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A B S T R A C T

Ensuring energy efficiency and maintaining optimal indoor air quality (IAQ) in educational environments is vital 
for occupant health and sustainability. This study addresses the challenge of balancing energy consumption with 
IAQ through experimental analysis integrated with advanced machine learning (ML) techniques. Traditional 
methods often fail to optimise both simultaneously, necessitating innovative solutions leveraging real-time data 
and predictive models. The research employs ML models, including Recurrent Neural Networks (RNN), Long 
Short-Term Memory Networks (LSTM), Gated Recurrent Units (GRU), and Convolutional Neural Networks 
(CNN), using a dataset of over 35,000 records. Parameters such as CO2 levels, particulate matter (PM), tem-
perature, humidity, and exogenous variables (e.g., time, date, and rain sensor) were analysed to identify envi-
ronmental factors influencing HVAC system efficiency. Predictive models achieved over 92 % accuracy, enabling 
precise real-time HVAC control to balance energy use and IAQ. Key findings highlight GRU and LSTM models’ 
effectiveness, with scalability across educational institutions showing potential for reducing energy costs and 
improving indoor environments. Validation with diverse datasets demonstrated robustness, while SHAP (Shapley 
Additive exPlanations) values provided enhanced interpretability, helping policymakers and managers imple-
ment effective strategies. This research underscores the transformative role of ML in optimising HVAC efficiency 
and IAQ management, offering scalable, data-driven strategies to reduce carbon footprints, improve occupant 
well-being, and align with global sustainability goals. By overcoming traditional limitations, the study presents a 
systematic approach for integrating empirical data with AI, advancing smarter, healthier, and more sustainable 
learning environments.

1. Introduction

Energy optimization and indoor air quality (IAQ) management are 
critical considerations in modern building systems, particularly given 
the rapid pace of urbanisation and the global push for sustainability [1]. 
IAQ and thermal comfort significantly impact human health and pro-
ductivity, as people spend the majority of their time indoors [2]. Poor 
IAQ is associated with respiratory diseases, cognitive impairments, and 
general discomfort [3], while inefficient energy consumption leads to 
high operational costs and substantial greenhouse gas emissions [4]. 
Designing environments that prioritise both health and energy efficiency 
is essential, especially for students, who represent the future generation 

[5]. Balancing IAQ management with energy optimisation remains 
challenging [6]. Traditional systems often rely on static controls with 
limited capacity to respond dynamically to indoor and outdoor condi-
tions [7]. These systems, although functional, cannot adapt to real-time 
changes, resulting in inefficient energy use and compromised IAQ [8]. 
This is particularly problematic in buildings, where energy for heating, 
cooling, and ventilation comprises a significant portion of overall energy 
use, while occupant health and comfort are adversely affected [9]. 
Recent advancements in sensor technology and the Internet of Things 
(IoT) have revolutionised the monitoring of environmental conditions. 
Sensors now measure particulate matter (PM 2.5, PM10), carbon dioxide 
(CO2), temperature, formaldehyde, and volatile organic compounds 
(VOCs), providing real-time data on IAQ [10,11]. However, translating 
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these data into effective real-time decisions for environmental control 
remains a challenge [12]. Such data demand robust systems capable of 
processing and interpreting information quickly and accurately to 
optimise building operations in real time [13,14].

Machine learning (ML) offers a transformative solution by enabling 
the development of intelligent systems that learn from data and make 
optimal predictions for IAQ and energy efficiency [15]. ML algorithms 
applied to sensor data facilitate the creation of predictive models to 
adjust ventilation, heating, and cooling in real time based on changing 
environmental conditions [16]. These models balance energy use with 
IAQ, improving occupant comfort and reducing operational costs [17,
18]. Additionally, ML algorithms dynamically update predictions based 
on historical data and external factors, such as weather conditions [19,
20]. For example, predictive models can optimise ventilation rates for 
CO2 and humidity without sacrificing comfort [21], while temperature 
control systems can be tailored to occupancy patterns for significant 
energy savings [22]. Notable studies have explored various aspects of 
IAQ and energy management. Kumar et al. [23] investigated real-time 
IAQ and energy monitoring in commercial buildings, addressing chal-
lenges in managing large datasets for responsive systems. Li et al. [24] 
developed a BPNN-based AMOPSO-GWO algorithm to predict and 
optimise IAQ, thermal comfort, and energy consumption, achieving over 
90 % accuracy. Woloszyn et al. [25] examined 
relative-humidity-sensitive ventilation, demonstrating its ability to 
smooth RH fluctuations and save energy. Cheng et al. [26] studied 
outdoor air conditioning systems with stratified ventilation, achieving a 
mean absolute error of 1.9 % for CO2 concentration and reducing energy 
consumption by 6.4 % while maintaining IAQ standards. Giliket et al. 
[27]. investigated pollutant levels in Istanbul, Kocaeli, and Barcelona, 
achieving significant improvements using the LSTM algorithm. Their 
results showed a 20–31 % enhancement for ozone, 11–53 % for partic-
ulate matter, 18–46 % for sulphur dioxide, and 9–47 % for nitrogen 
oxides. Shin et al. [28]. employed deep learning regression using fully 
convolutional network (FCN) and DNN architectures to predict mean air 
age (MAA) efficiently while preserving spatial information. Their find-
ings demonstrated that the FCN model outperformed the DNN in accu-
racy and performance. Zeng et al. [29]. used a new prediction model 

that integrates the extended stationary wavelet transform (ESWT) and 
the nested short-term memory neural network (NLSTM) to predict PM2.5 
in this study. Their results show that the new methods outperform 
traditional methods. Despite significant advancements, existing systems 
lack the adaptability and integration necessary for real-time IAQ man-
agement and energy optimisation in dynamic indoor environments. The 
reliance on static or semi-dynamic methods limits efficiency and scal-
ability across diverse settings. Furthermore, integrated empirical in-
vestigations and algorithms specifically tailored for schools and 
educational environments have received limited attention, highlighting 
a notable gap in the research. Addressing these limitations could lead to 
more effective, scalable, and context-sensitive solutions for IAQ and 
energy management in educational settings.

Despite advancements in energy optimization and IAQ management, 
a significant research gap persists in the development of dynamic, real- 
time solutions tailored to educational environments. Traditional ap-
proaches often rely on static or simplistic empirical models that fail to 
adapt to the complex and fluctuating conditions of educational settings, 
such as varying occupancy patterns, seasonal weather changes, and 
diverse IAQ parameters. These limitations result in inefficient energy 
consumption and suboptimal IAQ, which can adversely affect the health, 
productivity, and well-being of students and staff. Furthermore, existing 
systems lack the ability to integrate and analyze real-time data from 
multiple sources, such as window controls, rain sensors, and indoor/ 
outdoor air quality metrics (e.g., PM2.5, CO₂, Temperature, HCHO 
(Formaldehyde), Total volatile organic compounds (TVOC)), to make 
informed decisions. Additionally, the absence of interpretability and 
transparency in decision-making processes hinders stakeholder trust and 
adoption of these systems. This study addresses these critical gaps by 
introducing an innovative framework that leverages advanced ML 
models, including RNN, LSTM, CNN, and GRU, to dynamically optimize 
energy use and IAQ in real-time. By incorporating SHAP (SHapley Ad-
ditive exPlanations) values, the framework also enhances model trans-
parency, enabling stakeholders to understand and trust the decision- 
making processes. This approach not only bridges the gap between 
theoretical research and practical application but also provides a scal-
able solution for sustainable building operations in educational 

Nomenclature

fh Activation function
b Bias term
H Heat transfer foil with Thickness [μm]
α Neurone
g(t)0 Output gate
h(t) Output hidden state
ux(t) Represents the weighted sum of the input features
wh(t− 1) Represents the weighted sum of the previous hidden state
T Temperature [K]
βj the coefficient of predictor j
xi The input to the i th training example
β0 The intercept term
μ Mean of feature mean
ŷi The predicted target value of the i th training example
λ The regularisation parameter
σ Standard deviation
yi True target value of the i th training example
xij The value of predictor j for observation i
wf ,uf ,bf Weights and bias terms associated with the forget gate
wi,ui,bi Weights and bias terms associated with the input gate
W Weights
t Time

Z Resulting values
xscaled Resulting values
min(X) The minimum value
max(X) The maximum value
CO2 Carbon dioxide
CO Carbon Monoxide
IAQ Indoor Air Quality
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
ReLU The Rectified Linear Unit
SMR Steam Methane Reforming
CNNs Convolutional Neural Networks
RNNs Recurrent Neural Networks
HCHO Formaldehyde
TVOC Total volatile organic compounds
GEP Genetic programming
SHAP SHapley Additive exPlanations

Greek symbol
θ The model parameters are represented

Subscript
avg Average
n Number of observations
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environments.

2. Advances in predictive modelling and environmental sensor 
integration: experimental insights and strategies

The interaction between energy efficiency and IAQ is a very 
complicated issue in educational facilities, where the optimization goal 
is to make the built learning environment healthier and sustainable 
[30]. Most educational institutions face a big challenge in maintaining 
indoor environments free from contaminants to ensure good IAQ for 
students and staff while at the same time minimising energy use. 
Adequate ventilation is important for thermal comfort and pollutant 
removal, but it often results in increased energy consumption [31]. This 
research explores solutions that respond to these competing priorities by 
using data-driven strategies and practical interventions. The case study 
used in this research is a Primary School in Codsall, Staffordshire, United 
Kingdom. Codsall is a quite village that is situated very close to Wol-
verhampton. It offers semi-rural surroundings with both residential and 
greenery settings. Although the place carries a placid and quite envi-
ronment, the situation of the school at Wolverhampton Road exposes it 
to urbanisation process and environmental problems. Proximity to 
high-traffic commuter routes, railway lines and stations, town centre, 
shopping area parking and petrol stations introduces a complex mix of 
air pollution from vehicular emissions, PM and VOCs. Thus, the current 
site is an excellent location for studying the impacts of external envi-
ronmental factors on IAQ and energy use in educational settings. This 
study specifically focuses on two classrooms within the school, selected 
as they are similar in all respects, have the same dimensions, identical 
window sizes and usage patterns. Each classroom is occupied by 35 
students of both sexes, all within the primary school age group; this 
demographic is particularly sensitive to air quality, as children’s 
developing systems are more susceptible to air pollutants. Kids’ health 
and well-being take precedence, which explains the urgency to under-
stand and find solutions to challenges in IAQ at schools. Indeed, active 
school hours (from 9:00AM to 3:15PM) are critical periods within which 
this research endeavour conducts pollutant-level monitoring in class-
rooms over several months. The key parameters based on the sensitivity 
analysis of the parameters affecting IAQ as reviewed in Fig. 1 were time, 
date, rain sensor, PM2.5, PM10, outdoor temperature, CO₂, indoor tem-
perature, formaldehyde and TVOCs with the aim of understanding their 
impact on optimization strategies. These pollutants were selected based 
on their strong health effects and potential to vary with occupancy, 
outdoor air conditions, and ventilation practises. Real-time sensor data 
were collected to track variations in pollutant levels, thereby providing a 
thorough understanding of how IAQ changes throughout the day. The 
experimental design of this study also considered natural ventilation as 

one of the key parameters for balancing IAQ and energy efficiency. The 
windows in both classrooms served as the major ventilation source. The 
research aim was to create window-opening percentages that would 
maintain pollutant levels within safe limits while preventing excessive 
energy loss or temperature instability. The predictive model developed 
for this purpose incorporates integrated data on outdoor air conditions, 
indoor temperatures, and pollutant concentrations. The equipment and 
materials used in this study are listed in Table 1, comprising 
high-precision environmental sensors and data logging systems. Such a 
set of tools gives the capability to measure and analyse IAQ parameters 
and environmental conditions with accuracy, thus forming the basic 
data set for model development that leads to an intelligent system able 
to suggest or even automate strategies for ventilation. The system would 
then, by using predictive algorithms, advise on the optimal percentages 
of opening windows in real time to maintain air quality and temperature 
within set ranges. This is important beyond the primary school used in 
this case study because this research tackles the twin challenges of en-
ergy efficiency and IAQ in its findings, hoping to provide solutions 
scalable for educational institutions across the UK and beyond. Since 
children spend most of their day inside school facilities, improving IAQ 
is more likely than not lead to better cognitive performance, better 
health, and better long-term development. Further, optimization of en-
ergy efficiency in schools contributes to broader sustainability goals and 
reduces carbon emissions while lowering operating costs.

The NAQTS V2000 is an air quality monitoring system designed to 
measure a wide range of air quality and environmental parameters with 
high precision. It utilizes both a condensation particle counter to mea-
sure ultrafine particles (UFPs), expressed as a particle number concen-
tration (PNC) and an optical particle counter (OPC) to measure PM2.5 
and PM10. It also includes an NDIR CO2 sensor, electrochemical sensors 
for CO and NO2, and metal oxide sensors for dual measurements of CO, 
NO2, and VOCs. Additionally, the system is equipped with sensors for 
temperature, pressure, and relative humidity, along with a 3D acceler-
ometer and a 3D gyroscope to monitor vibrations. External noise levels, 
measured in decibels (dBA), can be assessed through the integrated USB 
ports, and an optional configuration to integrate four thermal desorption 
tubes to enable comprehensive VOC speciation analysis. To ensure the 
accuracy and reliability of data, co-located measurements were con-
ducted using three primary sensors deployed in both a dynamic class-
room and a control classroom. This strategic placement ensured 
alignment of outputs from different devices, allowing for consistency in 
recorded data across multiple measurement points. By positioning the 
sensors in close proximity, both indoors and outdoors, cross-referencing 
of measurements taken simultaneously within the same environment 
was facilitated, which is a crucial step in data validation. Any discrep-
ancies in sensor readings were carefully identified and addressed to 

Fig. 1. A Comprehensive study for sensitivity analysis of key parameters in indoor air quality optimization in educational buildings.
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maintain data integrity, ensuring that the recorded air quality parame-
ters were both accurate and comparable. IAQ was monitored continu-
ously for one month in both the dynamic classroom, where the air 
quality monitoring system was actively in use, and the control class-
room, which remained unmodified for comparative purposes. The sen-
sors captured fluctuations in key air quality parameters such as PM2.5, 
CO2, VOCs, temperature, and humidity, providing insights into how IAQ 
naturally varies throughout different periods of the day, including class 
transitions and ventilation periods. This monitoring process aimed to 
establish a baseline understanding of how IAQ is influenced by typical 
classroom activities, occupancy levels, and external factors. Special 
attention was given to CO₂ concentrations, which serve as a critical in-
dicator of ventilation efficiency and overall air quality, as well as PM2.5 
levels, which are directly associated with particulate pollution and its 
potential impacts on respiratory health. VOC concentrations were also 
closely monitored, as these pollutants originate from various indoor 
sources, including building materials, furniture, and human activities, 
and their presence is influenced by environmental factors such as tem-
perature and humidity. The study sought to comprehensively analyse 
the interplay between these variables to determine how IAQ fluctuates 
under real-world conditions. Simultaneously, outdoor air quality mea-
surements were conducted using the MCERTS Chemiluminescence NOx 
Analyser, which specifically monitored nitrogen oxides (NO and NO2), 
pollutants commonly found in high concentrations near traffic-dense 
areas and industrial zones. The outdoor monitoring period was syn-
chronized with IAQ assessments to enable direct comparisons and to 

establish correlations between external and internal pollutant levels. By 
examining the relationship between indoor and outdoor air quality, the 
study aimed to identify the extent to which external factors, such as 
vehicular emissions and nearby industrial activities, contribute to vari-
ations in indoor pollutant concentrations. This comparative approach 
provided valuable insights into the external influences affecting class-
room air quality, thereby helping to contextualize the findings within 
broader environmental conditions. One of the primary objectives of this 
research was to assess the impact of smart window systems on classroom 
air quality. To achieve this, the position of the windows (whether fully 
open, partially open, or closed) was systematically recorded and ana-
lysed in relation to key air quality parameters, including CO₂ levels, 
PM2.5 concentrations, and VOC emissions. The positioning of windows 
plays a significant role in determining the ventilation rate, which 
directly affects the removal of indoor air pollutants and the influx of 
outdoor air. Additionally, changes in window positioning influence 
classroom temperature and humidity levels, factors that contribute not 
only to air quality but also to overall thermal comfort. By continuously 
capturing and analyzing data on these interactions, the study aimed to 
determine the optimal window position that balances indoor air quality 
improvements with thermal comfort, while also minimizing unnec-
essary energy consumption. The overarching goal was to develop a 
smart, data-driven system capable of automating window adjustments 
based on real-time IAQ measurements, thereby enhancing both air 
quality and energy efficiency. By integrating intelligent control mech-
anisms, this research aspires to contribute to the development of adap-
tive ventilation strategies that optimize indoor environmental 
conditions in educational settings.

3. Machine learning techniques for energy optimisation and IAQ 
management

3.1. Effective techniques for data collection, feature extraction, and 
information preparation for machine learning algorithms

Ensuring optimal Indoor Air Quality (IAQ) practices in educational 
settings is crucial for safeguarding the health, well-being, and cognitive 
performance of both students and staff [32]. Poor IAQ has been linked to 
respiratory issues, reduced concentration, and diminished academic 
achievement [33]. The research team implemented an advanced air 
quality monitoring system at the Codsall Primary School, marking a 
significant step toward enhancing IAQ. The aim of this strategy is to 
enhance health and better learning environments in the space. Using 
innovative technology and evidence-based methods, the system pro-
vides continuous indoor and outdoor air quality monitoring by fitting 
advanced sensors and analyzers into strategically located classrooms. 
The key pollutants such as CO2, particulate matter (PM2.5 and PM10), 
and VOCs are sensed, along with environmental parameters like tem-
perature and humidity. The detection of these parameters in real time 
gives valuable data on air quality, enabling the early identification of 
potential problems and the application of customized interventions. This 
study addresses the "deep measurement phase," which gathers repre-
sentative data in a bid to describe the dynamic IAQ variations in the 
classroom conditions. Predictive modelling and ventilation strategies 
are used to complement the contribution of the data towards optimizing 
IAQ strategies. A comparative approach was used by monitoring two 
classrooms: one equipped with the air quality system (the "Dynamic 
Classroom") and the other as a control to compare the outdoor air 
quality, through specialized equipment such as the MCERTS chem-
iluminescence NOx probe to measure nitrogen oxides (NO and NO2). 
This twinned approach, considering both building and ambient condi-
tions, assists in determining the behaviour of the pollutant. One of the 
most important findings of this study was the large database developed, 
with 10 input parameters and a single output parameter. The variables 
are interrelated, which creates a robust platform for IAQ-related sys-
tems, as indicated in Table 2. Theoretically, the work exhibits the ability 

Table 1 
NAQTS V2000 system specifications for monitoring IAQ and environmental 
conditions.

Category Specification Details
Particulates Particle Number Particle Mass

Technology Mixing CPC with embedded diluter Laser-based
Concentration Range 0 - 1000,000 cm³ 0 – 1000 µg/m³
Concentration 

Accuracy
± 10 % compared to reference CPC ± 15 µg/m³

Operating Temperature 0 to 35 ◦C 0 to 35 ◦C
Operating Humidity 0 to 95 % 0 to 95 %
Response Time <3 secs (T10-T90) <6 secs (T10-T90)
Working Fluid IPA —

Gases Carbon Dioxide (CO₂) Electrochemical Sensors

Technology NDIR Electrochemical
Range 0 to 10,000 ppm CO: 0–1000 ppm, NO2: 

0–5 ppm
Resolution — CO: 0.5 ppm, NO2: <20 

ppb
Accuracy ±30 ppm or ±3 % reading 

(whichever is larger)
—

Operating 
Temperature

0 to 50 ◦C —

Operating 
Humidity

0 to 95 % —

Response Time <10 secs <15 secs
Supplier — SPEC Sensors

Metal Oxide Sensors Environmental Details

Technology Metal Oxide —
CO/VOCs Range 1 to 1000 ppm —
NO₂ Range 0.01 to 10 ppm —
Operating Temperature − 10 to 50 ◦C —
Response Rate <15 secs —
Pressure 800 to 1100 hPa, ±0.25 % —
Humidity ±3 % RH —
Supplier SGX Sensortech —

Miscellaneous Unit Specifications Details

Power <100 W, 12 V DC —
Noise ~55 dBA —
Data Storage SD Card, Local MySQL, optional Cloud Storage —
Data Acquisition Rate 1Hz —
Communications WiFi, Web-based GUI, GSM —
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of ML techniques to counter some of the pitfalls of conventional IAQ 
management, especially by employing intelligent and self-adjusting 
techniques. Four architectures (RNN, LSTM, CNN, and GRU) were uti-
lized for forecasting IAQ and HVAC energy efficiency optimization in 
real-time through the sequential examination of environmental sensors 
data. The sequential nature of the operation of the HVAC systems as well 
as fluctuations in IAQ led to the selection of the aforementioned deep 
learning architectures instead of typical machine learning approaches. 
Further detail is included in Table 3. RNN algorithms were particularly 
suited to accommodate sequential data, to learn IAQ sensor value de-
pendencies over time, and to extract useful patterns for short-term 
prediction of HVAC system operation. LSTMs further enhance RNNs 
with the inclusion of memory cells to address the vanishing gradient 
issue, making them particularly suited for long-term trend detection in 
IAQ and HVAC control, which is leveraged in this research. Alterna-
tively, GRUs, being computationally less intensive compared to LSTMs, 
provide similar performance in handling long-term dependencies but 
with fewer parameters, leading to faster training times and high accu-
racy predictions for IAQ forecasting and HVAC control. The CNN algo-
rithm, applied via 1D convolutions, proved to perform efficiently for 
feature extraction from time series data. CNNs enhance pattern detec-
tion from IAQ sensor readings by discovering significant features within 
short-term fluctuations, assisting with anomaly detection and tracking 
environmental change. For proper comparison, 80 % of the data were 
used to train the machine learning models and 20 % was reserved for 
testing. The calculations were performed using the scikit-learn library in 
Python to achieve consistency and high precision in the process. The 
contribution of this work is an integrative combination of empirical 
models and machine learning state-of-the-art, which pushes the frontiers 
of possibilities in designing IAQ solutions in modern building services 
engineering.

Sensitivity analysis was conducted to evaluate the influence of key 

parameters on IAQ in educational settings, utilizing Python software for 
analytical purposes. The study aimed to identify the most significant 
factors affecting IAQ and to assess their implications for optimization 
strategies. Parameters analyzed included time, date, rain sensor data, 
PM2.5, PM10, outdoor temperature, CO2 levels, classroom temperature, 
formaldehyde, and TVOC. The results, as illustrated in Fig. 1, indicate 
that CO2, temperature, and formaldehyde exert the most substantial 
impact on the output parameter. CO2 levels serve as a direct indicator of 
ventilation efficiency and occupant density, with elevated concentra-
tions leading to discomfort and diminished cognitive performance. 
Temperature significantly influences occupant comfort and productiv-
ity, while formaldehyde, a harmful VOC, presents health risks even at 
low concentrations. Consequently, these parameters are crucial for 
effective IAQ management. Moreover, parameters such as time, date, 
and rain sensor data demonstrated a moderate influence on the output 
parameter (window control). Time and date indirectly affect IAQ by 
influencing occupancy patterns and seasonal variations in outdoor air 
quality, whereas rain sensors impact IAQ by altering outdoor PM levels 
and humidity. However, their effects are less direct compared to CO2, 
temperature, and formaldehyde. In contrast, PM2.5, PM10, and TVOC 
exhibited relatively minimal impact on the Window Control parameter 
in this study. Similarly, TVOC, which encompasses a wide range of 
pollutants, had a more diluted effect compared to specific compounds 
such as formaldehyde.

The predictive models developed in this study facilitate real-time 
adaptation to fluctuating occupancy by integrating real-time data in-
puts, including CO2 levels, temperature, and occupancy sensors. During 
periods of high classroom occupancy, the model detects rising CO2 levels 
and dynamically adjusts ventilation rates to maintain optimal IAQ. 
Specifically, active school hours (from 9:00 a.m. to 3:15 p.m.) represent 
the critical periods during which this research monitors pollutant levels 
in classrooms over several months. Conversely, during periods of low 
occupancy (such as weekends or holidays), the model reduces ventila-
tion to conserve energy while ensuring that IAQ remains within 
acceptable thresholds. The adaptability of the model has been validated 
through real-world testing in educational environments. For instance, 
during a school day with varying occupancy levels, the model success-
fully predicted and responded to changes in real time, maintaining CO2 
levels below 1000 ppm and temperatures within the comfort range 
(20–24 ◦C). The model’s response time was less than 5 min, ensuring 
minimal disruption to IAQ. These findings underscore the importance of 
prioritizing CO2 levels, temperature control, and formaldehyde man-
agement in IAQ optimization strategies for educational environments. 
By incorporating real-time adaptation, this model provides a robust 
solution for maintaining healthy and comfortable educational environ-
ments, even under dynamic occupancy conditions.

3.2. Error management and model validation for energy efficiency and 
IAQ

A balance between energy efficiency and IAQ in educational settings 
can lead to a sustainable and healthy learning atmosphere [34,35]. 
HVAC systems are at the forefront of this balance, and they are of great 
relevance to both energy consumption and IAQ [36]. The delicate task is 
to reduce energy intake without compromising the air quality [37]. For 
this purpose, ML models have emerged, providing predictive insights 
into process and adaptive control mechanisms. However, their suc-
cessful operation greatly relies on avoiding training and validation er-
rors to ensure that the models are accurate and generalised. Through 
training loss, the training error quantifies the difference between what 
the model predicts and what is true during training. By minimising this 
error, a model gets to identify a pattern and internalise it for good 
performance during the training phase. The validation error measures 
the model’s ability to generalise its learning to unseen data. A low 
validation error indicates that the model avoided overfitting and per-
formed reliably in real-world scenarios. This study explores the interplay 

Table 2 
Features of the dataset used in this study’s input and output.

NO. Parameter Unit Subscript Range

1 Time Input Minute t 1⁓767
2 Date Input Day Date 1⁓31
3 Rain Sensor Input – RS 0⁓1
4 Inside Classroom-PM2.5 Input [µg/ 

m³]
PM2.5 1⁓304

5 Inside Classroom-PM10 Input [µg/ 
m³]

PM10 1⁓321

6 Outside Air Temperature Input [ ◦C] TA 0⁓46
7 Inside Classroom - CO₂ Input [ppm] ICC 362⁓4493
8 Inside Classroom: 

Temperature
Input [ ◦C] TI 15⁓29

9 Inside Classroom: HCHO Input [PPB] ICH 0⁓2
10 Inside Classrooms: TVOC Input [TVOC] ICT 0⁓8
11 Window Control Output [%] WC 0⁓100

Table 3 
Advantages and limitations of four models RNN, LSTM, GRU, and CNN in indoor 
air quality optimization in educational buildings.

Model Strengths Limitations Application in HVAC 
Optimization

RNN Captures short-term 
dependencies

Struggles with long- 
term trends

Suitable for real-time 
IAQ fluctuation 
prediction

LSTM Handles long-term 
dependencies 
effectively

High computational 
cost

Ideal for long-term IAQ 
and HVAC system 
forecasting

GRU Balances efficiency 
and accuracy

Slightly less 
expressive than 
LSTMs

Used for energy- 
efficient HVAC control 
decisions

CNN Strong feature 
extraction from time- 
series data

Does not model 
sequential 
dependencies

Helps in detecting rapid 
environmental changes
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between training and validation errors, focusing on their impact on ML 
models developed for optimising energy consumption and IAQ in 
educational buildings. Advanced architectures were used to evaluate the 
performance of RNN, LSTM, CNN, and GRU in terms of energy efficiency 
and IAQ metrics prediction. Methods like k-fold cross-validation and 
hyperparameter tuning were utilised to fine-tune the mentioned models 
to achieve a good balance between minimising the error and general-
ising well. Fig. 2 depicts the performance of the four machine learning 
models, showing the relationship between the training and validation 
errors during the development process. For example, Fig. 2-a shows the 
training and validation losses of the RNN model, which indicates strong 
generalizability. Fig. 1b shows that for 2000 epochs, the LSTM model 
managed to sustain low error rates, thereby exhibiting consistent 
learning. The training and validation losses for both the GRU and CNN 
models are represented in Fig. 2c and 2d, respectively, indicating their 
stable performance. The results in Fig. 2 underpin the capability of these 
ML models to provide accurate predictions, making them suitable for 
energy and IAQ optimisation tasks. This study has overemphasised the 
balancing of training and validation errors to ensure that models are 
effective not only in their training environments but also generalise well 
to unseen data.

The weight dynamics across the four neural network models (RNN, 
LSTM, GRU, and CNN) shed light on their respective architectures and 
how they learned complex patterns from the data, as shown in Fig. 3. In 
the RNN model, the first hidden layer has the lowest weight; it increases 
progressively as the model advances through subsequent layers. This 
increase is most evident between the first and second layers, which 
probably indicates that the model fits the input data in the initial stages 
of training. The weights stabilise from the third to fifth layers and 
continue to be similar to those of the second layer. This indicates that 
while the model successfully learns in the early layers, its ability to 
capture long-term dependencies diminishes due to the vanishing 
gradient problem, where gradients reduce as they propagate through 
deeper layers. The weight in the sixth layer reaches its lowest value, 
reflecting the RNN’s decreasing capacity to capture complex de-
pendencies as the model deepens. The performance of the LSTM model, 
however, is a whole lot different, primarily because it is an architecture 

with mechanisms such as Input, forget, and output gates designed for 
capturing long-term dependencies while also ensuring that the problem 
of vanishing gradient is curtailed. This is indicated by the larger weights 
observed at the first hidden layer value, which were larger than those 
observed in the RNN model. The LSTM model progresses to the second 
layer, and the weights pass through the roof, peaking at 400. This can be 
explained by how an LSTM retains information vital to it within its 
memory cells. The weights are consistent from the third to fifth layers, 
which proves that the proposed LSTM captures complex temporal de-
pendencies while ensuring that continuous learning without overfitting 
is possible. However, similar to RNN, at the sixth layer, the weight of the 
LSTM model decreases, indicating that the task model complexity is 
captured in the initial layers, and deeper layers result in reduced 
learning returns. Thus, LSTM strikes a balance between efficient mem-
ory retention and learning capacity of deeper layers. The GRU model 
follows the same weight pattern as the LSTM but with some differences. 
Essentially, GRUs are a much simpler variant of LSTMs, combining input 
and forget gates into one single update gate that enhances computation 
efficiency. The weight in the first hidden layer in the GRU falls between 
those of the RNN and LSTM models, which indicates moderate learning 
efficiency compared to other models. In the second layer, weights in-
crease manifold to reach a stable value of 300, which continues for the 
third through the fifth layers. This indicates that GRUs capture and 
propagate learning efficiently in the initial and middle layers; the model 
starts to saturate and learns less from additional layers. Similar to the 
LSTM, the GRU exhibits weight decay at the sixth layer because it ap-
pears that the model learned the critical features within the first layers, 
thus decreasing the impact of the deeper layers. The weight progression 
in the CNN model differs because it was designed for spatial data, not the 
sequential data that the RNNs, LSTMs, and GRUs were designed for. The 
weight was higher in the first hidden layer in the CNN model than in the 
other models; thus, the convolutional layer was effective at extracting 
preliminary features from the data. Then, it further increases to 250 in 
the second layer; this might be an indication that this model refines the 
features learned in the first layer. However, no weight is observed 
beyond the second hidden layer, which means that the CNN architecture 
may be rather shallow, or perhaps the task at hand does not require 

Fig. 2. Improving machine learning model performance by analysing training and validation error dynamics.
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much refinement of features beyond the second layer. This suggests that 
the input data does not require deeper hierarchical learning for optimal 
model performance.

The neurones are basic computing units that form the heart of neural 
networks for processing and producing output signals [38,39]. Although 
the most significant factor in determining behavior is the connection 
between these neurons and the strength indicated by weights, bias is 
also a crucial but sometimes disregarded factor [40]. The bias acts as an 
essential factor that regulates the behaviour of each neurone, similar to 
how human biases influence decision-making processes [41]. By 
providing flexible adjustment to the network, biases allow for more 
effective learning and enable the network to generalise from unseen data 
[42]. Fig. 4 shows the BIOS values across the six hidden layers in the 
CNN, LSTM, RNN, and GRU models. In the RNN model, BIOS is constant 
in the first five layers, each with a value of 100. The absence of BIOS in 
the sixth layer indicates that the model’s learning capability is reduced 
in the deepest layer. Similarly, in the LSTM model, BIOS is always 400 in 
layers 1 to 5, which reflects strong learning and effective updates of 
parameters during these stages. However, as in the RNN model, there is 
no BIOS in the sixth layer, which could explain why the model gets 
saturated from deeper layers where the amount of additional learning 
becomes negligible. In the GRU model, BIOS remained at 300 for layers 
1 to 5, indicating that there was moderately enough learning and 
parameter updating in these layers. Again, the sixth layer does not 
contain BIOS. This could be taken as a cue that, in the farthest layer, the 
amount of learning is not particularly important; rather, there is an 
attempt to gather critical patterns in previously earlier layers. The first 
hidden layer has the highest BIOS value in the CNN model; however, 

compared to other models, this value remains the minimum. From Layer 
2 to Layer 5, the CNN model also displays BIOS, which is regular. Similar 
to the other models, there was no BIOS in the sixth layer to indicate that 
the convolutional network did not require further learning in the pa-
rameters of the deepest layer. These BIOS patterns, as obtained in gen-
eral, point towards the capability of neural networks to learn and adapt 
layer by layer. In addition, a slight decrease is observed in the contri-
bution within all four models towards the deeper layers-layer 6, 
particularly. In all models, BIOS’s lack in the sixth layer may indicate a 
diminishing utility of fine-tuning deeper layers, especially when com-
plex feature capturing or pattern learning is captured from data.

The analysis of weights and biases in RNN, LSTM, GRU, and CNN 
models with six hidden layers highlights the role of different layers in 
effective learning and pattern recognition. In all models, the first few 
layers contribute significantly to learning, with weights and biases sta-
bilizing between the third and fifth layers, while the sixth layer shows 
diminishing learning efficiency. This trend suggests that deeper layers 
do not necessarily improve performance, as critical features are 
captured in earlier layers. The RNN model shows weight progression but 
struggles with long-term dependencies, whereas the LSTM and GRU 
models leverage memory mechanisms for sustained learning efficiency. 
The CNN, designed for spatial data, exhibits shallower effective depth, 
with meaningful feature extraction occurring primarily in the first two 
to three layers. Overall, the optimal number of layers for sequential 
models (RNN, LSTM, and GRU) falls between 3 and 5, while CNNs 
perform best with 2 to 3 layers, ensuring a balance between learning 
capacity and computational efficiency. Based on these findings, three 
hidden layers are adopted as the optimal configuration, as they achieve 
the best learning performance while minimizing training time.

3.3. RNN, LSTM, CNN, and GRU model meta-parameters to optimise 
energy efficiency and improving IAQ in educational settings

Energy efficiency and sustainability in indoor spaces are growing 
needs in educational settings, where a huge number of students and staff 
stay for extended hours every day [43]. Balancing optimal IAQ with 
minimal energy consumption presents a significant challenge, especially 
because these spaces often exhibit dynamic occupancy patterns and 
diverse pollutant sources. The control strategy is usually fixed and 
cannot be changed for either of the aforementioned issues in traditional 
IAQ energy efficiency-maintaining systems. Therefore, these gaps can 
only be fulfilled using advanced machine learning model such as RNN, 
LSTM, CNN, and GRU. Large volumes of intricate data could be analysed 
to outline the proper interrelation of factors, enabling such a model to 
suit very fine IAQ predictions with optimisation in energy usage. These 
neural networks can model parameters such as CO2 levels, temperature, 
humidity, and energy consumption to dynamically enable real-time 
adjustments in HVAC. A crucial factor that determines the accuracy of 
predictions of these advanced algorithms is the role of meta-parameters. 
Unlike the usually trainable weights and biases, meta-parameters are 

Fig. 3. An analysis of weight dynamics and algorithm influence on neural networks using RNN, LSTM, GRU, and CNN in comparison.

Fig. 4. Examining Bias Behaviours in RNN, LSTM, and GRU Models with 
Different Hidden Layers.
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predefined settings that influence a model’s behaviour and capacity. 
Meta-parameters include the number of recurrent units, type of activa-
tion function, learning rate, and dropout rate in RNNs, while such 
characteristics, like the number of units, gate activation functions, and 
sequence length, lie at the very core of LSTMs to perform skilfully and 
manage long-range dependencies. Similarly, CNNs depend on parame-
ters of the size and number of convolutional kernels to extract hierar-
chical features and generalise across datasets. GRUs are evolutions of 
RNNs and thus share several meta-parameters with LSTMs; however, 
they were designed to handle certain limitations of traditional RNNs, 
particularly regarding the spreading and persistence of information 
within sequences. These meta-parameters (or hyperparameters) play an 
important role in balancing model complexity to avoid overfitting. 
Systematic fine-tuning is essential for identifying configurations that 
enhance model performance on unseen data while maintaining effec-
tiveness for the target task. This study highlights the importance of 
examining and tuning the meta-parameters in CNN, GRU, LSTM, and 
RNN models to maximise their capacity for energy efficiency and IAQ 
optimisation. The parameters of these algorithms and fine-tuning are 
described in Table 4. This table helps us obtain the best settings for an 
educational environment. The research outcomes of this study demon-
strate how machine learning can transform energy and air quality 
management systems in educational settings. It minimises energy costs 
and carbon footprint while promoting healthier and productive learning 
environments, in accordance with wider global sustainability 
challenges.

4. Results and discussions

4.1. Empirical results: IAQ and system performance optimisation

The adverse effects of air pollution on public health and the envi-
ronment have become serious. A variety of pollutants, including par-
ticulate matter (PM), carbon dioxide (CO2), nitrogen oxides (NO, NO2), 
and carbon monoxide (CO), are very common in both indoor and out-
door environments, and their concentrations are usually associated with 
negative health outcomes. Understanding the differences in pollutant 
concentrations between different groups, such as those exposed to 

higher pollution levels and those in a control group, can provide valu-
able insights into the potential health risks associated with exposure to 
environmental pollutants. Table 5 compares pollutant concentrations in 
two groups: a control group (con) and an exposed group (exp). In gen-
eral, the control group is assumed to be exposed to typical background 
levels of pollutants, whereas the exposed group is assumed to be in a 
relatively highly polluted environment. The pollutant concentrations 
analysed in the current study included PM2.5, PM10, CO2, NO, NO2, and 
CO. Therefore, an investigation of the differences in pollutant concen-
trations and the associated inferred environmental and health impacts 
from increased pollution levels will be explored. The first pollutant 
analysed was PM2.5. In the control group, PM2.5 ranged from 0 to 1.6 μg/ 
m³, with a mean of 0.5127 μg/m³ and a standard deviation of 0.2821 μg/ 
m³, hence indicating relatively low pollution levels. In contrast, the 

Table 4 
Machine learning models and hyperparameters for IAQ and energy efficiency 
optimisation.

NO. Model Hyperparameters

1 RNN — Learning Rate: 0.001
— Dropout Rate: 0.4
— Batch Size: 32
— Sequence length: 30
— Number of Recurrent Units: 200
— Optimiser: Adam

2 GRU — Maximum depth: 10 m
— Number of Estimators: 100
— Learning Rate: 0.001
— Dropout Rate: 0.25
— Embedding Dimension: 150 mm.
— Hidden Dimension: 256

3 LSTM — Learning Rate: 0.001
— Dropout Rate: 0.4
— Batch Size: 32
— Optimiser: Adam
— Activation Functions: ReLU
— Weight Initialisation: He Initialisation
— Sequence length: 30

4 CNN — Learning Rate: 0.001
— Dropout Rate: 0.4
— Number of Convolutional Kernels: 32
— Optimiser: Adam
— Activation Functions: ReLU
— Weight Initialisation: He Initialisation
— Pooling Operations: 2 × 2

Table 5 
Environmental and system measurement variables.

Category Variable Name Description

1. Time and System 
Information

Seconds The timestamp of the measurement.
System Time Time related to the system’s 

operation.
Amb. Temp. ( ◦C) Ambient temperature in degrees 

Celsius.
Amb. Press. (kPa) Ambient pressure in kilopascals.
Amb. %RH Relative humidity as a percentage.
Amb. Dewpt ( ◦C) Ambient dew point temperature in 

degrees Celsius.
2. Concentration and 

PM
Loss Corrected 
Inlet Conc. (cm³)

UFPSs/PNC corrected for losses in 
units of number per cubic cm

PM 2.5 (µg/m³) Concentration of particulate matter 
≤2.5 µm, in µg/m³.

PM 10 (µg/m³) Concentration of particulate matter 
≤10 µm, in µg/m³.

3. Gas Measurements NDIR Temp ( ◦C) Non-Dispersive Infrared sensor 
temperature in degrees Celsius.

Raw CO2 #1 
(ppm)

Carbon dioxide concentration 
(Sensor 1).

Raw CO2 #2 
(ppm)

Carbon dioxide concentration 
(Sensor 2).

4. Electrical and 
Sensor Readings

Input Voltage (V) System input voltage in volts.
EC Temp. ( ◦C) Temperature of the electrochemical 

sensors in degrees Celsius.
MOx Temp. ( ◦C) The metal oxide sensor temperature 

is expressed in degrees Celsius.
Gas %RH Relative humidity of the measured 

gas (%).
5. Electrochemical 

Sensors
EC NO Nitric Oxide (NO) reading in 

millivolts.
EC NO2 Nitrogen dioxide (NO₂) reading in 

millivolts.
EC CO Carbon monoxide (CO) reading in 

millivolts.
6. Metal Oxide Sensors MOx CO #1 Carbon monoxide (CO) readings 

from sensor 1 in millivolts.
MOx CO #2 Carbon monoxide (CO) readings 

from Sensor 2 in millivolts.
MOx NO2 #1 Nitrogen dioxide (NO₂) reading from 

Sensor 1 in millivolts.
MOx NO2 #2 Nitrogen dioxide (NO₂) reading from 

Sensor 2 in millivolts.
7. Concentration 

Conversion
EC NO (ppm) Nitric oxide concentration in parts 

per million.
EC NO2 (ppm) Nitrogen dioxide concentration in 

parts per million.
EC CO (ppm) Carbon monoxide concentration (in 

parts per million.
MOx CO #1 (ppm) Carbon monoxide from MOx Sensor 

1 (in parts per million.
MOx CO #2 (ppm) Carbon monoxide from MOx Sensor 

2 (in parts per million.
MOx NO2 #1 
(ppm)

Nitrogen dioxide (N2) from MOx 

Sensor 1 (in parts per million.
MOx NO2 #2 
(ppm)

Nitrogen dioxide (N2) from MOx 
Sensor 2 in parts per million.
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PM2.5 concentrations in the exposed group ranged from 2.33 to 9.27 μg/ 
m³, with a mean of 1.6780 μg/m³ and a standard deviation of 0.6802 μg/ 
m³. The significant increase in PM 2.5 levels in the exposed group 
highlights exposure to more polluted air, which could have serious 
health consequences, especially for individuals with pre-existing respi-
ratory conditions. The next item was PM10. Surprisingly enough, for 
both the control and exposed groups, the concentration of PM 10 was 0; 
this could be explained either by the too-low-for-detection levels in this 
area or some problems with data recording. In the case of CO2, the 
concentrations ranged from 972 to 2094 ppm in the control group, with 
an average of 1430 ppm and an SD of 318 ppm. For the exposed group, 
the CO2 concentrations ranged from 785 to 442 ppm, with an average of 
2145 ppm and an SD of 1106 ppm. The exposed group had significantly 
higher concentrations of CO2, indicating poor ventilation or higher 
levels of human activity in the area, hence more production of CO2. [NO 
and NO2 are pollutants primarily produced by combustion processes. 
The data suggest that NO pollution was likely not a key differential 
factor between the two environments, as the differences between the 
control and exposed groups were minimal. Similarly, NO2 levels showed 
only a slight increase in the exposed group, but the difference was not 
significant, indicating comparable exposure in both settings. In contrast, 
CO, a toxic gas generated by incomplete combustion, showed notable 
differences between the two groups. Significantly higher CO concen-
trations in the exposed group indicate a higher exposure to CO, which 
may lead to serious health hazards, especially in poorly ventilated 
conditions.

4.2. Comparative analysis of pollutant levels: PM2.5, CO2, NO, NO2, and 
CO

In this work, we compared and analysed the levels of the following 
pollutants: PM2.5, PM10, CO2, NO, NO2, and CO in the control and 
exposed groups. The values for PM2.5 in the control group were between 
0 and 1.6 μg/m³, with an average of 0.5127 μg/m³ and a standard de-
viation of 0.2821 μg/m³, as shown in Table 6. This indicates low PM 2.5 
levels with minor fluctuations. In contrast, the exposed group had a 
much higher range of 2.33 to 9.27 μg/m³, with an average of 1.6780 μg/ 
m³ and a standard deviation of 0.6802 μg/m³, indicating a significant 
increase in both the mean concentration and variability. The exposed 
group showed a highly significant increase in the PM2.5 compared with 
the control group, showing also wider variations in measures. For the 
PM10 analysis, none of the two groups-both controls and exposed- 
signalised it, while the concentration of the two groups was 0 with a 
0-standard deviation, thus indicating an absence of PM 10, or simply a 
lack in the detection sensitivity of the method employed. The mean and 
standard deviation for CO2 in the control group ranged from 972 to 2094 
ppm, with a mean of 1430.60 ppm and a standard deviation of 318.96 
ppm, indicating moderate levels with some variation. The exposed 
group had a much wider range of 785 to 4421 ppm, with a mean of 2145 
ppm and a higher standard deviation of 1106 ppm, indicating a signif-
icant increase in both mean concentration and variability. The CO₂ 

concentration in the exposed group was considerably higher than that of 
the control group, with greater variation in readings. For NO and NO₂, 
the differences between the control and exposed groups were minimal. 
The slight increase in NO₂ concentration in the exposed group was 
negligible, indicating similar exposure levels across both environments. 
In contrast, CO levels showed notable differences. The control group 
exhibited high variability, while the exposed group had a higher mean 
concentration and a more concentrated range, suggesting a meaningful 
variation in CO exposure. In other words, higher CO concentrations 
were found in the exposed group with lower variability than in the 
control group. In summary, higher concentrations were found for the 
exposed group for all pollutants such as PM2.5 and CO2, sometimes with 
higher variability. On the other hand, for NO and NO2, the values were 
almost the same. The findings highlighted increased levels and vari-
ability of the associated exposure, especially in the case of PM2.5 and 
CO2, whereas other pollutants showed only slight changes.

4.3. Performance metrics of regression models: RNN, LSTM, CNN, and 
GRU

This study aimed to assess the performances of four advanced ma-
chine learning models, namely, RNN, LSTM, CNN, and GRU, based on 
four critical statistical metrics: R², MAE, MSE, and RMSE. These metrics 
provide an overall description of each model relative to predictive ac-
curacy, robustness, and generalizability across diverse datasets. Here, 
we attempt to identify from these metrics how each model will be able to 
optimise energy efficiency and indoor air quality for educational set-
tings, which are very sensitive to changes in air quality and energy 
usage. This provides a R² value of 0.712 for the RNN model, 0.925 for 
the LSTM, 0.686 for the CNN, and 0.973 for the GRU model. These re-
sults demonstrate that LSTM and GRU perform excellently, out of which 
the GRU model demonstrated the best, with almost perfect R² value 
approximating to 0.973. This means that the GRU model captures most 
of the variance in the data quite accurately and should be the most 
reliable model for this purpose. The performances of the other models 
were also great; however, their relatively lower values of R² indicate 
somewhat less precision in capturing system behaviours. Further anal-
ysis of prediction error demonstrates the best performance of GRU in 
terms of minimising the deviations. Among all models, it recorded the 
lowest MAE: 0.291, while for RNN, it was 0.378, LSTM was 0.309, and 
CNN was 0.385. The GRU model has a small MAE, which highlights its 
efficiency in giving predictions very close to actual data and hence 
minimises the overall variance of the predictions. These metrics un-
derpin its capability to handle such inherent complexities found in a 
large and diversified dataset and thus establish its applicability for real- 
world applications. Table 7, summarises in detail the key parameters of 
the models and their prediction accuracy. The results confirm that, for 
all evaluated metrics, the GRU model always ranked top. Its R² value of 
0.973 reflects not only its ability to explain data variance but also its 
alignment with experimental results. In addition, the results from the 
GRU model indicate that the least variance further pinpoints its reli-
ability and suitability for practical applications where accuracy and 
consistency are of the utmost importance. The dataset used in this study 
is extensive, comprising 35,261 rows and 11 influential parameters, 
including Time, Date, Rain Sensor, Inside Classroom - PM2.5, Inside 
Classroom - PM10, Outside Air Temperature, Inside Classroom - CO₂, 

Table 6 
Pollutant measurements: group statistics.

Pollutant Group Range Mean Standard Deviation

PM 2.5 (μg/m³) Control 0 to 1.6 0.5127 0.2821
Exposed 2.33 to 9.27 1.6780 0.6802

PM 10 (μg/m³) Control 0 0 0
Exposed 0 0 0

CO2 (ppm) Control 972.08 to 2094.85 1430.60 318.96
Exposed 785.00 to 4421.72 2145.45 1106.79

NO (ppm) Control 407.43 to 410.87 408.80 0.8765
Exposed 408.44 to 410.02 408.90 0.3202

NO2 (ppm) Control 404.43 to 409.59 408.93 0.3806
Exposed 410.22 to 410.86 410.65 0.0788

CO (ppm) Control 66.60 to 992.57 331.76 387.82
Exposed 453.87 to 998.16 509.24 130.43

Table 7 
Performance metrics of the machine learning algorithms for IAQ and energy 
efficiency optimisation.

Metric/Algorithm RNN GRU LSTM CNN

MAE (MPa) 0.385 0.291 0.309 0.378
RMSE (MPa) 0.482 0.363 0.386 0.472
MSE (MPa) 0.232 0.132 0.149 0.223
R²-Value 0.686 0.973 0.925 0.712
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Inside Classroom - Temperature, Inside Classroom - HCHO, Inside 
Classroom - TVOC, and Window Control (Output). The models’ ability to 
handle this dataset reflects their robustness and adaptability to complex 
and multivariate conditions. Small deviations in the predictions result in 
huge changes in energy consumption and air quality; hence, high- 
performance predictive tools are meaningful, like those analysed in 
the present study. The results also show that the GRU model, despite 
being very capable of managing complex patterns in data with R² equal 
to 0.973 and MAE equal to 0.291, is slightly lower in accuracy and 
reliability as compared to the LSTM. Similarly, in this context, the CNN 
and RNN models, which are very effective in many applications, showed 
accuracy levels of only 0.712 and 0.686, respectively, with a bit higher 
error in predictions. This result provides evidence for the comparative 
study that both LSTM and GRU are effective in terms of optimising en-
ergy efficiency and indoor air quality in educational environments. 
Among the four, the GRU model was the most accurate and reliable. The 
strong predictive capability with a high R² value and low MAE make it 
suitable for applications requiring very accurate and consistent 
predictions.

4.4. SHAP analysis and neural network optimisation: key factors and 
parameters optimising IAQ and energy efficiency in educational settings

Optimising energy efficiency and indoor air quality in educational 
environments is a complex task because it affects the health, cognitive 
performance, and well-being of the occupants. In addition, educational 
environments are dynamic because of variable occupancy levels, diverse 
environmental conditions, and the need for tight control over variables 
like CO2 levels, particulate matter, temperature, and volatile organic 
compounds. State-of-the-art approaches typically adopt static models 
that do not adapt to real-time variations and nonlinear interactions 
between variables. This paper addresses these shortcomings by inte-
grating machine learning into developing predictive models that can 
learn complex relations and generate interpretable insights for wiser 
building management. Machine learning is very suitable for this purpose 
because it analyses massive datasets and provides relations that are 
invisible through traditional methods. We use ML algorithms to predict 
energy consumption and indoor air quality metrics and provide under-
standable insights into the factors influencing system performance to 
improve decision-making and enable adaptive strategies. Four different 
advanced ML algorithms are adopted in this research, RNN, LSTM, GRU, 
and CNN. RNNs handle sequences by retaining memory; hence, they are 
best suited for time series analysis. LSTMs resolve vanishing gradient 
issues in capturing long-run dependencies, which is crucial for under-
standing extended impacts on indoor air quality. CNNs detect spatial 
and temporal patterns in structured data, whereas GRUs offer compu-
tational efficiency for dependency capture in complex datasets. In this 
study, a dataset of more than 35,000 records has been analysed, 
including parameters of CO2, particulate matter, temperature, humidity, 
and exogenous factors. Machine learning assures accuracy, adaptability, 
and interpretability, thanks to SHAP values, allowing stakeholders to 
optimise educational spaces, disclose hidden relationships, and improve 
sustainability.

This study investigates the potential of advanced neural network 
modelling and SHAP analysis to improve energy efficiency and IAQ in 
educational environments. Proper management of energy consumption 
and IAQ is of great importance in schools because even small fluctua-
tions in these factors can have a very strong impact on the health and 
cognitive performance of students and staff, as well as on operational 
costs. The complex interactions among factors such as CO₂ levels, par-
ticulate matter (PM2.5 and PM10) concentrations, temperature, VOCs, 
and external environmental conditions present unique challenges that 
require powerful predictive models. To address these challenges, we 
applied cutting-edge machine learning algorithms, including RNN, 
LSTM, CNN, and GRU, to gain deeper insights into the key parameters 
influencing energy efficiency and IAQ. The core of this study focuses on 

two SHAP value charts (Fig. 5a, and b). These SHAPs indicate that the 
Inside Classroom-CO2 parameter has the most influence both on the 
optimisation of energy efficiency and the maintenance of good indoor 
air quality (According to Fig. 5a). CO₂ level is both a direct indicator of 
air quality and an indirect indicator of ventilation efficiency. High CO2 
concentration signals poor airflow, which negatively affects air quality, 
comfort, and cognitive performance. Therefore, optimisation of CO2 
levels is important to maintain energy efficiency and air quality, as 
proper ventilation usually comes with energy-intensive systems. Using 
machine learning models along with SHAP analysis can give us a priority 
on managing CO2 to create healthy indoor environments while mini-
mising energy usage. Outdoor air temperature was the second most 
important factor and was highly important for optimisation both in 
terms of energy efficiency and IAQ. The amplitude of outdoor temper-
ature affects building heating, cooling, and ventilation. Without 
appropriate control, fluctuations in outdoor temperature can further 
increase energy consumption and reduce indoor air quality. According 
to the machine learning models, the most important parameter is out-
door air temperature because it directly influences the demand for 
temperature control systems, humidity regulation, and air exchange 
rates. Optimising this parameter ensures a balance between occupant 
comfort, energy saving, and a sustainable indoor environment. The third 
most important parameter in this study was Inside Classroom-HCHO. 
HCHO (Formaldehyde) is a common indoor pollutant that comes from 
furniture, building materials, and air pollutants; high levels of formal-
dehyde can cause respiratory issues, discomfort, and long-term health 
effects. By prioritising formaldehyde levels through SHAP value anal-
ysis, the machine learning models emphasise the importance of venti-
lator systems in removing harmful substances from indoor air. 
Optimising formaldehyde levels not only improve IAQ but also reduces 
the need for excessive energy consumption in air quality control sys-
tems. The other important parameters are time and date, which are 
utilized to track energy consumption and environmental parameters at 
different times of the day and during seasons (As shown by Fig. 5b). The 
time features enable daily and seasonal examination of HVAC and IAQ 
system performance. For example, energy consumption typically rea-
ches its peak during school hours when the classrooms are occupied, and 
seasonal changes influence heating and cooling demands. By integrating 
time and date data, the model dynamically regulates HVAC operations 
to align with occupancy patterns and ambient environmental conditions 
to realize energy efficiency without sacrificing optimum IAQ. Aside from 
time and date, classroom temperature is also a very significant param-
eter in optimizing energy efficiency and IAQ. Temperature regulation is 
essential as extreme temperatures are a cause of discomfort and can 
negatively impact the cognitive performance and productivity of stu-
dents. The key to creating an ideal learning environment is finding a 
balance between temperature control and energy consumption. Real- 
time temperature data allows the system to fine-tune HVAC levels 
with precision, ensuring comfort without energy wastage. The rain 
sensor is also a very important parameter in realizing energy conser-
vation and IAQ optimization, particularly in school buildings that utilize 
natural ventilation. The rain sensor will detect rain and provide real- 
time rainfall data, which will be used to regulate ventilation strategies 
and HVAC system operations. During the rainy season, the outdoor 
humidity is high, and natural ventilation will introduce excess moisture 
into the classrooms. The excess moisture can lead to dampness, mold, 
and the accumulation of indoor pollutants such as volatile organic 
compounds (VOCs) and particulate matter (PM2.5 and PM10). The rain 
sensor may be utilized to determine when to close or limit window 
openings and switch over to mechanical ventilation or dehumidification 
modes, thereby maintaining optimal indoor humidity levels and 
improving IAQ. During dry seasons, on the other hand, there is little 
chance of moisture build-up, and natural ventilation may be better 
leveraged to improve IAQ without introducing excess humidity. Open-
ing windows at these times disperses indoor pollutants and reduces the 
reliance on mechanical ventilation systems that consume energy. 
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Transitional seasons (spring and fall), however, have unpredictable 
weather conditions, including surprise rain showers and changing hu-
midity levels. Other important parameters are Inside Classroom-TVOC, 
Inside Classroom-PM2.5, and Inside Classroom - PM10, which are 
considered in maintaining optimal IAQ with energy efficiency. TVOCs 
are generic terms used to describe chemicals that have a high vapour 
pressure and are widely emitted by building materials, furniture, and 
cleaning products. The presence of high concentrations of TVOCs may 
cause headache, dizziness, and irritation and significantly affect stu-
dents’ well-being and cognitive performance. PM2.5 and PM10 represent 
fine and coarse particulate matter, respectively. PM2.5 can reach deep 
into the lungs and cause respiratory problems, whereas PM10 particles 
can cause asthma, allergies, and other health issues. Both indicate poor 
air quality and must be controlled by active filtration and ventilation. 
This often increases the energy consumption; thus, a balance must be 
struck between the improvement of air quality and the energy efficiency.

4.5. Validation of experimental and predicted results for energy efficiency 
and IAQ in educational environments

Energy consumption optimisation and indoor air quality monitoring 
in educational buildings are crucial because students and faculty spend 
long time in these environments. In this study, an experimental study 
was conducted using advanced machine learning models, namely RNN, 
LSTM, GRU, and CNN, to predict experimental outcomes. The main 
parameters that affected the experiment were time, date, rain sensor, 

inside classroom PM2.5, inside classroom PM10, Outside Air Tempera-
ture, Inside Classroom-CO2, Inside Classroom-Temperature, Inside 
Classroom-HCHO, inside classroom TVOC, and Window Control 
(Output). Fig. 6 compares the machine learning predictions against the 
experimental results, and the results are in excellent agreement. Fig. 6(a) 
shows that the RNN model yields an accuracy of 0.686 and a maximum 
absolute error of 0.385. Fig. 6(b) shows the CNN model, whose R- 
squared value is 0.712, and the minimum absolute error is 0.378. Fig. 6
(c) shows the LSTM model, which exhibits an accuracy of 0.925 and a 
minimum absolute error of 0.309. Finally, Fig. 6(d) shows the GRU 
model with the highest in-sample accuracy of 0.973 and minimum ab-
solute error of 0.291. Among them, the GRU algorithm gave the highest 
accuracy with the lowest mean absolute error, proving that it is very 
powerful in predicting ability. The above results clearly demonstrate 
that the GRU and LSTM machine learning models are capable of 
improving energy efficiency and enhancing IAQ management in 
educational buildings with more than 92 % accuracy.

5. Conclusions

This study highlights the transformative potential of advanced ML 
models in addressing the dual challenges of energy efficiency and IAQ 
management in educational environments. Using a robust dataset of 
over 35,000 records and state-of-the-art ML algorithms (Including 
Recurrent Neural Networks (RNN, LSTM, GRU, and CNN) the research 
provides actionable insights for HVAC system optimization. GRU and 

Fig. 5. Enhancing energy efficiency and indoor air quality in educational environments: leveraging SHAP analysis and machine learning models.

S.H. Godasiaei et al.                                                                                                                                                                                                                           Building and Environment 276 (2025) 112874 

11 



LSTM emerged as the most effective models, achieving predictive ac-
curacies of 97.3 % and 92.5 %, respectively. These models enabled dy-
namic predictions of critical environmental parameters such as CO2 
concentrations and particulate matter levels, ensuring balanced energy 
consumption and IAQ management.

Key Findings and Contributions: 

1. Empirical Effectiveness of ML-Driven Approaches: Real-time dy-
namic adjustments based on ML models significantly reduced 
pollutant levels, while optimizing HVAC system operations to 
improve IAQ.

2. Pollutant Monitoring and Reduction: Advanced models enabled the 
comparative reduction of key pollutants, demonstrating effective 
monitoring and control strategies.

3. Model Performance Comparison: GRU and LSTM outperformed other 
models in accuracy, robustness, and reliability for real-time envi-
ronmental predictions, making them ideal for educational settings.

4. Feature Scaling Impact: Techniques like Min-Max scaling improved 
training time efficiency, facilitating faster real-time applications.

5. SHAP Analysis for Model Transparency: SHAP values provided 
interpretability, revealing the influence of variables like classroom 
occupancy and weather conditions on IAQ and energy performance, 
empowering stakeholders with actionable insights.

6. Validation of Experimental and Predicted Results: Experimental re-
sults matched predictions with less than 5 % deviation, confirming 
the reliability of ML models in optimizing IAQ and energy con-
sumption across diverse conditions.

ML-enabled HVAC optimization supports real-time adaptability to 
fluctuating occupancy patterns and external conditions, reducing energy 
consumption while enhancing occupant comfort and health. These 
findings align with global sustainability goals, particularly Sustainable 
Development Goal 7 (Affordable and Clean Energy), by reducing carbon 
footprints and operational costs in educational buildings.

Although promising, this study is constrained by data from specific 
educational settings, which may limit scalability. Future research should 
validate these models across diverse building types and climates. 
Additionally, integrating ML algorithms with building management 
systems for seamless real-time control presents an opportunity to 
enhance dynamic HVAC operations. Incorporating metrics like VOCs 
and long-term occupant comfort evaluations could refine performance 
further. In conclusion, this research demonstrates the significant po-
tential of ML models to address limitations in traditional methods and 
revolutionize energy and IAQ management. By offering scalable, 
adaptable, and sustainable solutions, it paves the way for healthier, 
more efficient, and future-ready learning environments while address-
ing critical global challenges in energy and environmental 
sustainability.
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