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Highlights

A Bootstrapped Automated Pipeline for Developing Model Pre-
dictive Controllers for Non-domestic Buildings

Prathamesh Manoj Khatavkar, Peter Rockett, Yuri Kaszubowski Lopes, Eliz-
abeth A Hathway

❼ Addressed the costs associated with generating models for model pre-
dictive control (MPC) of buildings—that currently consume around
75% of an MPC project budget—by proposing an automated pipeline
to generate predictive models for practical MPC implementations.

❼ Bootstrapped the automated pipeline with a cheap and fast-to-identify
model compatible with building commissioning.

❼ Investigated the iterative improvement of the MPC controllers using
closed-loop re-identification that maintains the the building’s internal
climate under control at all times.
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Abstract

In this paper, we motivate and investigate an alternative approach to the
development of predictive models for the practical implementation of model
predictive control in non-domestic buildings. We describe how the process
can be ‘bootstrapped’ with a very simple model, the crude nature of which
illustrates the robustness of our approach. A predictive model for the con-
troller is refined/adapted to the building in operation while maintaining cli-
mate control throughout at all times using closed-loop system identification.
To remove the necessity for human intervention, we have used genetic pro-
gramming to learn the predictive models since this combines a number of
what are traditionally sequential search operations into a single step. We
report preliminary results of a series of simulation experiments that vali-
date the basic approach, and identify further research needed to develop the
proposed methodology. Our approach facilitates the adoption of model pre-
dictive control by using commissioning data and refinement of models with
data from the occupied building, while maintaining thermal comfort.
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1. Introduction

The need to reduce the energy consumption of buildings is very well re-
hearsed in the literature. Although improved thermal performance of the
envelope is the obvious approach, operational performance can still be en-
hanced with better control systems [1]. Furthermore, the rate of building
replacement is quite slow, and large numbers of existing buildings have poor
insulation standards; upgrading their thermal performance is often a sig-
nificant technical challenge, especially for historically-important buildings.
While improved envelope characteristics are highly desirable, there is an
overarching requirement to achieve the best possible energy performance for
buildings as they exist. To this end, model predictive control (MPC) has re-
ceived a great deal of attention—the application of MPC to building climate
control has been recently reviewed in [2, 3].

In this paper, we are concerned solely with non-domestic (i.e. non-
residential) buildings; throughout, we use the term “building” to mean a
non-domestic building.

1.1. MPC background

The most challenging part of implementing MPC (for any system, not
just buildings) is widely acknowledged to be generating a suitable predictive
model of the system’s dynamics [4], with this phase of the control project
typically cited as consuming around 75% of the budget [5, 6].

Hitherto, most published work in buildings has developed MPC con-
trollers using a white- or gray-box methodology—see [7] for a fuller discussion
of model taxonomies. Such engineer-intensive creation/tuning of the dynam-
ical model is, however, highly undesirable since the economics of the con-
struction industry mean that the need for extended involvement of skilled
control specialists is likely to seriously limit the uptake of MPC [4]. This
point has also been made in a very practically-oriented paper [8] that re-
marks that “Buildings are complex systems, each is unique and therefore a
detailed modeling of every building where MPC shall be applied is economi-
cally unjustifiable”. These points have been further discussed in [3, 4].

Additionally, the characteristics of buildings inevitably change over time
(e.g. changes to shading, partitioning, occupancy, etc.), which will likely
require periodic recalibration, or indeed complete re-identification, of the dy-
namical model according to some hard-to-establish schedule, and will further
compound the shortage of appropriately skilled control engineers.
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To address the issue of MPC system implementation, Jorissen et al. [1]
have proposed TACO, a toolchain based on the Modelica simulation lan-
guage to automate the generation of MPC controllers. This work, however,
assumes the a priori existence of a calibrated white-box model of the building
envelope (as well as other simplifying assumptions about the HVAC plant).
Accommodating subsequent changes to the building characteristics within
the TACO framework would seem to need a complete repeat of the proce-
dure given that TACO’s starting point is a calibrated white-box model of the
building envelope. Further, creating a calibrated white box model of an exist-
ing building (and updating it in response to retrofit) may prove problematic
due to the uncertainties in the envelope characteristics.

Andriamamonjy et al. [9] explored a semi-automated toolchain to con-
vert from Building Information Management (BIM) data to a gray-box resis-
tor/capacitor (RC) model using a multiobjective genetic algorithm to search
over the combinatorial space of possible RC circuit configurations. These au-
thors were motivated by an insightful literature review that concluded that
the RC models commonly used for buildings MPC implementations were case
dependent and need to be specialized to each individual building. This paper
reported the refinement of accurate predictive RC models, but did not carry
the process through to demonstrating closed-loop control. More importantly,
this BIM route assumes that the BIM data have been entered accurately, and
that the building has been constructed exactly as it was designed, something
that is often questionable. In fact, there is emerging anecdotal evidence that
many of the deficiencies of building climate control that have traditionally
been blamed on building services, in fact, have their root cause in construc-
tion defects1.

All the above factors imply that machine learning—black-box (as op-
posed to white- or gray-box) approaches—are required in which the dynam-
ical model is learned from measured data gathered from the building in op-
eration as it physically exists, including the influence of any construction
defects. In a wide-ranging comparison of different approaches for construct-
ing dynamical models for building MPC, Stoffel et al. [10] concluded that a
machine-learning model produced the best results.

A common criticism of black box models—see, for example, [9]—is that
they lack interpretability, and, for this reason, gray-box models based on

1James Thomas – Private communication (2023)

3



electrical RC analogies are often deemed preferable. However, considering
some of the complex, optimized RC circuit topologies generated by Andria-
mamonjy et al., we suggest this argument about interpretability is misplaced:
many RC models are every bit as empirical as pure black-box models—just
because the individual R and C components have a simple, physical inter-
pretation does not mean that an arbitrarily complex assemblage of R’s and
C’s is interpretable. Complex systems are likely to require complex models
however they are formulated.

1.2. Machine learning approaches

In terms of machine learning (ML) models, many possible approaches
are available. Since buildings are usually sufficiently nonlinear to require
nonlinear predictive models, we restrict consideration to this class. The topic
has been nicely reviewed by [11].

Deep neural networks (DNNs) have received a huge amount of recent at-
tention in the machine learning (ML) literature, and some impressive results
have been reported across wide range of applications. DNNs employ large—
often very large—numbers of layers and parameters which implies the need
for a correspondingly large training set. In the context of performing system
identification (SID) measurements on a building, the need to acquire a large
set of training examples is a serious practical limitation since this equates to
a long data acquisition time during which control of an (occupied) building
is uncertain or even impossible. In addition, DNNs typically have a large
computational overhead for both training and recall. Finally, the architec-
ture of a DNN—the model selection—typically needs to be matched to the
particular application, a task that has traditionally been carried out by trial-
and-error although automating this neural architecture search (NAS) process
has received much attention [12], albeit at the cost of an even larger com-
putational burden. AutoML, that attempts to automate the deployment of
DNNs using a pipeline process, has been reviewed in [13] and by others.

Feedforward (FNN) and recurrent neural networks (RNNs) using much
smaller neural architectures than DNNs—what are often termed multi-layer

perceptrons (MLPs)—have been widely employed in MPC; see [14] for a com-
prehensive review. Nonetheless, the same requirement to search over the set
of possible architectures (numbers of inputs, numbers of hidden neurons,
etc.) remains, and so many of the previous comments on DNNs about trial-
and-error model selection and neural architecture search (NAS) also hold
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for FNNs/RNNs. Appropriate selection of the lag set of inputs, the time-
delayed, previous exogenous inputs and autoregressive outputs compounds
the complexity of the search problem.

Reinforcement learning (RL) has also received attention for building con-
trollers [15], but the very low data efficiency of this technique is a serious
concern since it can lead to prolonged training times during which the build-
ing may be operating sub-optimally. The alternative to using real, measured
data is to use simulated data [15], but this requires an accurately calibrated
building model.

A range of other nonlinear predictive models have been used in buildings
MPC. Hammerstein models [16, 17], which cascade a static nonlinearity with
a linear dynamical model have been widely employed although data-driven
approaches for constructing Hammerstein models share the same combina-
torial characteristics as neural network search.

Finally, Gaussian processes that model data as a multivariate Gaussian
distribution have been used for MPC [18] as well as buildings MPC [19, 20]
specifically. Gaussian processes have the nice properties of providing not
only a prediction, but also a Gaussian-distributed error on that prediction.
Nonetheless, they are also technically challenging to deploy; selecting the
input lag set again seems to require trial-and-error.

There have been several reports [21, 22, 23] of using various machine learn-
ing methods to learn the control laws of an existing optimization-based MPC
system. While reducing the computational resources required for routine
building operation, these imitation-learning approaches still require the com-
missioning of a full MPC system from which to learn, which—paradoxically—
in turn requires an accurate dynamical model of the building. Further, since
it is an imitative technique, such a controller is only likely to perform, at very
best, as well as the full MPC system from which it learned. If the full MPC
system supplying the training data is sub-optimal, the imitative system is
also likely to be sub-optimal. System updating to accommodate changes in
building characteristics is problematic.

Drgoňa et al. [11] have extended DNNs to embed physics-informed con-
straints although their report details only the successful learning of 10 days
of observational data without demonstrating closed-loop control of the tar-
get building It is well-established that good observational models do not
necessarily lead to good control performance [24, 25].

In terms of the requirements for an ML framework for the proposed au-
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tomated pipeline:
1. The models should be as compact as possible to maximize data efficiency—

larger datasets require longer acquisition periods, which is undesirable
in buildings. Compactness is also important in order to minimize the
computational requirements of the controller hardware.

2. Notwithstanding the above, the model architecture should have suffi-
cient representational capacity to capture the system dynamics.

3. The search over the model architecture should be automated since if
the building’s characteristics change, the architecture of the most ap-
propriate model may also change. Or alternatively, the architecture
should adjust to the problem in hand during training.

4. Selection of the appropriate set of system inputs, including lagged vari-
ables, should ideally be integrated with selection of the model architec-
ture. If a separate feature selection search is required for each potential
architecture then this pairing constitutes an undesirable combinatorial
search.

While shallow NNs, DNNs and Gaussian processes can meet Require-
ment #2, Requirement #3 is difficult to satisfy other than by NAS over
neural network architectures. Identifying the input variables (Requirement
#4) needs combinatorial search. Moreover, DNNs and RL especially do not
satisfy Requirement #1.

1.3. Proposed pipeline approach

In light of the all above, our preferred approach to addressing the model
selection problem is genetic programming (GP) that tackles the combinatorial
search problem simultaneously over architecture and input variables using a
single evolutionary search [26]. GP models tend to be much more compact
than, for example, DNN models.

We have previously reported successful implementation of MPC on a sim-
ulated building using GP [27] in which both the predictive model form as
well as the set of lagged input and autoregressive terms were determined in
a single, unified search process. Previously, however, we obtained the pre-
dictive model using open-loop system identification under which the internal
conditions may reach extreme values. Indeed, in an open-loop identification
of an MPC controller for a naturally ventilated building, Sykes [28] observed
that the zone temperatures could rise as high as 35❽ during system identifi-
cation, which is, of course, completely unacceptable in an occupied building.
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A subsidiary issue is the amount of energy that may be consumed during the
open-loop SID process.

Although the use of genetic programming to generate compact predictive
models with little intervention from a control engineer has great attractions,
two fundamental questions remain. Firstly, how to generate sufficient train-
ing data of the necessary quality to produce control-capable models, and
especially how to potentially accommodate changes in building characteris-
tics. Our answer to this question is to use closed-loop identification of the
system in operation. The subject of identification-for-control (I4C) is long-
established in control engineering [5].

Secondly, although closed-loop estimation is a credible path to updating
an existing controller, it does not address the question of how to implement
the very first controller. Our initial answer is to use a simple, first-order
plus time delay (FOPTD) model obtained from a step-response excitation of
the building. This estimation procedure is very fast, but can be anticipated
to produce a poor/deficient model. Providing it gives some sort of control,
however, it will form a credible starting point for subsequent closed-loop
(re-)estimations.

In the present paper, we extend our previous results [27] to address the
problem of ‘bootstrapping’ a dynamical predictive model for MPC without
the need for expert input. We start with a crude but simple and cheap-to-
acquire model that does not provide especially good control performance,
and then progressively generate refined models using GP search with system
identification data obtained under closed loop such that the building remains
under control at all times [5].

It has long been known that the best controller performance is obtained
by identifying the plant dynamics in closed-loop under the control of the
optimal controller [29]. This, of course, is a paradox since if an optimal
controller is available, why would one need to identify a plant model? In
practice, an iterative approach can be used whereby the system is identified
in closed loop using some initial controller, and the new, improved controller
used to control the system during a second closed loop re-identification. And
so on until satisfactory performance is obtained. As Gevers [30] points out,
this is common industrial practice anyway, except it is invariably carried out
manually.
1.4. Contributions of this paper

The contributions of this paper are to demonstrate the feasibility of:
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1. Bootstrapping the very first predictive model using data acquired di-
rectly from the building

2. Developing a fully automated pipeline to generate MPC controllers for
building climate control without the significant involvement of control
specialists, or the creation of handcrafted white- or gray-box models.
Our use of genetic programming that automatically evolves the struc-

ture of the predictive model is key here.

3. Refining models using data collected from occupied buildings through
controlled experiments with minimal disturbance to thermal comfort.

We are not aware of any previous work on using closed-loop re-identification
to derive/refine dynamic models for buildings MPC.

The above objectives are motivated by the arguments in [3, 4] that the
specialists necessary to commission advanced control methods, such as MPC,
are in short supply already. Additional demand caused by the widespread
adoption of MPC in non-domestic buildings is, therefore, likely to be unsus-
tainable.

This paper comprises a first report of our proposed automated pipeline for
MPC deployment together with an initial investigation of the key process of
bootstrapping the starting predictive model. Section 2 sets out our method-
ology, implementation and training of our dynamical genetic programming
models together with the EnergyPlus [31] simulation environment used in
our experiments. Section 3 reports the results obtained, which are discussed
in Section 4. Section 4 also suggests future work to improve on the initial
pipeline methodology. Section 5 concludes the paper.

2. Methodology

We first outline the relevant details of MPC and the genetic programming
(GP) method used in this work before setting out details of the simulation
environment employed. We then describe the method for constructing—
bootstrapping—the very first MPC model, followed by a description of how
we progressively refine/improve the predictive model using closed-loop esti-
mation.

2.1. Model predictive control

The basic ideas behind setpoint regulation with MPC have been well
reviewed in a number of places [2, 3, 4]. The fundamental idea is to use a
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mathematical model of the plant dynamics to estimate a sequence of future

predictions
〈
T̂k+1, T̂k+2, . . . , T̂k+p

〉
at current time index k, and where p is the

length of the prediction horizon. The sequence of current and future inputs
Uk = ⟨uk, uk+1, . . . , uk+p−1⟩ is then optimized to minimize the measure:

J = min
Uk

k+p∑

i=k+1

(
T̂i − T S

i

)2

+ λ1

k+p−1∑

i=k

(∆ui)
2 + λ2

k+p−1∑

i=k

u2
i (1)

where T S
i is the desired setpoint at the i-th time. The second term on the

right of (1) is designed to penalize control effort ∆u2
i , where ∆ui = ui−ui−1,

and is usually included to reduce actuator wear. The third term in (1) is a
proxy for control energy. λ1,2 are non-negative, user-defined weightings.

Although the values of λ1,2 can be tuned by explicit optimization, a clear
focus in this work has been to ensure the robustness of our proposed pipeline.
Consequently, rather than fine-tuning the weighting factors, we have followed
the general guidelines in [32] and set λ1 = 10 and λ2 = 0; the same value of
λ1 was also used by [27].

Again in the spirit of ensuring robustness, we have also followed general
guidelines in the MPC literature for setting the other parameters. Specifi-
cally, we have set the prediction horizon length p to be ≈80% of the system’s
settling time [32], and the sampling period such that the prediction interval
contains 10-20 samples [25].

(In Section 3.1, the system settling time was observed to be about 85
minutes, and so we have set the prediction horizon to be around 80% of this
figure at 60 minutes. As a consequence, we set the sampling period to be
5 minutes so that we have p = 12.)

2.2. Genetic programming environment

In general, the machine learning problem is to identify some mapping
from a set of inputs to desired outputs. Here we take the current and pre-
vious: zone temperatures, ambient temperatures, and sum of the direct and
diffuse solar radiation to predict the zone temperature one time step into the
future—the so-called one-step ahead (OSA) prediction. We achieve this by
minimizing the sum of the ℓ2-norm of the prediction errors (PEs) over a time
series of training data. By applying the model recursively, we can predict
the future zone-temperatures over the prediction horizon that are necessary
to implement MPC.
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Genetic programming (GP) synthesizes a mapping using a composition
of elementary functions, typically in the form of an expression tree. Start-
ing from a population of randomly-initialized trees, we employ evolutionary
search [33] to improve the performance of the population of trees on an ob-
jective function, here the ℓ2-norm of OSA predictive errors. The leaf nodes
in our trees are the inputs listed above plus real constants. Our internal tree
nodes comprise: +, −, ×, AQ, unary minus and time-delay operators of one,
two or four time units. The analytic quotient (AQ) operation [34] is a re-
placement for the arithmetic division (÷) operator which robustly eliminates
the numerical issues when the denominator of a division operator is very
small/zero. The time delay operators [35] facilitate the automatic search for
the appropriate set of lagged inputs since the GP system is able to synthesize
delays of arbitrary length by concatenating the basic delay operators.

Evolutionary GP search is conducted by selecting a pair of trees from the
population biased in their fitness [33]. These so-called parents are then split
randomly into two sub-trees and the two partitions of each parent crossed-
over to form two new child trees. A random mutation is also applied to each
child tree. In this work, we have used standard sub-tree crossover, and sub-
tree mutation in which a randomly selected sub-tree is replaced with a new,
randomly generated tree [33].

The basic GP framework used here is almost identical to that employed
in [27]; in order to counter the tendency of GP trees to grow without limit
(‘bloat’), we actually employ a Pareto-based multiobjective fitness compris-
ing i) the PE measure and ii) tree node count as a simple measure of tree
complexity (which we wish to minimize subject to also minimizing the PE
measure).

Additional to the basic GP framework in [27], we also standardize the in-
put variables as well as minimizing the PE loss measure by numerically tuning
the values of the constants in each of the offspring trees [36]. Both these steps
have been shown to produce significantly improved performance compared
to allowing the constant values to evolve only via crossover/mutation [36].
For further details of the GP framework employed, see [27] and [36].

GP training was performed offline with the best evolved model from the
GP population selected using the smallest PE measure over an independent
validation set, in keeping with standard ML practice. As is customary in GP
(and indeed most non-convex optimizations), we have repeated the train-
ing process 30 times, each with an independently-initialized population, and
taken the tree with the smallest overall validation error as the final model.
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The final, optimized tree was imported into the separate control al-
gorithm via the human-readable Genetic Programming Markup Language
(GPML) [37]. This separation between training and MPC deployment greatly
contributes to ease-of-integration in our pipeline since the training and con-
trol phases can run as separate, indeed concurrent, computational processes.

2.3. Simulation environment

As is common for studies in this area, we have conducted this work using
simulation for convenience, precise regulation of experimental conditions and
flexibility. We have used the well-known EnergyPlus building simulator [31]
interfaced to a series of external programs via a Functional Mockup Interface
(FMI) [38]. The FMI allows the passing of data between the simulated build-
ing and the external control program, as well as the setting of manipulatable
control inputs in the (simulated) building by the external controller program.

For this first report, we have used the same single-zone building as [27],
with a fixed zone occupancy of 50% of the nominal occupancy. Our rationale
here was that, in practice, the control model would be acquired during the
commissioning of the building services equipment, before handover, when the
building would not be fully occupied. At the end of the model identification
process, however, we have tested the evolved controller with a more realistic
office occupancy schedule—see Section 3 for details.

The heating to the space is provided by a water baseboard heater that
includes both convective and radiative heat transfer. The boiler setpoint is a
constant 67❽ resulting in no time delays between the boiler and baseboard;
the model outputs show that the boiler capacity is sufficient to achieve the
setpoint temperature. The dynamics of the boiler do not account for vari-
able plant efficiencies. However, the heat transfer to the room accounts for
both time lags, due to thermal capacity of the fabric, and the nonlinear rela-
tionship between mass flow rate and the heat output of the baseboard. The
ventilation rate is 9.4 l/s/person, and the total air flow rate adjusted accord-
ing to occupancy. For further details of the (simulated) building used in this
study, see [27].

We have used 2016 weather data from Manchester, UK as the training
data, and the 2017 weather year from the same location as an independent
test set. For all MPC runs reported here, we have assumed a zone setpoint of
20❽ during working hours (Monday to Friday, 9am to 5pm), and a setpoint
of >6❽ otherwise to provide frost protection.
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2.4. The initial bootstrapped model

The fundamental requirement for an initial bootstrapped model is that
it is straightforward to acquire and needs fairly little input from control
engineers. For this initial report, we have used a simple, first-order plus
time delay (FOPTD) model (2) with parameters estimated from a single
step response.

T (t) = K∆u
(
1− exp

−(t−d)
τ

)
+ T0 (2)

where T = T (t) is the zone temperature as a function of time t, τ is the time
constant, K is the process gain, ∆u ∈ [0, 1] the radiator flow fraction, d the
time delay, and T0 the baseline temperature.

We have employed this model for two reasons: Firstly, it meets the sim-
plicity criterion as it only requires switching the water flow rate in the hy-
dronic radiator from 0% to 100% output once, and logging the zone tem-
perature. The acquisition of such data could easily be integrated with the
‘witnessing tests’ that are commonly used to assure proper installation of
the building services plant although ultimately, we foresee using a more so-
phisticated initial model in more complex buildings—see future work below.
In addition, FOPTD models are very commonly used in control engineering
more generally [25].

Our second reason for adopting an FOPTD approach is that it can be an-
ticipated to produce a very crude model of the building’s dynamics since we
are: i) incorrectly assuming the system is linear, and ii) ignoring important
environmental factors such as ambient temperature and incident solar radi-
ation. One could therefore expect that the control performance using such
a rudimentary model would be poor. Our second motivation, therefore, is
whether the subsequent re-identification stages—see below—are able to even-
tually produce acceptable MPC performance from what is a poor starting
point.

2.5. Closed-loop re-identification

In terms of the excitations employed for closed-loop system identifica-
tion, we have used the amplitude-modulated pseudo-random binary sequence
(APRBS) [39]. Rather than directly ‘dithering’ the control input, we have
perturbed the setpoint with an APRBS signal of amplitude in the range
±2❽, and allowed the controller to determine any changes to the radiator
mass flow rate (MFR). This approach is straightforward to implement and
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appears to perform satisfactorily. The ±2❽ range was chosen because it
“could result in mild discomfort among a proportion of [the] occupants” [40]
and is therefore unlikely to cause significant problem to a building’s occu-
pants. We have verified that during all the closed-loop SID experiments, the
zone temperature did not deviate outside the 20±2❽ band.

We have adopted a 10-bit pseudo-random binary sequence (PRBS) to
generate the both the training and validation data. The minimum hold time
of the APRBS identification sequences was set to 15 minutes (or 3 sample
periods), around the ‘time constant’ of the system leading to data sequences
of 2049 samples and lengths of ∼7.1 days. Clearly there is a compromise
between model quality and the length of the training sequence—the longer
the data sequence, generally the better the model quality. An example two-
day window of the APRBS signal is shown in Figure 1.

We have standardized our experiments on an excitation duration of about
7 days as a somewhat subjective compromise between the desire for a better-
trained model ( =⇒ more data) and how long is acceptable during the
commissioning of a building ( =⇒ fewer data). The length of the validation
sequence used to select which single model was chosen from the GP training
procedure was also set to be the same ∼7 day duration as the training set
length. (See Section 2.2).

Starting with the bootstrapped FOPTD controller, we have performed a
sequence of SID experiments in closed-loop such that the system remained
under feedback control and within the comfort tolerance band.

In order to keep the experiments as close to reality as possible, the first
re-estimations acquired SID data over the first 14 days (7 days for training,
7 days for validation) of the 2016 training year. The second re-estimation
used the GP model that resulted from the first closed-loop SID experiment,
and the next sequence of closed-loop SID data were acquired over days 15
to 28 of the year, and so on. Note that this procedure inevitably produces
some variability in the training/validation sets due to the naturally varying
weather conditions. Our experiments thus properly take this factor into
account.

This sequence of closed-loop re-estimations can, in principle, be repeated
until no worthwhile further improvement in controller performance is ob-
served.

2.6. The overall re-identification pipeline

An overview of the pipeline and how the various processes described above
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Figure 1: Illustration of the APRBS perturbation signal over a 2-day window. (a) shows
the binary PRBS, (b) shows the amplitude modulated PRBS in the range ±2❽, and (c)
shows the variation of the tracking setpoint.

combine is shown in Figure 2. The first (re-)identification commences with
MPC using the bootstrap model and perturbations to the building setpoints
injected with the APRBS signal. The SID data accumulated over a period are
used to train a GP predictive model. This model is then used in the second
re-identification, and the process repeated. Note that the model ‘GPML1’
is both the output of ‘(Re-)identification #1’ as well as effectively the ‘in-
put’ to ‘Re-identification #2’. The sequence of re-identification phases can
be repeated as many times as desired, or indeed initiated if the building’s
characteristics change.

In the present report, we are, of course, using the EnergyPlus simulator as
a surrogate for the real building in order to rapidly progress the experiments.

2.7. Control benchmarks

In addition to the bootstrapping/re-identification pipeline, for compari-
son, we have also examined two other common control strategies: bang-bang
control, and MPC using a model estimated in open loop [27].

Bang-bang control. Bang-bang, also called on/off, control is a very simple
reactive strategy whereby for a nominal setpoint of 20❽, if the zone temper-
ature falls below 19❽, the MFR is set to 100%. If the zone rises above 21❽,
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Figure 2: Illustration of the overall pipeline flow. The scope of each individual re-
identification phase is delineated by a dashed box.

the MFR is set to zero. The control input thus switches between 0 and 100%
at a rate that depends on the heat losses. Bang-bang control is commonly
used in domestic heating, and often in simpler non-domestic situations, and
is therefore a realistic baseline. Indeed, in some situations, it is an optimal

controller [41], and in spite of its simplicity, actually performs quite well as
a regulator of temperature in a single zone. In practice, however, it is far
from ideal due to the excessive number of on-off cycling events, and would
typically be replaced by a customized rules-based controller (RBC). We have
deliberately avoided using a custom RBC here due to the obvious risk of
being seen to create a ‘man of straw’—a poor controller that is an unfair
baseline.

Open-loop identification. For the open-loop baseline model, we distributed
the MFR amplitudes of the APRBS in the range 0−100%, and used the same
training and validation acquisition periods (∼7.1 days each) as for closed-loop
SID. The predictive model was generated by GP under the same conditions as
the closed-loop identified models. As pointed out above, open-loop SID is not
desirable as a model-updating method since the plant is, by definition, not
under control, and the internal conditions in an occupied building can vary
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over an unacceptable range for the full duration of the SID experiment [28].
Our previous work used an open-loop identified model [27]. Nonetheless, we
have included an open-loop identified controller as a benchmark.

2.8. Performance measures

Quantitative performance measures of building control systems have been
considered in the International Building Performance Simulation Associa-
tion (IBPSA) Project 12 Building Optimization Test (BOPTEST) frame-
work [42], which identified six core Key Performance Indicators (KPIs):
thermal (dis)comfort, indoor air quality (IAQ), energy use, energy cost,
CO2 emissions, and computational time ratio that calculates the average
fraction of a controller time step that is required to determine the next con-
trol input. Of these, IAQ is not relevant in our test building which assumes
a fixed ventilation rate based on occupancy. Similarly, our test building
uses a single primary energy source (natural gas) and thus energy cost and
CO2 emissions are effectively proxies for energy use so we omit them.

Regarding the computational time ratio KPI, Blum et al. [42] define this
as the average fraction of time taken to compute the next controller update
divided by the system sampling time. We have computed this for the typical
case of MPC with the seventh GP model over the whole test year, and we
obtain an averaged KPI value of 3.5 × 10−5. This compares with values of
≤ 1×10−3 reported by Blum et al. for a similar single zone test case, but for
a sampling time of 15 minutes. Insofar as an MPC system is a firm realtime
system—one where occasional failures to meet the deadline can be tolerated
but will lead to reduced performance—we believe a practically more useful
measure would be the percentage of sampling intervals where the controller
fails to calculate the next control action by the deadline. In reality, these
computation times will form a distribution. In the present case, we observed a
zero probability of failing to meet the deadline. Indeed the largest individual
value in the distribution is 8.2 × 10−5 so the constraint is met by a very
wide margin. We therefore omit any further consideration of computational
issues.

We have quantified the performance of the various control schemes exam-
ined using three complementary measures over the test year since the control
problem involves a number of conflicting trade-offs. For instance, we could

2https://ibpsa.github.io/project1/
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obtain an energy usage of zero by not heating the building at all, but this,
of course, would result in unacceptable occupant discomfort.

Firstly, we have considered cumulative energy use over the whole test
year obtained directly from EnergyPlus3. Clearly the lowest possible energy
usage is desirable subject to meeting comfort constraints.

Secondly, we have calculated (an approximation to) the integral over time
of the temperature excursions outside the 20±1❽ tolerance band during

working hours since variability within a 20±1❽ band “would attract lit-
tle notice” [40]. This is equivalent to the BOPTEST thermal discomfort
measure. Note, this normal-operation tolerance band is tighter than the
±2❽ band used for short periods during SID experiments.

In practice, we have summed the out-of-tolerance (±1❽) zone tempera-
ture deviations every minute over the test year. Rather than simply counting
the numbers of minutes of departure from the 19-21❽ band, we consider
the magnitude of the departure should be taken into account: a temperature
of 16❽ is more uncomfortable than a temperature of 17❽. (Arguably, larger
temperature deviations should receive a larger weighting, but this would
seem to involve a degree of subjectivity hence we have opted for a simpler
discomfort measure.) The calculation of this discomfort is complicated, how-
ever, by the fact that our simulated building does not contain any cooling,
only heating, a situation that is common in the UK. Therefore, in the sum-
mer months, it is entirely possible that the zone temperature could exceed
21❽ when the ambient temperature is high, something that is outside the
influence of the (heating-only) controller. Consequently, we have adopted a
scheme of accumulating out-of-band temperatures only where the MFR has
exceeded a small threshold value of 0.01 kg/s (compared to a maximum flow
rate of 0.13 kg/s) on at least one occasion in the preceding 60 minutes, this
being the duration of the prediction horizon. If the controller has exerted any
active control over the preceding 60 mins and the temperature is out-of-band,
this implies that control action is deficient. Obviously, a lower value of this
discomfort measure is better; a similar type of discomfort measure was em-
ployed in [10]. To provide further insights, we have separated the deviations
outside the comfort band into positive-going excursions (zone temperature
>21❽) and negative going (<19❽) as well as providing the sum of the two.

3This is reported to only 2-decimal places, the default precision available from Ener-
gyPlus.
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Finally, we have calculated the cumulative control moves over the test
year, namely the sum of the first of the |∆u| terms in (1) that were actually
applied to the plant, one per MPC update, and ignoring the remaining (p−1)
computed values that, by convention, are never used. We treat this cumu-
lative measure as a proxy for actuator wear associated with a given control
scheme. Again, lower is better. As of 2021, this measure was anticipated as
a future extension to the BOPTEST framework.

2.9. Summary of parameters from present and previous MPC using GP

For convenient comparison, Table 1 presents a summary of the main
parameters used in the work presented in [27] and this work.

Table 1: Summary of main parameters from previous work presented in [27] and this work.

Category Description Previous work [27] This work

System
Identification

Type open-loop closed-loop
APRBS perturbation 0% to 100% MFR setpoint temperature ±

2❽
Sampling period 15 minutes 5 minutes
APRBS length 2976 steps (31 days) 2049 steps (7.1 days)
Input scaling Min-max normalization Standardization
Constants leaf nodes range [0.1, . . ., 2.0] range [0.1, . . ., 1.0] and op-

timized (see [36])
GP internal nodes +, −, ×, AQ, unary minus,

and time-delays
+, −, ×, AQ, unary minus,
and time-delays

Time-delay operators 1, 2, 3 1, 2, 4

MPC

Cost function parame-
ters (see (1))

λ1,2 = 10 λ1 = 10, λ2 = 0

Sampling period 15 minutes 5 minutes
Prediction horizon 12 steps (180 minutes) 12 steps (60 minutes)

3. Results

3.1. Initial bootstrapped model identification

The step response in zone temperature obtained by applying the 0-to-
100% step in radiator mass flow rate (MFR) using the 2016 training year
is shown in Figure 3. The data were recorded until the zone temperature
(approximately) settled, and the model parameters estimated by minimizing
the maximum absolute deviation between the model’s predictions and the
actual temperature transient.

We found that the best fit to the data gives: K = 7.34 ❽, d = 7 minutes,
τ = 17.0 minutes, and T0 = 15.60❽. From Figure 3 , it can be seen that the
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Figure 3: Step response of the simulated building. The vertical dotted line shows the time
at which the step excitation was applied, and the dashed gray line shows the best-fitting
exponential function as in (2). The measured data are shown with the solid black line.

difference between the observed and model characteristics is significant, and
that the system is far from linear. The delay between applying the step and
system’s response is also evident from Figure 3. Nonetheless, we have used
this FOPTD predictive model in an MPC controller, and the temperature
regulation results for the first 60 days of the test year are shown in Figure 4a.
For clarity, in this and all similar figures, we have displayed the zone setpoint
temperatures—the top plot—scaled and offset from the other plots; as noted
elsewhere, the zone setpoint switches between 20❽ and 6❽.

As might be anticipated from Figure 3, the zone temperature regula-
tion shown in Figure 4a is very poor, and typically fails to even reach the
20±1❽ band although some control action is apparent from the bottom plot
showing the mass flow rate. To reiterate: the reason for using the FOPTD
model is that it is very easy to identify. Further, such an obviously poor ini-
tial model poses a significant test for the subsequent re-estimation procedure
we describe in the next section.
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3.2. Closed-loop re-identification

Starting with the FOPTD model, we have performed a series of closed-
loop re-estimations. The first re-estimation used the FOPTD model as the
predictive model for MPC and yielded a new, GP-based model. The second
re-estimation used the first re-estimated GP model. The third re-estimation
used the second model produced. And so on in a continual pipeline that can
be easily automated. A typical training time for a single GP run for the
seventh re-estimation is 68± 25 minutes4, which suggests that this phase of
the process does not represent a computational bottleneck.

The performance over the first 60 days of the test year for the first GP
model identified from the FOPTD model is shown in Figure 4b. Compared
with Figure 4a, the regulation performance is much improved with the zone
temperature falling consistently within the 20±1❽ comfort band.

Taking the controller shown in Figure 4b, we have used this to re-estimate
a second GP model, and then a third, and so on. The performance of the
second re-estimated model for this sequence over the first 60 days of the
test year is shown in Figure 4c. Zone temperature regulation is qualitatively
similar to Figure 4b as indeed are the family of plots for all re-estimations
in this sequence. As a consequence, and for brevity, we omit most of these
plots.

Figure 4d shows the outcome for the seventh re-estimated model; note
the small temperature overshoot at the start of each day. These small over-
shoots in zone temperature emerge after the second re-estimation, and are, of
course, usually associated with a faster transient response of the controller.
Qualitatively, the regulation looks similar for all these ‘first-60-day‘ plots
with no obvious ‘winner’ although arguably somewhat less ‘chattering’ of
the control input is apparent from the second re-estimation onward.

Starting from the top of Table 2, the first three rows contain the results
from the benchmark controllers starting with bang-bang control. The first
row is for a bang-bang controller that starts operation at the exact 9am start
of the working day whereas the second row is for a bang-bang controller that
commences control a fixed 30 minutes before the start of the working day
with the objective of providing improved thermal comfort when the occupants
first arrive. Comparing these two bang-bang variants, the variant that starts
30 minutes early unsurprisingly uses more energy and performs worse on the

4On a 3.4 GHz Intel i7 PC running Linux Mint.
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control moves metric, but produces slightly worse discomfort. It is notable
that both bang-bang variants both exhibit small but consistent over- and
under heating as a consequence of the purely reactive strategy they employ.

3.3. Performance measures

To gain a more global view of the performance of the set of controllers,
Table 2 shows the various performance measures detailed in Section 2.8 taken
over the independent 2017 test year.

The open-loop controller in the third row of Table 2 has much improved
comfort compared to the bang-bang controllers as well as an improved control
move measure although the annual heating energy usage is much higher at
13.09 GJ over the test year.

As would be surmised from Figure 4a, the initial FOPTD controller
(fourth row) has very large negative discomfort deviations (too cold) and
a correspondingly low annual energy usage; the cumulative control moves
measure is also very low.

The fifth through twelfth rows of the table show the performance re-
sults for successive closed-loop re-estimations of GP-based controllers. The
very first re-identification (5th row) produces an improvement on the initial
FOPTD model in terms of zone temperature regulation—compare Figures 4a
and 4b—but some of the annual performance measures are less favorable. Al-
though the energy consumption is slightly lower than for bang-bang control,
and the positive-going temperature deviations (column 3) are quite modest,
the negative temperature excursions (column 4) are almost as large as the
bang-bang controllers. In addition, the control effort (column 6) is also quite
high, which might be inferred from Figure 4b where some ‘chattering’ of the
control input is apparent.

In contrast to the first re-identification, the second re-identification uses
the smallest amount of energy of any of the controllers (barring FOPTD),
but contrarily, exhibits the worst positive-going temperature deviations of
any of the controllers due to occasional overheating. By contrast, the control
moves measure is quite modest.
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(a) FOPTD model
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(b) First GP model
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(c) Second GP model.
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(d) Seventh GP model.

Figure 4: Closed-loop performance over the first 60 days of the test year for the sequences of models starting with (a) the
FOPTD model. (b)-(?) are for GP models identified under closed-loop SID from the previous model in the sequence. The
middle plot shows the zone temperature (left scale); note the dashed ±1❽ lines denoting the tolerance region. The lower plot
is the fractional mass flow rate (right scale). The top (offset and scaled) plot indicates the temperature setpoints switching
between 6❽ and 20❽.
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Table 2: Performance measures over the 2017 test year—see text for details. The temper-
ature regulation measure is broken by positive temperate excursions out of the comfort
band (“+ve”), and negative excursions (“-ve”). See also Section 2.8 for a full explanation
of the various metrics.

Model Heating Temperature regulation Cumulative
(GJ) (❽ mins) moves

+ve -ve Total

Bang-bang 9.23 1239.1 4904.4 6143.5 3500.0

Bang-bang
+ 30 mins 9.83 1326.7 5070.0 6396.7 3734.0

Open-loop
baseline 13.09 529.2 398.5 927.7 1108.8

FOPTD 3.17 0 51350.0 51350.0 207.2

First
re-identification 9.14 118.1 5035.1 5153.2 2846.3

Second
re-identification 7.41 4535.5 2433.5 6969.0 841.3

Third
re-identification 9.22 25.8 823.5 849.3 958.7

Fourth
re-identification 10.46 127.3 571.7 699.0 3350.3

Fifth
re-identification 7.34 161.9 4999.9 5161.8 397.8

Sixth
re-identification 10.44 248.2 563.3 811.5 1474.1

Seventh
re-identification 9.55 0.0 3112.1 3112.1 504.0

Eighth
re-identification 9.47 3.4 677.6 681.0 1932.4
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Viewing the remaining sequence of re-identifications, there appear to be
significant fluctuations in the various multiobjective performance measures.
For example, annual energy usage over the test year varies between 6-13%
larger and 20-22% smaller relative to the two bang-bang variants. Simi-
larly, out-of-band temperature regulation is generally much better for MPC
although not necessarily; in a few cases, the MPC controllers perform com-
parably or slightly worse than bang-bang control in terms of bounding the
zone temperature. The fifth re-identification stands out in this regard al-
though the energy consumption is the lowest of all the controllers considered
(ignoring FOPTD).

The control moves measure is generally better for the MPC controllers
although again not exclusively. The fourth re-identified controller, for exam-
ple, has a cumulative control move measure comparable to bang-bang control,
has the lowest total discomfort measure of all the controllers considered yet
one of the largest energy consumptions.

Since we are imposing an additional excitation phase during system re-
identification, it is appropriate to ask how much extra energy is required to
perform the SID experiments. The additional energy requirements are shown
in Table 3 where we have taken the difference between the energy usage for
MPC operation (using the training year) with the setpoint perturbations for
re-identification and the energy usage without those perturbations over the
same period.

In general, the extra energy usage for re-estimation is approximately 1-3%
of the annual consumption for each re-identification so model re-identification
clearly comes at some energy cost. An interesting feature of Table 3 is that
the identification of the first GP model using the FOPTD-based controller
uses less energy. It should be borne in mind, however, that the FOPTD con-
troller performs poorly, and even without closed-loop setpoint perturbations
is incapable to maintaining the zone temperature in the required band.

To assess the fitness-for-purpose of the MPC controllers produced here, we
explored changing the occupancy of the simulated building to a more realistic
office-worker schedule. We have modified the occupancy schedule used with
EnergyPlus to be 100% occupancy Monday to Friday between 9am and 5pm
but with a fall to 75% occupancy between 11.00am to 1.00pm to simulate
workers fetching lunch; outside these times, the building occupancy was set
to zero.

The annual performance figures with this revised occupancy schedule are
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Table 3: Additional energy requirements for each of the model re-identifications reported
in Table 2.

Re-identification Additional
Energy (GJ)

FOPTD ✙ First model -0.01

First ✙ Second model 0.11

Second ✙ Third model 0.25

Third ✙ Fourth model 0.10

Fourth ✙ Fifth model 0.15

Fifth ✙ Sixth model 0.07

Sixth ✙ Seventh model 0.26

Seventh ✙ Eighth model 0.01

shown in Table 4 using the seventh re-identified model in the MPC controller;
we have selected this model somewhat arbitrarily as a ‘middling’ performer
as judged from Table 2, and towards the end of the SID sequence. The first
row in Table 4 is reproduced directly from Table 2 for convenience.

The most notable feature of Table 4 is that the annual energy consump-
tion has almost halved, presumably due to the increased metabolic heat gains
from the increased number of occupants. This underlines the complex influ-
ences occupants exert on a building [43]. Otherwise, the comfort metrics
are actually improved over the base case principally due to the reduction in
negative-going temperature deviations while the control effort remains essen-
tially unchanged. The identified controller thus appears able to accommodate
a realistic occupancy schedule without modification.

4. Discussion and further work

The principal contribution of this paper has been to demonstrate a path
to an automated pipeline for the deployment of MPC in buildings. Critically,
this does not require the extended involvement of specialist control engineers
or access to calibrated building-physics models. Since this is a first report,
a number of observations can be made, and a number of avenues for future
work identified.
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Firstly, we have used a very crude bootstrapped model—a first-order plus
time delay model (FOPTD)—in part because it could be anticipated to pro-
duce a poor predictions. The fact that significantly better-performing predic-
tive models can be produced validates this phase of the concept. Nonetheless,
the building will be under the control of the bootstrap model for some period
so a more sophisticated starting point for the sequence of re-identifications is
highly desirable. Potentially, a bootstrapped model based on the BIM data
extracted from the architectural plans, as demonstrated by Andriamamonjy
et al. [9] is a very promising solution. While progress on BIM-to-simulator
research is being made, here too there is significant work to do.

We have already pointed out that a BIM-derived model is questionable as
a final MPC model due to: i) the possibility of construction defects causing
significant plant-model mismatch, and ii) the difficulty of accommodating
changes in the building characteristics on an ongoing basis. A BIM-derived
model should, however, constitute an excellent bootstrap model that could
be refined by closed-loop re-identification. For example, given the BIM-to-
Modelica process in [9], the generated Modelica model could be used as a sur-
rogate building to generate a comprehensive set of training data with which
to initiate our GP pipeline. In this way, we could avoid using the FOPTD
bootstrap model completely. Moreover, any significant discrepancy between
the performance a BIM-derived model, which embodies the designer’s in-
tentions, and the dynamics of the as-constructed building might indicate
construction defects that require further investigation. Quality control in
construction is arguably an under-addressed topic [44].

A subsidiary justification for using the poor FOPTD model in the present
work has been to verify that, for example, a BIM-derived bootstrap model
that performs poorly due to construction defects can still act as a successful
starting point for our toolchain. Nonetheless, further studies of the pipeline’s
robustness are needed, especially its resilience to sensor noise and to missing
data, an all-to-common common feature in building services systems.

It is instructive to examine the shortcomings of a representative selection
of some of the different models. Figure 5a shows the tracking errors for the
first-identified model over the test year. The light gray plot shows the zone
temperature, which can be seen to lie mostly within the 20±1❽ band aside
from the middle of the year which is the summer period. (Recall our test
building has no cooling.) The out-of-band temperature deviations (during
working days, Monday to Friday, 9am to 5pm) are shown in black, and are
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overwhelmingly negative-going (i.e. too cold) during the heating months of
the year.

Figure 5b shows the first week of the data in Figure 5a, which is typical
of the year. It is apparent that the control deficiencies are quite general
with the controller struggling to maintain the target setpoint throughout the
working day. We infer that the predictive model is not yet sufficiently well
tuned at this first stage.

Table 4: Annual performance summary measures of the original, and after changes in the
occupancy profile for the seventh re-identified model.

Heating Temperature regulation Cumulative
(GJ) (❽ mins) moves

+ve -ve Total

Original 9.55 0.0 3112.1 3122.1 504.0

Profile #2 5.56 206.0 1253.1 1459.1 496.8

On the other hand, the corresponding plots for the seventh-identified
model are shown in Figures 5c and 5d. Comparing Figure 5a (first model)
and Figure 5c (seventh model), it is clear that the ‘envelope’ of negative-
going deviations is smaller. The (again typical) first week of the test year
for the seventh-identified model is shown in Figure 5d from which we can
see that almost all the contributions to the thermal discomfort measure are
due to the controller ceasing heating a little too soon resulting in the zone
temperature falling just before the end of the working day; in practice, this
is likely to be a minor source of discomfort since the deviations are limited to
about leq-2❽ and at a time when occupants will be preparing to depart. The
shortcoming of this predictive model therefore appears to be its difficulty in
accurately predicting the cooling transient. In overview, the interpretation
of global measures, such as our discomfort index thus needs to be nuanced.
This work also highlights the multiobjective nature of MPC.

Figure 6 compares all the models over the 2017 test year in terms of heat-
ing energy, discomfort measure, and cumulative moves, where lower values
are better for all three metrics. Except for the last column, a fixed occu-
pancy rate of 50% is considered. Both reactive bang-bang controllers—the
first column starting at the beginning of the working day and the second col-
umn starting 30 minutes prior—result in high discomfort and a large number
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(a) First identified model.

 10

 12

 14

 16

 18

 20

 22

 24

 2  3  4  5  6  7

In
-z

o
n
e
 A

ir
 T

e
m

p
e
ra

tu
re

 (
°
C

)

Time (Days)

(b) First identified model—first week.
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(c) Seventh identified model.

 10

 12

 14

 16

 18

 20

 22

 24

 2  3  4  5  6  7

In
-z

o
n
e
 A

ir
 T

e
m

p
e
ra

tu
re

 (
°
C

)

Time (Days)

(d) Seventh identified model—first week.

Figure 5: Tracking errors for the whole of the 2017 test year for MPC using the first and seventh identified models. The zone
temperatures are shown in light gray. The black vertical lines extending down from 19❽ indicate where and by how much
the zone temperatures are below the minimum tolerance during working hours whereas vertical black lines extending up from
21❽ indicate where and by how much the zone temperature exceed the upper tolerance level during working hours.
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of control moves, despite using a significant amount of heating energy. The
open-loop model achieves low discomfort and fewer control moves, but at the
cost of high energy consumption, the highest among all the models tested.
The re-identified models offer various trade-offs, excelling in one or two as-
pects but performing less well in others. For instance, the third re-identified
model performs well in terms of discomfort and cumulative moves but has
higher energy usage. On the other hand, the fifth re-identified model has
the lowest energy usage and the second lowest number of control moves, but
performs less well in discomfort reduction. In essence, as Blum et al. [42]
remark, “which controller is ‘better’ may still be the subject of some subjec-
tivity, especially when a controller performs better in one KPI and worse in
another”.

The last column of Figure 6 (Profile #2) shows the performance of the
seventh re-identified model under a different occupancy schedule, with 100%
occupancy Monday to Friday between 9 am and 5 pm, dropping to 75%
between 11 am and 1 pm. A reduction in energy usage is observed due to the
additional “free” heating from occupants (metabolic and equipment heat),
as well as a decrease in the discomfort measure; the control moves measure
is essentially unchanged.
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Figure 6: Performance comparison over the 2017 test year.

The other notable feature of this work is that although we have generally
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observed improved comfort relative to the baseline bang-bang controllers,
we have also observed variable energy usage (relative to bang-bang control).
This is in contrast to many reports in the buildings MPC literature, some
of which have reported quite spectacular energy savings [3] (although we
would question the reproducibility of some of those studies since the baseline
“rules-based controllers” are often insufficiently specified). In fact, there is
absolutely no reason why a model predictive controller that regulates zone
temperature should save energy other than as a side-effect of eliminating any
overheating produced by a sub-optimal rules-based controller. Nonetheless,
there is clearly scope for improving the performance of the re-identified pre-
dictive models in the present work, and translating this to an industrial-grade
toolchain.

In terms of the sequence of model re-identifications, an unsatisfying aspect
is that while all the GP models produced credible, well-functioning MPC,
the sequence of re-identifications does not appear to converge to a stationary
endpoint, and therefore when to stop the sequence is unclear. In some senses,
this phenomenon could have been anticipated [5] as this behavior has been
frequently observed in the control literature where it is regarded as “well-
known”.

Gevers [30] has carried out a detailed theoretical analysis of this interplay
between open-loop models trained to minimize PE and their resulting closed-
loop performance. In outline, all models are subject to some modeling errors.
In well-performing PE models these modeling errors have, by definition, a
small effect, but in the absence of knowing the true system are difficult to
quantify and predict. The characteristics of the closed-loop system, however,
are usually significantly different from that of the open-loop. It is often the
case that modeling errors in the open-loop model that have minimal effect
on its open-loop performance are greatly amplified when that model is used
in closed loop, resulting in worse than expected closed loop performance. In
linear models this has motivated the use of filtering of the predictive errors
to ‘shape’ the modeling errors and ‘shift’ them to regions of the spectrum
that do not degrade the subsequent closed-loop performance. The use of
data filters in nonlinear models, as used here however, is problematic. A fur-
ther complicating factor [30] is that the characteristics of the model used to
maintain control in the closed-loop SID experiment affect the data obtained
and therefore the properties of the subsequently re-identified model. The
influence of the open-loop modeling errors on the closed loop performance
thus seems hard to predict and ameliorate. Sometimes it is minimal, other
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times not. For example, in a recent study of MPC of a nonlinear contin-
uously stirred tank reactor (CSTR), Sorourifar et al. [45] observed that a
PE-trained model with good performance produced disastrously poor closed
loop control. Overall, it therefore seems reasonable that the widely observed
lack of convergence to a stationary endpoint in a sequence of close-loop re-
identifications [5] is due to the unpredictable propagation of modeling errors
down the chain of re-identifications. A conclusion of the present work is,
therefore, that modeling errors in the PE-trained models for buildings MPC
have a noticeable effect (in that the sequence of re-identifications does not
seem to converge), but that their influence is not so serious as to prevent ef-
fective control. An additional contributor to the variability in this work may
be that each GP model has been trained with data collected over different
time periods and therefore under different weather disturbances, as would be
unavoidable in a practical MPC deployment.

The observation in this initial report of the sequence of re-identifications
not converging to a stationary point is undesirable since it introduces an ele-
ment of subjectivity (i.e. when to stop re-identifying) into what is intended
to be a fully automated toolchain. Very recent work in the identification-
for-control (I4C) community, however, has focused on calibrating the re-
identified model, not to optimize predictive accuracy, but rather to optimize
some measure of its control performance when the model is used in closed-
loop [46]. In the buildings arena, setpoint regulation is only one of the criteria
of interest—energy consumption is also important leading to a multiobjec-
tive optimization with trade-offs. Multiobjective performance-oriented model
calibration has recently been reported by [47] for a biomanufacturing appli-
cation. Indeed, the previously cited work of Sorourifar et al. [45] is also a
contribution to this area. It is thus a key area of future work to calibrate our
re-identified models to explicitly optimize closed-loop control performance
rather than predictive accuracy in order to produce a convergent sequence of
re-identifications. Such a refined scheme would proceed in two stages: firstly,
training a surrogate model of the plant by minimizing the PEs on the system
identification data. This model would then act in place of the real building in
a second stage aimed at optimizing the closed-loop performance of a separate
predictive model that will ultimately be deployed in the controller—see [47]
for further details.

Finally, in terms of the training regimen, we have acquired both the
training and validation data over a fixed 7-day period. An obvious area of
future work is to examine the effects of the length of this acquisition window.
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Furthermore, extension to economic MPC [48, 49] in which energy con-
sumption is explicitly minimized subject to constraints on internal environ-
mental quality (IEQ) is another avenue for future research. As we have
pointed out, the approach of improving setpoint regulation alone in MPC
cannot be guaranteed to reduce energy consumption except as a fortuitous
side-effect of eliminating overheating due to an existing controller.

Finally, we noted from Table 3 that the re-identification process has a
small but non-zero energy cost. Clearly, if the energy saving resulting from
re-estimation is larger than the energy cost of that re-estimation then there
is a positive benefit. Routine, periodic re-estimation, however, is likely to
be questionable from an energy saving standpoint. The obvious solution is
to monitor the controller’s performance and initiate a re-identification if the
plant-model mismatch becomes too great. There is a significant body of
work in the general MPC literature on performance monitoring to draw on
here [50], and this is another obvious area of future work, as is a thorough in-
vestigation of re-identification when the building’s characteristics andigureor
occupancy changes.

The other, equally important area of future work is the extension to build-
ings with multiple zones, as is practical demonstration in a range of real
building forms as opposed to simulation. Here we have described the cre-
ation of multiple-input-single-output (MISO) models appropriate for a single
zone. Nelles [25], for example, describes a number of options for assembling
the multiple-input-multiple-out (MIMO) models needed for a multiple zone
controller from MISO models.

5. Conclusions

In this paper, we have outlined a preliminary framework for the practical
implementation of model predictive control (MPC) in buildings. Rather than
rely on highly-specialized control engineers to iteratively ‘hand tune’ white-
or gray-box predictive models, or relying on the availability of sufficiently
accurate calibrated building-physics models, we have proposed obtaining a
predictive model for MPC from a sequence of closed-loop system identifi-
cation experiments of modest duration that can be carried out while the
building is occupied. Our approach has the twin benefits of estimating the
characteristics of the building as it is physically constructed (as opposed to
what might have been intended by the designer), together with maintaining
the building under control at all times during the identification procedure.
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In addition, exactly the same re-identification procedure can be used to up-
date the predictive model in the event of inevitable changes in the building’s
characteristics while in operation.

We have also demonstrated that this process can be initiated (or boot-
strapped) with a very simple model obtained from a step excitation of the
heating system. This quick path to bootstrapping can be carried out during
the building services commissioning process although a more sophisticated
approach using, for example, BIM models is desirable.

While proposing the framework of a readily automatable pipeline for MPC
commissioning and ongoing operational tuning, we have identified a number
of areas for development and future work. Overall, the results in this paper
suggest a rather more nuanced interpretation of MPC performance data as
it relates to buildings.
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