Graph(H(t, ·)) ⊂ W̃ for all t ∈ [0,1] (cf. McLennan, 1989). Take a continuous map f : Σ→ Σ

with Graph( f ) ⊂ W̃ . We define the best-reply index of component K , denoted IndBRG(K), as

the fixed point index of the continuous map f |O : O → Σ. The choice of the neighborhood W

and the homotopy property of the index (see Dold, 1972, Chapter VII, 5.15) imply that the

index of the component is the same for any continuous map with graph in the neighborhood

W̃ . We note that defining the index of a component from, say, the map that Nash used in

(Nash, 1951) or from the best-reply correspondence are two distinct ways of defining the

index, which can be shown to be equivalent (cf. GW). In addition, this process to define

the index applies with insignificant changes if the correspondence between the simplices of

strategies is contractible valued instead of convex valued (cf. McLennan, 1989).11 This fact

will play an important role in Section 5.1, as we need to consider selections of a best-reply

correspondence which are not necessarily convex-valued, but are contractible-valued.

One can generalize the definition of the best-reply index of a component of equilibria to

the best-reply index of an admissible neighborhood, by using the exact same procedure as in

the previous paragraph. This yields the index of a neighborhood by summing the indexes of

the components of equilibria which are contained in it. For convenience, whenever we refer

to the index of a component or an admissible neighborhood, it will be implicit that we refer

to the best-reply index.

We are now ready to recall a few known properties of the index of equilibria which we will

use in the proof of our main result. The proofs that the index satisfies such properties can

be found in McLennan (2018) or GW.

I.1 The index of an admissible neighborhood is locally constant with respect to payoff

perturbations of the game. Formally, fix an admissible neighborhood O in the mixed

10Under the continuous dependence of the payoffs of G, this definition of index is independent of the particular

map gG used, it only depends on the game G (cf. DeMichelis and Germano (2000)).
11 A topological space X is contractible if there exists a continuous map T : [0,1]×X → X and x0 ∈ X such that

T(0, ·)= idX and T(1, ·)= x0.



GENERIC ROBUSTNESS OF EQUILIBRIA 11

strategy set of a finite game G. Then there exist Åδ> 0, such that for any 0≤ δ≤ Åδ and

a δ-payoff-perturbation G
δ of game G, the index of O (with respect to G

δ) is constant.

I.2 The index of an equilibrium component is invariant to equivalent presentations of a

game. If K is a component of equilibria of G with index c, then for any equivalent

game ÅG, the index of the equivalent component ÅK is also c.

I.3 The index of a component is invariant to the deletion of strictly inferior replies to the

component. If K is a component of equilibria with index c of game G, then deleting

from the normal-form of game G the pure strategies of player n which are strictly

inferior replies to every profile in the component K yields a new game G
′ with the

same component K as an equilibrium component in G
′ and with the same index c.

We also need three well-known properties of the index. For our purposes, we particularize

their statements as follows:

I.4 Multiplication: Let BRG :ΣâΣ and BRG
′

:Σ′ âΣ
′ be the best-reply correspondences

of (respectively) games G and G
′. Let BRG×BRG

′

be the correspondence taking (σ,τ) ∈

Σ×Σ′ to BRG(σ)×BRG
′

(τ). If O×O′ ⊂Σ×Σ′ contains no fixed points of BRG×BRG
′

in its

boundary, then O (respectively O′) has no fixed points of BRG (respectively BRG
′

) in

its boundary, and the index of O×O′ with respect to BRG×BRG
′

is the multiplication

of the indexes of O (with respect to BRG) and of O′ (with respect to BRG
′

).

I.5 Commutativity: Let F : Σ â Σ be an upper hemicontinuous correspondence that is

nonempty, compact and convex valued. Let e :Σ→Σ
′ be a continuous map with left-

inverse q :Σ′ →Σ. If X is a component of fixed points of e◦F ◦q :Σ′ âΣ
′ then q(X ) is

a component of fixed points of F and their indexes agree.

I.6 Excision: Let F :ΣâΣ be an upper hemicontinuous correspondence that is nonempty,

compact and convex valued. Suppose Õ and O are both admissible neighborhoods in

Σ whose closures in Σ contain the same fixed points of F. Then the index of O and

that of Õ with respect to F are identical.

We conclude this section with the following result. In particular, it implies that if a com-

ponent has zero index, then some ending node is reached with probability zero.

Proposition 2.3. If an equilibrium outcome Q induced by a component of equilibria in

mixed strategies K has full support, then K has non-zero index.

Proof. See Appendix A. □

2.4. Main Result

We recall the definition of Hyperstability.
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Definition 2.4. A component K of equilibria in mixed strategies of a normal-form game G

is hyperstable if for each equivalent game ÅG and every ε > 0, there exists δ > 0 such that

any δ-payoff-perturbation ÅGδ of ÅG has an equilibrium which is ε-close to ÅK (the equivalent

component in ÅG to K).

Hyperstability is a property first formulated in Kohlberg and Mertens (1986) to refine

Nash equilibria. It implies several desirable properties.12 In Section 5 we prove the follow-

ing result.

Theorem 2.5. Fix a two-player game tree with perfect recall. Apart from a lower-dimensional,

semi-algebraic set of payoffs, an equilibrium component is hyperstable if and only if it has

non-zero index.

GW also offer a characterization of non-zero index Nash equilibrium components. How-

ever, their characterization requires a strengthening of hyperstability. Namely, GW show

that a component has non-zero index if and only if it is uniformly hyperstable, that is, if for

each ε > 0, there exists δ > 0 such that for any equivalent game ÅG and any δ-perturbation

ÅGδ, there exists an equilibrium of ÅGδ which is within ε of ÅK (the equivalent component

of ÅG). Note that δ is fixed across all equivalent games, making uniform hyperstability a

stronger concept than the combination of robustness to payoff perturbations and invari-

ance. Nonetheless, our result implies that for generic two-player extensive-form games, a

component is uniformly hyperstable if and only if it is hyperstable.

3. EXCLUDED GAMES

The ªOutº-component in the game in Figure 1 has player 1 excluding the subgame. In

turn, behavior in the subgame as prescribed by such a component prevents player 1 from

profiting by deviating and choosing In. In general, observed behavior crucially depends on

the robustness of unobserved behavior. As we discussed in the Introduction, the reason the

ªOutº-component has zero index is that it specifies a set of strategy profiles in the subgame

that, when analyzed relative to such a subgame, has itself zero index. In this section, we

generalize this insight along with the notion of ªexcluded gameº so that, given an equilib-

rium component, we can examine the interaction between the two players that occurs both

on-path and off-path.

Take a two-player finite game tree with perfect recall Γ and let G = R
2|Z| be the space of

payoffs over terminal nodes. For payoffs G ∈ G , let G be the induced normal form. From

12 Hyperstable components of equilibria always contain proper (and therefore sequential) equilibria, satisfy

invariance, and are robust to payoff perturbations.
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now on, fix an equilibrium component K that induces a unique outcome Q ∈ ∆(Z). Given

the equilibrium component K , an information set u is said to be on-path if Q(u) > 0. Player

n’s collection of information sets that are on-path is U+
n ≡ {un ∈ Un | Q(u) > 0}. Similarly,

an information set is off-path if Q(u) = 0. Player n’s collection of information sets that are

off-path of Q is U0
n ≡Un \U+

n .

Let Z0 be the set of terminal nodes which have probability 0 under Q. We define

Sn
n ≡

{

sn ∈ Sn | there exists σ ∈ K with P(Z0
| sn,σ−n)> 0

}

and call it player n’s set of observable deviations. It consists of those player n’s pure strate-

gies in which, at some information set on-path according to K , player n deviates and plays

an action that has zero probability under Q. As usual, Σn
n ≡∆(Sn

n).

Let

(1) S+
n ≡

{

s+n : U+
n → An | s+n(u) ∈ An(u) for every u ∈U+

n

}

and Σ
+
n ≡∆(S+

n ). Note that these are not pure strategies because they assign choices only to

on-path (of K) information sets.

The subset S⊗
n ⊂ S+

n is the collection of assignments of actions at on-path information sets

that only assign actions that are taken in the equilibrium component K , that is

S⊗
n ≡

{

s⊗n ∈ S+
n |Q(s⊗n(u))> 0 for every u ∈U+

n

}

,

where the symbol Q(s⊗n(u)) follows the notational convention established in section 2.2.

Define Σ
⊗
n ≡∆(S⊗

n ) and Σ
⊗ ≡Σ

⊗
1
×Σ

⊗
2

. Analogously to (1), define also

(2) S0
n ≡

{

s0
n : U0

n → An | s0
n(u) ∈ An(u) for every u ∈U0

n

}

together with Σ
0
n ≡∆(S0

n).

We will now split the mixed strategies of a player between an on- and off-path part. Given

some player n’s pure strategy sn ∈ Sn the restriction of sn to information sets in, respectively,

U+
n and U0

n is q+
n(sn) and q0

n(sn). These define maps q+
n : Sn → S+

n and q0
n : Sn → S0

n. Linear

interpolation extends q+
n to a map from Σn to Σ

+
n . Analogously, q0

n is extended to a map from

Σn to Σ
0
n. Given a mixed strategy σn ∈Σn, q+

n(σn) is, therefore, the marginal of σn over S+
n ;

and q0
n(σn) is the marginal of σn over S0

n. In particular, if sn ∈ Sn\Sn
n, then sn can be written

as a pair (s⊗n, s0
n) ∈ S⊗

n ×S0
n and we let q⊗

n(sn)= s⊗n. Similarly to above, q⊗
n :∆(Sn \ Sn

n)→Σ
⊗
n is

the affine map for which q⊗
n(σ⊗

n) is the marginal of σn ∈∆(Sn \Sn
n) over Σ⊗

n . Let q+ ≡ q+
1
×q+

2
,

q⊗ ≡ q⊗
1
× q⊗

2
, and q0 ≡ q0

1
× q0

2
.

Given any pair (σ+
n ,σ0

n) ∈Σ
+
n×Σ

0
n let σ+

n∗σ
0
n represent the product strategy σn that satisfies

σn(s+n, s0
n)=σ+

n(s+n) ·σ0
n(s0

n) for every sn = (s+n, s0
n).
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If σn is a product strategy then, by definition, there is a pair (σ+
n ,σ0

n) ∈Σ
+
n ×Σ

0
n such that

σn =σ+
n ∗σ0

n.

Obviously, not every mixed strategy is a product strategy over S+
n ×S0

n. Nonetheless, for

any mixed strategy of a player there exists an outcome-equivalent product strategy. This

observation is formalized below and follows directly from Kuhn’s Theorem.

Lemma 3.1. For every σn ∈ Σn there exists a pair (σ̂+
n , σ̂0

n) ∈ Σ
+
n ×Σ

0
n such that, given any

σ−n ∈Σ−n, the strategy σ̂+
n ∗ σ̂0

n induces the same outcome as σn.

Definition 3.2 (Excluded game). Fix τ̂ ∈ K such that τ̂n = τ̂⊗n ∗ τ̂0
n with τ̂⊗n ∈ int(Σ⊗

n), where

the interior is relative to the affine space generated by Σ
⊗
n . Player n’s excluded game is the

normal-form game in which player n’s strategy set is Sn
n, player −n’s strategy set is S0

−n and

the payoff function for player m = 1,2 is defined for each profile (sn
n, s0

−n) ∈ Sn
n ×S0

−n as

(3) G
n
m(sn

n, s0
−n)≡

∑

s⊗−n∈S⊗
−n

τ̂⊗−n(s⊗−n)Gm(sn
n, s⊗−n, s0

−n).

Since the equilibrium component K induces a unique probability distribution Q, the pay-

off function (3) does not depend on the particular choice of τ̂ ∈ K , on the fact that τ̂n is a

product (as q⊗
n(τ̂n) can be used instead), or on the fact that τ̂⊗n is chosen (for convenience) to

be in the interior of Σ⊗
n .

Remark 3.3. We note two particular cases. First, when no information set of player −n is

off-path in component K then player n’s excluded game is just a decision problem. Second,

if K is such that player n does not have any observable deviation, as player 2 in the ªOutº-

component of Figure 1, then we say that player n does not have an excluded game. Also

note that while in Figure 1 player 1’s excluded game coincides with the proper subgame, in

general, an excluded game is not necessarily a subgame.

Let Kn
−n be the subset of player −n’s mixed strategies in player n’s excluded game such

that player n obtains a payoff that is no larger than what she obtains under the equilibrium

component K :

Kn
−n ≡

{

σ0
−n ∈Σ

0
−n | for all sn

n ∈ Sn
n we have G

n
n(sn

n,σ0
−n)≤Gn(Q)

}

.

And let ∂̃Kn
−n be the subset of Kn

−n where player n has at least one deviation for which she

is indifferent:

∂̃Kn
−n ≡

{

σ0
−n ∈ Kn

−n | for some sn
n ∈ Sn

n we have G
n
n(sn

n,σ0
−n)=Gn(Q)

}

.

The set ∂̃Kn
−n contains the boundary of Kn

−n relative to Σ
0
−n but, in general, it is not equal

to it. Player n’s supporting polytope is Kn ≡ Σ
n
n ×Kn

−n. We also define ∂̃Kn ≡ Σ
n
n × ∂̃Kn

−n.
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Later we show that under a generic choice of terminal payoffs for the game tree Kn is a

full dimensional neighborhood in the strategy set of the excluded without equilibria in its

boundary realtive to this strategy set, thus admiting an index.

Example 3.4. In Figure 1, the supporting polytope K1 to the ªOutº component is ∆({L,R})×
{

αℓ+ (1−α)r | 0≤α≤ 2/3
}

.

Remark 3.5. Proposition 2.3 implies that if a zero-index component of equilibria in mixed

strategies K induces a unique outcome then such an outcome must not have full support.

This result does not require any genericity assumption and it is a consequence of the two-

player environment. Furthermore, assume that the component K is such that for both

n = 1,2 we have ∂̃Kn =;. Then every strategy sn
n ∈ Sn

n pays strictly less than Gn(Q) against

any equilibrium strategy of player −n. Hence, we can eliminate the deviations sn
n from G for

both players leaving the index of component K invariant (cf. Property I.3). The resulting

game obtained after this elimination has an extensive-form where the outcome Q induced by

K is completely mixed. Proposition 2.3 then implies that K has non-zero index. Therefore,

any zero-index equilibrium component K is such that ∂̃Kn ̸= ; for some n = 1,2.

Definition 3.6 (Included game). The included game G
⊗ associated with component K is the

normal-form game in which player n’s strategy set is S⊗
n and payoff functions for player

m = 1,2 are given by:

G
⊗
m(s⊗n, s⊗−n)≡Gm(sn, s−n),

where (sn, s−n) ∈ (q⊗
n × q⊗

−n)−1(s⊗n, s⊗−n).

Note that the payoffs in G
⊗ are well-defined since they do not depend on the particular

choice of (sn, s−n) ∈ (q⊗
n × q⊗

−n)−1(s⊗n, s⊗−n).

4. GENERICITY ASSUMPTIONS

In Section 5 we fix a game G with game tree Γ and a zero-index component K and prove

that K is not hyperstable provided it satisfies the following two assumptions:

A.1 The outcome associated to K is unique. Moreover, after eliminating all branches and

nodes from Γ which have zero probability under the equilibrium outcome induced by

K , the set q⊗(K) is a component of equilibria of G⊗.

A.2 If K induces a unique outcome in which player n ∈ {1,2} has an excluded game, Kn

is a full-dimensional polytope in Σ
n and every equilibrium payoff of Gn to player n in

Kn is strictly lower than player n’s equilibrium payoff induced by K .
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FIGURE 4. Game G
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Assumption A.1 is a standard property of generic extensive-form games (see Kreps and

Wilson, 1982 or Govindan and Wilson, 2001). For our purposes, note that the definition of

excluded game relies on the component inducing a unique outcome. The new assumption

is A.2. The statement concerning the full-dimensionality of polytope Kn in Σ
n is satisfied

generically.13 Assumption A.2 as a whole tells us that Kn is the closure of an admissible

neighborhood in Σ
n and, therefore, admits an index. It is a technical assumption in order to

well-define the index of the neighborhood.

The next example shows that A.1 does not imply A.2.

Example 4.1. Consider the game in Figure 4.

The game has two equilibrium outcomes, each of which is associated to two different

equilibrium components. In the first one, player 1 plays T and player 2 plays ℓa. In the

second, player 1 plays B and player 2 plays ra. This game satisfies A.1 but does not satisfy

A.2. Recall that in the excluded game G
1 of player 1 associated to the first component, the

non-deviating player 2 plays, at all information sets which are on equilibrium-path the exact

equilibrium distribution - therefore, player 2 must play ℓ in the leftmost information set. In

this excluded game, the deviating player 1 is a dummy player (she only has one strategy

S1
1 = {B}) and player 2 has two strategies (i.e., S1

2 = {ℓa,ℓb}).

If player 2 plays ℓa, the payoff in the excluded game is (1,1), and if player 2 plays ℓb,

the payoff is (3/2,0). Therefore, (B,ℓa) is the obvious equilibrium of the excluded game G
1,

which gives player 1 the equilibrium payoff of the component, violating A.2.

The next proposition implies that restricting to games that satisfy Assumptions A.1 and

A.2 is a mild constraint.

13 For generically chosen terminal payoffs of a fixed game tree, any equilibrium component in mixed strategies

induces a unique outcome and contains an equilibrium profile for which any observable deviation by any player

is a strictly inferior reply to that profile (cf. the first paragraph of the proof of Theorem 4.2 in Govindan and

Wilson, 2002). This guarantees full-dimensionality of Kn.
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Definition 4.2. A subset G
′ ⊆ G is generic if its complement is a lower-dimensional semi-

algebraic set.

Proposition 4.3. The subset G
′ ⊆ R

N|Z| for which properties A.1 and A.2 are satisfied is

generic.

Proof. It is well-known that Assumption A.1 is generic in the space of extensive-form games

(Kreps and Wilson, 1982; Govindan and Wilson, 2001). The proof that generic two-player

games satisfy Assumption A.2 is relegated to Online Appendix A. □

5. PROOF OF THEOREM 2.5

It is already known that a non-zero index component is hyperstable. It can be proved

by observing that equivalent components have the same index and that a component with

non-zero index is robust to sufficiently small payoff perturbations.
14 Henceforth, we focus on showing that a hyperstable component must have non-zero

index.

The strategy of the proof is to show that if component K has zero index then K is not

hyperstable. Thus, we need to find a game ÅG equivalent to G and a neighborhood ÅV of ÅK (the

component in ÅG equivalent to K) such that for any ε> 0, there is an ε-payoff-perturbation ÅGε

of ÅG with no equilibrium in ÅV . We proceed in three steps. In Step 1, we modify the original

game G to an auxiliary game to show that for some n = 1,2, the supporting polytope Kn has

zero index in the excluded game G
n. In Step 2, we construct a game equivalent to G

n and a

perturbation so that the perturbed game does not have an equilibrium in the subset of the

strategy profiles equivalent to Kn. This is used in Step 3 to construct a game equivalent to

the original game G and a perturbation that shows that the original zero index component

K is not hyperstable. Prior to each step we present the key conceptual details about the step

and overall strategy of the argument.

5.1. Step 1: For some player n, the supporting polytope has index 0 in G
n

From Proposition 2.3 we know that at least one player has an excluded game. We proceed

under the assumption that both players have an excluded game as the proof can be easily

adapted to the case in which only one has it. Observe that Kn is full-dimensional in Σ
n and

admissible with respect to G
n (cf. A.2). Therefore, it has a well-defined index in G

n. We also

assume that for each player n = 1,2 the supporting polytope Kn contains an equilibrium of

14 See, e.g., GW.
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FIGURE 5. Game Gε1,ε2
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G
n. If for some n = 1,2 the excluded game G

n does not have an equilibrium in Kn then such

a supporting polytope has index 0 and we can move to Section 5.2.

We now prove that there exists n = 1,2 such that Kn has index 0 in G
n. The objective is to

use the multiplication property of the index (cf. I.4) to express the index of K as the product

of the indexes of K1 and K2 in their corresponding excluded games so that if the index of K

is zero then either the index of K1 or the index of K2 is zero as well. With that in mind, we

perturb the original game so that each player is forced to play an observable deviation (i.e.

an element of the strategy set in their excluded games) with vanishing probability. We then

show that the non-deviating player can effectively best-reply by separately responding to the

event in which the other player is forced to play as in her excluded game, and to the event

in which the other player plays according to the equilibrium path defined by the component

K . This defines a selection of the best-reply that, after some manipulations invoking the

properties of the index, can be expressed as a product of the best replies in G
⊗, G1, and G

2.

Let us define the auxiliary extensive-form game Gε1,ε2 in Figure 5. First, Nature ran-

domizes between three states, θ0 with probability 1−ε1 −ε2, θ1 with probability ε1, and θ2

with probability ε2. For each n = 1,2, player n observes if Nature has selected θn but cannot

distinguish between θ0 and θ−n. If Nature chooses θn then player n chooses a member of

Sn
n. In turn, if Nature chooses either θ0 or θ−n then player n, without observing player −n’s

move, chooses an element from Sn. Payoffs are inherited from the original game G.

Nature, by choosing θn, forces player n to play from the same strategy set as in her

excluded game. Nonetheless, players have their entire strategy set available after θ0. Note

that game G0,0 is equivalent to the original game G. We denote the component equivalent to
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K in G0,0 by K0,0. Since G0,0 is equivalent to G, component K0,0 has also index 0 (cf. Property

I.2). Fix a neighborhood O
0,0 of K0,0, such that every equilibrium of G0,0 in the closure of

O
0,0 belongs to K0,0. Since the index is locally constant with respect to payoff perturbations,

taking ε1,ε2 > 0 sufficiently small implies that the neighborhood O
0,0 is admissible for the

game Gε1,ε2 and that it has index 0. For notational convenience, we work with behavioral

strategies. A behavioral strategy for player n in game Gε1,ε2 is a pair (τn,ζn
n) ∈Σn ×Σ

n
n.

Lemma 5.1. For ε1,ε2 > 0 sufficiently small, every equilibrium (τ1,ζ1
1,τ2,ζ2

2) ∈ O
0,0 of game

Gε1,ε2 satisfies Supp(τn)∩Sn
n = ∅ for each n = 1,2. In addition, any sn

n ∈ Sn
n is a strictly

inferior reply (after θ0) to any such equilibrium.

Proof. The proof is divided in two cases. For the first, let (εk
1
)k, (εk

2
)k be positive sequences

converging to 0 and (τk
1
,ζ

1,k
1

,τk
2
,ζ

2,k
2

)k∈N ⊆ O
0,0 a sequence of equilibria of Gεk

1
,εk

2 . We prove

that for k large enough Supp(τk
1
)∩ S1

1 = ∅ and that, after θ0, every member of S1
1 is a

strictly inferior reply to τk
2
. Passing to subsequences if necessary, we can assume that

the sequence of strategy profiles converges to (τ1,ζ1
1,τ2,ζ2

2). In addition, writing τk
1
= (1−

αk)τ
×,k
1

+αkτ
1,k
1

, with αk ≥ 0, Supp(τ
×,k
1

) ⊆ (S1 \ S1
1) and Supp(τ

1,k
1

) ⊆ S1
1, we also assume

ψk ≡ εk
1
[εk

1
+ (1−εk

1
)αk]−1 →ψ ∈ [0,1]. Observe that the support of τ2 is a subset of (S2 \ S2

2),

since (τ1,ζ1
1,τ2,ζ2

2) ∈ K0,0.

Claim 5.2. Suppose Supp(τ̃2) ⊆ (S2 \ S2
2). If q⊗

2
(τ̃2) is equivalent to q⊗

2
(τ2) in G

⊗, then for

n = 1,2 we have Gn(τ
×,k
1

, τ̃2)=Gn(τ
×,k
1

,τ2).

Proof of Claim 5.2. Note that (τk
1
,τk

2
)→ (τ1,τ2) ∈ K so that Supp(τ2)∩S2

2 =;. Since q⊗
2

(τ̃2) is

equivalent to q⊗
2

(τ2) in G
⊗ both q⊗

2
(τ̃2) and q⊗

2
(τ2) give the same payoff against any player

1’s strategy τ⊗
1

in G
⊗. Given τ

×,k
1

∈ ∆(S1 \ S1
1), both q⊗

2
(τ̃2) and q⊗

2
(τ2) yield the same pay-

off against q⊗
1

(τ
×,k
1

). Therefore, Gn(τ
×,k
1

, τ̃2) = G
⊗
n(q⊗(τ̃2), q⊗

1
(τ

×,k
1

)) = G
⊗
n(q⊗(τ2), q⊗

1
(τ

×,k
1

)) =

Gn(τ
×,k
1

,τ2). □

For k sufficiently large, Supp(τ2) ⊆ Supp(τk
2
). For such a k, the limit τ2 maximizes player

2’s expected payoff at her information set following θ0 and θ1. For x2 ∈Σ2, player 2’s expected

payoff is

(4) [εk
1+(1−εk

1−εk
2)αk]

[

ψk
G2(ζ

1,k
1

, x2)+(1−ψk)G2(τ
1,k
1

, x2)
]

+(1−εk
1−εk

2)(1−αk)
[

G2(τ
×,k
1

, x2)
]

.

Let A2 ⊂Σ2 be defined as: τ̃2 ∈ A2 if and only if q⊗
2

(τ̃2) is equivalent to q⊗
2

(τ2) in G
⊗. Since

τ2 maximizes expression (4), Claim 5.2 implies that τ2 also solves

max
x2∈A2

ψk
G2(ζ

1,k
1

, x2)+ (1−ψk)G2(τ
1,k
1

, x2).



20 LUCAS PAHL AND CARLOS PIMIENTA

From Lemma 3.1, player 2 has a product strategy τ⊗
2
∗τ0

2
that is equivalent to τ2 in G. Since

(τ1,τ2) ∈ K , then τ⊗
2

is equivalent to τ̂⊗
2

in G
⊗. By the definition of payoff functions in player

1’s excluded game, τ0
2

solves

max
x0

2
∈Σ0

2

ψk
G

1
2(ζ

1,k
1

, x0
2)+ (1−ψk)G1

2(τ
1,k
1

, x0
2).

That is, for k large enough, τ0
2

is a best-reply against ψkζ
1,k
1

+ (1−ψk)τ
1,k
1

in player 1’s ex-

cluded game G
1. Of course, τ0

2
is also a best-reply against the limit ψζ1

1 + (1−ψ)τ1
1.

In turn, ζ
1,k
1

is a best-reply (when player 1’s strategy is constrained to Σ
1
1) against τk

2
in

G for every k. By continuity, ζ1
1 is a constrained best-reply against τ2 in G and, therefore,

also against the equivalent product strategy τ⊗
2
∗τ0

2
, which implies that ζ1

1 is a best-reply

against τ0
2

in G
1. Using an analogous argument, if αk > 0 for all k, we also conclude that τ1

1

is a best-reply against τ0
2

in G
1. If we do not have αk > 0 for all k then either there exists a

subsequence for which it holds or ψ= 1. In either case, (τ0
2
,ψζ1

1+ (1−ψ)τ1
1) is an equilibrium

of G1.

From genericity property A.2, no equilibrium of G1 gives the same payoff as the equilib-

rium outcome Q to player 1. Therefore, τ0
2
∉ ∂̃K2 and, for every s1

1 ∈ S1
1 we have G1(s1

1,τ2) =

G
1
1(s1

1,τ0
2
)<G1(Q). We conclude that for sufficiently large k, every member of S1

1 is a strictly

inferior reply to τk
2
. So for k large enough, Supp(τk

1
)⊆ S1 \ S1

1 which finishes the proof of the

first case.

For the second case, consider positive sequences (εk
i
)k, i = 1,2 converging to 0 and (σk)k∈N ⊂

O
0,0 a sequence of equilibria of Gεk1 ,εk

2 . For sufficiently large k, using an argument symmet-

ric to the first case, Supp(τk
2
)⊆ (S2 \ S2

2) and S2
2 is a set of strictly inferior replies after θ0 to

τk
1
. From these two cases, for sufficiently small ε1,ε2 > 0, Lemma 5.1 follows. □

Take ε1,ε2 > 0 as small as prescribed by Lemma 5.1. Every equilibrium of Gε1,ε2 in O
0,0

is such that any strategy that assigns positive probability to some member of Sn
n after θ0 is

a strictly inferior reply to the equilibrium. With abuse of notation, denote also by Gε1,ε2 the

game that is obtained by eliminating S1
1 and S2

2 from players’ actions at their information

set after θ0. Since they are always inferior replies, their elimination does not affect the

index of O
0,0.

For δ> 0, define

Uδ
n ≡

{

τn ∈∆(Sn \ Sn
n) |G−n(s−n

−n,τn)<G−n(Q)−δ for all s−n
−n ∈ S−n

−n

}

.
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Since the component K induces a unique distribution Q, the component that induces Q in

G
⊗ is a rectangle R1 ×R2 with Rn ⊆ Σ

⊗
n .15 From this we obtain a δ-neighborhood Bδ

n ⊆ Σ
⊗
n

of Rn such that Bδ ≡ Bδ
1
×Bδ

2
is a neighborhood of R1 ×R2 and does not contain any other

equilibrium of G⊗. Let V δ
1
≡ (q⊗

1
)−1(Bδ

1
), V δ

2
≡ (q⊗

2
)−1(Bδ

2
), and V δ ≡ V δ

1
×V δ

2
. Fix in addition

δ> 0 sufficiently small such that for both n = 1,2 all equilibria of player n’s excluded game

in Kn induce a payoff smaller than Gn(Q)−δ (such δ> 0 exists due to Assumption A.2).

Claim 5.3. For ε1,ε2 > 0 sufficiently small,

(1) O
δ ≡ ([V δ

1
∩Uδ

1
]×Σ

1
1)× ([V δ

2
∩Uδ

2
]×Σ

2
2) is admissible for Gε1,ε2 ;

(2) The symmetric difference O
δ
∆O

0,0 contains no equilibrium of Gε1,ε2 .

Proof. We start by proving admissibility of O
δ for Gε1,ε2 . Let (εk

n)k∈N converge to 0 for n = 1,2

such that (ζk,τk) is an equilibrium of Gεk
1
,εk

2 in cl(Oδ), where the closure is taken with respect

to (×n=1,2∆(Sn \ Sn
n)×Σ

1
1 ×Σ

2
2). Consider a limit (ζ,τ). By A.1, q⊗(τ) is an equilibrium of G⊗

that induces Q. Therefore, for k large enough, q⊗(τk) ∈ Bδ, which implies τk ∈ V δ. Recall

that τn ∈∆(Sn \Sn
n) and take a product strategy τ⊗n ∗τ0

n equivalent to τn in G. We claim that

(ζ−n
−n,τ0

n) is an equilibrium of the excluded game G
−n. It is clear that ζ−n

−n is a best-reply of

player −n against τ0
n in G

−n. It remains to show that τ0
n is a best-reply of player n against

ζ−n
−n in G

−n. Since τk
n is an equilibrium strategy in Gεk

1
,εk

2 , it solves

(5) max
xn∈∆(Sn\Sn

n)
εk
−nGn(xn,ζ

−n,k
−n )+ (1−εk

1 −εk
2)Gn(xn,τk

−n).

For k sufficiently large, Supp(τn) ⊆ Supp(τk
n), so τn is also a solution to (5). Note that

for every xn ∈ ∆(Sn \ Sn
n) we have Gn(xn,τk

−n) = G
⊗
n(q⊗

n(xn), q⊗
−n(τk

−n)). Therefore, since τ⊗n

is equivalent to τ̂⊗n in G
⊗, we obtain Gn(τn,ζ

−n,k
−n ) = G

−n
n (τ0

n,ζ
−n,k
−n ). Taking limits in k, we

obtain that τ0
n is a best-reply against ζ−n

−n in G
−n. That is, (τ0

n,ζ−n
−n) is an equilibrium of G−n

as claimed. This implies G
−n
−n(τ0

n,ζ−n
−n) < G−n(Q)−δ, by Assumption A.2 and our choice of δ.

Hence, G−n(τn,ζ−n
−n)=G

−n
−n(τ0

n,ζ−n
−n)<G−n(Q)−δ. That is, τk

n ∈Uδ
n for sufficiently large k. This

proves that for ε1,ε2 > 0 small enough O
δ is admissible for Gε1,ε2 .

We now prove that for sufficiently small ε1,ε2 > 0, O
δ contains the equilibria of Gε1,ε2 that

are contained in O
0,0. It is sufficient to prove that for any convergent sequence (ζk,τk)k∈N ⊂

O
0,0 of equilibria Gεk

1
,εk

2 with limit (ζ,τ) and εk
n converging to 0 for n = 1,2, the sequence

is eventually in O
δ. First observe that the limit must satisfy G−n(ζ−n

−n,τn) ≤ G−n(Q). Take

15 The game G
⊗ is the normal form of the extensive-form game obtained from G by eliminating nodes and

branches that have zero probability under Q. Therefore, the outcome Q is completely mixed in this extensive-

form and is induced by a unique component of mixed strategies in G
⊗. Hence, as in the proof of Lemma 2.3,

Q is induced by a unique enabling strategy profile in the enabling-form of G
⊗. (See Appending A for the

definition of enabling strategies and enabling-form.) This implies that the component in G
⊗ inducing Q in G

⊗

is a rectangle.
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a product strategy τ⊗n ∗τ0
n equivalent to τn in G. We claim that (ζ−n

−n,τ0
n) is an equilibrium

of the excluded game G
−n. It is clear that ζ−n

−n is a best-reply of player −n against τ0
n in

G
−n. It remains to show that τ0

n is a best-reply of player n against ζ−n
−n in G

−n. Since τk
n

is an equilibrium strategy in Gεk
1
,εk

2 , it solves (5). Continuing the argument in the same

fashion as in the first part, we obtain that (τ0
n,ζ−n

−n) is an equilibrium of G−n. This implies

G
−n
−n(τ0

n,ζ−n
−n) < G−n(Q)− δ, by Assumption A.2 and our choice of δ. Hence, G−n(τn,ζ−n

−n) =

G
−n
−n(τ0

n,ζ−n
−n)<G−n(Q)−δ. Thus (ζk,τk) belongs to O

δ for sufficiently large k.

The proof of the result that for sufficiently small ε1,ε2 > 0, O
0,0 contains the equilibria

of Gε1,ε2 that are contained in O
δ can be obtained from noticing that any limit (ζ,τ) of a

sequence of equilibria in O
δ satisfies τ ∈V δ and τ ∈Uδ. □

We now construct an expression for the index of O
δ that allows us to conclude that for

some n = 1,2, the supporting polytope Kn has zero index with respect to G
n. When player n

best-replies against (τ−n,ζ−n
−n) in game Gε1,ε2 at her information set after θ0, player n chooses

τn ∈∆(Sn \ Sn
n) that maximizes

(6) ε−nGn(τn,ζ−n
−n)+ (1−ε1 −ε2)Gn(τn,τ−n).

Since actions in Sn
n,n = 1,2 are no longer available after θ0, the function Gn(τn,τ−n) only de-

pends on q⊗
n(τn) and q⊗

−n(τ−n). In order to compute the best-reply τn, player n only requires

ζ−n
−n and τ⊗−n. The correspondence that assigns to each (ζ−n

−n,τ⊗−n) the optimal τn ∈∆(Sn \ Sn
n)

is

BR
⊗,ε1,ε2
n :Σ−n

−n ×Σ
⊗
−n â∆(Sn \ Sn

n).

In addition, define the correspondence BR×
n :∆(S−n \ S−n

−n)âΣ
n
n by:

BR×
n(τ−n)≡ arg max

ζn
n∈∆(Sn

n)
Gn(τ−n,ζn

n).

Define BR× ≡BR×
1 ×BR×

2 . Let idn be the identity in Σ
n
n. Player n’s best-reply correspondence

BR
ε1,ε2
n in game Gε1,ε2 is

BR×
n ×

[

BR
⊗,ε1,ε2
n ◦ (id−n × q⊗

−n)
]

:Σ−n
−n ×∆(S−n \ S−n

−n)âΣ
n
n ×∆(Sn \ Sn

n).

And the best-reply correspondence in Gε1,ε2 is BRε1,ε2 ≡BR
ε1,ε2

1
×BR

ε1,ε2

2
.

Instead of using BRε1,ε2 directly to compute the index of O
δ we use a selection of BRε1,ε2 .

That is, a new correspondence whose graph is a subset of the graph of BRε1,ε2 . To define it,

consider first the correspondence φ
ε1,ε2
n :Σ−n

−n×Σ
⊗
−n âΣ

⊗
n×Σ

0
n that assigns to each (ζ−n

−n,τ⊗−n) ∈
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Σ
−n
−n ×Σ

⊗
−n the set of pairs (τ⊗n ,τ0

n) ∈Σ
⊗
n ×Σ

0
n that satisfy

τ⊗n ∈ q⊗
n ◦BR

⊗,ε1,ε2
n (ζ−n

−n,τ⊗−n), and(7)

τ0
n ∈ arg max

τ̃0
n∈Σ

0
n

Gn(τ̂⊗n ∗ τ̃0
n,ζ−n

−n).(8)

Let en : Σ⊗
n ×Σ

0
n →∆(Sn \ Sn

n) be defined by en(τ⊗n ,τ0
n) ≡ τ⊗n ∗τ0

n. Define also wn : Σn
n ×∆(Sn \

Sn
n)→Σ

n
n ×Σ

⊗
n ×Σ

0
n by wn(ζn

n,τn)≡ (ζn
n, q⊗

n(τn), q0
n(τn)). As usual, e ≡ e1× e2, w ≡ w1×w2, and

φε1,ε2 ≡φ
ε1,ε2

1
×φ

ε1,ε2

2
. Consider the correspondence

Φ
ε1,ε2 ≡ (e ◦φε1,ε2 ◦w) :Σ1

1 ×Σ
2
2 ×∆(S1 \ S1

1)×∆(S2 \ S2
2)â∆(S1 \ S1

1)×∆(S2 \ S2
2).

Lemma 5.4. Φ
ε1,ε2 is a nonempty, contractible, and compact valued, upper hemicontinuous

correspondence.

Proof. The fact that Φ
ε1,ε2 is nonempty, compact-valued, and upper hemicontinuous fol-

lows from standard arguments. We show that values are contractible. Fix (τ,ζ) and some

τ̌ ∈ Φ
ε1,ε2(τ,ζ). Then τ̌ = τ̌⊗ ∗ τ̌0. Consider the homotopy J = J1 × J2 : Φε1,ε2(τ,ζ)× [0,1] →

Φ
ε1,ε2(τ,ζ) that for each τ̃ = (τ̃1, τ̃2) = (τ̃⊗

1
∗ τ̃0

1
, τ̃⊗

2
∗ τ̃0

2
) ∈ Φ

ε1,ε2(τ,ζ) is defined by Jn(t, τ̃n) =
[

(1− t)τ̃⊗n + tτ̌⊗n
]

∗
[

(1− t)τ̃0
n + tτ̌0

n

]

for each n = 1,2. The homotopy is well-defined. Moreover,

Jn(0, τ̃⊗n ∗ τ̃
0
n)= τ̃⊗n ∗ τ̃

0
n and Jn(1, τ̃⊗n ∗ τ̃

0
n)= τ̌⊗n ∗ τ̌

0
n, which shows that Φε1,ε2(τ,ζ) is contractible

valued. □

Lemma 5.5. BR××Φ
ε1,ε2 is a selection of BRε1,ε2 .

Proof. Let (ζ̌, τ̌) ∈ [BR××Φε1,ε2](ζ,τ). Since ζ̌ ∈BR×(ζ,τ) we only need to show τ̌n ∈BR
⊗,ε1,ε2
n (ζ−n

−n, q⊗
−n(τ))

for n = 1,2. By definition, τ̌n = τ̌⊗n ∗ τ̌0
n, where

τ̌⊗n ∈ q⊗
n

[

BR
⊗,ε1,ε2
n (ζ−n

−n, q⊗
−n(τ−n))

]

.

Therefore, there exists

τ′n ∈ argmax
τ̃n

{

ε−nGn(τ̃n,ζ−n
−n)+ (1−ε1 −ε2)Gn(q⊗

n(τ̃n), q⊗
−n(τ−n))

}

such that q⊗
n(τ′n)= τ̌⊗n . Take τ∗n = τ

∗,⊗
n ∗τ

∗,0
n equivalent to τ′n in G. Then τ̌⊗n must be equivalent

to τ
∗,⊗
n in G

⊗. Recall Supp(τ
∗,⊗
n )⊆Supp(τ̂⊗n) because τ̂⊗n is completely mixed. Hence,

τ̌0
n ∈ argmax

τ0
n

∑

s⊗n ,s0
n

τ̂⊗n(s⊗n)τ0
n(s0

n)Gn(s⊗n, s0
n,ζ−n

−n)⊆ argmax
τ0

n

∑

s⊗n ,s0
n

τ
∗,⊗
n (s⊗n)τ0

n(s0
n)Gn(s⊗n, s0

n,ζ−n
−n).

That is,

τ̌⊗n ∗ τ̌0
n ∈ argmax

τ̃n

{

ε−nGn(τ̃n,ζ−n
−n)+ (1−ε1 −ε2)Gn(q⊗

n(τ̃n), q⊗
−n(τ−n))

}

,

which shows τ̌n ∈BR
⊗,ε1,ε2
n (ζ−n

−n, q⊗
−n(τ−n)) for n = 1,2 and, therefore, (ζ̌, τ̌) ∈BRε1,ε2(ζ,τ). □
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Letting BR⊗ be the best-reply correspondence in the game G
⊗, let us define Φ ≡ Φ

0,0 =

e ◦ (BR1
2 ×BR⊗ ×BR2

1) ◦ w. Similarly to Φ
ε1,ε2 , standard arguments show that Φ is upper

hemicontinuous as well as nonempty, compact, and contractible valued.

Lemma 5.6. The following statements hold:

(1) The neighborhood O
δ is admissible for BR××Φ.

(2) For ε1, ε2 > 0 sufficiently small, O
δ is admissible for BR××Φ

ε1,ε2 .

(3) For ε1, ε2 > 0 sufficiently small, BR××Φ
ε1,ε2 assigns the same index to O

δ as BR××Φ

does.

Proof. To prove (1), let (ζ,τ) be a fixed point of BR××Φ, where (ζ,τ) ∈ cl(Oδ). Then τn = τ⊗n∗τ
0
n

and τ⊗n ∈ Bδ. This implies that τ⊗n is equivalent to τ̂⊗n in G
⊗. Therefore, ζ−n

−n ∈ BR×
−n(τn) =

BR−n
−n(τ0

n). Moreover, by construction, τ0
n ∈ BR−n

n (ζ−n
−n). Hence, (τ0

n,ζ−n
−n) is an equilibrium of

G
−n. Since G−n(ζ−n

−n,τn) ≤ G−n(Q)−δ we obtain G
−n
−n(ζ−n

−n,τ0
n) ≤ G−n(Q)−δ. By A.2 and our

choice of δ, we have G
−n
−n(ζ−n

−n,τ0
n)<G−n(Q)−δ and finally G−n(s−n

−n,τn)<G−n(Q)−δ for every

s−n
−n ∈ S−n

−n. That is, (ζ,τ) ∈O
δ, which proves admissibility of O

δ.

To prove (2), fix a neighborhood W of the graph of BR××Φ such that W∩{(τ,ζ,τ,ζ) | (τ,ζ) ∈

cl(Oδ) \ O
δ} = ;. For η > 0, define the set of η-replies against τ⊗ ∈ Σ

⊗ by BR⊗,η(τ⊗) ≡
{

τ̃⊗ ∈

Σ
⊗ | G⊗

n(τ̃⊗n ,τ⊗−n) ≥ maxs⊗n
G
⊗
n(s⊗n,τ⊗−n)− η for n = 1,2

}

. Fix η > 0 sufficiently small such that

Graph
(

BR×× [e ◦ (BR1
2 ×BR⊗,η×BR2

1) ◦w]
)

⊆ W . Take now ε1,ε2 > 0 sufficiently small such

that for each n = 1,2, sn = (s⊗n, s0
n) and s−n

−n,

ε−nGn(sn, s−n
−n)+ (1−ε1 −ε2)G⊗

n(s⊗)≥G
⊗
n(s⊗)−η.

Then, (ζ̃, τ̃) ∈ [BR××Φ
ε1,ε2](ζ,τ) implies (ζ,τ, ζ̃, τ̃) ∈ Graph

(

BR×× e ◦ [BR1
2 ×BR⊗,η×BR2

1]◦w
)

,

which implies Graph(BR××Φ
ε1,ε2)⊆W . This shows that, for sufficiently small ε1,ε2 > 0, the

neighbourhood O
δ is admissible for BR××Φ

ε1,ε2 .

To prove (3), consider the neighborhood W defined in the previous paragraph. There exists

then a neighborhood V ⊆ W of Graph(BR××Φ) such that any two continuous maps whose

graphs are contained in V are homotopic by a homotopy contained in W . By our choice of

W , any two such maps assign the same index to O
δ. Using a reasoning analogous to the one

of the previous item, take then ε1 and ε2 sufficiently small so that Graph(BR××Φ
ε1,ε2)⊆V .

Approximate BR××Φ
ε1,ε2 by a continuous function f with Graph( f )⊂V such that the index

it assigns to O
δ determines the index of O

δ with respect to BR××Φ
ε1,ε2 . This index is then

equal to the index of O
δ with respect to BR××Φ. This concludes the proof. □
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Let hn(τn, t)= (1− t)τn + t[τ̂⊗n ∗ q0
n(τn)] and define

H :

(

∏

n=1,2

[

∆(Sn \ Sn
n)×Σ

n
n

]

)

× [0,1]â
∏

n=1,2

[

∆(Sn \ Sn
n)×Σ

n
n

]

by

H(τ,ζ, t)=BR×(h(τ, t))×Φ(τ,ζ) for every (τ,ζ, t).

The map H is a homotopy of correspondences. It is a nonempty, contractible, compact val-

ued, upper hemicontinuous correspondence. Letting Åe(ζ,τ⊗,τ0) = (ζ, e(τ⊗,τ0)), observe that

for t = 1, the homotopy equals Åe ◦ (BR1 ×BR⊗×BR2)◦w and for t = 0 it equals BR××Φ.

Lemma 5.7. O
δ is admissible for H and therefore Åe◦(BR1×BR⊗×BR2)◦w assigns the same

index to O
δ as BR××Φ.

Proof. Let (τ,ζ) ∈ cl(Oδ) satisfy (τ,ζ) ∈ BR×(h(τ, t))×Φ(τ,ζ) for some t ∈ [0,1]. Then τn =

τ⊗n ∗τ0
n. First note that τ ∈ V δ, since τn ∈ Φn(τ,ζ) and the strategy τ⊗n is equivalent to τ̂⊗n .

It follows ζn
n ∈ BR×

n(h−n(τ−n, t)) = BR×
n(τ̂⊗−n ∗ τ0

−n) = BRn
−n(τ0

−n). On the other hand, τ0
−n ∈

BRn
−n(ζn

n) so that (ζn
n,τ0

−n) is an equilibrium of G
n. By A.2 and our choice of δ we have

G
n
n(ζn

n,τ0
−n) < Gn(Q)−δ. Therefore, Gn(sn

n,τ−n) = G
n
n(sn

n,τ0
−n) < Gn(Q)−δ for every sn

n. This

proves (ζ,τ) ∈O
δ. □

To finish Step 1, let

Ûδ
−n ≡

{

τ0
−n ∈Σ

0
−n |G

n
n(sn

n,τ0
−n)<Gn(Q)−δ for all sn

n ∈ Sn
n

}

and Ô
δ
≡ w−1

[

Σ
1
1 ×Σ

2
2 ×Bδ

×Ûδ
]

.

Lemma 5.8. Ô
δ is admissible for Åe◦(BR1×BR⊗×BR2)◦w and contains the same fixed points

of Åe ◦ (BR1 ×BR⊗×BR2)◦w as O
δ.

Proof. Let (τ,ζ) ∈ cl(Ôδ) be a fixed point of Åe◦(BR1×BR⊗×BR2)◦w. Then τn = τ⊗n∗τ
0
n and τ⊗n ∈

Bδ
n, which implies that τ⊗n is equivalent to τ̂⊗n in G

⊗. The profile (ζn
n,τ0

−n) is an equilibrium

of Gn so that Gn
n(ζn

n,τ0
−n)<Gn(Q)−δ because of A.2 and our choice of δ. Therefore, for every

sn
n ∈ Sn

n we have G
n
n(sn

n,τ0
n)<Gn(Q)−δ. Hence (τ,ζ) ∈ Ô

δ which proves that Ô
δ is admissible.

If (τ,ζ) ∈ Ô
δ is a fixed point of Åe ◦ (BR1 ×BR⊗×BR2)◦w then τn = τ⊗n ∗τ0

n, so that τ⊗n ∈ Bδ
n

and τ⊗n is equivalent to τ̂⊗n . Moreover, (ζn
n,τ0

−n) is an equilibrium of G
n and Gn(sn

n,τ−n) =

G
n
n(sn

n,τ0
−n) < Gn(Q)−δ, for every sn

n. Therefore, (ζ,τ) ∈ O
δ. On the other hand, if (ζ,τ) ∈ O

δ

is a fixed point then again τn = τ⊗n ∗ τ0
n and τ⊗n ∈ Bδ

n so that τ⊗n is equivalent to τ̂⊗n in G
⊗.

Therefore, Gn
n(sn

n,τ0
n)=Gn(sn

n,τ0
n)<Gn(Q)−δ for every sn

n. That is, τ0
n ∈ Ûδ

n and (ζ,τ) ∈ Ô
δ. □

Note now that Property I.6 implies that Åe◦(BR1×BR⊗×BR2)◦w|
Ôδ has index zero. In turn,

Property I.5 implies that the index of BR1|
Σ

1
1
×Ûδ

2
×BR2|

Σ
2
2
×Ûδ

1
×BR⊗|Bδ is zero. Given Propo-

sition 2.3, Property I.4 implies that for some n = 1,2, the index of BRn|
Σ

n
n×Ûδ

−n
is zero. Since
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BRn is the best-reply correspondence of the excluded game G
n, the index of the supporting

polytope in player n’s excluded game is zero.

Example 5.9. We continue with Example 3.4. The ªOutº-component induces supporting

polytope K1 =∆({L,R})×
{

αℓ+ (1−α)r | 0 ≤ α ≤ 2/3
}

in player 1’s excluded game. Note that

such a supporting polytope contains two equilibria, (R, r) and the mixed (3
4
L+

1
4
R, 1

4
ℓ+ 3

4
r).

As anticipated in the Introduction, the former has index +1 while the latter has index −1.

Therefore, the supporting polytope has index 0.

5.2. Step 2: Perturbing the excluded game so that it has no equilibria in the supporting

polytope

From Step 1, assume without loss of generality that K1 has index 0. Lemma 5.10 below

guarantees that, when that is the case, there is a game ÅG1 equivalent to G
1 and a payoff

perturbation of ÅG1 such that, letting ÅK1 be the set of strategies equivalent to K1 in ÅG1, the

resulting perturbed game does not have an equilibrium in ÅK1. Such a perturbed game also

satisfies some additional properties that are used in Section 5.3.

To state the Lemma, define Σ
1
2 ≡ ∆(S0

2
) so that we can write the set of mixed strategy

profiles in G
1 as Σ

1 =Σ
1
1 ×Σ

1
2. Define also K

1,η

2
≡

{

σ1
2 ∈Σ

1
2 | ∀s1

1 ∈ S1
1,G1

1(s1
1,σ1

2)≤G1(Q)−η
}

.

Lemma 5.10. There exists a game ÅG1 = ( ÅS1
1, ÅS0

2
, ÅG1

1, ÅG1
2) equivalent to G

1 such that:

(1) Player 1’s pure strategy set ÅS1
1 is the collection of vertices of a polyhedral refinement

P1 of a simplicial subdivision of ÅΣ1
1.

(2) Player 2’s pure strategy set ÅS0
2

is the collection of vertices of a polyhedral refinement

P2 of Σ1
2 for which no polyhedron of S2 that intersects ∂̃K1

2 has a point in common

with K
1,η

2
.

(3) There exists δ> 0, a δ-perturbation ÅG1,δ of ÅG1 and, for each ε> 0, an ε-perturbation

ÅG1,δ,ε of ÅG1,δ such that for n = 1,2:

lim
ε→0

ÅG
1,δ,ε
n (s1, s2)= ÅG

1,δ
n (s1, s2)= ÅG1

n(s1, s2) if s2 ̸∈ K
1,η

2
, and

lim
ε→0

ÅG
1,δ,ε
n (s1, s2)= ÅG

1,δ
n (s1, s2)≥ ÅG1

n(s1, s2) if s2 ∈ K
1,2η

2
.

(4) For each n = 1,2 and ε> 0 small enough, if mixed strategies σn ̸= σ̃n are equivalent

in ÅG1,δ and σn’s support is within the vertices of a polyhedron of Pn whereas σ̃n’s is

not, then, for every mixed strategy σ−n, we have ÅG
1,δ,ε
n (σn,σ−n)> ÅG

1,δ,ε
n (σ̃n,σ−n).

(5) For ε> 0 small enough, the game ÅG1,δ,ε = ( ÅS1
1, ÅS0

2
, ÅG

1,δ,ε
1

, ÅG
1,δ,ε
2

) does not have an equi-

librium in ÅK1.

Proof. See Online Appendix B. □
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The construction of ÅG1 in Lemma 5.10 follows closely the construction presented in The-

orem 3 in GW. However, there are a few differences stemming from the fact that the sup-

porting polytope may contain more than one equilibrium component of the excluded game.

Parts (1) and (2) simply record that the strategies obtained in ÅG1 are duplicates originating

from vertices of a polyhedral subdivision of the strategy sets. This is needed so that (3) and

(4) can be meaningfully stated and used in Section 5.3. Chiefly, in Part (3), s2 can be viewed

as a vertex of the polyhedral subdivision P2 of Σ1
2; and (4) refers explicitly to the vertices of

the polyhedral subdivision. The main difference with the construction in GW is (3). Within

ÅK1,2η the payoff perturbations are not necessarily arbitrarily small, i.e., the inequality may

be strict. This contrasts with GW where all payoff perturbations can be made as small as

desired.16

Example 5.11. In Example 3.4 we established that the supporting polytope K1 =∆({L,R})×
{

αℓ+ (1−α)r | 0 ≤ α ≤ 2/3
}

has index 0. Therefore, we can find a game equivalent to the

subgame in Figure 1 and a perturbation so that the perturbed game has no equilibrium in

K1. Since such a subgame is relatively simple, we can accomplish this by directly perturbing

it to the following game:

Åℓ År

ÅL 3,1 2,0

ÅR 0,0 1,3

5.3. Step 3: The equivalent game and its perturbation

We construct a game ÅG equivalent to G and a perturbation of ÅG that has no equilibrium

in a neighborhood of the equivalent component of equilibria ÅK . The main idea is to perturb

G so that, with vanishing probability, player 1 is forced to play the game ÅG1,δ,ε that has been

defined in Step 2 and that has no equilibrium in ÅK1. We show that, in this perturbed game,

players’ behavior induce an equilibrium of ÅG1,δ,ε so that player 2’s strategy cannot belong to

the supporting polytope. This, in turn, implies that the perturbed game of ÅG cannot have

an equilibrium in the fixed original neighborhood of ÅK .

16 This is a critical difference. As in GW, we obtain the payoff-perturbations from a map that does not have

fixed points on K1. In GW such a map is chosen to be ªcloseº to the best-reply correspondence at every point

of the domain. However, in our setting, it is possible for K1 to contain many equilibrium components with

nonzero index. In those cases, a map without fixed point on K1 can be ªcloseº to the best-reply correspondence

in the complement of K1 but ªfarº from it on K1. (See Figure 2 for an illustration. The dotted line is far from

the solid line in the interval (x1, x2) so that it does not cross the 45◦ line.) This translates to ªlargeº payoff

perturbations in K1.
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FIGURE 6. Game ÅGε

2

Nature

P(κ1)= 1−ε P(κ2)= ε
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s1 ∈ (S1 \ S1
1)∪ ÅS1

1

1
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Ås1
1 ∈

ÅS1
1

. . . . . . . . . . . .. . .

ÅG1(s1, s2),

ÅG2(s1, s2)

. . .

1[s2∈
ÅS2]

ÅG
1,δ,ε
1

( Ås1
1, q0

2
(s2)),

1[s2∈
ÅS2]

ÅG
1,δ,ε
2

( Ås1
1
, q0

2
(s2))− 1[s2∈S2]B

s2 ∈ S2 ∪
ÅS2

Henceforth, extend the original game G to the equivalent game ÅG in which player 1’s

strategy set is S1 ∪
ÅS1
1 and player 2’s strategy set is S2 ∪

ÅS2, where

ÅS2 ≡

{

τ̂⊗2 ∗ Ås0
2 | Ås0

2 ∈
ÅS0
2

}

.

The extension is by equivalence, i.e., by viewing each strategy in ÅS1
1 as a duplicate of a

strategy in Σ
1
1, and similarly, viewing each strategy in ÅS2 as a duplicate of a strategy in Σ2.

Let ÅG1 and ÅG2 be the corresponding bilinear extensions of G1 and G2 to ∆(S1∪
ÅS1
1)×∆(S2∪

ÅS2).

For a given ε > 0, we define the extensive-form game ÅGε whose normal-form is ÅGε. The

extensive-form is represented in Figure 6. Nature moves first and chooses between κ1 with

probability (1−ε) and κ2 with probability ε. Player 1 observes Nature’s choices but player 2

does not. After κ1, player 1 chooses from (S1\S1
1)∪ ÅS1

1. In turn, if Nature chooses κ2, player 1

has to choose an action from the set ÅS1
1. Player 2 observes neither Nature’s move nor player

1’s moves, and selects from S2 ∪
ÅS2. In the payoff assignment of Figure 6, the symbol 1[X ]

represents the indicator function that equals 1 if X is true and 0 otherwise. Furthermore,

the value of B > 0 is chosen sufficiently large such that −B < min Ås2∈
ÅS2

ÅG
1,δ,ε
2

( Ås1
1, Ås2) for every

Ås1
1 ∈

ÅS1
1 and ε> 0.

When ε = 0, we write the game ÅG0 simply as ÅG and note that it is equivalent to the

original game G. Let ÅK be the equilibrium component equivalent to K in ÅG and let ÅO be a

neighborhood of ÅK in the mixed strategy set of ÅGε whose closure contains no equilibrium of

ÅGε in its boundary. Since ÅO contains no equilibria of ÅG in its boundary, this is also the case

for the game ÅGε for sufficiently small ε> 0. We conclude the proof of Theorem 2.5 by proving

that for ε> 0 small enough there is no equilibrium of ÅGε in ÅO .
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Similarly to Step 1, we work with behavioral strategies of game ÅGε. A behavioral strategy

profile is a member of ∆((S1 \ S1
1)∪ ÅS1

1)× ÅΣ1
1×∆(S2∪

ÅS2). Suppose to the contrary that there

exists a sequence (εk)k∈N of positive numbers converging to 0 and a sequence (σk)k∈N ⊂ ÅO

converging to σ ∈ ÅK such that for every k the profile σk is an equilibrium of ÅGεk . Passing

to a subsequence if necessary, assume (σk
1
,σk

2
) = (τk

1
, Åζ

1,k
1

,σk
2
) → (τ1, Åζ1

1,σ2). Write τk
1
≡ (1−

αk)τ
×,k
1

+αk Åτ
1,k
1

where τ
×,k
1

∈ ∆(S1 \ ÅS1
1), Åτ

1,k
1

∈ ∆( ÅS1
1) and αk ∈ [0,1]. Similarly, write σk

2
≡

(1−βk) Åτk
2
+βkτ

k
2
, where Åτk

2
∈ ∆( ÅS2), τk

2
∈ Σ2, and βk ∈ [0,1]. Let ϕk ≡ εk[εk + (1− εk)αk]−1.

Again, passing to the corresponding subsequence if necessary, assume (τ
×,k
1

, Åτ
1,k
1

) → (τ×1 , Åτ1
1),

( Åτk
2
,τk

2
)→ ( Åτ2,τ2), βk →β and ϕk →ϕ.

Claim 5.12. For k large enough, αk = 0.

Proof. To the contrary, suppose there is a subsequence of (σk)k∈N for which the corresponding

αk’s are all strictly positive. From Lemma 3.1 there is a product strategy σ⊗
2
∗σ0

2
in G that

is equivalent to σ2 in ÅG. First observe σ0
2
∈ ∂̃K1

2 . Otherwise, σ0
2
∈ K1

2 \ ∂̃K1
2 which, for k

sufficiently large, implies αk = 0 since τk
1

is an equilibrium strategy. Player 2’s expected

payoff against σk
1

in ÅGεk for a typical strategy y2 = (1− b) Åx2 + bx2, with Åx2 ∈ ∆( ÅS2), x2 ∈ Σ2,

and b ∈ [0,1] is

(9) [εk + (1−εk)αk]

(

ϕk
[

(1−b) ÅG
1,δ,εk

2
( Åζ

1,k
1

, q0
2( Åx2))−bB

]

+ (1−ϕk) ÅG2( Åτ
1,k
1

, y2)

)

+

(1−εk)(1−αk) ÅG2(τ
×,k
1

, y2).

Player 2’s equilibrium strategy σk
2

maximizes (9). The limit strategy is σ2 = (1−β) Åτ2+βτ2.

For k sufficiently large, σ2 also maximizes (9) because Supp(σ2) ⊆ Supp(σk
2
). Denote by A⊗

2

the subset of strategies σ′
2 ∈ ∆((S2 \ S2

2)∪ ÅS2) for which q⊗
2

(σ′
2) is equivalent to τ̂⊗

2
in game

G
⊗. Since the payoff to player 2 from all strategies in A⊗

2
against τ

×,k
1

in G is the same,

(10) σ2 ∈ arg max
y2∈A⊗

2

ϕk
[

(1−b) ÅG
1,εk

2
( Åζ

1,k
1

, q0
2( Åx2))−bB

]

+ (1−ϕk) ÅG2( Åτ
1,k
1

, y2).

Now, q⊗
2

(σ2) is equivalent to τ̂⊗
2

in G
⊗ which implies that q⊗

2
(τ2) is also equivalent to τ̂⊗

2
in

G
⊗, so that τ2 ∈ A⊗

2
. Therefore, there exists a product strategy τ̂⊗

2
∗ Åτ0

2
which is equivalent to

τ2 in G. Hence, τ̂⊗
2
∗ Åτ0

2
∈∆( ÅS2) and

ÅG2( Åτ
1,k
1

, (1−β) Åτ2 +β(τ̂⊗2 ∗ Åτ0
2))= ÅG2( Åτ

1,k
1

,σ2),(11)

ÅG
1,δ,εk

2
( Åζ

1,k
1

, (1−β) Åτ2 +β(τ̂⊗2 ∗ Åτ0
2))> (1−β) ÅG

1,δ,εk

2
( Åζ

1,k
1

, q0
2( Åτ2))−βB.(12)
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Therefore, it must be that β = 0, so σ2 = τ̂⊗
2
∗ Åτ0

2
∈∆( ÅS2). Furthermore, Åτ0

2
’s support must

be within the set of vertices of a polyhedron in P2, otherwise player 2 can do strictly better

by Lemma 5.10 (4). Hence, every Ås0
2
∈ ÅS0

2
in Åτ0

2
’s support satisfies Ås0

2
̸∈ ÅK

1,η

2
(because of (2) in

Lemma 5.10). On the other hand, both Åτ
1,k
1

and Åζ
1,k
1

must be optimal against σk
2

for every k.

The last two facts together with Lemma 5.10 (3) imply that at the limit εk → 0, for k →+∞,

we have

Åζ1
1 ∈ arg max

x1∈∆( ÅS1
1
)

ÅG1
1(x1, Åτ0

2) and Åτ1
1 ∈ arg max

x1∈∆( ÅS1
1
)

ÅG1(x1, Åτ2).

Since Åτ2 = τ̂⊗
2
∗ Åτ0

2
strategy Åτ1

1 is, in fact, a best-reply against Åτ0
2

in the excluded game ÅG1.

Thus, ϕ Åζ1
1+ (1−ϕ) Åτ1

1 is also a best-reply against Åτ0
2

in ÅG1. Recall Åτ0
2
∈ ∂̃K1

2 , hence by Assump-

tion A.2, player 2 must have a profitable deviation τ̃0
2

in ÅG1, i.e.,

ÅG1
2(ϕ Åζ1

1 + (1−ϕ) Åτ1
1, τ̃0

2)> ÅG1
2(ϕ Åζ1

1 + (1−ϕ) Åτ1
1, Åτ0

2)=ϕ ÅG1
2( Åζ1

1, Åτ0
2)+ (1−ϕ) ÅG1

2( Åτ1
1, Åτ0

2)=

lim
k→∞

[

ϕk ÅG
1,δ,εk

2
( Åζ

1,k
1

, Åτ0
2)+ (1−ϕk) ÅG2( Åτ

1,k
1

, τ̂⊗2 ∗ Åτ0
2)

]

,

where the last equality uses Lemma 5.10 (3) since Åτ0
2
∉ ÅK

1,η

2
. Similarly,

ÅG1
2(ϕ Åζ1

1+(1−ϕ) Åτ1
1, τ̃0

2)=ϕ ÅG1
2( Åζ1

1, τ̃0
2)+(1−ϕ) ÅG1

2( Åτ1
1, τ̃0

2)≤ lim
k→∞

[

ϕk ÅG
1,δ,εk

2
( Åζ

1,k
1

, τ̃0
2)+(1−ϕk) ÅG2( Åτ

1,k
1

, τ̂⊗2∗τ̃
0
2)

]

,

where we have used again Lemma 5.10 (3) in the last inequality. From this we have a

contradiction given that τ̂⊗
2
∗ τ̃0

2
does strictly better than Åτ2 for large enough k. □

Claim 5.13. For k large enough, ( Åζ
1,k
1

, q0
2
( Åτk

2
)) is an equilibrium of ÅG1,δ,εk .

Proof. From Claim 5.12, for k sufficiently large, αk = 0. For such a k, player 2’s expected

payoff from playing σk
2
= (1−βk) Åτk

2
+βkτ

k
2

against σk
1

is equal to

(13) εk

[

(1−βk) ÅG
1,δ,εk

2
( Åζ

1,k
1

, q0
2( Åτk

2))−βkB
]

+ (1−εk)
[

ÅG2(τ
×,k
1

, (1−βk) Åτk
2 +βkτ

k
2)

]

=

εk

[

(1−βk) ÅG
1,δ,εk

2
( Åζ

1,k
1

, q0
2( Åτk

2))−βkB
]

+ (1−εk)
[

(1−βk)G⊗
2 (q⊗

1 (τ
×,k
1

), τ̂⊗2 )+βk
ÅG2(τ

×,k
1

,τk
2)

]

.

Repeating similar arguments to the proof of Claim 5.12 we obtain βk → 0. From (13) we

therefore see that, for k large enough, q0
2
( Åτk

2
) must be a best-reply to Åζ

1,k
1

in ÅG1,δ,εk . In turn,

Åζ
1,k
1

must also be best-reply to q0
2
( Åτk

2
). That is, ( Åζ

1,k
1

, q0
2
( Åτk

2
)) is an equilibrium of ÅG1,δ,εk . □

Let ( Åζ1
1, q0

2
( Åτ2)) be a limit of ( Åζ

1,k
1

, q0
2
( Åτk

2
))k∈N, that is, an equilibrium of ÅG1,δ,0. By con-

struction, ( Åζ1
1, q0

2
( Åτ2)) belongs to the complement of ÅK1. Therefore, by definition of ÅK1, there

exists a pure strategy Ås1
1 such that ÅG

1,δ,0
1

( Ås1
1, τ̂⊗

2
∗ q0

2
( Åτ2))) = ÅG1( Ås1

1, τ̂⊗
2
∗ q0

2
( Åτ2)) >G1(Q), where

the equality comes from Lemma 5.10 (3). Hence, σ ∉ ÅK , which implies σk ∉ ÅO for sufficiently
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FIGURE 7. A perturbation of a game equivalent to Figure 1
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large k. This contradicts our initial assumption. We conclude that there is no sequence of

equilibria of ÅGεk that converges to some point in ÅO .

Example 5.14. We finish the example started in Section 1.1 using the same construction

as in Figure 6. Since the game equivalent to player 1’s excluded game has the same strat-

egy space as the excluded game itself, it is enough to ªplugº the perturbed version found

in Example 5.11 after κ2. See Figure 7 for the resulting game. Following the same line of

reasoning as in the general case above, note that player 1 cannot be made indifferent be-

tween In and Out at the limit of a sequence of equilibria as ε goes to zero. If that was the

case, player 2 would be playing ℓ with probability close to 2/3 along the sequence which,

in turn, implies that player 1 would be playing T and ÅT with probability 1 and, therefore,

player 2 would have a profitable deviation to playing ℓ with probability 1. Hence, if there

is an equilibrium close to the ªOutº-component then, for any ε > 0, player 1 must strictly

prefer playing Out and player 2 would be choosing her strategy as if she was best-replying

to player 1’s move after κ2. That is, player 2 would be choosing ℓ with probability 1. But

then, player 1 would have an incentive to deviate to In and then choose T. We conclude that

the perturbed game has no equilibrium close to the ªOutº-component and, correspondingly,

that such a component is not hyperstable in the original game.

6. APPLICATIONS

In this section we analyze some examples including a few prominent models in the eco-

nomics literature and show how index computation can be used to eliminate non-hyperstable

equilibria. We begin by revisiting the game in Figure 1 and showing that the recent refine-

ment concept of sequentially stable outcomes of Dilmé (2024) diverges from hyperstability.

We then move to study two finitely repeated games. In particular, Example 6.3 illustrates
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FIGURE 8. Equivalent Entry game
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how relying only on pure-strategy subgame-perfect equilibria to analyze these games may

lead to selecting equilibrium outcomes that have index zero. We conclude by analyzing

some classical signaling games. This serves both to compare hyperstabily to other equilib-

rium concepts and to highlight how hyperstable components are easy to compute through

their index. In preparation for the examples, we note a novel way to compute the index of

a component using the indexes of the supporting polytopes in their corresponding excluded

games. The following result is a corollary from the arguments in Section 5.1.

Proposition 6.1. Let G be a two-player extensive-form game with normal form G. Let K

be a component for which assumptions A.1 and A.2 are satisfied. Letting K⊗ = q⊗(K) be the

projected component in game G
⊗, the index of component K in game G, written as IndG(K),

can be decomposed as follows

(14) IndG(K)= IndG1(K1)× IndG⊗(K⊗)× IndG2(K2),

where, by convention, IndGn(Kn)≡ 1 if player n does not have an excluded game.

Example 6.2. Sequential equilibrium is one of the most prominent solution concepts in

extensive-form games as it extends the principle of backward induction to imperfect infor-

mation games. However, it has shortcomings which have been extensively discussed in the

literature (Kohlberg and Mertens, 1986; Cho and Kreps, 1987). Sequentially stable out-

comes, recently defined by (Dilmé, 2024), refine the set of sequential equilibrium outcomes.

Roughly, an outcome ω is sequentially stable if for any vanishing sequence of behavioral

trembles, there exists a sequence of ε-sequential equilibria of the (trembled)-game (with
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vanishing ε > 0) inducing outcomes which converge to ω (see Dilmé, 2024, p.9 for the defi-

nition). Note that while the definition of hyperstability considers payoff perturbations ex-

plicitly, by invoking ε-sequential equilibria, sequentially stable outcomes considers payoff

perturbations implicitly.

Sequentially stable outcomes are a natural refinement of sequential equilibrium. They

appropriately refine the set of equilibria in some examples while perhaps being equally

tractable. Unfortunately, similarly to sequential equilibrium, sequentially stable outcomes

rely on the specifics of the extensive-form. Hence, contrasting with hyperstability, they do

not satisfy invariance.17 We can illustrate this difference returning to Figure 1. It can be

easily checked that ªOutº is a sequential equilibrium outcome. It is also a sequentially stable

outcome (which can be seen by applying Dilmé, 2024, Proposition 4.3, Part 2). However,

ªOutº is not selected by either concept in the well-known equivalent representation of the

game provided in Figure 8 (cf. Hillas, 1994). After adding the redundant strategy X , the

unique equilibrium of the subgame that follows In is (L,ℓ), making (In−L,ℓ) the unique

Sequential Equilibrium (or Sequentially Stable) outcome. Not surprisingly, the forward

induction outcome (In−L,ℓ) is the unique equilibrium selected by hyperstability both in in

the representation of Figure 1 and in the representation of Figure 8. (Hyperstability can be

computed directly in the latter game by noticing that player 1’s excluded game associated

with ªOutº does not have any equilibrium in the supporting polytope, implying that the

supporting polytope has index 0 and, by Proposition 6.1, component ªOutº also has index 0,

i.e., it is not hyperstable.)

We move to study a finitely repeated game. As we show below, finitely repeated games

have a recursive structure that aids the computation of the index of equilibrium outcomes.18

Example 6.3. The repeated game with stage-game in Figure 9 is taken from Mailath and

Samuelson (2006, Example 4.4.1). The stage game has 3 equilibria in pure strategies (A, A),

(B,B) and (C,C) and 4 equilibria in mixed strategies (1
5

A+
4
5
B, 3

7
A+

4
7
B), (1

5
A+

4
5
C, 1

3
A+

2
3
C),

(3
4
B+

1
4
C, 1

4
B+

3
4
C) and ( 1

17
A+

12
17

B+
4
17

C, 3
13

A+
4

13
B+

6
13

C). Pure strategy equilibria are strict

and therefore have index +1. Mixed strategy equilibria that are not completely mixed have

17 In addition, as already discussed by Dilmé, sequentially stable outcomes do not satisfy admissibility either.
18 An interesting result in the literature on finitely repeated games is Osborne (1990). Proposition 1 in this

paper provides a sufficient condition for a pure Nash equilibrium outcome (i.e., an outcome where no random-

izations are made at any period by both players) of a finitely repeated, two-player game not to be Kohlberg-

Mertens stable. In particular, this condition implies that this outcome has an index of zero: any non-zero

index equilibrium component in mixed strategies contains a Kohlberg-Mertens stable set. If an outcome is not

Kohlberg-Mertens stable, then the associated index is zero.
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FIGURE 9. Stage-game for a repeated game with player specific punishments

A B C

A 4,4 0,0 0,0

B 0,0 3,1 0,0

C 2,2 0,0 1,3

index -1.19 Since indexes must add up to one, the completely mixed equilibrium has index

+1.

Examples such as the finitely-repeated Prisoners Dilemma do not allow for equilibria

where in some stage players play a profile different from the unique equilibrium of the stage

game. This contrasts with this example in which the stage-game has equilibria that can

be used differently to punish/reward players in the associated finitely repeated game, and

allows for subgame perfect equilibrium outcomes in which a profile that is not necessarily

an equilibrium of the stage-game is played in early stages. Indeed, Mailath and Samuelson

(2006, p. 113) note that, if the game in Figure 9 is played twice, then it is possible to support

(C, A) in the first period in subgame perfect equilibrium by playing (A, A) in the second stage

if no player deviated in the first stage, (B,B) if the second player deviated, and (C,C) if the

first player deviated. We show in this particular case that supporting the non-equilibrium

profile in the first stage is not plausible (in the sense of hyperstability). To be precise, we

show that the component K which induces the outcome ª6,6º in which players play on-path

(C, A) and then (A, A) is not hyperstable.

First, we note that such an outcome is not isolated in the set of equilibrium outcomes.

Indeed, if ª2,6º is the outcome in which players play on-path (C,C) twice, the same equi-

librium component induces the continuum of outcomes αª6,6º+(1−α)ª2,6º for 0 ≤ α ≤ 1.

Therefore, Assumption A.1 is not satisfied and we cannot directly apply the results in this

paper to analyze the equilibrium component K . Nonetheless, we can use Property I.1 and

perturb player 2’s payoffs slightly so that, in the first stage, her payoff is 3−ε under profile

(C,C) with ε > 0. Call the resulting perturbed game G(ε). The index of any small enough

admissible neighbourhood O of K in the original game coincides with the index of O in G(ε)

provided ε > 0 is small enough. Furthermore, in G(ε), the unique component in O does in-

duce a unique outcome and, in this unique outcome, players play on path (C, A) and then

(A, A).

19 The latter can be seen by deleting the unused pure strategy for both players for each equilibrium as it is an

inferior response. The resulting truncated game has 3 equilibria, 2 of them strict and one in completely mixed

strategies which, therefore, has index -1.
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FIGURE 10. Excluded games G
1 (left) and G

2(ε) (right).

A B C

AA 8,8 4,4 4,4

AB 4,4 7,5 4,4

AC 6,6 4,4 5,7

CA CB CC

A 5,7−ε 1,3−ε 1,3−ε

B 1,3−ε 4,4−ε 1,3−ε

C 3,5−ε 1,3−ε 2,6−ε

Let us compute player 1’s excluded game under such an outcome. Since it does not depend

on ε, we simply denote it G1. Any deviation that involves player 1 playing B in the first stage

gives player 1 a payoff of at most 3, which is strictly smaller that her payoff of 6 under the

equilibrium component. Therefore, we may only consider player 1’s deviations in which she

plays A in the first stage. After eliminating duplicates, player 1’s (simplified) excluded game

is represented in Figure 10 (left). Note that payoffs are obtained from Figure 9 after adding

to each payoff vector the vector (4,4) and, consequently, the set of Nash equilibria of G1 and

the stage game in Figure 9 coincide. Player 1’s supporting polytope consists of those strategy

profiles in G
1 that yield player 1 a payoff smaller or equal than 6. This polytope includes

equilibrium (AC,C) as well as every mixed strategy equilibrium. Hence, the index of the

supporting polytope in player 1’s excluded game is -1.

In turn, consider player 2’s excluded game G
2(ε) in Figure 10 (right). Analogously to

G
1, this (simplified) excluded game is constructed by noticing that every deviation in which

player 2 plays B is an inferior response to the equilibrium outcome and by eliminating

duplicates. Payoffs are obtained from Figure 9 after adding to each payoff vector the vector

(1,3− ε). That is, both games also have the same Nash equilibria. Player 2’s supporting

polytope consists of those strategy profiles in G
2(ε) that yield player 2 a payoff smaller than

6. This polytope includes every equilibrium of G
2(ε) but (A,CA) and, therefore, the index

of the supporting polytope in player 2’s excluded game is zero. Using Proposition 6.1, the

index of the component K that induces the outcome in which players play (A,C) in the first

stage is zero for ε≥ 0 small enough. That is, (A,C) cannot be sustained in the first stage in

a hyperstable equilibrium component in the two-fold repetition of the game in Figure 9.

Example 6.4. van Damme (1989) shows that in the two-fold repetition of the stage game in

Figure 11 the outcomes in which players either play (T,L) or (B,R) twice is not stable in the

sense of Kohlberg and Mertens (1986) whereas the outcome in which players alternate is,

in turn, stable. In addition, van Damme (1989, p. 429) also points out that ª[c]omputing the

set of all stable equilibrium paths seems to be laborious, however, even in this most simple

conceivable case.º Here, we illustrate how the properties of the index and the results in this
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paper can be used to compute the index of every equilibrium component in this repeated

game. We also note that every nonzero index component contains a stable set (both in the

sense of Kohlberg and Mertens, 1986, and in the sense of Mertens, 1989.)

Call G the two-fold repetition of the game in Figure 11. The stage game of G has 3

equilibria. The two pure equilibria (T,L) and (B,R) are strict and therefore have index +1.

The completely mixed equilibrium (4
5
T +

1
5
B, 1

5
L+

4
5
R) has index −1.

First, every equilibrium component in which players play a completely mixed action pro-

file in the first period has nonzero index. Indeed, if in such a component players always play

the completely mixed equilibrium of the stage game after any realization in the first stage,

then this equilibrium component induces a completely mixed outcome which, therefore has

nonzero index (cf. Proposition 2.3). On the other hand, if for some realization in the first

stage, players play a strict equilibrium in the second stage then every observable deviation

consists of deviating in the second stage from the prescribed strict equilibrium. Those de-

viations are inferior responses to the equilibrium outcome and after eliminating them the

outcome is completely mixed and, therefore, has nonzero index.

Let ª8,2º be the equilibrium outcome in which players play (T,L) twice. Using a similar

argument as above, deviating only in the second stage is an inferior response to the equi-

librium outcome. After eliminating those deviations from G, we can see that player 1 has

(after eliminating duplicates) only 2 observable deviations, BT and BB (that is, playing B

in the first stage and then playing either T or B in the subgame that follows (B,L)). Player

2’s strategy set in player 1’s excluded game is {L,R}. Note that if player 1 deviates to either

BT or BB in G then the payoff vector accrued in the first stage is (0,0) given that player 2

is playing L in such a stage. Therefore, the excluded game G
1 coincides with the game in

Figure 11.

Player 1’s payoff in G
1 is always strictly smaller than player 1’s payoff of 8 if (T,L) is

played twice. Hence, the supporting polytope K1 coincides with the entire strategy space

in G
1 which implies that K1 has index +1 in G

1. In turn, consider player 2’s observable

deviations RL and RR. The excluded game G
2 again coincides with the game in Figure 11.

The supporting polytope K2 requires player 1 to play B with probability smaller or equal

than 0.5. The only equilibrium that lies outside that region is (B,R) which is strict and,

therefore, has index +1. Thus, the supporting polytope K2 has zero index in game G
2.

Proposition 6.1 implies that the component ª8,2º has zero index and, therefore, it is not hy-

perstable. The analogous argument of course holds for the equilibrium component ª2,8º. It

also holds for the equilibrium outcome in which players play the completely mixed equilib-

rium of the stage game after playing one of the strict equilibria in the first stage.
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FIGURE 11. Coordination stage-game

L R

T 4,1 0,0

B 0,0 1,4

Finally, consider now the two equilibrium outcomes ª5,5º, one in which players play (T,L)

first and (B,R) second, and the other in which this order is reversed. In both cases player

1 and player 2’s excluded games coincide with the game in Figure 11. Thus, every payoff in

the two excluded games associated to the corresponding equilibrium component is smaller

for both players than the payoff 5 induced by the equilibrium outcome. This implies that

both supporting polytopes have index +1 and, therefore, the two components that induce the

equilibrium payoff vector (5,5) also have index +1 and are hyperstable.

We now turn our attention to signaling games. Signaling games have driven the cre-

ation of a wealth of refinement concepts to eliminate implausible equilibria. Some of the

most well-known are the Intuitive Criterion, D1, D2, Never-weak-best-reply (NWBR), and

Universal Divinity. Hyperstability is strictly stronger than any of these criteria and, as we

show, it is easy to compute by using properties of the index. The next proposition is known

but we recall it for completeness.

Proposition 6.5. Let G be a finite signaling game. Suppose the terminal payoffs of G are

chosen according to A.1 and A.2 and Q is an equilibrium outcome which is hyperstable.

Then Q satisfies the Intuitive Criterion, D1, D2, NWBR and Universal Divinity.

The result follows from observing that a stable outcome in the sense of Kohlberg and

Mertens (1986) satisfies all the criteria listed above and that every hyperstable outcome is

also Kohlberg-Mertens stable.

Example 6.6. Consider the Beer-Quiche Game from Cho and Kreps (1987) (see Figure 12).

The game has two equilibrium outcomes. In the first one, Sender chooses Beer (B) for both of

his types and Receiver, seeing this, does Not Fight (NF). Off the equilibrium path, Receiver

Fights (F) with probability at least 0.5. This equilibrium outcome survives all the classical

refinements listed in Cho and Kreps and there are good reasons for it to be selected (see

Cho and Kreps, 1987, pp. 184-185). In the other equilibrium outcome, Sender chooses

Quiche (Q) for both of his types and, upon seeing this, Receiver does not fight. To prevent

the strong type (S) from deviating to Beer (B), Receiver fights with probability at least 0.5

off the equilibrium path. Cho and Kreps provide intuitive reasons under which Receiver’s
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FIGURE 12. Beer-and-Quiche Game

Receiver

Receiver

Nature
S

0.9
W

0.1

B

Q

B

Q

2,1

NF

0,0

F

3,0

NF

1,1

F

1,0

F

3,1

NF

0,1

F

2,0

NF
Sender’s excluded game in QQ−NF

component:

NF F

BQ 3,9/10 6/5,0

QB 2,9/10 9/5,1

BB 29/10,9/10 9/10,1/10

off-equilibrium beliefs are implausible (see p.185) and this equilibrium outcome does not

survive the Intuitive Criterion. Therefore, it is not hyperstable (see Proposition 6.5). But

we can verify this directly by computing the index of the second equilibrium outcome.

Sender’s excluded game associated to this equilibrium outcome is in the right-hand side

of Figure 12 where QB, for instance, is the deviation in which sender chooses Q after S and

B after W . First note that the supporting polytope consists of those strategy profiles in the

excluded game whose payoff to Sender is smaller than or equal to 21
10

(i.e. her payoff under

the QQ−NF component). In this excluded game, BB is strictly dominated. Furthermore,

the excluded game has three equilibria, (BQ,NF), (QB,F), and ( 1
10

BQ+
9

10
QB, 3

8
NF +

5
8
F).

Sender’s payoff under these equilibria is, respectively, 3, 9
5
, and 15

8
. That is, only the last

two belong to the supporting polytope and, since strict equilibria have index +1 and the

sum of all the indexes must be equal to +1, the index of the supporting polytope is zero.

Proposition 6.1 implies that QQ−NF has index zero and, consequently, it is not hyperstable.

Example 6.7. Consider the game in Cho and Kreps (1987, Figure IV, p. 207) and rep-

resented in Figure 13. The game has two equilibrium outcomes. In the first, both types

send m′ and, off the equilibrium path, Receiver plays in the convex hull of (2/3,0,1/3),

(1/6,1/2,1/3), (0,1/2,1/2) and (0,0,1) where probabilities in each vector correspond, in or-

der, to strategies r1, r2 and r3. This first component satisfies the Intuitive Criterion, D1,

D2, and Universal Divinity. In the second equilibrium outcome both types send m and Re-

ceiver plays r2. Since the second equilibrium outcome is induced by a strict equilibrium

(hence with index+1) and the indexes of all equilibria always add up to +1 (Property I.3)

the first component has zero index. While simple, this reasoning requires knowing all the

equilibrium outcomes but, as before, we can also directly compute its index.
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FIGURE 13. Figure IV in Cho & Kreps

Receiver

Nature1/2 1/2
t1

0,0

m′

m

t2

0,0

m′

m

−1,3

r1

1,2

r2

−1,0

r3

1,0

r1

1,2

r2

−2,3

r3

Sender’s excluded game in m′m′

component:

r1 r2 r3

m′m 1/2, 0 1/2,1 -1,3/2

mm′ -1/2,3/2 1/2,1 -1/2,0

mm 0, 3/2 1, 2 -3/2, 3/2

Sender’s excluded game in the component is on the right-hand side of Figure 13. Its

unique equilibrium is (mm, r2) and it lies outside the supporting polytope which, conse-

quently, has index zero. Therefore, by Proposition 6.1, the m′m′ component has index zero

and, therefore, it is not hyperstable.

Example 6.8. We move to the example in Cho and Kreps (1987, p.216) represented in Fig-

ure 14. This example illustrates how Kohlberg-Mertens stability is strictly stronger than

NWBR, D1, D2, Universal Divinity, and the Intuitive Criterion. Similarly to the previous

example, this game has two equilibrium outcomes. The first one is the strict equilibrium

(mm′m′, r1), where mm′m′ means player 1 plays m in his leftmost information set, and m′

in the middle and rightmost information sets. Hence, the other equilibrium outcome in

which all three types send m′ must have index 0 and not be hyperstable. The formal argu-

ment sketched by Cho and Kreps that verifies that the second equilibrium outcome is not

Kohlberg-Mertens stable (although satisfying all other refinement criteria) is more involved

than what we showed here and, because of the unintuitive nature of their characterization

of stability, less convincing.20 In contrast, using the properties of the index, identifying hy-

perstability is easy. Its intuitiveness comes from the fact that it captures payoff robustness

in every equivalent game.

The supporting polytope in Sender’s excluded game is a polyhedron obtained by permut-

ing the vector (2/3,1/3,0) in Receiver’s mixed strategy set. This supporting polytope contains

two equilibria in its interior. Both indices can be explicitly computed using Shapley’s for-

mula (Shapley, 1974). One has index +1 and the other index −1, which implies that the

supporting polytope in Sender’s excluded game has index zero and, by Proposition 6.1, the

20 This is a position Cho and Kreps express themselves, see last paragraph of p. 220.
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FIGURE 14. A signaling game with three types

Receiver

Nature

1/3
1/3

1/3

t1

0,0

m′

m

t2

0,0

m′

m

t3

0,0

m′

m

1,3

r1

−2,0

r2

−2,0

r3

−2,3

r1

1,0

r2
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1,2

r3

outcome in which every type chooses m′ has zero index and, therefore, fails to be hyper-

stable.

Example 6.9. We conclude with a finite game version of Spence’s job-market model in

Figure 15. There are two equilibrium outcomes, one pooling and one separating and hy-

perstability selects the separating equilibrium outcome. We can analyze the game in the

same manner as the Beer-and-Quiche game to show that the pooling equilibrium (where

the Sender sends e for both types, and the Receiver replies with w on equilibrium path, and

off equilibrium path, with a probability of w at least 1/2) has index 0.

Interestingly, when we consider the general Spence model (Cho and Kreps, 1987, Section

V) with any number of types and a continuum of education levels and wages, the same

reasoning can be used to eliminate any pooling or semi-pooling equilibrium outcome, leaving

only the fully separating one (the so-called Riley outcome) left. To show that, consider a

(semi-)pooling equilibrium outcome where a certain number of types pool at education level

ep. To prevent the highest of the pooling types, denoted θ∗, from deviating from ep to a

higher education level e > ep the associated equilibrium wage w(e) < (θ∗e) is offered (off-

path) after e. This renders a deviation of all pooling types but θ∗ to e a strictly inferior

reply (this follows from single-crossing). Therefore, we can eliminate all corresponding pure

strategies that assign e to all such pooling types. After this elimination and under the

(semi-)pooling equilibrium outcome, firms know that they are facing a worker of type θ∗

upon observing a deviation to education level e. Backward induction now implies that firms

best-reply with wage level (θ∗e)> w(e) which, in turn, upsets the (semi-)pooling equilibrium.

We emphasize that the characterization in our main theorem is not known to hold in

this infinite dimensional setting. The purpose here is only to remark that the same two

principles invoked previously to compute the index in the finite game setting (elimination
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FIGURE 15. Spence job-market game
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W
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4,1
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3,0
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of strictly inferior replies and backward induction) can also be invoked in the Spence model

to eliminate pooling and semi-pooling equilibria.

APPENDIX A. PROOF OF PROPOSITION 2.3

We introduce enabling strategies. Fix a two-player finite game tree Γ. For each player

n = 1,2 and z ∈ Z, let An(z) be the set of Player n’s actions that precede z. The set of Player

n’s actions that are ≺-maximal in An(z) for some z ∈ Z are denoted Ln and called Player n’s

last actions in Γ. If Ln =; then n is a dummy player. Player n’s last action that precedes z

is ℓn(z). Given last action i ∈ Ln, let u ∈Un satisfy i ∈ An(u). The subset Sn(i)⊂ Sn consists

of those strategies that at every information set u′ of Player n that precede u prescribe the

unique action leading to u. Define qe
n : Σn → [0,1]Ln so that for every σn ∈ Σn and i ∈ Ln

we have qe
n(σn) ≡ (

∑

sn∈Sn(i)σn(sn))i∈Ln
. The map qe

n is affine and therefore Cn ≡ qe
n(Σn) is a

polytope in R
Ln . The polytope Cn is the enabling strategy set of Player n. If Nature moves

in Γ we analogously denote the set of Nature’s last moves by L0. Denote L ≡ L0 ×L1 ×L2.

Given extensive-form payoffs G ∈G and a profile of enabling strategies (c1, c2) ∈ C ≡ C1 ×

C2, we construct payoffs are as follows. First, for every Nature’s last move i0 ∈ L0, define

c0(i0) ≡
∏

i′
0
∈A0,i′⪯i0

ϱ(i′0). Each of Player n’s last action in Ln is associated with a unique

sequence of Player n’s past actions that lead to the information set in which such a last

action is available. Therefore, a vector of last actions i = (i0, i1, i2) either defines a path from

the root to a terminal node or it does not. In the latter case, define gn(i) ≡ 0. In the former

case, letting z be the terminal nodes that is reached by such path, define gn(i) ≡ Gn(z).

Player n’s enabling payoff function V e
n : C →R is defined by

(15) V e
n (c)≡

∑

i∈L

gn(i)c0(i0)c1(i1)c2(i2).
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Note that the payoff function V e
n is affine in each coordinate and, therefore, defines a polytope-

form game V
e = (C1,C2,V e

1
,V e

2
) which is called the enabling-form of G.

To prove Proposition 2.3, let dn be the dimension of Cn. Since K induces a unique outcome

with full support, then qe(K) = p is an isolated equilibrium in enabling strategies, located

in the interior of C. For each n = 1,2, take a dn-simplex Fn contained in the relative interior

of the enabling strategy set Cn and containing pn in its relative interior. If we restrict the

enabling payoff function V e
n to Dn, then this defines a normal-form game with an isolated

completely mixed equilibrium p, with the same index as the polytope-form index of the

enabling-form (cf. Pahl, 2023). It is known that completely mixed isolated equilibria of

normal-form games have indexes +1 or −1, since the payoff matrices are non-singular (and

Shapley’s formula gives their index, see Shapley, 1974). In particular, p has non-zero index.

The equivalence between the index in normal and polytope forms (cf. Pahl, 2023) then

implies that K has non-zero index.
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