
This is a repository copy of Set semantics for asynchronous TeamLTL: expressivity and
complexity.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/225038/

Version: Published Version

Article:

Kontinen, J., Sandström, M. orcid.org/0000-0002-6365-2562 and Virtema, J.
orcid.org/0000-0002-1582-3718 (2025) Set semantics for asynchronous TeamLTL:
expressivity and complexity. Information and Computation, 304. 105299. ISSN 0890-5401

https://doi.org/10.1016/j.ic.2025.105299

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Information and Computation 304 (2025) 105299

Contents lists available at ScienceDirect

Information and Computation

journal homepage: www.elsevier.com/locate/yinco

Set semantics for asynchronous TeamLTL: Expressivity and

complexity

Juha Kontinen a,1, Max Sandström a,b,∗,2, Jonni Virtema a,b,3

a University of Helsinki, Department of Mathematics and Statistics, Pietari Kalmin katu 5, 00014, Helsinki, Finland
b University of Sheffield, School of Computer Science, Western Bank, S10 2TN, Sheffield, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 December 2023
Received in revised form 24 March 2025
Accepted 26 March 2025
Available online 27 March 2025

Keywords:

Hyperproperties

Linear temporal logic
Team semantics

We introduce and develop a set-based semantics for asynchronous TeamLTL. We consider

two canonical logics in this setting: the extensions of TeamLTL by the Boolean disjunction

and by the Boolean negation. We relate the new semantics with the original semantics

based on multisets and establish one of the first positive complexity theoretic results

in the temporal team semantics setting. In particular we show that both logics enjoy

normal forms that can be utilised to obtain results related to expressivity and complexity

(decidability) of the new logics.

 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Linear temporal logic (LTL) is one of the most prominent logics for the specification and verification of reactive and con-

current systems. The core idea in model checking, as introduced in 1977 by Amir Pnueli [22], is to specify the correctness of

a program as a set of infinite sequences, called traces, which define the acceptable executions of the system. In LTL-model

checking one is concerned with trace sets that are definable by an LTL-formula. Ordinary LTL and its progeny are well suited

for specification and verification of trace properties. These are properties of systems that can be checked by going through

all executions of the system in isolation. A canonical example here is termination; a system terminates if each run of the

system terminates. However not all properties of interest are trace properties. Many properties that are of prime interest,

e.g., in information flow security, require a richer framework. The term hyperproperty was coined by Clarkson and Schneider

[3] to refer to properties which relate multiple execution traces. An illustrative example is bounded termination; one cannot

check whether a system terminates in bounded time by only checking traces in isolation. Checking hyperproperties is vital

in information flow security where dependencies between secret inputs and publicly observable outputs of a system are

considered potential security violations. Commonly known properties of that type are noninterference [24,20] and obser-

vational determinism [30]. Hyperproperties are not limited to the area of information flow control; e.g., distributivity and

other system properties like fault tolerance can be expressed as hyperproperties [5].

During the past decade, the need for being able to formally specify hyperproperties has led to the creation of families

of novel logics for this purpose, seeing as established temporal logics such as LTL can only specify trace properties. The

* Corresponding author at: University of Helsinki, Department of Mathematics and Statistics, Pietari Kalmin katu 5, 00014, Helsinki, Finland.
E-mail addresses: juha.kontinen@helsinki.fi (J. Kontinen), max.sandstrom@helsinki.fi (M. Sandström), j.t.virtema@sheffield.ac.uk (J. Virtema).

1 Supported by the Academy of Finland grant 345634.
2 Supported by the Academy of Finland grant 322795.
3 Supported by the Academy of Finland grant 345634 and the DFG grant VI 1045/1-1.

https://doi.org/10.1016/j.ic.2025.105299

0890-5401/ 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

J. Kontinen, M. Sandström and J. Virtema Information and Computation 304 (2025) 105299

two main families of new logics are the so-called hyperlogics and logics that adopt team semantics. In the former approach,

temporal logics such as LTL, computation tree logic (CTL), and quantified propositional temporal logic (QPTL) are extended

with explicit trace and path quantification, resulting in logics like HyperLTL [2], HyperCTL∗ [2], and HyperQPTL [23,4]. The

latter approach (which we adopt here) is to lift the semantics of temporal logics to sets of traces directly by adopting team

semantics yielding logics such as TeamLTL [15,7] and TeamCTL [14,7].

Krebs et al. [15] introduced two versions of LTL with team semantics: a synchronous semantics and an asynchronous vari-

ant that differ on how the evolution of time is linked between computation traces when temporal operators are evaluated.

In the synchronous semantics time proceeds in lock-step, while in the asynchronous variant time proceeds independently

on each trace. For example the formula “Fterminate” (here F denotes the future-operator and “terminate” is a proposi-

tion depicting that a trace has terminated) defines the hyperproperty “bounded termination” under synchronous semantics,

while it expresses the trace property “termination” under asynchronous semantics. The elegant definition of bounded ter-

mination exemplifies one of the main distinguishing factors of team logics from hyperlogics; namely the ability to refer

directly to unbounded number of traces. Each hyperlogic-formula has a fixed number of trace quantifiers that delineate

the traces involved in the evaluation of the formula. Another distinguishing feature of team logics lies in their ability to

enrich the logical language with novel atomic formulae for stating properties of teams. The most prominent of these are the

dependence atom dep(x̄, ȳ) (stating that the values of the variables x̄ functionally determine the values of ȳ) and inclusion

atom x̄ ⊆ ȳ (expressing the inclusion dependency that all the truth value combinations occurring for x̄ must also occur as

truth value combinations for ȳ in the order of the variables tuples).

As an example, let o1, . . . ,on be public observable bits and assume that c is a bit revealing confidential information. The

atom (o1, . . .on, c) ⊆ (o1, . . .on,¬c) expresses a form of non-inference by stating that an observer cannot infer the value of

the confidential bit from the outputs.

While HyperLTL and other hyperlogics have been studied extensively, many of the basic properties of TeamLTL are still

not well understood. Krebs et al. [15] showed that synchronous TeamLTL and HyperLTL are incomparable in expressivity

and that the asynchronous variant collapses to LTL. Not much was known about the complexity aspects of TeamLTL until

Lück [18] showed that the complexity of satisfiability and model checking of synchronous TeamLTL with Boolean negation

∼ is equivalent to the decision problem of third-order arithmetic. Subsequently, Virtema et al. [29] embarked for a more

fine-grained analysis of the complexity of synchronous TeamLTL and discovered a decidable syntactic fragment (the so-

called left-flat fragment) and established that already a very weak access to the Boolean negation suffices for undecidability.

They also showed that synchronous TeamLTL and its extensions can be translated to HyperQPTL+ , which is an extension

of HyperLTL by (non-uniform) quantification of propositions. Kontinen and Sandström [12] defined translations between

extensions of TeamLTL and the three-variable fragment of first-order team logic to utilise the better understanding of first-

order team semantics. They also showed that any logic effectively residing between synchronous TeamLTL extended with the

Boolean negation and second-order logic inherits the complexity properties of the extension of TeamLTL with the Boolean

negation. Finally, Gutsfeld et al. [7] re-imagined the setting of temporal team semantics to be able to model richer forms

of (a)synchronicity by developing the notion of time-evaluation functions. In addition to re-imagining the framework, they

discovered decidable logics which however relied on restraining time-evaluation functions to be either k-context-bounded or

k-synchronous. It is worth noting that recently asynchronous hyperlogics have been considered also in several other articles

(see, e.g., [8,1]).

Almost all complexity theoretic results previously obtained for TeamLTL have been negative, and the few positive results

have required drastic restrictions in syntax or semantics. In this article we take a fresh look at expressive extensions of

asynchronous TeamLTL. Recent works on synchronous TeamLTL have revealed that quite modest extensions of synchronous

TeamLTL are undecidable. Thus, our study of asynchronous TeamLTL partly stems from our desire to discover decidable, but

expressive logics for hyperproperties.

Until now, all the papers on temporal team semantics have explicitly or implicitly adopted a semantics based on multisets

of traces. In the team semantics literature, this often carries the name strict semantics, in contrast to lax semantics which is

de facto a set-based semantics. Since, in the literature, hyperproperties are defined as sets of sets of traces (as opposed to

sets of multisets of traces), a question arises: what would be a suitable set semantics for team-based logics? Note that the

distinction between sets and multisets do not manifest in the synchronous team logics (in absence of quantitative atomic

statements) and has thus so far remained unstudied.

In database theory, it is ubiquitous that tasks that are computationally easy under set based semantics become intractable

in the multiset case. In the team semantics setting this can be already seen in the model checking problem of propositional

inclusion logic, PL(⊆), which is P-complete under lax semantics, but NP-complete under strict semantics [10]. Our new set-

based framework offers a setting that drops the accuracy that accompanies adoption of multiset semantics in favour of better

computational properties. Consider the following formula expressing a form of strong non-inference in parallel computation:

G((o1, ...,on, c) ⊆ (o1, ...,on,¬c)), where o1, ...,on are observable outputs and c is confidential. In the synchronous setting,

the formula expresses that during a synchronous computation, at any given time, an observer cannot infer the value of the

secret c from the outputs. In the asynchronous setting, the formula states a stronger property that the above property holds

for all computations (not only synchronous). In the multiset setting the number of parallel computation nodes is fixed,

while in the new lax semantics, we drop that restriction, and consider an undefined number of computation nodes. The

condition is stronger in lax semantics; and intuitively easier to falsify, which makes model checking in practice easier.

2

J. Kontinen, M. Sandström and J. Virtema Information and Computation 304 (2025) 105299

Table 1
Expressivity hierarchy of the asynchronous logics considered in the paper. Logics with lax
or strict semantics are here referred with the superscripts l and s, respectively. For the
definitions of left flatness, quasi flatness, and left downward closure, we refer to Defi-
nitions 11 and 19. †: This follows since only TeamLTLl(�) is downward closed (cf. Theo-
rem 12 and Definition 19). Theorem 12 implies that for TeamLTL(∼)-formulae in quasi-flat
form the strict and lax semantics coincide.

TeamLTLs/l left-flat–TeamLTLs(�)
Cor. 16

< TeamLTLs(�)

<

Ex. 10

≡

Thm. 12

TeamLTLl(�)
Thm. 14

≡ left-flat–TeamLTLl(�)
†
< quasi-flat–TeamLTLs/l(∼)

≡

Thm. 20
left-dc–TeamLTLl(∼)

Table 2
Complexity results of this paper. All results are completeness results if not otherwise specified. PL(∼)

refers to the propositional fragment of TeamLTL(∼) which embeds also to left-dc-TeamLTLl(∼). †:
All PSPACE-completeness results for satisfiability in strict semantics and TeamLTLl follow directly
from classical LTL by downward closure and singleton equivalence similar to [15, Proposition 5.4].
ATIME-ALT(exp,poly) refers to alternating exponential time with a polynomial number of alterna-
tions while TOWER(poly) refers to problems that can be decided by a deterministic TM in time
bounded by an exponential tower of 2’s of polynomial height.

Logic Complexity of References

(asynchronous semantics) model checking satisfiability

LTL PSPACE PSPACE [25]
PL(∼) ATIME-ALT(exp,poly) ATIME-ALT(exp,poly) [9]
TeamLTLl/s PSPACE PSPACE [15], Theorem 9
left-flat-TeamLTLs/l(�) PSPACE PSPACE Theorem 22
TeamLTLl(�) PSPACE PSPACE Theorem 22
TeamLTLs(�) ??? PSPACE †

TeamLTLs(dep) NEXPTIME-hard PSPACE [15]
left-dc-TeamLTLl(∼) in TOWER(poly) in TOWER(poly) Theorem 22

Table 3
Complexity results for synchronous strict semantics. All results are completeness results if not
otherwise specified. †: All PSPACE-completeness results for satisfiability follow directly from
classical LTL by downward closure and singleton equivalence similar to [15, Proposition 5.4].
‡: For the fragment without disjunction(∨).

Logic Complexity of References

(sync. strict semantics) model checking satisfiability

TeamLTL PSPACE‡ PSPACE [15]
left-flat-TeamLTL(�) in EXPSPACE PSPACE [29]
TeamLTL(dep) NEXPTIME-hard PSPACE [15]
TeamLTL(�) ??? PSPACE †

TeamLTL(�,⊆) Σ0
1-hard Σ0

1-hard [29]
TeamLTL(∼) third-order arithmetic third-order arithmetic [18]

Our contribution. We introduce and develop a set-based semantics for asynchronous TeamLTL, which we name lax

semantics and write TeamLTLl . We consider two canonical logics in this setting: the extensions of TeamLTLl by the Boolean

disjunction TeamLTLl(�) and by the Boolean negation TeamLTLl(∼). By developing the basic theory of lax asynchronous

TeamLTL, we discover some fascinating connections between the strict and lax semantics. We discover that both logics

enjoy normal forms that can be utilised to obtain expressivity and complexity results. Tables 1 and 2 summarise our results.

For comparison, Table 3 summarises the known results on complexity of synchronous TeamLTL.

2. Preliminaries

We start of by defining the syntax common for the logics discussed in this article. Fix a finite set AP of atomic propositions.

The set of formulae of LTL (over AP) is generated by the grammar:

ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ | Gϕ | ϕUϕ,

where p ∈ AP. We adopt the convention that formulae are given in negation normal form, i.e., ¬ is allowed only in front of

atomic propositions. Note that this set of LTL-formulae are expressively complete.

Next we define the structures for the semantics of the logic. As the name of the logic implies, the structures are linear

Kripke models, where special consideration is given to how far in the chain a possible world resides. A trace t over AP is

3

J. Kontinen, M. Sandström and J. Virtema Information and Computation 304 (2025) 105299

an infinite sequence from (2AP)ω . For a natural number i ∈ N , we denote by t[i] the (i + 1)th letter of t and by t[i,∞]

the suffix (t[j]) j≥i of t . Semantics of LTL is defined in the usual manner (see e.g., [21]). For example, t |= p if and only if

p ∈ t[0] and t |= ϕ if and only if t[1,∞] |= ϕ . The truth value of a formula ϕ on a trace t is denoted by �ϕ�t ∈ {0,1}. The

logical constants ⊤,⊥ and the operators F and W can be defined in the usual way:

⊥ := p ∧ ¬p, ⊤ := p ∨ ¬p, Fϕ := ⊤Uϕ, and ϕWψ := (ϕUψ) ∨ Gϕ.

Next we present the so-called asynchronous team semantics for LTL introduced in [15]. In [15], the release operator

was defined slightly erroneously; we fix the issue here by taking G as primitive and defining R using G and U. Informally,

a multiset of traces T is a collection of traces with possible repetitions. Formally, we represent T as a set of pairs (i, t),

where i is an index (from some suitable large set) and t is a trace. We stipulate that the elements of a multiset have

distinct indices. When there is no risk of confusion, we omit the index and write t instead of (i, t). For multisets T and

S , T ⊎ S denotes the disjoint union of T and S (obtained by stipulating that traces in S and T have disjoint sets of

indices). Note that all the functions f with domain T are actually of the form f ((i, t)) and may map different copies of

the trace t differently. A team (multiteam, resp.) is a set (multiset, resp.) of traces. If f : T → N is a function, we define

the updated team T [f ,∞] := {t[f (t),∞] | t ∈ T }, where f determines for each trace a point in time it updates to. For

functions f : T → N and f ′ : T ′ → N , we write f ′ < f , if T ′ ⊆ T and f ′(t) < f (t) for all t ∈ T ′ . The underlying team

support(T) := {t | (i, t) ∈ T } of a multiteam T is called the support of T .

Example 1. Suppose the team T consists of two traces of the same computation of alternating p and q states, i.e. T :=

{(1, t), (2, t)}, where t := ({p}{q})ω . See T pictured below:
{

{p} {q} {p} {q} {p} {q} {p} {q} . . .

{p} {q} {p} {q} {p} {q} {p} {q} . . .

Now if we update the team with the function f : T → N defined through f ((1, t)) = 1 and f ((2, t)) = 2, we obtain the

team T [f ,∞], which is the same as T , except the second trace is offset by one step. See the team T [f ,∞] pictured below:
{

{p} {q} {p} {q} {p} {q} {p} {q} . . .

{q} {p} {q} {p} {q} {p} {q} {p} . . .

Definition 2 (Team semantics for LTL). Let T be a multiteam, and ϕ and ψ LTL-formulae. The asynchronous team semantics

of TeamLTL is defined as follows.

T |= l ⇔ t |= l for all t ∈ T , where l ∈ {p,¬p | p ∈ AP} is a literal

T |= ϕ ∧ ψ ⇔ T |= ϕ and T |= ψ

T |= ϕ ∨ ψ ⇔ ∃T1, T2 s.t. T1 ⊎ T2 = T and T1 |= ϕ and T2 |= ψ

T |= ϕ ⇔ T [1,∞] |= ϕ, where 1 is the constant function t �→ 1

T |= Gϕ ⇔ ∀ f : T → N T [f ,∞] |= ϕ

T |= ϕUψ ⇔ ∃ f : T → N T [f ,∞] |= ψ and T ′[f ′,∞] |= ϕ, for all f ′ : T ′ → N s.t. f ′ < f ,

where T ′ := {t ∈ T | f (t) �= 0}

The synchronous variant of the semantics is obtained by allowing f to range only over constant functions. We take the

asynchronous semantics as the standard semantics and write TeamLTL for asynchronous TeamLTL.

Example 3. Consider the team T := {(1, t1), (2, t2), (3, t2)}, where t1 := {q}ω and t2 := {p}{p,q}{q}ω , and consider the for-

mula ϕ := pUq. The team T looks as below:
⎧

⎨

⎩

{q} {q} {q} {q} {q} {q} {q} {q} . . .

{p} {p,q} {q} {q} {q} {q} {q} {q} . . .

{p} {p,q} {q} {q} {q} {q} {q} {q} . . .

If we think of the function f : T → N , defined through f ((1, t1)) = 0, f ((2, t2)) = 1, and f ((3, t2)) = 2, we notice that

t1[f ((1, t1)),∞] |= q, t2[f ((2, t2)),∞] |= q, and t2[f ((3, t2)),∞] |= q, as seen in the representation of the updated team

T [f ,∞] below:
⎧

⎨

⎩

{q} {q} {q} {q} {q} {q} {q} {q} . . .

{p,q} {q} {q} {q} {q} {q} {q} {q} . . .

{q} {q} {q} {q} {q} {q} {q} {q} . . .

4

J. Kontinen, M. Sandström and J. Virtema Information and Computation 304 (2025) 105299

Thus T [f ,∞] |= q. Furthermore, when we consider the functions defined on T ′ := {(2, t2), (3, t2)}, which are smaller than

f , as described above, we notice that there are two possibilities; f1 and f2 defined as follows: f1((2, t2)) = f2((2, t2)) = 0,

f1((3, t2)) = 0, and f2((3, t2)) = 1. Sketched out we get T ′ below:
{

{p} {p,q} {q} {q} {q} {q} {q} {q} . . .

{p} {p,q} {q} {q} {q} {q} {q} {q} . . . ,

the update of T ′ with f1 , T
′[f1,∞], below:

{

{p} {p,q} {q} {q} {q} {q} {q} {q} . . .

{p} {p,q} {q} {q} {q} {q} {q} {q} . . . ,

and finally the update of T ′ with f2 , T
′[f2,∞], below:

{

{p} {p,q} {q} {q} {q} {q} {q} {q} . . .

{p,q} {q} {q} {q} {q} {q} {q} {q} . . .

Here we notice that t2[f1((2, t2)),∞] |= p, t2[f2((2, t2)),∞] |= p, t2[f1((3, t2)),∞] |= p, and t2[f2((3, t2)),∞] |= p. There-

fore T ′[f1,∞] |= p and T ′[f2,∞] |= p. By the asynchronous semantics of LTL then T |= ϕ .

We also consider the Boolean disjunction � and Boolean negation ∼ interpreted as usual:

T |= ϕ � ψ ⇔ (T |= ϕ or T |= ψ), and

T |= ∼ ϕ ⇔ T �|= ϕ.

Next we define some important semantic properties of formulae studied in the literature. A logic has one of these

properties if every formula of the logic has the property. It is easy to check that TeamLTL has all the properties listed below

[15] whereas its extension with the Boolean disjunction has all but flatness and the extension with Boolean negation has

none. The negative results transfer from the propositional case; it is easy to check that neither p � q nor ∼ p are flat,

and that the latter also violates the empty team property and downward closure. Singleton equivalence is a meaningful

property only for formulae that are syntactically LTL. The positive results can be proven via a straightforward induction

on the structure of formulae. Furthermore, we will later establish in Theorem 4, TeamLTL with the Boolean disjunction

is expressively complete for downward closed LTL-properties of teams, while the extension of TeamLTL with the Boolean

negation can express all LTL-properties of teams (for a formal statement of this, see Theorem 4).

(Downward closure) If T |= ϕ and S ⊆ T , then S |= ϕ .

(Empty team property) ∅ |= ϕ .

(Flatness) T |= ϕ iff {t} |= ϕ for all t ∈ T .

(Singleton equivalence) {t} |= ϕ iff t |= ϕ .

We will now justify our choice of semantics. The semantic rules for literals, conjunction, and disjunction are the standard

ones in team semantics, and which have been motivated numerous times in the literature [26]. The two main desirable

properties for the logic to have are flatness and singleton equivalence, which also motivated the original definition of

asynchronous TeamLTL [15]. The given semantics for is the only possible one that satisfies flatness. The same is true

for F (i.e., ⊤Uϕ) and G; moreover the semantics clearly capture the intuitive meanings of asynchronously in the future and

asynchronously globally, respectively. The given semantics for U preserves flatness and singleton equivalence, and adequately

captures the intuitive meaning of asynchronous until. The framework of asynchronous TeamLTL then allows us to define

different variants of the familiar temporal operators. E.g., ϕW1ψ := Gϕ ∨ ϕUψ and ϕW2ψ := Gϕ � ϕUψ define different

variants of weak until; the first of which is flat, while the second is not.

T |= ϕW1ψ ⇔ ∃T1, T2 s.t. T1 ⊎ T2 = T , T1 |= Gϕ and T2 |= ϕUψ

T |= ϕW2ψ ⇔ T |= Gϕ or T |= ϕUψ

Similarly ϕR1ψ := ψU((ψ ∧ ϕ) ∨ Gψ) and ϕR2ψ := ψU((ψ ∧ ϕ) � Gψ) give rise to different variants of release. Moreover,

with the Boolean negation, ∼, one can define additional dual operators.

A defining feature of team semantics is the ability to enrich logics with novel atomic statements describing properties of

teams in a modular fashion. For example, dependence atoms dep(ϕ1, . . . ,ϕn,ψ) and inclusion atoms ϕ1, . . . ,ϕn ⊆ ψ1, . . . ,ψn ,

with ϕ1, . . . ,ϕn,ψ,ψ1, . . . ,ψn being LTL-formulae, have been studied extensively in first-order and modal team semantics.

The dependence atom states that the truth value of ψ is functionally determined by that of ϕ1, . . . ,ϕn , whereas the inclusion

atom states that each value combination of ϕ1, . . . ,ϕn must also occur as a value combination for ψ1, . . . ,ψn . Formally:

T |= dep(ϕ1, . . . ,ϕn,ψ) iff ∀t, t′ ∈ T :
(

∧

1≤ j≤n

�ϕ j�t = �ϕ j�t′
)

⇒ �ψ�t = �ψ�t′

5

J. Kontinen, M. Sandström and J. Virtema Information and Computation 304 (2025) 105299

T |= ϕ1, . . . ,ϕn ⊆ ψ1, . . . ,ψn iff ∀t ∈ T ∃t′ ∈ T :
∧

1≤ j≤n

�ϕ j�t = �ψ j�t′

Consider the following exemplary formula: Gdep(i1, i2,o) ∨ Gdep(i2, i3,o). The formula states that the executions of the

system can be decomposed into two parts; in the first part, the output o is determined by the inputs i1 and i2 , and in the

second part, o is determined by the inputs i2 and i3 . Consider another formula dep(s̄,Fa), where s̄ indicates the positions

(on/off) of a sequence of switches and a indicates whether an action occurs. Now the formula dep(s̄,Fa) expresses the

functional dependence that whether the action takes place somewhere in the future is functionally determined by the

current positions of the switches.

If A is a collection of atoms and connectives, TeamLTL(A) denotes the extension of TeamLTL with the atoms and con-

nectives in A. It is straightforward to see (in analogy to the modal team semantics setting [11]) that any dependency such

as the ones above is determined by a finite set of n-ary Boolean relations. Let B be a set of n-ary Boolean relations. We

define the property [ϕ1, . . . ,ϕn]B for an n-tuple (ϕ1, . . . ,ϕn) of LTL-formulae:

T |= [ϕ1, . . . ,ϕn]B iff {(�ϕ1�t, . . . , �ϕn�t) | t ∈ T } ∈ B.

Expressions of the form [ϕ1, . . . ,ϕn]B are generalised atoms. It was shown in [29] that, in the synchronous setting,

TeamLTL(∼) is expressively complete with respect to all generalised atoms, whereas the extension of TeamLTL(�) with

the so-called flattening operator can express any generalised atoms that preserve downward closure. Preserving downward

closure means that if the atom is applied to a downward closed formula, the resulting formula remains downward closed.

These results readily extend to the asynchronous setting. Moreover the flattening operator renders itself unnecessary due

to flatness of asynchronous TeamLTL. The results imply, e.g., that the dependence atoms (which preserves downward clo-

sure) can be expressed in both of the logics TeamLTL(∼) and TeamLTL(�), and inclusion atoms in turn are expressible in

TeamLTL(∼). The proof of the following theorem is essentially the same as the proof of [28, Proposition 17]. Below L ≡ L′

denotes the equi-expressivity of the logics L and L′ .

Theorem 4. Let A, D be the sets of all generalised atoms, and all generalised atoms preserving downward closure, respectively. Then

TeamLTL(D,�) ≡ TeamLTL(�) and TeamLTL(A,∼) ≡ TeamLTL(∼).

As a consequence of the above theorem, we may focus our study to the two canonical logics TeamLTL(�) and TeamLTL(∼

). As TeamLTL(�) can express all downward closed generalised atoms and TeamLTL(∼) can express all generalised atoms,

our results concerning expressivity of logics can be readily extended to cover those classes of atoms, respectively. Moreover,

our complexity theoretic results could also be extended to cover generalised atoms by using a suitable convention for

deciding the input size a generalised atom contributes. Hence, for the rest of the paper, we focus on the logics TeamLTL(�)

and TeamLTL(∼).

3. Set-based semantics for TeamLTL

Next we define a relaxed version of the asynchronous semantics. We call it lax semantics, as it corresponds to the so-

called lax semantics of first-order team semantics (see e.g., [6]). From now on we refer to the semantics of Definition 2 as

strict semantics. The possibility of considering lax semantics for TeamLTL was suggested by Lück already in [19], but the

full definition was not given. Intuitively, lax semantics can always be obtained from a strict one by checking what strict

semantics would yield if multiteams were enriched with unbounded many copies of each of its traces. More concretely,

when designing a set-based semantics one may consider the restriction of multiset semantics where the only allowed

multiteams are those T such that the multiplicities of t ∈ T are ℵ0 . For instance, in the case of splitjunction, one would

allow only those splits that yield subteams of the aforementioned property. One of the defining features of lax semantics is

that it is unable to distinguish multiplicities, which is formalised by Proposition 8 below.

We need some notation for the new definition. We write P(N)+ to denote P(N) \ {∅}. For a team T and function

f : T → P(N)+ , we set T [f ,∞] := {t[s,∞] | t ∈ T , s ∈ f (t)}. For T ′ ⊆ T , f : T → P(N)+ , and f ′ : T ′ → P(N)+ , we define

that f ′ < f if and only if

∀t ∈ T ′: min(f ′(t)) ≤ min(f (t)) and, if max(f (t)) exists, max(f ′(t)) < max(f (t)).

Example 5. To illustrate how set based teams work, let us consider the same situation as in Example 1. Let T be the team

only consisting of the trace t := ({p}{q})ω . See T pictured below:

{

{p} {q} {p} {q} {p} {q} {p} {q} . . .

Now if we update the team with the function f : T → P(N)+ defined through f (t) = {1,2}, we obtain the team T [f ,∞],

which is a team consisting of two traces, where the second trace is offset by one step. See the team T [f ,∞] pictured

below:

6

J. Kontinen, M. Sandström and J. Virtema Information and Computation 304 (2025) 105299

{

{p} {q} {p} {q} {p} {q} {p} {q} . . .

{q} {p} {q} {p} {q} {p} {q} {p} . . .

Definition 6 (TeamLTLl). Let T be a team, and ϕ and ψ TeamLTL-formulae. The lax semantics is defined as follows. We only

list the cases that differ from the strict semantics.

T |=l ϕ ∨ ψ ⇔ ∃T1, T2 s.t. T1 ∪ T2 = T and T1 |= ϕ and T2 |= ψ

T |=l
Gϕ ⇔ ∀ f : T → P(N)+ it holds that T [f ,∞] |=l ϕ

T |=l ϕUψ ⇔ ∃ f : T → P(N)+ such that T [f ,∞] |=l ψ and

∀ f ′ : T ′ → P(N)+s.t. f ′ < f , it holds that T ′[f ′,∞] |=l ϕ or T ′ = ∅,

where T ′ := {t ∈ T | max(f (t)) �= 0}

In the context we will be considering in this article, the subformulae ϕ in the definition of the until operator U always

have the empty team property and thus we disregard the possibility that the team T ′ is empty in our proofs, as that case

follows from the empty team property.

Example 7. Let’s consider the same situation as in Example 3. To that end, let T := {t1, t2}, where t1 := {q}ω and t2 :=

{p}{p,q}{q}ω , and consider the formula ϕ := pUq. See below a sketch of team T :
{

{q} {q} {q} {q} {q} {q} {q} {q} . . .

{p} {p,q} {q} {q} {q} {q} {q} {q} . . .

When we think of the function f : T →P(N)+ , defined through f (t1) = {0}, and f (t2) = {1,2} we notice that t1[0,∞] |= q,

t2[1,∞] |= q, and t2[2,∞] |= q, since the proposition symbol q is in state 0 of t1 and in state 1 and 2 of trace t2 , as we can

see from the updated team T [f ,∞] pictured below:
{

{q} {q} {q} {q} {q} {q} {q} {q} . . .

{p,q} {q} {q} {q} {q} {q} {q} {q} . . .

Thus T [f ,∞] |=l q. Furthermore, when we consider the functions defined on T ′ := {t2}, which are smaller than f , when

defined as described above, we notice that there are three possibilities; f1 , f2 , and f3 defined as follows: f1(t2) = {0},

f2(t2) = {1}, and f3(t2) = {0,1}. Visually, we get the team T ′:

{

{p} {p,q} {q} {q} {q} {q} {q} {q} . . . ,

and the updates T ′[f1,∞]:

{

{p} {p,q} {q} {q} {q} {q} {q} {q} . . . ,

T ′[f2,∞]:

{

{p,q} {q} {q} {q} {q} {q} {q} {q} . . . ,

and finally T ′[f3,∞]:
{

{p} {p,q} {q} {q} {q} {q} {q} {q} . . .

{p,q} {q} {q} {q} {q} {q} {q} {q} . . .

Here we notice that t2[0,∞] |= p, and t2[1,∞] |= p. Therefore, by the flatness of p it holds that T ′[f1,∞] |= p, T ′[f2,∞] |=

p, and T ′[f3,∞] |= p. Thus by the flatness of p and the lax asynchronous semantics of LTL T |=l ϕ .

The above set-based semantics can also be viewed in terms of multisets. If we would like to define a multiset-based logic

that would simulate the above set-based semantics, the functions f : T → P(N)+ would need to be quantified uniformly.

That is, we would restrict our consideration to functions where f ((i, t)) = f ((j, t)). Furthermore, the semantics for disjunc-

tion would have to be defined in a way that omits references to multiplicities. This logic would then have the property that

a multiset-team satisfies a formula if and only if its support (which is a set-based team) satisfies the formula using the

semantics of Definition 6.

In order to relate our new logics to the old multiteam based ones, we extend the lax semantics to multiteams T by

stipulating that T |=l ϕ if and only if support(T) |=l ϕ .

The following proposition shows that TeamLTLl(∼) satisfies the so-called locality property. For a trace t over AP′ and

AP ⊆ AP′ , the reduction of t to AP, t↾AP , is a sequence from (2AP)ω such that p ∈ t[i] if and only if p ∈ t↾AP[i], for all p ∈ AP

and i ∈ N . For a team T over AP′ we define the reduction of T to AP by T↾AP = {t↾AP | t ∈ T }.

7

J. Kontinen, M. Sandström and J. Virtema Information and Computation 304 (2025) 105299

Proposition 8. Let T be a team and ϕ a TeamLTLl(∼)-formula with variables in AP. Now T |=l ϕ if and only if T↾AP |=l ϕ .

Proof. The proof is by induction on the structure of ϕ .

Suppose ϕ is a literal. By definition, T |=l ϕ if only if t |= ϕ for all t ∈ T . Now, seeing as ϕ is a literal of AP, the latter is

equivalent with t |= ϕ for all t ∈ T↾AP . This, by definition, is equivalent with T↾AP |=l ϕ .

Suppose ϕ = ψ1 ∧ ψ2 . By definition, T |=l ϕ if and only if T |=l ψ1 and T |=l ψ2 . By the induction hypothesis, the latter

holds if and only if T↾AP |=l ψ1 and T↾AP |=l ψ2 , which by definition is equivalent with T↾AP |=l ϕ .

Suppose ϕ = ψ ′∨ψ ′′ . By definition, T |=l ϕ if and only if there are subteams T ′ ∪T ′′ = T such that T ′ |=l ψ ′ and T ′′ |=l ψ ′′ .

By the induction hypothesis, the latter two claims are equivalent with T ′
↾AP |=l ψ ′ and T ′′

↾AP |=l ψ ′′ . Now T ′
↾AP ∪ T ′′

↾AP = T↾AP ,

hence T↾AP |=l ϕ . For the converse, assume that T↾AP |=l ϕ is witnessed by subteams T ′
↾AP and T ′′

↾AP . Now it is easy to check

that T ′ = {t ∈ T | t↾AP ∈ T ′
↾AP} and T ′′ = {t ∈ T | t↾AP ∈ T ′′

↾AP} witness T |=l ϕ .

Suppose ϕ = ψ . By definition, T |=l ϕ if and only if T [1,∞] |=l ψ , which, by the induction hypothesis, is equivalent

with T [1,∞]↾AP |=l ψ . Note that T [1,∞]↾AP = T↾AP[1,∞], whereby T |=l ψ holds if and only if T↾AP |=l ψ holds.

Suppose ϕ = Gψ . By definition T |=l ϕ is equivalent with that T [f ,∞] |=l ψ for all functions f : T → P(N+). By the

induction hypothesis the latter is equivalent with T [f ,∞]↾AP |=l ψ for functions f as before. Now for any f ′ : T↾AP →

P(N+) there is some f , such that T [f ,∞]↾AP = T↾AP[f
′,∞], since we can pick the function f (s) = f ′(t) for all s ∈ T such

that s↾AP = t . Similarly, for each f we obtain a corresponding f ′ by taking its restriction to AP. Hence T [f ,∞] |=l ψ holds

for all f if and only if T↾AP[f
′,∞] |=l ψ holds for all f ′ , and therefore T |=l

Gψ is equivalent with T↾AP |=l
Gψ .

Suppose ϕ = ψ1Uψ2 . Assume T |=l ϕ . By definition there is a function f2 : T → P(N+) such that T [f2,∞] |=l ψ2

and for all f1 < f2 it holds that T 0[f1,∞] |=l ψ1 , where T 0 := {t ∈ T | max(f (t)) �= 0}. By the induction hypothesis then

T [f2,∞]↾AP |=l ψ2 and T 0[f1,∞]↾AP |=l ψ1 for f1 and f2 as previously. We define the function f ′
2 : T↾AP → P(N+) by

setting f ′
2(s) :=

⋃

i f2(t
i), where t i ∈ T are such that t i

↾AP = s. Now T↾AP[f
′
2,∞] = T [f2,∞]↾AP . Furthermore, by a simi-

larly defined f ′
1 , we get that T 0

↾AP[f
′
1,∞] = T 0[f1,∞]↾AP . Thus T [f2,∞]↾AP |=l ψ2 if and only if T↾AP[f

′
2,∞] |=l ψ2 and for

all f1 < f2 it holds that T 0[f1,∞]↾AP |=l ψ1 if and only if T 0
↾AP[f1,∞] |=l ψ1 . Therefore T↾AP |=l ϕ . The converse follows

analogously.

Suppose ϕ =∼ ψ . By definition T |=l ϕ if and only if T �|=l ψ , which in turn is equivalent with T↾AP �|=l ψ by the induction

hypothesis. This, again, is equivalent with T↾AP |=l ϕ , due to the definition. �

The next theorem displays that lax semantics enjoys the same fundamental properties as its strict counterpart.

Theorem 9. TeamLTLl satisfies downward closure, empty team property, singleton equivalence, and flatness.

Proof. The proofs proceed by induction over the structure of the formulae. Note that while downward closure follows

from flatness, we need that the induction steps work with the weaker assumption of downward closure for the result to

generalise to non-flat extensions of the logic.

Downward closure: Let ϕ ∈ TeamLTL be a formula and T , S teams such that S ⊆ T and T |=l ϕ . We need to show that

S |=l ϕ as well.

For atomic ϕ the claim is immediately true: T |=l ϕ if and only if t |= ϕ for all t ∈ T , which also holds for all t ∈ S , and

thus S |=l ϕ .

For conjunction, the claim follows immediately from the induction hypothesis. Let’s consider the case of disjunction.

Suppose T |=l ϕ ∨ ψ . By definition then there are T1, T2 ⊆ T s.t. T1 ∪ T2 = T , T1 |=l ϕ and T2 |=l ψ . By the induction

hypothesis S ∩ T1 |=l ϕ and S ∩ T2 |=l ψ , since S ∩ T1 ⊆ T1 and S ∩ T2 ⊆ T2 . Furthermore (S ∩ T1) ∪ (S ∩ T2) = S , and

therefore S |=l ϕ ∨ ψ .

The case for is straightforward. Suppose T |=l ϕ . By definition T [1,∞] |=l ϕ . Since S[1,∞] ⊆ T [1,∞] follows from

S ⊆ T , we obtain S[1,∞] |=l ϕ by the induction hypothesis. Thus S |= ϕ .

Next we suppose T |=l
Gϕ . By definition then for all f : T → P(N)+ it holds that T [f ,∞] |=l ϕ . Now, for all f : S →

P(N)+ , S[f ,∞] ⊆ T [f ′,∞], where f ′ is any extension of f to T . Hence by the induction hypothesis S[f ,∞] |=l ϕ for all

f and S |=l
Gϕ .

Suppose then that T |=l ϕUψ . For any function h : T → P(N)+ , let hS denote the reduct of h to the domain S . From

S ⊆ T , we get

S[hS ,∞] ⊆ T [h,∞]. (1)

By definition, there is a function f : T → P(N)+ such that T [f ,∞] |=l ψ . Moreover, for all f ′ : T0 → P(N)+ such that

f ′ < f , we have T0[f
′,∞] |=l ϕ , where T0 := {t ∈ T | max(f (t)) �= 0}. By the induction hypothesis and (1), we have that

S[f S ,∞] |=l ψ . Moreover, for all g : S0 → P(N)+ , where S0 := {t ∈ S | max(f S (t)) �= 0}, such that g < f S , S[g,∞] |=l ϕ
follows by the induction hypothesis and the fact that every g is equal to f ′

S for a suitable f ′ . Thus S |=l ϕUψ .

Empty team property: Suppose T = ∅. The claim is clear for atomic formulae; since the team is empty, p ∈ t(0) and

p / ∈ t(0) holds for all p ∈ AP and t ∈ T . The cases for conjunction and disjunction follow immediately from the induction

8

J. Kontinen, M. Sandström and J. Virtema Information and Computation 304 (2025) 105299

hypothesis. The cases for temporal operators follow immediately from the induction hypotheses as well, since ∅[f ,∞] = ∅

for any f : T →P(N)+ .

Flatness: We prove by induction on ϕ that T |= ϕ if {t} |= ϕ for all t ∈ T , for every team T . The only if direction follows

directly from downward closure.

The case for atomic formulae holds by definition, and the cases for conjunction and the next step operator follows

directly from the induction hypothesis. Let us consider the case for disjunction. Suppose ϕ and ψ are LTL formulae, and

consider the formula ϕ ∨ ψ . Assume that for all t ∈ T , {t} |= ϕ or {t} |= ψ . Let T1 and T2 be the sets of traces in T that

satisfy ϕ and ψ , respectively. Clearly T1 ∪ T2 = T , and by induction hypothesis T1 |=l ϕ and T2 |=l ψ . Thus T |=l ϕ ∨ ψ .

For the case of until, suppose {t} |=l ϕUψ for all t ∈ T . Now, for each t ∈ T , there exists a function ft : {t} →P(N)+ such

that {t}[ft ,∞] |= ψ and for all intermediary f ′
t : {t} → P(N)+ , defined for such traces t where max(f (t)) �= 0, such that

f ′
t < ft it holds that {t}[f ′

t ,∞] |= ϕ . We define the functions f : T → P(N)+ , and g : T ′ → P(N)+ through f (t) := ft(t)

and g(t) := { j ∈ N | j < sup(f (t))}. By the induction hypothesis T [f ,∞] |=l ψ and T ′[g,∞] |=l ϕ . Let f ′ : T ′ → P(N)+ be

any function such that f ′ < f . If we can show that T ′[f ′,∞] |=l ψ , we obtain T |= ϕUψ and are done. To that end, clearly

T ′[f ′,∞] ⊆ T ′[g,∞], and thus we obtain T ′[f ′,∞] |=l ψ from downward closure.

Finally for the case for G, suppose {t} |=l
Gϕ for all t ∈ T . Now for each trace t and function f : {t} → P(N)+ it holds

that {t}[f ,∞] |=l ϕ . Now by the induction hypothesis, for all functions F : T → P(N)+ such that F (t) := f (t) it holds that

T [F ,∞] |=l ϕ . Now the functions F are all possible functions. Thus T |=l
Gϕ .

Singleton equivalence: We prove by induction on ϕ that, for every trace t , {t} |=l ϕ if and only if t |= ϕ .

The case for literals is stated in the definition, whereas the case for conjunction follows directly from the induction

hypothesis. Hence, consider the next step operator. Suppose ϕ = ψ . Now by definition {t} |=l ϕ is equivalent with

{t}[1,∞] |=l ψ , which in turn holds if and only if t[1,∞] |= ψ by induction hypothesis. By the definition of the next

step operator, the latter is equivalent with t |= ψ .

Suppose ϕ = ψ ∨ θ . By definition {t} |=l ϕ is equivalent with {t} |=l ψ or {t} |=l θ . By the induction hypothesis, the latter

two are equivalent with t |= ψ or t |= θ , and thus by definition t |= ψ ∨ θ if and only if {t} |=l ϕ .

Suppose ϕ = ψ1Uψ2 . Assume {t} |=l ϕ . By definition there is a function f : {t} → P(N)+ such that {t}[f ,∞] |=l ψ2 and

for all intermediary functions f ′ : T ′ → P(N)+ it holds that T ′[f ′,∞] |=l ψ1 , where T ′ := {t}, if f (t) �= {0} and otherwise

T ′ = ∅. We assume f (t) �= {0}, as the other case is trivial. Let k := min(f (t)). By induction hypothesis and downward closure

t[k,∞] |= ψ2 . Now for every singleton-valued function f ′ : T ′ → P(N)+ defined by f ′(t) := {k′}, such that k′ < k, it holds

that {t}[f ′,∞] |=l ψ1 . Hence by the induction hypothesis, for all k′ < k it holds that t[k′,∞] |= ψ1 . Thus t |= ϕ .

Now assume t |= ϕ . By definition there exists a number k ≥ 0 such that t[k,∞] |= ψ2 and for all 0 ≤ k′ < k it holds that

t[k′,∞] |= ψ1 . Thus we can define a function f : {t} → P(N)+ such that f (t) := {k} and functions f ′ : {t} → P(N)+ such

that f ′(t) := {k′}. Now by the induction hypothesis {t}[f ,∞] |=l ψ2 and {t}[f ′,∞] |=l ψ1 , and furthermore by flatness the

latter actually holds for all intermediary functions g . Therefore {t} |=l ϕ .

Suppose ϕ = Gψ . Assume {t} |=l ϕ . By definition for all functions f : {t} →P(N)+ it holds that {t}[f ,∞] |=l ψ . Especially

this holds for every function fk such that fk(t) := {k}. By the induction hypothesis then t[k,∞] |= ψ for all k. Thus by

definition t |= Gψ .

Now assume t |= ϕ . By definition for all k ≥ 0 it holds that t[k,∞] |= ψ . By the induction hypothesis it follows that

{t}[f ,∞] |=l ψ for all f : {t} → P(N)+ such that f = {k}. Thus, by flatness {t}[f ′,∞] |=l ψ for all functions f ′ : {t} →

P(N)+ . Thus {t} |=l
Gψ . �

The following example establishes that the new lax semantics differs from the strict semantics, and that in the old

semantics multiplicities matter. Moreover, we obtain TeamLTLl < TeamLTLl(�) by showing that the latter is not flat.

Example 10. Let ϕ be the formula G(p � q), T1 := {t} and T2 := {(1, t), (2, t)}, where t := {p}{q}ω . It is easy to check that

T1 |= ϕ but T1 �|=l ϕ (which is witnessed by T1[f ,∞] �|=l p�q for f (t) := {0,1}). Likewise, T2 is not a model for ϕ under the

strict semantics, as the multiple copies of the trace can be updated independently, which may lead to one of them satisfying

p and the other q. In other words, T2 �|= ϕ , as for instance the function f defined by f ((1, t)) = 0 and f ((2, t)) = 1 is such

that T2[f ,∞] �|= p and T2[f ,∞] �|= q. Moreover, if we let s1 := {p}ω and s2 := {q}ω , we have that {si} |=l ϕ , for i ∈ {1,2},

but {s1, s2} �|=l ϕ .

We will also consider the following fragments of TeamLTL(�) and TeamLTL(∼).

Definition 11. A formula ϕ of TeamLTL(�) is called left-flat, if in all of its subformulae of the form Gψ and ψUθ , the

subformula ψ is a LTL-formula. A formula ϕ of TeamLTL(∼,�) is called left-downward closed, if in all of its subformulae of

the form Gψ and ψUθ , the subformula ψ is an TeamLTL(�)-formula.

We will later show that the above syntactic restriction for flatness could be replaced by a semantic restriction (see

Corollary 15).

Theorem 12. For all ϕ ∈ TeamLTLl(�) the following two claims hold:

9

J. Kontinen, M. Sandström and J. Virtema Information and Computation 304 (2025) 105299

1. ϕ is downward closed and has the empty team property, and

2. if ϕ is left-flat, then T |= ϕ iff support(T) |=l ϕ for all multiteams T .

Proof. In order to show (1), it suffices to extend the proofs of Theorem 9 with a case for �. For downward closure: Let T

be a team of traces and let S ⊆ T . Suppose T |=l ψ � ϕ . By definition T |=l ψ or T |=l ϕ . Without loss of generality, we may

assume T |=l ψ , which entails by the induction hypothesis that S |=l ψ and thus, by definition, S |=l ψ � ϕ . For the empty

team property the claim follows immediately from the induction hypothesis.

The proof of claim (2) is a simple induction on the structure of ϕ . We show the claim for ϕ = αUψ , where α is an LTL-

formula. Assume T |= ϕ . Then there exists f : T → N such that T [f ,∞] |= ψ and T ′[f ′,∞] |= α, for all f ′ : T ′ → N such

that f ′ < f , where T ′ = {t ∈ T | f (t) �= 0}. By flatness then for all (i, t) ∈ T and k < f ((i, t)) it holds that {(i, t[k,∞])} |= α.

Define F : T → P(N)+ by F (t) := { f ((i, t)) | (i, t) ∈ T }. It is easy to check that support(T [f ,∞]) = support(T)[F ,∞]. Now

by application of the induction hypothesis support(T)[F ,∞] |=l ψ . Pick then an arbitrary F ′ : T ′ →P(N)+ such that F ′ < F

and a trace t ∈ T such that F (t) �= {0}. Consider k ∈ F ′(t). As F ′ < F , it follows that k < max(F (t)), and thus by the previous

note {(i, t[k,∞])} |= α. Thus, by the flatness of α and the induction hypothesis support(T)[F ′,∞] |=l α. As F ′ was arbitrary,

the support of T , updated with any function smaller than F satisfy α. The proof of the converse implication is similar.

Assume support(T) |=l ϕ and let G : support(T) → P(N)+ be such that support(T)[G,∞] |=l ψ . By downward closure

we may assume that G is single valued. Now it is easy to pick g : T → N such that support(T [g,∞]) = support(T)[G,∞].

From the induction hypothesis it follows that T [g,∞] |= ψ . Just like above, using the fact that α is flat, it follows that

T |= ϕ . �

The restriction to left-flat formulae in case (2) above is necessary by Example 10.

4. Normal forms for TeamLTL with Boolean disjunction and negation

In this section we develop normal forms for our logics, which we then utilise to obtain strong expressivity and complex-

ity results.

Definition 13. A formula ϕ is in �-disjunctive normal form if it is of the form

�
i∈I

αi,

where αi are LTL-formulae.

Every formula of TeamLTLl(�) can be transformed into an equivalent �-disjunctive normal form. This result is similar to

the one proved in [27] for team-based modal logic ML(�). In the following |ϕ| denotes the length of the formula ϕ .

Theorem 14. Every ϕ ∈ TeamLTLl(�) is logically equivalent to a formula ϕ∗ = �i∈I αi in �-disjunctive normal form, where |αi| ≤

|ϕ| and |I| = 2k , where k is the number of � in ϕ .

Proof. The proof proceeds by induction on the structure of formulae. Note that atomic formulae are already in the normal

form and that the case for � is trivial. The remaining cases are defined as follows:

(ψ ∧ θ)∗ := �
i∈I, j∈ J

(α
ψ

i
∧ αθ

j) (ψ ∨ θ)∗ := �
i∈I, j∈ J

(α
ψ

i
∨ αθ

j)

(ψ)∗ :=�
i∈I

α
ψ

i (Gψ)∗ :=�
i∈I

Gα
ψ

i

(ψUθ)∗ := �
i∈I, j∈ J

(α
ψ

i
Uαθ

j).

where α
ψ

i and αθ
j are the flat formulae in the disjunctive normal forms of ψ and θ respectively, and I and J are the

respective index sets.

Suppose ϕ = ψ ∧ θ and that ψ ≡ �i∈I α
ψ

i
and θ ≡ �i∈ J α

θ
j
(induction hypothesis). Now T |=l ϕ if and only if T |=l ψ

and T |=l θ . The latter holds, if and only if T |=l α
ψ

k
and T |=l αθ

k′ , for some k ∈ I and k′ ∈ J . This is equivalent with

T |=l α
ψ

k
∧ αθ

k′ , for some k ∈ I and k′ ∈ J . Finally, this can be equivalently expressed as T |=l �i, j(α
ψ

i ∧ αθ
j), i.e. T |=l ϕ∗ .

Suppose ϕ = ψ ∨ θ and that ψ ≡ �i∈I α
ψ

i
and θ ≡ �i∈ J α

θ
j
. By definition T |=l ϕ if and only if there exists T ′ ∪ T ′′ = T

such that T ′ |=l ψ and T ′′ |=l θ . By the induction hypothesis the latter is equivalent with T ′ |=l �i∈I α
ψ

i
and T ′′ |=l � j∈ J α

θ
j
.

10

J. Kontinen, M. Sandström and J. Virtema Information and Computation 304 (2025) 105299

By definition this holds if and only if there are k′ ∈ I and k′′ ∈ J such that T ′ |=l α
ψ

k′ and T ′′ |=l αθ
k′′ , which is equivalent with

T |=l α
ψ

k′ ∨ αθ
k′′ , by definition. Equivalently then T |=l �i∈I, j∈ J (α

ψ

i
∨ αθ

j
).

Suppose ϕ = ψ and that ψ ≡ �i∈I α
ψ

i
. By definition T |=l ϕ is equivalent with T [1,∞] |=l ψ . By the induction hy-

pothesis the latter holds if and only if T [1,∞] |=l �i∈I α
ψ

i
, which by definition is equivalent with T [1,∞] |=l α

ψ

k
for some

k ∈ I . The latter holds if and only if T |=l α
ψ

k
for some k ∈ I , which is equivalent with T |=l �i∈I α

ψ

i
.

Suppose ϕ = Gψ and that ψ ≡ �i∈I α
ψ

i . Suppose that T |=l ϕ . By definition for all functions f : T →P(N)+ it holds that

T [f ,∞] |=l ψ . By the induction hypothesis T [f ,∞] |=l �i∈I α
ψ

i for all f . Especially this holds for the total function defined

for every t ∈ T by fmax(t) := N . Thus T [fmax,∞] |=l α
ψ

k
for some k ∈ I . By downward closure it holds that T [f ′,∞] |=l α

ψ

k

for all f ′ : T →P(N)+ . Hence T |=l
Gα

ψ

k
, and thus T |=l �i∈I Gα

ψ

i . The other direction is analogous.

Suppose ϕ = ψUθ and that ψ ≡ �i∈I α
ψ

i
and θ ≡ � j∈ J α

θ
j
. Suppose T |=l ϕ . By definition there exists a function

f : T → P(N)+ such that T [f ,∞] |=l θ and for all functions f ′ : T ′ → P(N)+ such that f ′ < f , T ′[f ′,∞] |=l ψ , where

T ′ := {t ∈ T | f (t) �= 0}. Hence by the induction hypothesis T [f ,∞] |=l � j∈ J α
θ
j
, which is equivalent with T [f ,∞] |=l αθ

k

for some k ∈ J , and, for the function fmax : T ′ → P(N)+ defined through fmax(t) := {n ∈ N | n < m, for some m ∈ f (t)}

(which is well-defined, as f (t) �= {0} for all t ∈ T ′), it holds that T ′[fmax,∞] |=l �i∈I α
ψ

i
, which in turn is equivalent

with T ′[fmax,∞] |=l α
ψ

k′ for some k′ ∈ I . By downward closure the latter holds for all intermediary functions, and thus

T |=l α
ψ

k′ Uαθ
k
and finally T |=l �i∈I, j∈ J (α

θ
i

Uα
ψ

j
) as wanted. The converse is analogous.

For showing the size estimates stated in the theorem, it suffices to note that our translation to �-disjunctive normal

from can be equivalently stated:

ϕ ≡�
i∈I

α
ψ

i ≡�
f ∈F

ϕ f ,

where F is the set of all selection functions f that select, separately for each occurrence, either the left disjunct ψ or

the right disjunct θ of each subformula of the form ψ � θ of ϕ , and ϕ f denotes the formula obtained from ϕ by sub-

stituting each occurrence of a subformula of type (ψ � θ) by f (ψ � θ). The size estimates follow immediately from this

observation. �

Using this normal form we can now show that the flat fragment of TeamLTLl(�) is subsumed by TeamLTLl , which means

that using the Boolean disjunction does not expand the set of flat formulae. In other words, the logics TeamLTLl(�) and

TeamLTLl define exactly the same trace properties.

Corollary 15. For every flat TeamLTLl(�)-formula there exists an equivalent TeamLTLl-formula.

Proof. Let ϕ ∈ TeamLTLl(�) be flat, and let �i ψi be an equivalent formula given by Theorem 14, where ψi are TeamLTLl-

formulae. The following equivalences hold:

T |=l ϕ ⇔ ∀t ∈ T : {t} |=l�
i

ψi ⇔ ∀t ∈ T : {t} |=l
∨

i

ψi ⇔ T |=l
∨

i

ψi

The first equivalence follows from flatness of ϕ and since �i ψi is equivalent to ϕ . The second equivalence follows, for it is

easy to check that, for logics that have the empty team property, �i and
∨

i are interchangeable over singleton teams. The

last equivalence follows from the flatness of TeamLTLl (Theorem 9). �

The normal form also helps us clarify the hierarchy between the lax and the strict semantics of LTL extended with the

Boolean disjunction, where the strict semantics is strictly more expressive.

Corollary 16. TeamLTLl(�) < TeamLTL(�).

Proof. Let ϕ be a TeamLTLl(�)-formula. By Theorem 14, ϕ can be equivalently written as a disjunction �i αi of TeamLTLl-

formulae. Now, for each multiteam T ,

support(T) |=l ϕ ⇔ support(T) |=l�
i

αi ⇔ T |=�
i

αi,

where the last equivalence is due to Theorem 12 and the fact that the formulae αi are left-flat (since they are LTL-formulae).

Hence, for any given TeamLTLl(�)-formula, the normal form formula �i αi is, in fact, an equivalent TeamLTL(�) formula,

from which TeamLTLl(�) ≤ TeamLTL(�) follows.

11

J. Kontinen, M. Sandström and J. Virtema Information and Computation 304 (2025) 105299

For showing the strict inclusion, we generalise the result from Example 10 and show that for the TeamLTL(�) formula

G(p � q) there exists no equivalent TeamLTLl(�) formula. For a contradiction, suppose that ϕ ∈ TeamLTLl(�) is equivalent

with G(p � q). By Theorem 14, we may assume that ϕ is a disjunction �i αi of n TeamLTLl-formulae. Define ti := {p}i{q}ω

for i ≤ n + 1. Now clearly {(1, ti)} |= G(p � q) and thus {ti} |=l ϕ , for each i. By the semantics of � this implies that for

each i there exists ji ≤ n such that {ti} |=l α ji . Now from the pigeonhole principle, there exists 1 ≤ k < l ≤ n + 1 such

that jk = jl . Thus {tk} |=l α jk and {tl} |=l α jk , from which {tk, tl} |=l α jk follows, by flatness of α jk . Thus {tk, tl} |=l ϕ and

{(1, tk), (1, tl)} |= G(p � q), which is clearly false. �

The following corollary is also a direct consequence of Theorem 14.

Corollary 17. The operator G distributes over the Boolean disjunction � for TeamLTL(�)-formulae.

The following example shows that the above corollary does not hold in general, specifically for formulae that are not

downward closed.

Example 18. Let ϕ be the formula G(∼ ¬p1� ∼ ¬p2) and T := {t}, where t := ({p1}{p2})
ω . It is now easy to check that

T |=l ϕ but T �|=l
G ∼ ¬pi for i ∈ {1,2}.

A normal form, similar to the one in Theorem 14, can also be obtained for TeamLTL(∼). However, since the extension is

not downward closed, it only holds for a specific fragment of the logic. The following normal form has been introduced and

used in [17,16] to analyse the complexity of modal team logic and FO2 in the team semantics context. Below ϕd denotes a

formula obtained by transforming ¬ϕ into negation normal form in the standard way in LTL.

Definition 19. A formula ϕ is quasi-flat if ϕ is of the form:

�
i∈I

(αi ∧
∧

j∈ J i

∃βi, j),

where αi and βi, j are LTL-formulae, and ∃βi, j is an abbreviation for the formula ∼ βd
i, j .

Note that, for LTL-formulae α and β , we have T |=l α if and only if t |= α, for all t ∈ T . Moreover T |=l ∃β , if and only if

there exists some trace t ∈ T such that t |= β .

Theorem 20. Every left-downward closed formula ϕ ∈ TeamLTLl(∼,�) is logically equivalent to a quasi-flat formula ϕ∗.

Proof. Proof by induction over the structure of ϕ . Atoms are flat, and hence are in the normal form. The translations and

the proofs of correctness for the cases of conjunction, disjunction, and Boolean negation are analogous to the simpler modal

framework of [17,16].

Suppose ϕ = ψ ∧ θ and assume that ψ is equivalent to �i∈I (α
ψ

i ∧
∧

j∈ J i
∃β

ψ

i, j) and θ to �i∈I ′ (α
θ
i ∧

∧

j∈ J ′
i
∃βθ

i, j). By the

distributive laws of conjunction and disjunction, ϕ is clearly equivalent to

�
i∈I,k∈I ′

(α
ψ

i ∧ αθ
k ∧

∧

j∈ J i

∃β
ψ

i, j ∧
∧

j∈ J ′
k

∃βθ
k, j).

Suppose ϕ = ψ ∨ θ . By the induction hypothesis and an argument analogous to the disjunction case of the proof of

Theorem 14, ϕ is equivalent to

�
i∈I,k∈I ′

(

(α
ψ

i
∧

∧

j∈ J i

∃β
ψ

i, j
) ∨ (αθ

k ∧
∧

j∈ J ′
k

∃βθ
k, j)

)

. (2)

The above formula expresses that T can be split into two parts: T1 in which each trace satisfies αi and the subformulae βi, j

are satisfied by some traces, and T2 in which each trace satisfies αk and the subformulae βk, j are satisfied by some traces.

But this is equivalent to saying that T can be split into two parts: T1 in which each trace satisfies αi , and T2 in which each

trace satisfies αk; and the subformulae αi ∧ βi, j and αk ∧ βk, j are satisfied by some traces in T , and thus the formula (2) is

equivalent with

�
i∈I,k∈I ′

(

(α
ψ

i
∨ αθ

k) ∧
∧

j∈ J i

∃(α
ψ

i
∧ β

ψ

i, j
) ∧

∧

j∈ J ′
k

∃(αθ
j ∧ βθ

k, j)
)

that is in the normal form.

12

J. Kontinen, M. Sandström and J. Virtema Information and Computation 304 (2025) 105299

Suppose ϕ = ∼ψ and assume as induction hypothesis that ψ is equivalent to the formula �i∈I (αi ∧
∧

j∈ J i
∃βi, j). Now

ϕ is clearly equivalent to the formula

∧

i∈I

(∃αd
i ��

j∈ J i

βd
i, j).

This formula can be expanded back to the normal form with exponential blow-up using the distributivity law of proposi-

tional logic.

Suppose ϕ = ψ and assume that ψ is equivalent to �i∈I (αi ∧
∧

j∈ J i
∃βi, j). It is now easy to check that ϕ is equivalent

to �i∈I (αi ∧
∧

j∈ J i
∃ βi, j).

Suppose ϕ = Gψ . Since ϕ is left-downward closed, ψ and hence Gψ are TeamLTLl(�)-formulae. By Theorem 14, ϕ can

equivalently be written in the form �i αi , where αi are LTL-formulae.

Suppose ϕ = ψUθ . By assumption ϕ is left-downward closed, hence ψ is equivalent with a formula of the form �i∈I α
ψ

i

(by the previous theorem) and θ is equivalent to �k∈I ′ (α
θ
k

∧
∧

j∈ Jk
∃βθ

k, j
). Now using the fact that ψ is downward closed,

it is easy to see that ϕ is logically equivalent with the formula:

�
i∈I,k∈I ′

(

α
ψ

i
U(αθ

k ∧
∧

j∈ Jk

∃βθ
k, j)

)

. (3)

It now suffices to show that the disjuncts (for any i ∈ I,k ∈ I ′) of (3) can be equivalently expressed as:

(

α
ψ

i
Uαθ

k ∧
∧

j∈ Jk

∃(α
ψ

i
U(αθ

k ∧ βθ
k, j)

)

. (4)

We will show the logical implication from (4) to (3). Assume

T |=l
(

α
ψ

i
Uαθ

k ∧
∧

j∈ Jk

∃(α
ψ

i
U(αθ

k ∧ βθ
k, j)

)

.

Let f be such that T [f ,∞] |=l αθ
k
and that T [g,∞] |=l α

ψ

i
, for all g < f . In order to show

T |=l α
ψ

i
U(αθ

k ∧
∧

j∈ Jk

∃βθ
k, j), (5)

we need to make sure that traces witnessing the truth of the formulae ∃βθ
k, j

can be found in T [f ,∞]. Here we can

use the assumption that T |=l
∧

j∈ Jk
∃(α

ψ

i
U(αθ

k
∧ βθ

k, j
)) implying that for each j ∈ Jk there exists t j ∈ T such that t j |=

α
ψ

i U(αθ
k

∧ βθ
k, j

). Let now n j be such that t j[n j,∞] |= αθ
k

∧ βθ
k, j

and that t j[l,∞] |= α
ψ

i for all l < n j . Now by the flatness of

the formulae α
ψ

i
,αθ

k
, and βθ

k, j
, the function f ′ defined by

f ′(t) :=

{

f (t) ∪ {t j[n j,∞]} if t = t j, for some j ∈ Jk

f (t) otherwise

witnesses (5). The converse is proved analogously. �

5. Computational properties

In this section we analyse the computational properties of the logics studied in the previous section. We focus on the

complexity of the model checking and satisfiability problems.

For the model checking problem, one has to determine whether a team of traces generated by a given finite Kripke

structure satisfies a given formula. We consider Kripke structures of the form K := (W , R,η, w0), where W is a finite set

of states, R ⊆ W 2 a left-total transition relation, η : W → 2AP a labelling function, and w0 ∈ W an initial state of K . A path

σ through K is an infinite sequence σ ∈ Wω such that σ [0] := w0 and (σ [i],σ [i + 1]) ∈ R for every i ≥ 0. The trace of

σ is defined as t(σ) := η(σ [0])η(σ [1]) · · · ∈ (2AP)ω . A Kripke structure K then generates the trace set Traces(K) := {t(σ) |

σ is a path through K}.

Definition 21. The model checking problem of a logic L is the following decision problem: Given a formula ϕ ∈L and a Kripke

structure K over AP, determine whether Traces(K) |= ϕ . The (countable) satisfiability problem of a logic L is the following

decision problem: Given a formula ϕ ∈L, determine whether T |= ϕ for some (countable) T �= ∅.

13

J. Kontinen, M. Sandström and J. Virtema Information and Computation 304 (2025) 105299

Below we will use the fact that the model checking and satisfiability problems of LTL are PSPACE-complete [25]. Further-

more, we use the facts that the satisfiability problem of propositional team logic, PL(∼), is ATIME-ALT(exp,poly)-complete

[9], and that the complexity of modal team logic is complete for the class TOWER(poly) := TIME(expnO (1) (1)), where

exp0(1) := 1 and expk+1(1) := 2expk(1) [17,16]. Recall that ATIME-ALT(exp,poly) refers to alternating exponential time with

a polynomial number of alternations.

Theorem 22.

1. The model checking and satisfiability problems of TeamLTLl(�) are PSPACE-complete.

2. The model checking and satisfiability problems of the left-flat fragment of TeamLTL(�) are PSPACE-complete.

3. The model checking problem of the left-downward closed fragment of TeamLTLl(∼,�) is PSPACE-hard and it is contained in

TOWER(poly).

4. The satisfiability problem of the left-downward closed fragment of TeamLTLl(∼,�) is contained in TOWER(poly) and it is

ATIME-ALT(exp,poly)-hard.

Proof. Let us first consider the proofs of claims 1 and 2. Note that PSPACE-hardness holds already for LTL-formulae, hence

it suffices to show containment in PSPACE. Furthermore, note that 2 follows immediately from 1 and Theorem 12. Assume

a formula ϕ ∈ TeamLTLl(�) and a Kripke structure K is given as input. By Theorem 14, ϕ is logically equivalent with a

formula of the form � f ∈F ϕ f , where f varies over selection functions choosing, separately for each occurrence, either the

left disjunct ψ or the right disjunct θ of each subformula of the form ψ �θ of ϕ . Now, without constructing the full formula

� f ∈F ϕ f , using polynomial space with respect to the size of ϕ , it is possible to check whether Traces(K) |= ϕ f for some

f ∈ F . Hence the upper bound follows from the fact that LTL model checking is in PSPACE. The upper bound for satisfiability

follows analogously.

Let us then consider the proof of claim (4). The proof of claim (3) is analogous. For the lower bound, it suffices to note

that propositional team logic PL(∼) is a fragment of the left-downward closed fragment of TeamLTLl(∼,�) and hence its

satisfiability problem can be trivially reduced to the satisfiability problem of the left-downward closed fragment. Therefore

ATIME-ALT(exp,poly)-hardness follows by the result of [9].

For the upper bound, we first transform an input formula ϕ into an equivalent quasi-flat formula of the form

�i∈I (αi ∧
∧

j∈ J i
∃βi, j). Analogously to [17,16], this formula can be computed in time TIME(expO (|ϕ|)(1)). It is now easy

to see that the quasi-flat formula is satisfiable if and only if there exists i ∈ I , such that SAT(αi ∧ βi, j) = 1 for all j ∈ J i .

Since LTL-satisfiability checking is contained in PSPACE ⊆ TIME(2n
O (1)

), the overall complexity of the above procedure is in

TIME(exp(|ϕ|O (1))(1)). �

6. Connections to other forms of asynchronicity

In [7] the authors introduced a novel team-based logic that can deal with different modes of asynchronous hyper-

properties by using so-called time evaluation functions (tefs). Time evaluation functions facilitate fine-grained asynchronous

interactions between traces. Intuitively, given a trace t ∈ T and a value of the global clock i ∈ N , a tef τ outputs the value

τ (i, t) of the local clock of trace t at global time i. If T is a multiset of traces, a time evaluation function for T is a func-

tion τ : N × T → N that satisfies the following two conditions. We write τ (i) to denote the function T → N defined by

t �→ τ (i, t).

• stepwiseness – ∀i ∈ N ∀t ∈ T : τ (i + 1, t) ∈ {τ (i, t),τ (i, t) + 1},

• strict monotonicity – ∀i ∈ N : τ (i) �= τ (i + 1).

A tef is initial, if τ (0, t) = 0 for each t ∈ T .

It was shown in [7] that when tefs are assumed to be synchronous, we obtain exactly synchronous TeamLTL as defined in

[15]. In this section, we take a closer look on the connections between asynchronous TeamLTL and team-based logics with

tefs. We identify a logic with tefs that corresponds almost exactly to asynchronous TeamLTL and to the left-flat fragment

of asynchronous TeamLTL(�). This connection establishes the first non-trivial decidability result for logics with tefs without

putting heavy restrictions on tefs.

We give the syntax of TeamCTL with an additional synchronous next operator that was shown in [7] to be expressible

in the logic with the help of the Boolean disjunction � and an additional proposition symbol that is set to alternate

uniformly and synchronously (see [7, Theorem 4.2] for details).

ϕ ::= p | ¬p | ϕ ∧ ψ | ϕ ∨ ψ | ϕ | ∃ ϕ | ∀ ϕ | G∃ϕ | G∀ϕ | ϕU∃ψ | ϕU∀ψ

Next we define the semantics. Note that, while in [7] TeamCTL∗-formulae were evaluated with respect to pairs (T ,τ), we

consider only TeamCTL-formulae in this article, and therefore we choose to internalise τ into T . The cases for the semantics

of the propositional atoms, Boolean connectives, and are the same as for asynchronous TeamLTL (see Definition 2). Note

that here the functions τ (i) take the role of the functions f of Definition 2.

14

J. Kontinen, M. Sandström and J. Virtema Information and Computation 304 (2025) 105299

T |= ∃ ϕ ⇔ there is an initial tef τ s.t. T [τ (1),∞] |= ϕ

T |= ∀ ϕ ⇔ for all initial tefs τ , we have T [τ (1),∞] |= ϕ

T |= G∃ϕ ⇔ there is an initial tef τ s.t. T [τ (k),∞] |= ϕ, for all k ∈ N

T |= G∀ϕ ⇔ for all initial tefs τ , we have T [τ (k),∞] |= ϕ, for all k ∈ N

T |= ϕU∃ψ ⇔ there is an initial tef τ and k ∈ N s.t. T [τ (k),∞] |= ψ and

∀m : 0 ≤m < k ⇒ T [τ (m),∞] |= ϕ

T |= ϕU∀ψ ⇔ for all initial tefs τ , ∃k ∈ N s.t. T [τ (k),∞] |= ψ and

∀m : 0 ≤m < k ⇒ T [τ (m),∞] |= ϕ

We identify a collection of the above temporal operators that match as closely as possible with the operators of asyn-

chronous TeamLTL. We will not be utilising all of the operators introduced above, but chose to introduce a full selection to

emphasise that in this setting all temporal operators have two variants; existential and universal. For a collection of tempo-

ral operators C , we write TeamCTL(C) to denote the logic built from propositional atoms by using ∧, ∨, and the operators

in C .

In order to deal with the asynchronous until operator, we need to do two concessions. Firstly, we need to restrict

ourselves to the left-flat fragment (cf. Definition 11). Secondly, instead of until, we use the strong release operator ψ Mϕ

with the following semantics:

T |=l ψ Mϕ ⇔ ∃ f : T → P(N)+ s.t T [f ,∞] |=l ψ and T [f ′,∞] |=l ϕ for all f ′ : T → P(N)+ s.t. f ′ ≤ f ,

where f ′ ≤ f if and only if

∀t ∈ T : min(f ′(t)) ≤ min(f (t)) and, if max(f (t)) exists, max(f ′(t)) ≤ max(f (t)).

The F and modalities can be used without any restrictions. It is now easy to check that ψ Mϕ and ϕU(ϕ ∧ ψ) are

equivalent for all flat ϕ .

Lemma 23. If ϕ and ψ are TeamLTLl-formulae and ϕ is flat, then ψ Mϕ and ϕU(ϕ ∧ ψ) are equivalent (in TeamLTLl).

Proof. Let ϕ and ψ as described in the formulation of the lemma and let T be an arbitrary team. Now, by the semantics of

weak release,

T |=l ψ Mϕ ⇔ ∃ f : T → P(N)+ s.t T [f ,∞] |=l ψ and T [f ′,∞] |=l ϕ for all f ′ : T → P(N)+ s.t. f ′ ≤ f .

Now since ϕ is flat, the right-hand side of the above equivalence is equivalent with

∃ f : T → P(N)+ s.t T [f ,∞] |=l ψ and T [fmax,∞] |=l ϕ,

where fmax is defined such that fmax(t) = {i ∈ N | i ≤ j for some j ∈ f (t)}. Again, by flatness of ϕ , the above is equivalent

with

∃ f : T → P(N)+ such that T [f ,∞] |=l ϕ ∧ ψ and

∀ f ′ : T ′ → P(N)+ s.t. f ′ < f , it holds that T ′[f ′,∞] |=l ϕ or T ′ = ∅,

where T ′ := {t ∈ T | max(f (t)) �= 0},

where f ′ < f is as defined for Definition 6. Finally, by the semantics of until, the above is equivalent with T |=l ϕU(ϕ ∧

ψ). �

Finally, we say that two formulae ϕ and ψ are fin-equivalent, if T |= ϕ ⇔ T |= ψ holds for all finite multiteams T. With

these restrictions, we can prove an equivalence between left-flat-TeamCTL(,G∀,M∃,�) and TeamLTLl(�). Here ψ M∃ ϕ is

defined as ϕU∃(ϕ ∧ ψ).

We first need to show that the normal form for TeamLTLl(�) still holds when U is replaced with M (cf. Theorem 14).

Theorem 24. Every TeamLTLl(�)-formula ϕ using M instead of U is logically equivalent to a formula ϕ∗ = �i∈I αi in �-disjunctive

normal form using M instead of U, where |αi| ≤ |ϕ| and |I| = 2k , where k is the number of � in ϕ .

15

J. Kontinen, M. Sandström and J. Virtema Information and Computation 304 (2025) 105299

Proof. We modify the proof for Theorem 14 by describing the case for M. Otherwise the proof is identical.

Suppose ϕ = θ Mψ and that ψ ≡ �i∈I α
ψ

i and θ ≡ � j∈ J α
θ
j . Suppose T |=l θ Mψ . By definition there exists a function

f : T → P(N)+ such that T [f ,∞] |=l θ and for all functions f ′ : T → P(N)+ such that f ′ ≤ f , T [f ′,∞] |=l ψ . Hence by

the induction hypothesis T [f ,∞] |=l � j∈ J α
θ
j
, which is equivalent with T [f ,∞] |=l αθ

k
for some k ∈ J , and T [fmax,∞] |=l

�i∈I α
ψ

i , which in turn is equivalent with T [fmax,∞] |=l α
ψ

k′ for some k′ ∈ I . By downward closure T [f ′,∞] |=l α
ψ

k′ holds

for all intermediary functions f ′ ≤ f . Thus T |=l αθ
k

Mα
ψ

k′ and finally T |=l �i∈I, j∈ J (α
θ
i

Mα
ψ

j
) as required. The converse is

analogous. �

Theorem 25. For every left-flat-TeamCTL(,G∀,M∃,�)-formula there exists a fin-equivalent formula of TeamLTLl(�) using M in-

stead of U, and vice versa.

Proof. By Theorem 24, every TeamLTLl(�)-formula using M instead of U is equivalent to some left-flat-TeamLTLl(�)-formula

using M instead of U. Furthermore, by Lemma 23, this equivalence can be extended to left-flat-TeamLTLl(�)-formulae where

until is restricted to occur in the form ψU(ψ ∧ θ). Finally, Theorem 12 extends the equivalence to left-flat-TeamLTLs(�)-

formulae where until is restricted to occur in the form ψU(ψ ∧ θ). Hence, we prove the equivalence between left-

flat-TeamCTL(,G∀,M∃,�) and left-flat-TeamLTLs(�) where until is restricted to occur in the form ψU(ψ ∧ θ).

The translations simply swap ϕU(ϕ ∧ ψ) with ψ M∃ ϕ and Gϕ with G∀ϕ . Correctness of the translations can be proven

by induction on the structure of formulae. The only non-trivial cases are the cases for strong release and globally.

The case for globally follows from the following chain of equivalences:

T |= Gϕ ⇔ ∀ f : T → N T [f ,∞] |= ϕ

⇔ for all initial tefs τ , we have T [τ (k),∞] |= ϕ, for all k ∈ N

⇔ T |= G∀ϕ.

The first and the last equivalence are simply the semantics of the respective operators. The second equivalence follows from

the assumption that ϕ is flat.

Assume ϕU(ϕ ∧ ψ) is such that ϕ is flat. Now, by the semantics of until,

T |= ϕU(ϕ ∧ ψ) ⇔ ∃ f : T → N such that T [f ,∞] |= ϕ ∧ ψ and

∀ f ′ : T ′ → N s.t. f ′ < f , we have T ′[f ′,∞] |= ϕ

where T ′ := {t ∈ T | max(f (t)) �= 0}.

Now, since ϕ is flat, the right-hand-side of the above equivalence is equivalent with

∃ f : T → N such that T [f ,∞] |= ϕ ∧ ψ and {t[i,∞]} |= ϕ, for every t ∈ T and i ≤ f (t)

By flatness of ϕ together with the induction hypothesis, the above is equivalent with the statement that

there is an initial tef τ and k ∈ N s.t. T [τ (k),∞] |= ϕ ∧ ψ and ∀m : 0 ≤m < k ⇒ T [τ (m),∞] |= ϕ,

which, by the semantics of U∃ is equivalent with T |= ϕU∃(ϕ ∧ ψ), which can be rewritten as T |= ψ M∃ ϕ . The correspon-

dence between quantification of tefs and functions of the form f : T → N relies on the fact that T is finite. In Example 28

we show a situation where the correspondence breaks down due to the team T being infinite. �

Corollary 26. For every TeamCTL(,G∀,M∃)-formula there exists a fin-equivalent TeamLTL-formula using M instead of U, and vice

versa. (Note that the logics TeamLTL and TeamLTLl are equi-expressive by Theorem 12.)

By combining Theorem 25 to Theorems 12 and 22, we obtain the following:

Corollary 27. The model checking problem of left-flat-TeamCTL(,G∀,M∃,�) restricted to finite teams is PSPACE-complete.

We showed that over finite sets of traces the left-flat fragment of TeamCTL(,G∀,M∃,�) coincides with the left-flat

fragment of TeamLTL(�) using M instead of U. The following example shows that the simple translation given in the proof

does not work over arbitrary sets of traces.

Example 28. Let T consist of the traces tk = {p}k{p,q}{q}ω , k ∈ N . Let f : T → P(N)+ be defined such that f (tk) = {k},

for each k ∈ N . Clearly T [f ,∞] |=l q and T [f ′,∞] |=l p for all f ′ : T → P(N)+ such that f ′ ≤ f . Hence T |=l qM p in

asynchronous TeamLTL. In contrast, T �|= qM∃ p in TeamCTL, since there is no tef τ such that T [τ (m),∞] |= q for some m.

16

J. Kontinen, M. Sandström and J. Virtema Information and Computation 304 (2025) 105299

7. Conclusion

We introduced a novel set-based semantics for asynchronous TeamLTL. We showed several results on the expressive

power and complexity of the extensions of TeamLTLl by the Boolean disjunction TeamLTLl(�) and by the Boolean negation

TeamLTLl(∼). In particular, our results show that the complexity properties of the former logic are comparable to that of

LTL and that the left-downward closed fragment of the latter also has decidable model-checking and satisfiability problems.

See Table 1 on page 3 for an overview of our expressivity results and Table 2 for our complexity results. We obtained these

results on TeamLTLl(�) and TeamLTLl(∼) via normal forms that also allowed us to relate the expressive power of these logics

to the corresponding logics in the strict semantics. Our results show that, while the synchronous TeamLTL can be viewed as

a fragment of second-order logic, the asynchronous TeamLTL(�) under the lax semantics is a sublogic of HyperLTL (see [2]

for a definition). In fact, subsequent work [13] has revealed that TeamLTLl(�) is equiexpressive with the closure of universal

one variable fragment of HyperLTL with conjunctions and disjunctions. Moreover, it was shown in [13] that the expressivity

of left-downward closed TeamLTLl(∼) coincides with that of the Boolean closure of one variable HyperLTL. Furthermore, our

decidability results show, e.g., that it will probably be possible to devise a complete proof system for TeamLTLl(�). Section 6

relates and applies our results to recently defined logics whose asynchronicity is formalised via time evaluation functions

[7]. We conclude with open questions:

• Does Theorem 20 extend to all formulae of TeamLTLl(∼)? Note that any quasi-flat–TeamLTL(∼)-formula can be rewritten

in HyperLTL [13, Theorem 13].

• Can the result (iii) of Theorem 22 be accompanied by a matching lower bound (i.e., TOWER(poly)-hardness result)?

• Can a syntactic characterisation (similar to Corollary 15) be obtained for the downward closed fragment of TeamLTLl(∼)?

We believe that TeamLTLl(�) is a promising candidate, as its extensions with infinite conjunctions and disjunctions

suffice for all downward closed properties of teams.

• What is the complexity of model checking for TeamLTL(�) under the strict semantics?

CRediT authorship contribution statement

Juha Kontinen: Writing – review & editing, Writing – original draft, Formal analysis, Conceptualization. Max Sandström:

Writing – review & editing, Writing – original draft, Formal analysis, Conceptualization. Jonni Virtema: Writing – review &

editing, Writing – original draft, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential com-

peting interests: Max Sandstrom reports financial support was provided by Research Council of Finland grant 322795. Juha

Kontinen reports financial support was provided by Research Council of Finland grant 345634. Jonni Virtema reports fi-

nancial support was provided by Research Council of Finland grant 345634. Jonni Virtema reports financial support was

provided by German Research Foundation grant VI 1045/1-1. If there are other authors, they declare that they have no

known competing financial interests or personal relationships that could have appeared to influence the work reported in

this paper.

References

[1] J. Baumeister, N. Coenen, B. Bonakdarpour, B. Finkbeiner, C. Sánchez, A temporal logic for asynchronous hyperproperties, in: CAV (1), Springer, 2021,
pp. 694–717.

[2] M.R. Clarkson, B. Finkbeiner, M. Koleini, K.K. Micinski, M.N. Rabe, C. Sánchez, Temporal logics for hyperproperties, in: POST 2014, 2014, pp. 265–284.
[3] M.R. Clarkson, F.B. Schneider, Hyperproperties, J. Comput. Secur. 18 (2010) 1157–1210.
[4] N. Coenen, B. Finkbeiner, C. Hahn, J. Hofmann, The hierarchy of hyperlogics, in: LICS 2019, IEEE, 2019, pp. 1–13.
[5] B. Finkbeiner, C. Hahn, P. Lukert, M. Stenger, L. Tentrup, Synthesis from hyperproperties, Acta Inform. 57 (2020) 137–163, https://doi.org/10.1007/

s00236-019-00358-2.

[6] P. Galliani, Inclusion and exclusion dependencies in team semantics: on some logics of imperfect information, Ann. Pure Appl. Log. 163 (2012) 68–84.
[7] J.O. Gutsfeld, A. Meier, C. Ohrem, J. Virtema, Temporal team semantics revisited, in: C. Baier, D. Fisman (Eds.), LICS ’22: 37th Annual ACM/IEEE Sympo-

sium on Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022, ACM, 2022, pp. 44:1–44:13.
[8] J.O. Gutsfeld, M. Müller-Olm, C. Ohrem, Automata and fixpoints for asynchronous hyperproperties, Proc. ACM Program. Lang. 5 (2021) 1–29, https://

doi.org/10.1145/3434319.

[9] M. Hannula, J. Kontinen, J. Virtema, H. Vollmer, Complexity of propositional logics in team semantic, ACM Trans. Comput. Log. 19 (2018) 2:1–2:14.
[10] L. Hella, A. Kuusisto, A. Meier, J. Virtema, Model checking and validity in propositional and modal inclusion logics, J. Log. Comput. 29 (2019) 605–630,

https://doi.org/10.1093/logcom/exz008.

[11] J. Kontinen, J. Müller, H. Schnoor, H. Vollmer, Modal independence logic, in: R. Goré, B.P. Kooi, A. Kurucz (Eds.), Advances in Modal Logic 10, Invited
and Contributed Papers from the Tenth Conference on “Advances in Modal Logic,” Held in Groningen, The Netherlands, August 5-8, 2014, College
Publications, 2014, pp. 353–372, http://www.aiml.net/volumes/volume10/Kontinen-Mueller-Schnoor-Vollmer.pdf.

[12] J. Kontinen, M. Sandström, On the expressive power of teamltl and first-order team logic over hyperproperties, in: WoLLIC, Springer, 2021, pp. 302–318.
[13] J. Kontinen, M. Sandström, J. Virtema, A remark on the expressivity of asynchronous teamltl and hyperltl, in: FoIKS, Springer, 2024, pp. 275–286.
[14] A. Krebs, A. Meier, J. Virtema, A team based variant of CTL, in: F. Grandi, M. Lange, A. Lomuscio (Eds.), 22nd International Symposium on Temporal

Representation and Reasoning, TIME 2015, Kassel, Germany, September 23-25, 2015, IEEE Computer Society, 2015, pp. 140–149.

17

J. Kontinen, M. Sandström and J. Virtema Information and Computation 304 (2025) 105299

[15] A. Krebs, A. Meier, J. Virtema, M. Zimmermann, Team semantics for the specification and verification of hyperproperties, in: I. Potapov, P. Spirakis, J.
Worrell (Eds.), MFCS 2018, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2018, pp. 10:1–10:16.

[16] M. Lück, Axiomatizations of team logics, Ann. Pure Appl. Log. 169 (2018) 928–969.
[17] M. Lück, On the complexity of team logic and its two-variable fragment, in: MFCS, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018,

pp. 27:1–27:22.
[18] M. Lück, On the complexity of linear temporal logic with team semantics, Theor. Comput. Sci. (2020).
[19] M. Lück, Team logic: axioms, expressiveness, complexity, Ph.D. thesis, University of Hanover, Hannover, Germany, 2020, https://www.repo.uni-hannover.

de/handle/123456789/9430.

[20] J. McLean, Proving noninterference and functional correctness using traces, J. Comput. Secur. 1 (1992) 37–58, https://doi.org/10.3233/JCS-1992-1103.
[21] N. Piterman, A. Pnueli, Temporal logic and fair discrete systems, in: E.M. Clarke, T.A. Henzinger, H. Veith, R. Bloem (Eds.), Handbook of Model Checking,

Springer, 2018, pp. 27–73.
[22] A. Pnueli, The temporal logic of programs, in: 18th Annual Symposium on Foundations of Computer Science, IEEE Computer Society, 1977, pp. 46–57.
[23] M.N. Rabe, A Temporal Logic Approach to Information-Flow Control, Ph.D. thesis, Saarland University, 2016.
[24] A.W. Roscoe, CSP and determinism in security modelling, in: Proceedings of the 1995 IEEE Symposium on Security and Privacy, Oakland, California,

USA, May 8–10, 1995, IEEE Computer Society, 1995, pp. 114–127.
[25] A.P. Sistla, E.M. Clarke, The complexity of propositional linear temporal logics, J. ACM 32 (1985) 733–749, https://doi.org/10.1145/3828.3837.
[26] J. Väänänen, Dependence Logic, Cambridge University Press, 2007.
[27] J. Virtema, Complexity of validity for propositional dependence logics, Inf. Comput. 253 (2017) 224–236, https://doi.org/10.1016/j.ic.2016.07.008.
[28] J. Virtema, J. Hofmann, B. Finkbeiner, J. Kontinen, F. Yang, Linear-time temporal logic with team semantics: expressivity and complexity, CoRR, arXiv:

2010.03311 [abs], https://arxiv.org/abs/2010.03311, arXiv:2010.03311, 2020.
[29] J. Virtema, J. Hofmann, B. Finkbeiner, J. Kontinen, F. Yang, Linear-time temporal logic with team semantics: expressivity and complexity, in: M. Bo-

janczyk, C. Chekuri (Eds.), 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2021,
December 15-17, 2021, Virtual Conference, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, pp. 52:1–52:17.

[30] S. Zdancewic, A.C. Myers, Observational determinism for concurrent program security, in: 16th IEEE Computer Security Foundations Workshop (CSFW-

16 2003), 30 June - 2 July 2003, Pacific Grove, CA, USA, IEEE Computer Society, 2003, p. 29.

18

	Set semantics for asynchronous TeamLTL: Expressivity and complexity
	1 Introduction
	2 Preliminaries
	3 Set-based semantics for TeamLTL
	4 Normal forms for TeamLTL with Boolean disjunction and negation
	5 Computational properties
	6 Connections to other forms of asynchronicity
	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References

