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ABSTRACT

As the Internet of Things (IoT) ecosystem continues to expand,

ensuring robust wireless communication in the face of radio jam-

ming attacks has become a critical concern. This paper presents

a comprehensive case study on improving IoT resilience to radio

jamming using the Thread protocol within a controlled testbed

environment. We investigate the vulnerability of Thread-based IoT

networks to constant jamming and implement an effective coun-

termeasure to improve network robustness. Our study focuses on

the channel hopping method for countermeasure implementation,

demonstrating its effectiveness against jamming attacks through

detailed experimental results and analysis. This work underscores

how jamming and countermeasure systems can be developed and

tested on real hardware, fostering further research in the field of

network security. The experimental results provide valuable in-

sights into the efficacy of these strategies in mitigating jamming

threats.

CCS CONCEPTS

· Networks→ Network performance analysis; Network ex-

perimentation; Wireless access points, base stations and infrastruc-

ture;Wireless mesh networks; · Security and privacy→ Denial-

of-service attacks; Vulnerability scanners.

KEYWORDS

Internet of Things (IoT), Thread, Denial-of-Service (DoS), Jamming,

Countermeasures, Security

ACM Reference Format:

Poonam Yadav, Anthony Moulds and Peter Gillingham . 2025. Enhancing

IoT Defenses Against Radio Jamming: Insights from a Thread Testbed Case

Study. In The 18th European Workshop on Systems Security (EuroSec ’25),

March 30–April 3, 2025, Rotterdam, Netherlands. ACM, New York, NY, USA,

9 pages. https://doi.org/10.1145/3722041.3723096

1 INTRODUCTION

According to Statista [17], 29.42 billion IoT devices are projected to

be connected globally by 2030. Despite this rapid growth, concerns

about security, privacy, trust, and confidentiality remain significant.
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IoT devices are deployed across various environments to sense and

collect data or to control physical systems. Their applications span

from smart cities and environmental monitoringÐaimed at enhanc-

ing the quality of lifeÐto smart homes with features like intelligent

lighting, virtual assistants, and security cameras, as well as utility

metering for electricity and gas. IoT devices rely heavily on wire-

less communication, making them susceptible to radio frequency

(RF) jamming attacks, which can disrupt network operations, cause

Denial-of-Service (DoS) attacks [7], degrade performance, and com-

promise service availability.

The Thread protocol [2, 18, 22] is a low-power, IPv6-based wire-

less networking standard designed for IoT and smart home ecosys-

tems, emphasizing interoperability and seamless IP connectivity.

Unlike proprietary or hub-and-spoke architectures, Thread enables

direct IP communication between devices, eliminating the need for

protocol translation layers. Its self-healing mesh network, built on

IEEE 802.15.4, enhances scalability and reliability while ensuring

no single point of failure. With native IPv6 support, Thread devices

can seamlessly integrate with existing IP-based infrastructure, en-

abling end-to-end connectivity across local and cloud networks.

Integrated with Matter, Thread fosters cross-brand compatibility,

allowing diverse smart home ecosystems to communicate without

vendor lock-in. Its future-proof design positions it as a foundational

protocol for secure, scalable, and energy-efficient IoT deployments

in residential and industrial environments.

However, Thread does not natively include mechanisms to miti-

gate jamming attacks, unlike other network technologies such as

Bluetooth [15] and 5G NR [16], which employ adaptive frequency

and channel hopping techniques. As a result, if network security is

a priority, manufacturers of Thread devices must implement addi-

tional countermeasures, though this may introduce compatibility

risks with standard Thread implementations. With the increasing

adoption of the Thread protocol in commercial smart buildings [1]

and industrial IoT applications (IIoT), the security and reliability

of its implementation and operation becomes more significant; the

need for Thread to gain defensive mechanisms against jamming

and other forms of DoS is now more urgent.

In this paper, we investigate the specific vulnerability of the

Thread network to constant jamming attacks and examine the

implementation process of a suitable jamming system. Constant

jamming is chosen over disruptive, random, or reactive methods

because it is simpler, faster and least expensive to deploy, and con-

sequently more likely to be used by an attacker. The realization of

an appropriate countermeasure is then explored. Our key contribu-

tions are as follows:

(a) We demonstrate the methodology to establish a Thread net-

work using a custom-built testbed that accurately replicates
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real-world mesh network conditions. This setup allows for

controlled experimentation and reproducibility, serving as a

robust platform for security assessments.

(b) We present a systematic procedure for constructing and

configuring a jamming system utilizing readily available,

off-the-shelf (OTS) devices. This highlights the feasibility of

low-cost, real-world jamming threats, thereby emphasizing

the need for effective countermeasures in IoT environments.

(c) We outline the steps necessary to design and deploy prac-

tical countermeasures against jamming attacks directly on

Thread-enabled devices. Our approach ensures that the pro-

posed solutions are not just theoretical but applicable in

real-world scenarios.

Furthermore, we provide comprehensive experimental results

that evaluate the performance of both the jamming system and the

implemented countermeasure. Through detailed analysis, we offer

insights into the effectiveness ofmitigation techniques, contributing

valuable knowledge to the security and resilience of Thread-based

IoT networks.

The outline of the paper is as follows: in section 2, we provide

background on the IEEE 802.15.4 standard and the Thread protocol;

in section 2.3, we provide an understanding of the vulnerabilities

and threats to wireless networks through related work; section 3

explains the experimental setup in the laboratory and the design

and implementation of our jamming and countermeasure systems;

in section 4 we present the results of the experiments and analysis;

and finally, in section 5, we present the conclusion and future work.

2 BACKGROUND AND RELATED WORK

This section briefly overviews the IEEE 802.15.4 standard and the

Thread and Matter protocols and related work on Radio Jamming

and countermeasures. Thread is build on top of the IEEE 802.15.4

standard, offering a complete communication stack for IoT devices.
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Application Layer
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(a) The protocol stacks.

(b) Two Thread capable

devices, nRF52840 USB

Dongle alongside the

nRF5340DK development

board, we used in creat-

ing the Thread network

testbed.

Figure 1: (a) shows the full Matter-Thread networking stack

in relation to the OSI model, while (b) displays the Nordic

Semiconductor nRF52840 USB dongle and nRF5340DK devel-

opment board.

2.1 IEEE 802.15.4

The IEEE 802.15.4 standard [6] enables low-powered, low-bandwidth,

and low-cost devices to be networked by defining the physical

(PHY) and media access control (MAC) layers in the Open Systems

Interconnection (OSI) model, as shown in Fig. 1(a). Devices can

connect using either a star or peer-to-peer topology. The MAC

layer interfaces the physical and network/application layers. Since

IEEE 802.15.4 does not specify the network/application layers, this

is implemented by protocols such as Zigbee or Thread/Matter. Ad-

ditionally, the MAC layer employs carrier-sense multiple access

with collision avoidance (CSMA-CA) to prevent data collisions, and

offers guaranteed transmission time slots for each device. The MAC

handles all data transfer between the physical and network layers.

The standard specifies the use of radio for its physical medium;

sub-GHz 780/868/915 MHz bands and the 2.38/2.45 GHz bands. For

Thread, only the 2.45 GHz band is used.

2.2 Thread and Matter

Thread [18] is designed to create secure, reliable, and scalable mesh

networks for connecting and controlling IoT devices. Built on top

of a modified sub-set of the IEEE 802.15.4 standard, which defines

the physical (PHY) and media access control (MAC) layers, Thread

uses 6LoWPAN (IPv6 over Low-Power Wireless Personal Area Net-

works) to allow each device in the network to have an IP address,

see Fig. 1(a). It creates a self-healing mesh network where devices

can communicate directly or through other devices, enhancing reli-

ability and range. Thread includes robust security features such as

AES-128 encryption for data protection and secure device authenti-

cation. Optimized for low power consumption, Thread is ideal for

battery-powered devices and is designed to support networks with

hundreds of devices, ensuring scalability for large deployments. A

Thread network contains two types of nodes - routers, which for-

ward network packets and provide secure commissioning services

for new devices, and end devices, which primarily communicate

with a single router and do not forward network packets. Nodes

within a Thread network are categorized as follows:

(1) Full Thread Device (FTD). These devices can be routers or

eligible to be promoted to a router. FTDs always have their

radios on and maintain IPv6 address mappings of devices on

the network.

(2) Minimal Thread Device (MTD). All messages from these

devices are forwarded to their parent router. MTDs can either

be Minimal End Devices (MEDs), or Sleepy End Devices

(SEDs); SEDs are normally disabled and wake occasionally

to poll for messages. MTDs can only function as end devices.

Within a Thread network, specific roles include Thread Leader,

which is a router managing other routers, and Border Routers,

which forward data between a Thread network and a non-Thread

network. Additionally, Thread can upgrade or downgrade routers

as needed to ensure the most efficient network operation.

A Thread network can have up to 64 Routers (32 active at any

given time), each with 512 children, giving a theoretical maximum

of 32768 devices connected at once. Thread can achieve this through

utilizing its low data rate of 250 kbps between devices, and the mesh

network, through which devices communicate by routing data to

the Router they are connected to (in a Parent/Child relationship),

which then handles sending the message onto the receiving device.
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Matter [3] is an IPv6-based application layer protocol that sup-

ports TCP/UDP for data transmission, enabling broad compatibility

across networks like Thread and Wi-Fi.

2.3 Security Vulnerability, Jamming and
Countermeasures

The research on Thread security vulnerabilities are limited. How-

ever, since both Thread and Zigbee are based on IEEE 802.15.4, many

security risks affecting Zigbee could also impact Thread networks.

Several studies have explored vulnerabilities in Zigbee, particularly

in areas such as key sharing, replay attacks, battery depletion, and

denial-of-service (DoS) attacks [4, 5, 8, 19, 21]. This highlights the

need for further security analysis and countermeasure development

tailored specifically for Thread.

While the security of IoT networks against jamming attacks

has been extensively explored [23], there remains a critical gap

in understanding the real-world effectiveness of countermeasures

specifically within Thread-based networks. Existing studies, such

as those by Xu et al. [20] Akestoridis et al. [2], Yadav et al.[11, 22]

and Liu et al. [9], have thoroughly categorized jamming techniques

and highlighted Thread’s inherent vulnerabilities to jamming and

other radio-based attacks, such as battery depletion and Denial of

Service (DoS) attacks.

However, these works primarily focus on identifying vulnera-

bilities, classifying attack types, and demonstrating the feasibility

of attacks without providing comprehensive, experimentally vali-

dated countermeasures, particularly for Thread networks. While

some studies acknowledge that Thread is vulnerable to jamming,

they lack a detailed exploration of practical, hardware-implemented

countermeasures tailored to Thread’s unique architecture, mesh

networking behavior, and energy constraints.

Although battery depletion attacks and CSMA-CA deviations

have been demonstrated on real hardware, there is a significant gap

in research evaluating defensive mechanisms against these attacks

within controlled, Matter/Thread-specific testbeds. Existing studies

primarily focus on attack feasibility, leaving mitigation strategies

largely unexplored.

To address this, our work not only examines traditional noise-

based jamming but also introduces a continuous deceptive packet

injection technique, leading to receiver saturation and rendering

Thread nodes completely inoperable. This dual-mode attack strat-

egyÐcombining RF jamming with deceptive packet floodingÐis a

novel contribution, highlighting multiple previously unexamined

attack vectors against Thread networks. By validating these attacks

within a controlled testbed, we provide the first comprehensive

evaluation of their impact, bridging the gap between theoretical

vulnerabilities and real-world network resilience.

2.4 Threat Model

In the threat model, we define Threat Actors, Attack Vector, Attack

Feasibility, Impact on Thread Networks, and finally, Mitigation

Strategies.

The Threat Actors 𝐴 are potential adversaries targeting Thread

networks includemalicious hackers aiming to disrupt IoT infrastruc-

ture, competitors seeking to interfere with enterprise deployments,

state-sponsored attackers targeting critical infrastructure, and cy-

bercriminals using jamming as part of broader denial-of-service

(DoS) attacks.

The Attack Vector 𝑉 is a function that represents how an attack is

executed:

𝑉 : 𝐴 → 𝑅

where 𝑅 is the set of radio jamming techniques used by the attacker.

Specifically, we define:

𝑅 = {𝑟𝑐 , 𝑟𝑝 , 𝑟𝑠 }

where:

𝑟𝑐 = Continuous jamming

𝑟𝑝 = Pulse or reactive jamming

𝑟𝑠 = Sweep jamming

The effectiveness of an attack vector 𝑉 (𝐴𝑖 ) depends on the jam-

ming power 𝐽 and the signal-to-noise ratio 𝑆𝑁𝑅:

𝑉 (𝐴𝑖 ) = 𝑓 (𝐽 , 𝑆𝑁𝑅)

where higher 𝐽 and lower 𝑆𝑁𝑅 increase the likelihood of network

disruption. In our work, we focus solely on continuous jamming

(weak adversary).

𝑅 = {𝑟𝑐 }

The feasibility of an attack is determined by:

𝐹 = 𝑔(𝐷,𝐶, 𝐸)

where:

𝐷 = Discoverability of the Thread network

𝐶 = Cost of attack execution

𝐸 = Ease of attack implementation

An attack is more feasible if 𝐷 is high (network easily detectable),

𝐶 is low (low-cost Software Defined Radios (SDRs) available), and

𝐸 is high (simple jamming methods exist).

The impact function 𝐼 quantifies network disruption as a function

of attack effectiveness:

𝐼 = ℎ(𝑉 , 𝐹, 𝑅)

where:

𝑉 = Attack vector used

𝐹 = Feasibility of execution

𝑅 = Resilience of the Thread network

We define network degradation 𝐷𝑛 as:

𝐷𝑛 =

𝑃 𝑗

𝑃𝑠

where:

𝑃 𝑗 = Power of jamming signal

𝑃𝑠 = Power of legitimate signal

If 𝐷𝑛 > 𝜃 (threshold), the network collapses.

Mitigation strategies𝑀 aim to reduce 𝐼 (impact) and increase

resilience. This is modeled as:

𝑀 = 𝑘 (𝐻,𝑀𝑑 , 𝑀𝑝 )

where:
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𝐻 = Adaptive frequency hopping

𝑀𝑑 = RF signal monitoring and detection

𝑀𝑝 = Physical security and network redundancy

The effectiveness of mitigation𝑀 is given by:

𝐸𝑀 =

𝐼without mitigation − 𝐼with mitigation

𝐼without mitigation

where a higher 𝐸𝑀 indicates a more effective countermeasure.

3 EXPERIMENT SETUP

As described earlier, Thread is vulnerable to radio channel jamming.

When effective, the jamming acts as a form of DoS attack, prevent-

ing the network from operating. Even partial jamming, i.e., where

only part of the meshed network is compromised, can have a sig-

nificant impact, e.g. in security systems relying on sensor devices.

In this section, we describe the experiments performed in order to

examine this type of network vulnerability and detail a jamming

method and its countermeasure.

3.1 Thread Edge Testbed

A bespoke Testbed was constructed in order to perform the experi-

mentation with Thread networking, enabling the easy placement of

Thread devices to awall-mounted acrylic panel. For the experiments

in this paper, a Thread network comprising of twenty Thread nodes

was created, a Border Router (BR), four FTDs and fifteen MTDs.

For the FTD devices, Nordic Semiconductor nRF5340DK develop-

ment boards [13] were used and for the MTD nodes the Nordic

Semiconductor nRF52840 USB Dongle device [12] was chosen, as

shown in Fig. 1(b). Each Thread device was connected to a Rasp-

berry Pi 5 SBC (RPi) via its USB port in groups of three MTDs and

one FTD per RPi. The connection provided power and a VCOM

(UART) link for debugging and log dumps. The BR was formed

from a networked RPi and an nRF5340DK. The resulting Testbed

layout is shown in Fig. 3. As can be seen, the Thread devices on the

Testbed are located in close proximity to each other. In an attempt

to emulate a more normal configuration, where network nodes

are separated by greater distances, the radio transceiver’s transmit

output power levels for each Thread device were reduced, while

still maintaining a single unpartitioned network. The FTD devices’

transmit power was limited to -20 dBm and the MTDs level further

reduced to -40 dBm (we note that the radio receiver’s sensitivity is

specified at -100 dBm for IEEE 802.15.4 reception). These transmit

power levels encouraged End Device (Child) nodes to group locally

with their nearest Router (Parent), as indicated in Fig.2.

The fifteen MTD Thread devices were programmed to act as tem-

perature sensors, periodically broadcasting their CPU temperatures

in 32-byte UDP data packets. All FTD and MTD nodes maintained

an internal log of all transmitted and received data packets. At the

end of each experiment, all node log files were downloaded for

network analysis. The source-code is publicly made available at

Systron Lab Github1.

1https://github.com/SystronLab/thread-edge-testbed

Figure 2: Diagram of the Thread network realized on the

Testbed. All FTDs were mesh-linked, with groups of three

MTDs (Child nodes) attached to a unique Router (Parent).

Figure 3: Image of the Thread Edge Testbed. In the exper-

iments, twenty Thread devices were mounted. A group of

three MTDs and an FTD were connected to an RPi via their

USB ports, repeated three times. A fifth RPi was used to-

gether with an FTD to form a Border Router. All RPis were

networked to an embedded PC via an Ethernet switch.

3.2 Channel Jamming

A DoS attack on a Thread network is achievable by applying a

constant jamming signal on the correct network channel. In the

experiments, an O-QSPK-250 modulated carrier signal with pseudo-

random bit sequence (PRBS) data was initially used. A second ap-

proach was to inject a stream of empty IEEE 802.15.4 packets on

to the network (a form of deceptive jamming) to throttle or choke

the MAC sub-layer. The two methods gave the same jamming per-

formance in our experiments, each requiring only knowledge of

the network radio channel (PAN ID and network key were not

required). With short jamming packet inter-frame spacing (IFS),

typically below 4 ms, the Thread devices on the network were ob-

served to be unable to transmit (due to the CSMA-CA mechanism

in their MAC sub-layer), and in addition unable to receive any

non-jamming packets due to receiver saturation. In the following

experiments, only a single channel is attacked at once.

The jamming attack was performed by using a Sewio OpenSnif-

fer device [14] and directional antenna for the IEEE 802.15.4 packet
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injection, and a Nordic Semiconductor nRF5340DK for Thread net-

work scanning; the equipment was controlled by a Python script,

linking the devices. The attack system was developed under two

scenarios: the first covered detecting a network radio channel and

attacking it indefinitely, enabling the attacker to compromise the

Thread network with no implemented countermeasures; the sec-

ond scenario served to counter the defense mechanism described

later in section 3.3, with a repeated channel sniffing and attack

process, to target any channel that the network under attack may

hops to. The jamming system assumes the attacked network is the

only Thread network available and then only using a single radio

channel.

3.2.1 Channel Sniffing. The Nordic Semiconductor nRF5340DK is

used for its network scanning functionality in this implementation.

Connecting to the network is not necessary, only knowledge of

the channel ID that the network is occupying. The OpenThread

CLI makes available the ‘scan’ command, which scans for avail-

able Thread networks using the Mesh Link Establishment (MLE)

protocol without knowledge of the network key. This command

retrieves the channel ID number, which is necessary for identifying

which channel to attack, the Personal Area Network ID (PAN ID),

Extended PAN ID and network name; these additional details help

identify the discovered network is a valid Thread network. From

this, the channel number is retrieved and used as the target for

packet injection from the OpenSniffer.

3.2.2 Channel Jamming. The Sewio OpenSniffer device is used for

packet injection in this jamming implementation. After obtaining

the channel number through the network detection process, the

OpenSniffer is instructed to inject IEEE 802.15.4 packets onto the

channel with the minimum permitted inter-frame spacing (IFS) of 1

ms. Packet-based jamming is preferred over modulated radio signal

interference, as it enables network jamming event marking when

using the Wireshark network analyzer. The transmitted packets

contain no payload and are replayed without frame count restric-

tions. The OpenSniffer is controlled via its RJ45 port, receiving

HTTP commands with the channel number passed through query

parameters. The signal is amplified using a 20 dB wideband LNA

and transmitted through a 12 dBi directional antenna, ensuring

sufficient power to cover the entire Testbed. Figure 4 illustrates the

antenna placement. The antenna transmitted approximately +15

dBm of signal power, resulting in a minimum RSSI value of -48 dBm

across the entire Testbed.

3.2.3 Process. Using the nRF5340DK board and the OpenSniffer

for channel detection and packet injection, respectively, requires a

simple process loop to implement the jamming attack; the Python

script is used to control the loop and handle communication be-

tween the two devices. The process begins by detecting the channel

with the nRF5340DK, sending the ‘scan’ command through the

serial interface and parsing the response to obtain the channel

number, PAN ID, external PAN ID, network name and link quality

indication (LQI) to determine which channel is to be attacked. In

this scenario only one network is available. Once the channel ID

number is determined, an HTTP request is made to the OpenSniffer,

directing it to inject packets onto the channel. These packets consist

IEEE 802.15.4 headers with no data. To combat the channel hopping

Figure 4: Yagi antenna placed directly in front of the Testbed.

Distance D = 1.5 m for complete coverage (𝜃 = 25◦). Vertical

polarization in Z-Y plane.

countermeasure described later, this process simply needs to run in

a loop, detecting the channel repeatedly and waiting for a channel

hop. Once a new channel has been detected, a new HTTP request

can be sent to the OpenSniffer, which changes its target channel

and begins injecting packets on that channel.

3.3 Jamming Countermeasure

When active, the single channel continuous radio jamming appara-

tus, described in this paper, attacks the IEEE 802.15.4 PHY in the

Thread stack layer of each node on the Thread network. If suffi-

cient RF energy is received from the transmitted jamming source

on the correct channel by the PHY’s receiver, the Thread device’s

MAC sub-layer inhibits transmitting packets due to a poor clear

quality assessment (CCA) result in the CSMA-CA mechanism. In

addition, reception of any valid IEEE 802.15.4 packets will be ren-

dered impossible due to useless or severely degraded S/N ratio at

the PHY receiver, where the ‘useful’ signal content is lost in the

jamming ‘noise’. Consequently, the Thread nodes are incapable of

both transmitting and receiving IEEE 802.15.4 packets. Similarly,

when attacking with an uninterrupted continuous stream of decep-

tive packets, the Thread node interface becomes unusable due to

receiver saturation. In the case of either jamming sources, de-tuning

the PHY’s narrow-band transceiver to another channel however

will remove the jamming event. Hence, a valid countermeasure is

to perform a channel hop to an alternative unoccupied frequency.

This section describes an implementation of this countermeasure

method on the Testbed. Thread devices were programmed with

firmware written in the C programming language, incorporating

Google’s well-known open-source OpenThread API [10].

3.3.1 Jamming Detection. An essential element in implementing a

countermeasure to the continuous jamming system described in

this paper is the reliable detection of the jamming event. This was

achieved in the Thread device’s firmware by monitoring the PHY

layer’s Received Signal Strength Indicator (RSSI) value. In order

to determine a detector threshold, the minimum RSSI value for

all Thread nodes was measured across the Testbed during Testbed

setup (with no jamming applied) and found to be -48 dBm. In the

experiments, the threshold was set to -60 dBm to include -12 dBm

margin. If the RSSI value continuously exceeded this threshold

over a 10 second interval a jamming event was detected. Once
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Figure 5: TimingDiagram for theCountermeasure to respond

to an active jamming event. The radio channel CH-N is the

network channel to be jammed and CH-K the hop channel.

THOP is the time it takes for the Thread network to recover

once jamming is detected.

detected, the device would signal the start of a channel hop. The

long detection window was set to prevent potential false positives.

3.3.2 Channel Hopping. After detecting a jamming event, each

Thread node must prepare to jump to an alternative channel. In

the experiment, an array of up to sixteen IEEE 802.15.4 channels

was created by the Thread Leader on initial creation of its network

(without jamming applied); a frequency scan was performed to

determine the available unoccupied channels with the found chan-

nel IDs stored in the array. After sorting, the array contents were

ordered randomly to form a Hop List, with a Hop Index created to

point to the next hop in the list. For the experiments, the Hop List

created by the Leader was as follows:

15 12 17 20 14 11 18 25 24 13 19 21 16 22 26 23.

Figure 6: Flow diagram of the implemented Countermeasure.

As Thread devices joined the experimental network, the Hop

List and Hop Index were disseminated across all nodes; the Routers

fetched the list and index from the Leader, while Child devices

obtained the information from their Parent. At this point, all nodes

were in sync and prepared to hop to the agreed alternative channel

if a jamming attack occurred. Fig. 6 gives a flow diagram for the

implemented Countermeasure. To limit unintentional side-effects

on the network when changing channel frequency, each node first

disabled its Thread interface using OpenThread API calls and re-

enabled it once its new channel is set. This step ensured that the

Thread devices correctly detached and re-attached themselves from

and to the network. In Fig. 5, the relative timing of the channel

hop mechanism when active jamming occurs is shown; THOP is

the time it takes for the Thread network to perform a channel hop.

Eqn. 1 gives the total time for the Countermeasure to respond, from

the start of the applied jamming to network recovery; TJD is the

jamming detector delay. For a Thread network topology of just

one FTD and N number of reachable MTD devices, Eqn. 2 gives

the hop time; TC is the short interval taken to apply the channel

change, TL is the time the Thread Leader requires to restart its

network and TMTD is the time the MTD device take to re-attach to

the network. Eqn. 3 applies to the more typical case where there

are multiple FTD devices in the Thread network. Here, an optional

fixed delay TD is added for all MTD nodes before attempting to

re-attach. The added delay must be greater than the time it takes for

the remaining FTD devices to re-join the network, TR. Though not

strictly necessary, delaying the MTDs in this way helps the network

topology to remain unaltered. Minimal End Devices and Sleepy End

Devices (both are types of MTD) used the same mechanism to

perform the channel hop.

𝑇𝐶𝑀 = 𝑇𝐽 𝐷 +𝑇𝐻𝑂𝑃 (1)

𝑇𝐻𝑂𝑃 = 𝑇𝐶 +𝑇𝐿 +𝑚𝑎𝑥{𝑇𝑀𝑇𝐷1
, ...𝑇𝑀𝑇𝐷𝑁

} (2)

𝑇𝐻𝑂𝑃 = 𝑇𝐶 +𝑇𝐿 +𝑚𝑎𝑥{𝑇𝐷1
, ...𝑇𝐷𝑁

} when 𝑇𝐷 > 𝑇𝑅 (3)

(a) Frequency Spectrum with Peak Hold (from 2.40 GHz, span 90

MHz, 6dB/div)

(b) 3D Frequency Spectrogram (X,Y,Z planes for Frequency, Power,

and Time respectively)

Figure 7: Measurements using a Tektronix RSA306A spec-

trum analyzer, showing the transmitted signals from the Jam-

ming apparatus. (a) displays the overlaid captured frequency

spectrum for all sixteen transmitted (jammed) IEEE 802.15.4

channels; (b) presents the same captured signals showing

their timing relationship during Countermeasure channel

hopping (ch26 is shown at the rear with the next hop at ch23,

and similarly for other channels based on the Hop List).

4 RESULTS AND ANALYSIS

This section of the paper presents results of the experiments per-

formed using the bespoke Testbed, and includes the evaluation

and analysis of the developed Jamming apparatus and the perfor-

mance of the Countermeasure implementation. We also discuss its

limitations and how to deal with the case of perpetual jamming.
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4.1 Jamming Effectiveness

The jamming attack can be evaluated in two parts, network detec-

tion and packet injection, with both combining to successfully dis-

cover and jam a Thread network. The network detection, achieved

through the use of a single nRF5340DK board, successfully detected

experimental Thread networks across all sixteen channels. The

detection implementation was simple to setup and deploy, issuing

OpenThread CLI commands via a Python script.With the extraction

of the channel ID number via the nRF5340DK, continuous back-to-

back packet injection successfully occurred through issuing HTTP

request made to the OpenSniffer, again through the Python script

controlling the attack.

The success of the jamming system is demonstrated in Fig. 7,

showing the jamming of all sixteen channels in succession while

tracking the countermeasure; (a) shows the transmitted output at

each channel frequency over the duration of the entire attack sce-

nario, with channels being successfully occupied by the jamming

signal; (b) shows the attack through time, demonstrating the suc-

cessful channel switching, once the re-established Thread network

has been detected.

With the assumption that the Thread network under attack is

the only network available (and not partitioned) and all nodes are

in range of the jamming system, the attack would successfully

collapses a Thread network, and in the second described scenario,

would continue to do so as the channel hopping countermeasure

takes action.

4.2 Countermeasure Performance

Two experiments were completed on the Testbed to evaluate the

performance of the Countermeasure in increasing Thread network

complexity; the first executed on a network topology comprising of

just one FTD and up to nineteen MTDs, and the second comprising

five FTDs and fifteenMTDs. Using the timing information contained

in the on-device timestamped data and event logs maintained in

each Testbed Thread device, it was shown that each node detected

the jamming event and successfully performed a channel hop. Fig. 9

gives the results for the first experiment. As can be seen in the

graph, the THOP value increases as more Thread devices exist in the

network; this is believed to due to normal Thread network behavior

and not due to the implementation of the Countermeasure. The

averaged THOP value for FTD devices in the second experiment was

determined to be 29 seconds over the sixteen hops. The jamming

detector window set at ten seconds in the experiments proved to

be sufficiently long to prevent false positives, i.e. normal Thread

network traffic failed to trigger a channel hop in any network node.

The Countermeasure has been shown to continuously apply its

sequence of channel hops during active tracking by the Jamming

system. The jammer has a finite turnaround delay as it must re-

scan the network, as illustrated in Fig. 8. If this delay is sufficiently

long, the Border Router or Leader would be able to issue network-

wide messages, potentially issuing instructions to mitigate further

attacks.

4.3 Assumptions and Limitations

The jamming system used in the experiments was, by design, lim-

ited to jamming a single radio channel at a time. However, it was

Figure 8: The Countermeasure must continuously respond to

active jamming, where the jammer is capable of tracking the

network channel hops. TTRACK is the jamming turn-a-round

delay.

Figure 9: Chart showing the minimum and maximum Coun-

termeasure hop timings for the Thread network comprising

of a single FTD (Leader) and up to nineteen MTDs.

sufficiently sophisticated to enable automatic tracking of network

channel hops and subsequently re-applying its attack. The system

assumed only one Thread network existed and not partitioned.

The Countermeasure suffered from long latencies due to its

wide jamming detector window, and the necessity to restart the

Thread network; especially with the additional (optional) MTD

attachment hold-off delay. Only sequential single channel jamming

events could be defended against using the Countermeasure. In

addition, an attack using a powerful wideband jamming signal on

the Testbed would certainly succeed and difficult to defend against.

The Countermeasure performed well when jamming was applied

to the entire Thread network, where each Thread device detected

the same jamming event and subsequently all nodes applied their

channel hop in sync. If, however, a network node was unable to

detect jamming (possibly by being out of range of the jammer),

its radio channel would become out-of-step with the sequenced

hopped network channel. Though not tested, this scenario could be

resolved by the device detecting its detached state from the network

and attempt to re-attach by looping through the channels in the

shared channel Hop List; once rejoined, it would be in sync with

the other Thread devices. Importantly, however, unjammed FTD



EuroSec ’25, March 30śApril 3, 2025, Rotterdam, Netherlands Yadav et al.

devices would need to ensure they gracefully re-attach, avoiding

creating a new network on an old/false channel.

4.4 Jamming Attack Mitigation

The experimental results show that it was possible to repeatedly

detect radio jamming of the Thread network and that a Counter-

measure, by applying channel hopping, proved reliable. However, if

the Jamming equipment is continuously tracking the network, then

the networked system is perpetually compromised. The network’s

Border Router(s) can be configured to broadcast an alert message

(via Ethernet, cellular network, LoRaWAN, etc.) flagging the DoS

attack, so action can be taken. In addition, the individual Thread

devices can be programmed or configured to enter a ‘safe’ mode

during the attack period. For example, a door lock should close

when attacked or a security lamp should illuminate.

5 CONCLUSION AND FUTUREWORK

The Thread protocol relies on radio communication to establish

network links between IoT devices, making it inherently vulner-

able to radio jamming attacks. Through a bespoke testbed, we

systematically examined these vulnerabilities and demonstrated

how relatively simple it is to jam or disrupt radio links, effectively

executing a network-wide denial-of-service (DoS) attack. In real-

world home or commercial Thread/Matter networks, our results

indicate that targeting the Border RouterÐwhich typically acts as

the single orchestrator for all linked devicesÐwould be sufficient to

cripple the entire network if the attacker possesses adequate trans-

mitter power. Furthermore, our findings suggest that expanding the

jamming system to disrupt multiple radio channels simultaneously

could significantly increase the attack’s effectiveness.

To address this vulnerability, we implemented a channel hop-

ping countermeasure on off-the-shelf Thread-capable hardware,

demonstrating its effectiveness against active jamming attacks. Our

bespoke testbed allowed us to validate that Thread devices can

dynamically switch frequencies, maintaining network availability

under hostile conditions. The countermeasure operates continu-

ously, iterating through an available channel list until either the

jammer ceases tracking the network or the Thread system enters a

fallback mode.

This paper not only identifies critical vulnerabilities in Thread

networks but also proposes and implements a practical, real-world

countermeasure to mitigate these threats. By leveraging the Open-

Thread API in a controlled testbed, we experimentally demonstrate

how frequency agility can restore network functionality even un-

der active interference. This moves beyond theoretical discussions,

offering an actionable, deployable defense strategy that Thread de-

vice manufacturers and network operators can integrate to enhance

resilience against targeted jamming attacks.

Further improvements to the countermeasure will focus on re-

ducing channel hop latency, handling partial jamming attacks more

effectively, and developing capabilities to counter multi-channel

jamming, ensuring greater robustness in future deployments.
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