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Perspective

SELFIES and the future
of molecular string representations
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SUMMARY

Artificial intelligence (AI) and machine learning (ML) are expanding in popularity for broad applications to

challenging tasks in chemistry and materials science. Examples include the prediction of properties, the dis-

covery of new reaction pathways, or the design of new molecules. The machine needs to read and write

fluently in a chemical language for each of these tasks. Strings are a common tool to represent molecular

graphs, and the most popular molecular string representation, SMILES, has powered cheminformatics since

the late 1980s. However, in the context of AI and ML in chemistry, SMILES has several shortcomings—most

pertinently, most combinations of symbols lead to invalid results with no valid chemical interpretation. To

overcome this issue, a new language for molecules was introduced in 2020 that guarantees 100% robust-

ness: SELF-referencing embedded string (SELFIES). SELFIES has since simplified and enabled numerous new

applications in chemistry. In this perspective, we look to the future and discuss molecular string representa-

tions, along with their respective opportunities and challenges. We propose 16 concrete future projects for

robust molecular representations. These involve the extension toward new chemical domains, exciting ques-

tions at the interface of AI and robust languages, and interpretability for both humans andmachines.We hope

that these proposals will inspire several follow-up works exploiting the full potential of molecular string rep-

resentations for the future of AI in chemistry and materials science.
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THE BIGGER PICTURE Artificial intelligence for the discovery of new functional molecules can bring enor-

mous societal and technological progress. Here, one crucial question is how to write molecules such that

computers can easily process them. In this perspective, we analyze SELFIES, a relatively youngmethod for rep-

resenting molecules in a computer. Since its invention 2 years ago, SELFIEShas since simplified and enabled

numerous workflows for artificial intelligence (AI) in chemistry and material science.

We take an in-depth look into the future of SELFIES and molecular string representations. We detail 16 new

future research directions, ranging from new AI applications in chemistry, to the development of robust lan-

guages for large chemical domains, to questions about the readability of different chemical languages for hu-

mans and machines. Thereby, we hope to open a myriad of exciting doors with consequences in materials

science and beyond.

Development/Pre-production:Data science output has been

rolled out/validated across multiple domains/problems
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INTRODUCTION

The discovery of new materials and molecules with exceptional

properties could lead to enormous scientific, technological, and

ultimately societal impact. In the last few years, digital discov-

eries—that is, in silico discoveries using computers—have

been significantly reinforced through machine-learning (ML)

applications and other artificial intelligence (AI) tools for chemis-

try. Specifically, recent advances in AI and ML have sparked

numerous new applications in quantum chemistry,1–7 molecular

dynamics simulations,8–10 prediction of molecular proper-

ties11–13 and reactivity,14–17 artificial molecular design,18–22 and

the formulation of design heuristics.23,24 One germane question

in all these applications iswhich language shouldbe used to sym-

bolically represent molecules and materials?

Since the 1980s, simplified molecular-input line-entry system

(SMILES) strings have been a very prominent graph representation

in computational chemistry. However, questions have arisen as

to whether SMILES is an ideal language for computer applications

that are tasked to discover new structures. For example, SMILES

are not robust on their own, which means that generative models

are likely to create strings that do not represent valid molecular

graphs. A large body of work has been devoted to resolving this

issue in recent years. Many of the advances came from model-

dependent solutions, fixing the problem insideMLalgorithms.25,26

In 2020, some of us introduced SELF-referencing embedded

string (SELFIES; SELFIES can be installed via pip install selfies

at https://github.com/aspuru-guzik-group/selfies).27 This new

string-based representation circumvents the issue of robust-

ness by defining a formal grammar that always leads to a valid

molecular graph. This new molecular graph representation has

simplified numerous applications in cheminformatics and even

enabled new ones. Given this exciting potential, the authors

assembled (in a virtual mini-workshop in August 2021 orga-

nized by IOP and the Acceleration Consortium, on the topic

of this paper) to jointly discuss the future of SELFIES in terms of

generalizations and new applications. Here, we present an

overview of the progress as well as outstanding questions,

formulating 16 concrete projects and challenging ideas for

the next years.

The perspective is structured as follows: we first summarize

briefly the 250-year-long history of molecular representations.

Then, we look at modern representations and discuss their

strengths and weaknesses. This motivates a look into the future,

where many open questions remain. In our journey, we also visit

stochastic macromolecules and crystals. We will go further

down the rabbit hole of inorganic chemistry and look at the po-

tential for modeling and predicting chemical reactions. Then,

we analyze the performance of string-based and non-string-

based representations in terms of ML, and finally, we also inves-

tigate questions about the general interpretability of chemical

languages—for both human and artificial scientists. During our

journey through different fields of chemistry and AI research,

we propose 16 independent stand-alone research projects that

could define the future of molecular representations for AI in

chemistry. Some of the proposed projects are well-defined

and can (so we hope) directly be implemented, while other tasks

indicate important problems in molecular representations that

still need new conceptual insights to achieve a solution.

Our perspective mainly focuses on the new opportunities of

SELFIES. For more detailed reviews of general molecular repre-

sentations, we refer the interested reader to Warr28 and Wigh

et al.29Wewant to be clear: SMILES has had a tremendous impact

on cheminformatics since the 1980s and will certainly continue

to be an impactful tool. Canonical SMILES together with structure

normalization enables the definition of uniqueness, which is the

current working pharmaceutical industry standard.30 For indus-

trial applications, we note that SMILES was originally developed
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as a commercial tool, while SELFIES is entirely open source and

freely available, which is an important opportunity for SELFIES

for commercial products.

HISTORICAL REVIEW

Shaping the future of molecular representation is only sensible

if we comprehend its history. Here, we briefly describe the

250-year evolution of chemical notations and the advent of mod-

ern string representations for molecules. Detailed accounts of

the history can be found in other papers.31–36

1787: The origin of chemical nomenclature is rooted in the

seminal work Méthode de nomenclature chimique, with contri-

butions from Lavoisier and others.37 This work ushered in the

modern, post-alchemy era of chemical nomenclature.

1808: Dalton developed his atomic theory and used symbols to

representelementsandcompounds.38These symbols resembled

those used in the prior, alchemical era. For example, the elements

hydrogen and sulfur were representedby1 and4 , respectively,

while the compound water was represented as 1�. However,

such highly specialized symbols had two major drawbacks.

Firstly, they were non-intuitive and therefore cumbersome for

others to learn and apply. Secondly, they were incompatible

with contemporaneous printing methods, resulting in limited cir-

culation of Dalton’s work.

1813: Berzelius sought to address this by proposing a termi-

nology where the first letters of the Latin names of a substance

were used instead of symbols.39 This new notation represented

chemical ratios rather than molecular structures.

1889–1911: International committees were formed to stan-

dardize the chemical nomenclature. The International Chemistry

Committee published theGeneva Rules for Organic Chemistry in

1889. This was the first attempt to standardize chemical nomen-

clature.35Nomenclature reforms continued with the International

Association of Chemical Societies, which convened in 1911 in

Paris. However, the proceedings were interrupted by the

outbreak of World War I.40

1919–1930: The International Union of Pure and Applied

Chemistry (IUPAC) was formed following the conclusion ofWorld

War I. In 1921, the Union continued to advance chemical nomen-

clature, culminating in 1930 with the so-called Liège Rules.36

1944–1947: While the outbreak of World War II interrupted the

work of IUPAC, Dyson independently published a seminal

work entitled A Notation for Organic Compounds in 1944.41 A

revised version, A New Notation and Enumeration System for

Organic Compounds, was subsequently accepted by IUPAC in

1947.33,42 The latter received criticism for not adding to the prob-

lem of chemical nomenclature, and those better explanations

would be found in the original lecture in 1944. The claims in Dys-

on’s work were taken with reservations, especially the affirma-

tion that there was only one possible cipher for any one chemical

compound when there was not enough evidence and little scru-

tiny by the chemistry community.43 There was a feeling that he

was prescribing a sledgehammer to crush a nut.

1949–1951: With the advent of computers, there was a new

necessity to adapt chemical formulas to line notation using

ASCII, thereby eliminating, among other features, the use of

subscript and Greek letters.44 In 1949, the IUPAC Commission

on Codification, Ciphering, and Punched Card Techniques

opened a call for proposals regarding an international notation

system. The criteria for the proposed annotation system

included simplicity of use and ease of printing and typewriting.

In 1951, the commission reviewed line notations with contribu-

tions from seven different proposals.45 From those, Dyson’s

ciphering remained the standard, though many alternatives

were used in practice. Among these, the Wiswesser Line Nota-

tion (WLN)31 is the most noteworthy. It provided a ‘‘compact

way of uniquely and unambiguously representing the complete

topology of a chemical molecule’’ and was preferred by scien-

tists for many decades thereafter.34

1961–1969: During this era, the WLN method became the de

facto standard in computer and punched card approaches to

storing large datasets of chemical compounds.46 Subsequent

efforts focused on automated hardware specially designed to

codify molecules, like the Army Chemical Typewriter (Figure 1),

or, alternatively, on improving machine readability and storage

capacity, for example, the Hayward Notation (1961)47 and the

Skolnik Notation (1969).48 In the former, the aim was to establish

a basis for a one-to-one relationship between structure, cipher,

and nomenclature, while for the latter it was to have the notations

conform to the accepted chemical structures and invoke rela-

tively few rules.

MODERN MOLECULAR STRING REPRESENTATIONS

The development of molecular string representations has

continued in the direction laid out by IUPAC in 1949. However,

advances in computer power and cheminformatics applications

have accelerated development far beyond the use cases originally

envisioned. In the following section, we discuss four molecular

string representations that are widely used today, with a focus

on their applications in AI for chemistry and material science.

SMILES

Weininger published SMILES in 1988 with the goal to serve the

needs of ‘‘modern chemical information processing.’’50,51 The

Figure 1. Special-purpose type writer for chemistry
(A) Typical tape obtained with the Army Chemical Typewriter (ACT) built by
members of the Walter Reed Army Institute of Research.
(B) The ACT, a mechanical typewriter for the encoding of chemical structures.
(C) Typed characters from the ACT. Image from Feldman et al.49
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development of SMILES focused on the implementation of molec-

ular graph theory, to allow for rigorous structure specification

with a grammar that is bothminimal and natural. SMILES has since

become the de facto standard representation in cheminfor-

matics.

An example of the SMILES representation is shown in Figure 2. In

SMILES, molecules are defined as a chain of atoms, which are writ-

ten as letters in a string. Branches in the molecule are defined

within parentheses, while ring closures are indicated by two

matching numbers. The SMILES grammar, though simple, allows

Figure 2. Molecular string representations
(A–C) Derivation of established string representations (A) SMILES, (B) DEEPSMILES, and (C) INCHI from molecular structures using 3,4-methylenediox-
ymethamphetamine (MDMA) as an example. Branches and ring closures are represented by specific syntax based on the main path (orange).
(D) Derivation of a SELFIES string from the molecular structure, building on the corresponding derivation rules.
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for the description of complex structures as well as properties

such as stereochemistry, aromatic bonds, chirality, ions, and

isotopes.

While SMILES has been a workhorse for cheminformatics over

the last three decades, in recent years, new applications in

cheminformatics have exposed several weaknesses, which

motivated the introduction of new molecular string representa-

tions. Firstly, multiple different SMILES strings can represent the

same molecule (e.g., see Figure 2A). This weakness has been

addressed by a different representation called the International

Chemical Identifier (INCHI), which we will explain below, and

can be enforced by post-processing canonicalization via tools

such as RDKit.52

Another weakness is that SMILES has no mechanism to ensure

that molecular strings are valid with respect to syntax and phys-

ical principles. An example of the former is CC(CCCC, a string

with an unpaired open parenthesis. This string has no valid inter-

pretation as a molecular graph. Semantic errors involve strings

that form valid graphs but do not reflect valid chemical struc-

tures. For example, the string CO=CC represents a molecular

graph with an oxygen atom that has three bonds—a violation

of the maximum number of bonds that neutral oxygen can form.

The lack of syntactic and semantic robustness has a significant

impact with respect to the validity of computer-designed mole-

cules based on evolutionary or deep-learning methods.18,53,54

One solution has been the design of special ML models that

attempt to enforce robustness.25,55,56 A more fundamental solu-

tion is the modification of the molecular representation itself.

O’Boyle and Dalke pioneered this approach by developing DEEP-

SMILES, a modification of SMILES that obviates most syntactic er-

rors, though semantic mistakes were still possible.57 Finally,

2020 witnessed the release of SELFIES—a molecular string repre-

sentation27 that is 100% robust to both syntactic and semantic

errors.

INCHI

SMILES are not unique representations of molecular graphs, i.e., a

structure can be represented bymultiple strings and custom iden-

tifiers. This makes it difficult to construct large-scale databases

where each structure has tomap to a unique label, and vice versa.

INCHI was created in 2013 by IUPAC as an open-source software

to encode molecular structures in order to standardize searching

across databases and the internet.58 INCHI strings are composed

of six main layers and multiple sublayers, where each layer repre-

sents a specific category of information about the molecule (sub-

layers include chemical formula, atomic connections, charges,

and stereochemistry). There are several advantages introduced

by the INCHI syntax. The first is that molecules have a canonical

representation, which allows straightforward linking in databases.

O’Boyle created a method based on this feature of INCHI that gen-

erates universal SMILES strings to standardize the output from

different cheminformatics toolkits.59 Another benefit of INCHI is

that the layered structure encodes hierarchical information, and

so two molecules that are derivatives of each other will have the

same parent structure. Finally, INCHI is more expressive than

SMILES and can encode more information. For example, INCHI

can specify which hydrogen atoms are mobile and which are

immobile.58 This allows for tautomers of the same molecule to

be represented by the same INCHI string, while with the SMILES

framework, each tautomer is represented by a different string.

Also, SMILES requires explicit notation of double-bond locations,

while INCHI infers them. Consequently, resonance structures are

represented by a single INCHI string but potentially multiple SMILES

strings. There are also a number of disadvantages with the use of

INCHI strings. The first is that the hierarchical structure and syntax

make the notation difficult to read by humans (although this is a

point of contention, as the readability improves with usage; we

come back to this aspect in comparing strings, adjacency

matrices, and images as molecular graph representations for

ML). The complicated syntax also makes it more difficult to

employ INCHI in generative modelling, as there are a number of

arithmetic and grammatical rules that are difficult to enforce

when sampling a new molecule from deep-learning models.

Moreover, the current standard INCHI consistently disconnects

bonds tometal atoms,which leads to the loss of important stereo-

chemical and bonding information. However, this behavior might

change in future versions.60 In practice, it has been found that IN-

CHI performs worse than SMILES in ML-based applications, likely

due to the above-mentioned reasons.54

DEEPSMILES

Deep neural networks are increasingly used to create generative

models for the design of new molecules.18 Many models were

trained using molecules encoded as SMILES strings. These

models are subsequently queried to generate SMILES strings rep-

resenting molecules with specific target properties. However,

the resulting SMILES may have unmatched parentheses or ring

closure symbols, rendering the molecule invalid. To resolve

these issues, O’Boyle and Dalke created DEEPSMILES, which en-

codes into a syntax more suitable for automated inverse design

such as deep generativemodels.57 TheDEEPSMILES grammar only

uses one symbol to represent ring closures (instead of two). This

symbol is a number that indicates how far back in the string the

ring is connected. Branching is represented by one or more clos-

ing parentheses, where the number indicates branch length.

Thereby, DEEPSMILES resolves most cases of syntactical mis-

takes. This advance leads to greater robustness compared

with SMILES with respect to random mutations and deep genera-

tive models.27 However, DEEPSMILES strings still allow for seman-

tically incorrect strings, i.e., molecules that violate basic physical

constraints. This factor points to a need for an even more robust

molecular grammar.

SELFIES

Introduced in 2020, SELFIES is a 100% robust molecular string rep-

resentation.27 That is, SELFIES cannot produce an invalid molecule,

as every combination of symbols in the SELFIES alphabetmaps to a

chemically valid graph. Let us imagine the same for a natural lan-

guage, such as English. In the overwhelmingmajority of cases, an

arbitrary combination of letters from the Latin alphabet (a–z) will

not lead to a valid word. In this sense, English is not robust, while

SELFIES is robust with respect to chemistry.

SELFIES is a formal grammar (or automaton) with derivation

rules. This can be understood as a small computer program

with minimal memory to achieve 100% robust derivation. The

SELFIES grammar is designed with the explicit aim of eliminating

syntactically and semantically invalid molecules, for example in

generative tasks.
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In SMILES, syntactic invalidity consists of unbalanced paren-

theses or ring identifiers. For instance, a generative model

using SMILES may generate a string that includes an open paren-

thesis with no corresponding closing parenthesis. The resulting

string would represent an invalid graph. The problem stems

from the non-local definition of rings and branches, which

has already been addressed through the introduction of

DEEPSMILES.57 To resolve these issues, SELFIES follows a different

approach. Here, rings and branches are both defined at one

single location. Special symbols (such as [Branch1] or

[Ring1]) start a branch or ring. Instead of using an end symbol,

the subsequent token in the string defines the length of the

branch or ring. To achieve that, the next symbol is overloaded

(similar to function overloading in programming languages al-

lowing the creation of multiple functions with identical names

but different implementations) by a number (see the concrete

overloading list of SELFIES v.2.0 in Table 1). We show one con-

crete example. The SELFIES expression [C][Branch1][Ring2][C]

[C][C][C][C][C] has a branch symbol at the second position.

Thereby, the subsequent symbol ([Ring2]) is overloaded and

now defines the size of the branch (corresponding to the Q

value in Figure 2). We see in Table 1 that [Ring2] stands for

the number Q = 2. The length of the branch in SELFIES is defined

as (Q + 1), therefore the corresponding SMILES string is C(CCC)

CCC’. Analogously, the sizes of rings can be described. In

SELFIES, we use base 16 to describe numbers (see Table 1). If

we want to define branches or rings longer than 16 symbols,

we can use [RingN]. Here, N stands for the number of subse-

quent symbols that are overloaded and combined (as a hex

number) to describe long branches and rings. With these ideas,

all syntactic mistakes are resolved.

Semantic mistakes lead tomolecular graphs that violate phys-

ical constraints. They are avoided by applying another concept

from theoretical computer science—formal grammar or formal

automata.61 The formal automaton derives the molecules, and

every derivation step can change the state of the automaton.

As the state defines the rules for the next derivation step, it

can be used as a minimal memory that encodes physical con-

straints and ensures that only meaningful molecules are derived.

SELFIES can be seen as a very simple programming language for

chemistry, and a SELFIES string is a program that creates a valid

molecular graph upon execution. This leads to interesting conse-

quences and possibilities, which we will discuss in strings as

programming languages.

Robustness can be demonstrated by inspecting the internal

latent space of a deep-learning model that is trained once with

SMILES and once with SELFIES (Figure 3). Without changing any-

thing inside theMLmodel, every SELFIES output is physically valid.

Not surprisingly, SELFIES has already been shown to improve,

simplify, or even enable new AI-driven applications in cheminfor-

matics. These include genetic algorithms,62 curiosity-based

exploration,63 efficient combinatorial methods,64 and many

other topics to be discussed later.

The library contains two core functions that facilitate the trans-

lation between SMILES and SELFIES representations, alongside

other peripheral functions for manipulating SELFIES strings. The

following depicts a simple use case of SELFIES:

import selfies as sf

benzene = ‘‘c1ccccc1’’

# SMILES to SELFIES

benzene_sf = sf.encoder(benzene)

# [C][=C][C][=C][C][=C][Ring1][=Branch1]

# SELFIES to SMILES

benzene_smi = sf.decoder(benzene_sf)

# C1=CC=CC=C1

In this example, benzene is first translated to SELFIES and then

back to SMILES. The initial SMILES string is dearomatized to encode

the molecule robustly in SELFIES.

Current capabilities of SELFIES

Currently, SELFIES can represent ordinary organic molecules,

including isotopes, and charged and radical species. Further-

more, it can represent chirality and stereochemistry by using

an analogous approach to that of SMILES.

SELFIES can not yet fully represent macromolecules, crystals,

and molecules with complicated bonds. We will explain the

context, the challenges, and potential ways to generalize SELFIES

to tackle these current shortcomings and to develop an even

more general, 100% robust string representation for ML in

chemistry.

Additionally, while the robustness can be guaranteed, it is not

necessary that all molecules generated by a SELFIES string can

also be synthesized or are interesting or useful for specific tasks.

General mappings

SELFIES, SMILES, INCHI, and DEEPSMILES are representations of a

molecular graph. They all aim to map a string of tokens to a mo-

lecular graph, as illustrated in Figure 4. SMILES is a surjective rep-

resentation from strings to structures that include molecular

graphs but also non-molecular (semantically invalid) graphs

and other structures that cannot be interpreted as graphs (syn-

tactically invalid). INCHI has the same codomain, but its mapping

is bijective, meaning each string corresponds to only one struc-

ture, and vice versa. DEEPSMILES makes the first important

advance in terms of validity and can be seen as a surjective map-

ping from strings to general (not necessarily molecular) graphs.

Finally, SELFIES is a surjective mapping from strings to molecular

graphs. Both SMILES and SELFIES can be made bijective through

post-processing. For example, canonicalization (as provided

by a number of tools such as RDKit) leads to a restricted domain,

where each element maps to exactly one structure. It remains

open whether a bijective mapping from strings to molecular

Table 1. List of SELFIES symbols that are overloaded with numeric

values if they appear after a ring or branch token

Index Symbol Index Symbol

0 [C] 8 [#Branch2]

1 [Ring1] 9 [O]

2 [Ring2] 10 [N]

3 [Branch1] 11 [=N]

4 [=Branch1] 12 [=C]

5 [#Branch1] 13 [#C]

6 [Branch2] 14 [S]

7 [=Branch2] 15 [P]

All other symbols are assigned index 0

It is a hexadecimal system, and larger numbers can be represented by

overloading the next n symbols.
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graphs will be possible without post-selection. In the remaining

text, we will discuss generalizations of SELFIES and other molec-

ular string representations along with important open questions.

We will raise a number of concrete future projects, which can be

seen as stand-alone projects that aim to further the development

of molecular string representation and their applications in ML

for cheminformatics.

Future project 1: metaSELFIES—100% domain-agnostic

robustness directly from data

So far, the discussion has focused on SELFIES as a robust rep-

resentation for molecular graphs. However, SELFIES can also

be thought of as a domain-independent robust representation

for any graph in which vertices and edges have different se-

mantic constraints. SELFIES presently uses domain-dependent

constraints, which limit the maximum number of bonds that

can be used by an atom. Mathematically, this constraint can

be formulated in terms of the maximum vertex degree in a mo-

lecular graph. Interestingly, the domain-dependent rules could

be obtained directly from large datasets in a deterministic

way, without using ML. A technical description of such an algo-

rithm is presented in the supplemental information of Krenn

et al.27

The derivation rules of SELFIES are defined to satisfy the number

of bonds a certain atomcan form. In the languageof graph theory,

it constrains the vertex degree for each vertex type. Given a large

enough dataset of example graphs, one can directly approximate

the maximum allowed vertex degree for every vertex type. Thus,

SELFIES obtains its defining feature of robust derivation rules.

It is important to realize that vertex degree constraints can not

only be formulated for molecules in chemistry but also for many

other graph-based databases in the natural sciences. Examples

include quantum optical experiments, where each individual op-

tical element has a well-defined vertex degree constraint.65 In

quantum circuits for quantum computers, individual gates have

well-defined vertex degree constraints. RNA origamis66 in

biology also have vertex degree constraints (in addition to other

constraints) that can be extracted from large databases.

Therefore, the robust generation of graphs can be seen as the

basis of SELFIES (metaSELFIES), while the vertex degree constraints

define the scientific domain. The opportunity of extracting the full

SELFIES language from data only and the understanding that this

language can be applied in diverse domains open up exciting

opportunities. Given a particular dataset, it would immediately,

without training, be able to generate 100% robust samples in

the new domain, without anybody ever having to craft the lan-

guage by hand. Additionally, a model could learn to solve design

tasks in multiple domains. Given highly diverse training datasets,

the opportunity for the generation of creative new solutions ex-

ists. For instance, one could us metaSELFIES directly as the input

of a variational autoencoder (VAE) or a generative adversarial

network (GAN). The quality of this approach will significantly

depend on the size and diversity of the dataset.

One can envision that domain-specific derivation rules could

be shared in a standardized form in a SELFIES registry, facilitating

reuse by the community.

Future project 2: The effect of token overloading in

generative models

One innovation in SELFIES is the encoding of the sizes of

branches and rings in a robust way. This is referred to as over-

loading and is done by enumerating the subsequent symbol(s)

after the defining branch or ring token. Thereby, a token is inter-

preted as a hex number according to a table. A drawback of this

way to ensure robustness is that it makes some SELFIES more

difficult to read. One important question is to understand

how overloading impacts ML models and whether the index

alphabet—which is currently heuristically composed—can be

improved to enhance performance in ML models. It might be

interesting, using attention mechanisms, to study how these

models understand overloading and comtrast that with the

way humans think about it.

Figure 3. Decoding points from the internal representation (latent space) of a variational autoencoder (VAE)
Green stands for valid and blue for invalid molecules. The left image is trained using SMILES strings, most of its latent space representing invalid molecular strings.
The right image shows the latent space of a VAE trained with SELFIES. Every point stands for a physically meaningful molecule. Figure from Krenn et al.27
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MACROMOLECULES

A challenging task in computational chemistry and biology is the

simulation of macromolecules, which include biomolecules (nu-

cleic acids, proteins, carbohydrates, and lipids) and synthetic

polymers (e.g., plastics and synthetic fibers). Some macromole-

cules, such as polymers, are largely stochastic in nature and

often feature a wide distribution over multiple chemical struc-

tures. In contrast, SMILES representations were created to

describe deterministic structures such as small molecules, indi-

cating that a new way of representing stochastic systems is

needed.

One of the earliest macromolecule syntaxes developed was

CurlySMILES,67 which provides a method for encoding repetitive

units such as monomers. This method encodes monomers as

well-defined structures. Thus, it is unable to capture any sto-

chasticity or complex connectivity between monomers. To

address this issue, Lin et al. developed BigSMILES,68 a polymer

extension of SMILES that provides principles to represent the sto-

chastic nature of polymers. A few syntax rules were added

regarding the type of monomers and connectivity in the poly-

mer. A schematic BigSMILES representation from Lin et al. is

shown in Figure 5. BigSMILES therefore provides a list of building

blocks that can be assembled stochastically at run time. Since

BigSMILES inherited the basic syntax of SMILES and introduced

newsymbols that requirematching, it also suffers from the inval-

idity of some representations.

Zhang et al. proposed HELM69 as a hierarchical way to repre-

sent large biomolecules. Unlike BigSMILES, which emphasizes

the stochastic nature of synthetic polymers, HELM represents

the full structure of a biomolecule with monomers replaced

by their unique identifiers. That means that HELM does not

represent individual atoms, but larger substructures are

represented by symbols with the potential of repetitions.

This idea allows the representation of much larger structures

in a concise way. HELM, however, has the same drawback

as SMILES with respect to reliance on matching parentheses,

leading to reduced robustness for its usage in generative

models.

Next, we describe two interesting stand-alone projects that

could advance molecular string representations and their appli-

cation in AI for macromolecules.

Future project 3: BIGSELFIES—stochastically

assembling building blocks for 100% robust polymers

SELFIES can naturally be extended to biomolecule representations

by combining the best of BigSMILES (stochastic repeating pat-

terns) and HELM (amino acids). A sequence of amino acids can

be encoded with standardized symbols (for example, V = valine),

and every possible amino acid sequence is a valid representa-

tion. For the development of HELM-SELFIES, one will need to iden-

tify grammatical rules for the entry and exit points of the amino

acid sequence monomers or other macro-components. A chal-

lenge is that those rules likely go beyond individual bonding con-

straints, but this could be solved by adding more complex deri-

vation states (i.e., memory during the derivation).

From these rules, BigSELFIES, an extension of SELFIES to sto-

chastic derivation using predefined lists of monomers, will follow

directly. This is because HELM-SELFIES will need to work for every

combination of monomers. During derivation, it will not matter

whether the structure is built deterministically or stochastically.

We anticipate that BigSELFIES and HELM-SELFIES will first be devel-

oped as stand-alone projects and, afterward, incorporated into

the main SELFIES language.

Such a new representation will allow for the application of

generative models to large molecules and polymers, with mini-

mal hand-crafted features in the model. The ML algorithm can

directly work on the string representation, and all outputs are

valid and interpretable structures. This approach will allow for

the applications of both simple and fast algorithms that have

been proven successful for organic molecule design.64 Further-

more, many deep generative models can directly be applied to

design questions without any in-model conditioning or post-se-

lection.

CRYSTALS

A crystal is a periodic arrangement of atoms or molecules,

commonly described by a set of lattice parameters, atomic coor-

dinates, and symbols denoting symmetries other than transla-

tions. This description was standardized decades ago in the

form of the crystallographic information file (CIF), which is widely

accepted by the crystallography community.70,71 The connectiv-

ity between atoms/building blocks is often a useful abstraction

for thinking about chemical structures and materials that can

be represented as a graph. The introduction of molecular graphs

can be traced back to the 1870s,72 but it was not until the late

1970s that periodic graphs were introduced to describe crys-

tals.73,74 Such abstractions led to various applications in solid-

state chemistry. Prominent examples include the ‘‘chemical dia-

grams’’ used in the Cambridge Structural Database (CSD) for

structure search,75 connected coordination polyhedra to classify

oxysalts,76 and net topologies in reticular chemistry.77

One can envisage an augmented version of SELFIES that can be

used to represent connectivity between atoms (the bond topol-

ogy) in crystal structures robustly. String representations that

Figure 4. Graphical representation of the mapping from strings to
their corresponding structures
SMILES maps to general structures that include molecules but also non-mo-
lecular graphs or invalid (non-graph) structures. INCHI maps to the same space,
although in a unique, bijective way. DEEPSMILESmaps strings to general graphs,
not all of which stand for molecular graphs. Finally, SELFIES is the only repre-
sentation that maps in a surjective way only to molecular graphs.
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have been explored for bond topology, such as the extended

point symbols used in TOPOS78 for periodic graphs and the

layered assemblies notation (LAN)79 for two-dimensional (2D)

materials, are either non-invertible (the graph cannot be con-

structed from strings without a lookup table) or based on a struc-

tural prototype. SELFIES, however, provides a mapping that loses

no information when converting between sequence and connec-

tivity and an explicit description of the connectivity. This allows

for generative learning across the chemical space and super-

vised learning on sequences instead of crystal structures or

graphs. String-based graph representations are ubiquitous in

chemistry and biophysics because strings are easy to use, pro-

cess, and store, and there is a vibrant ecosystem of tools like

RDKit and deep-learning models for sequences that interface

directly with strings. A robust string-based graph representation

of crystals could inherit these advantages and transform mate-

rials informatics.

Net and quotient graph

What is the ‘‘crystal graph’’ that can be represented by a

string? To answer this question, first, the basic terminology

used in this section is introduced. For more formal definitions,

see Delgado-Friedrichs and O’Keeffe.80 A crystal structure

can be abstracted to a periodic graph, called a net, whose

vertices represent the atoms (not atomic coordinates) and

whose edges represent bonds between atoms. In practice, it

might not be obvious which net best describes a crystal. The

definition of edges can be ambiguous due to non-directional

bonding or complicated coordination environments. For the

latter, readers are referred to a recent benchmark of coordina-

tion number determination.81

A net is an infinite, connected, undirected, simple (i.e., no loops

and nomultiple edges between a pair of vertices) graph. A net is n

periodic (1% n% 3) if it permits translations in n independent di-

rections. Assigning coordinates to vertices constructs an embed-

ding of a net. An embedding is faithful if edges do not intersect

each other and only contain their respective end vertices. Two

faithful embeddings of the same net are shown in Figure 6. Note

how they share the same net even though they differ in their coor-

dinates and cell parameters. Thus, to represent the connectivity in

a crystal as a string requires representing a net that has a faithful

embedding corresponding to the crystal’s real space structure.

Generally, a graph with an infinite number of edges cannot be

described by a string of finite length. Fortunately, a net can be rep-

Figure 5. Schematic of BigSMILES

representations from Lin et al.68

Polymers are represented as monomers (repeating
units) enclosed within curly brackets; the curly
brackets indicate that the molecule is a stochastic
object. The monomers are represented as SMILES

strings, with additional information expressing the
connectivity between monomeric units.

resented by a finite graph, known as its

quotient graph.82 There are two variants of

quotient graphs, one with directed, labeled

edges, and one with undirected, unlabeled

edges. Here, the focuswill be on the former,

which seems more suitable for developing crystal-SELFIES (vide

infra), since only the first uniquely determines a net.

The procedure to generate quotient graphs is depicted in

Figure 7 using graphene as an example:

1. Start from an embedding E of the net N.

2. For embedding E, define a coordinate system C including

an origin and a set of basis vectors (2 vectors for 2D, 3 vec-

tors for 3D) representing the periodicity of E. Index all cells

by their positions with respect to the origin. For instance,

the cell containing the origin is the (0, 0) cell.

3. Group translationally invariant edges into edge classes

(black, green, and blue in Figure 7).

4. For each edge class, select one edge connecting a vertex

in the (0, 0) cell and a vertex in the ði; jÞ cell. Direct the edge

starting from the vertex in the (0, 0) cell and label this edge

as ði; jÞ, where i; j are restricted to \f� 1; 0; 1\g.

The finite graph generated from this procedure is called the

labeled quotient graph (LQG) of the embedding of the net N

with coordinate system C. On the one hand, LQGs uniquely

determine crystallographic nets up to isomorphism. An LQG

can be converted to a net by choosing an arbitrary coordinate

system or to a crystallographic net through its automorphism

group.83 On the other hand, LQGs with two different labelings

can represent a pair of isomorphic nets. Such labelings are

called equivalent. Methods to check for equivalent LQGs can

be found in a study by Chung et al.82

An unlabeled QG (UQG) can be obtained by removing edge la-

bels and edge directions from an LQG. UQGs are more similar to

molecular graphs and preserve the neighborhoods of vertices.

Unfortunately, the same (up to isomorphic) UQG could be derived

from two nets that are not isomorphic, and vice versa.84 Thus,

UQG alone cannot be used to describe a net. However, it is

possible to enumerate LQGs from a UQG by enumerating edge

labels.85

Future project 4: LQGs in SELFIES

From the above definitions, it appears that LQGs are most suited

for string representation since they (1) are finite and (2) uniquely

determine a net. LQGs have already been used in previous

studies to represent crystals. A numerical encoding of LQG,

the Systre key,86 was implemented to identify nets. More

recently, the LQG implementation was employed in crystal struc-

ture generation using a VAE.87 While the current SELFIES scheme
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is able to represent molecules with localized bonds robustly, to

represent an LQG, several improvements are needed:

1. Edges in a quotient graph (LQG or UQG) can be self-loops

or parallel edges; these are not allowed in the current

SELFIES. The solution may be to treat them as size 1 and

size 2 rings, respectively.

2. There should be symbols for edge directions and edge

labels such that the edge properties of an LQG can be

represented.

3. The choices for edge direction and edge label are finite,

and not all labelings are allowed; for example, parallel

edges cannot have the same labeling vector ði; jÞ. There

should be additional grammar that respects such (often

local) restrictions.

4. While an LQG uniquely determines a net, two non-isomor-

phic LQGs can represent the same net. This can happen in

many cases, such as constructing an LQG from a super-

cell or from the aforementioned label equivalence. Thus,

a canonicalization process is desired such that every net

can have a canonical crystal-SELFIES.

Future project 5: Crystal-SELFIES in generative models

The search space for theoretical materials is practically infinite.

While high-throughput virtual screening methods are now com-

mon in materials informatics and valuable for exploring new re-

gions of materials space, generative models could provide a

more systematic direction for targeted materials design. Gener-

ative models also aim to reduce systematic bias in the explora-

tion of chemical space, allowing for a higher chance of discovery.

By solving the missing pieces in the previous future project,

SELFIES could be augmented to crystal-SELFIES, a lightweight

and robust string representation of crystal (bond) topology that

could improve crystal structure generation.

Currently, a few different approaches are followed to construct

generative models for crystal structures. The first approach, em-

ployed mainly in the field of metal-organic frameworks

(MOFs),88,89 starts from a net that is usually selected from estab-

lished datasets. Appropriate building blocks are then chosen as

nodes and their connections as edges of the net. The generation

resembles the isoreticular expansion of MOFs. Such a method

relies on predefined nets in addition to a set of available building

blocks.

Another approach is to focus solely on embeddings. The

embedding can be represented by a set of parameters based

on a structural prototype,90,91 which may not be generalizable.

Alternatively, embedding representations can be learned92,93

from datasets. Such representations are often continuous and

thus suitable for inverse design. However, since bond topology

information is not explicitly included, it is unclear whether this

approach can generate topologically diverse structures.

Alternatively, it is possible to start with generating LQGs: in

2004, Thimm demonstrated that structures can be generated

withminimal specifications (number of atoms in a unit cell and ver-

tex degree for each atom) by (1) generating a UQG based on the

specifications, (2) enumerating LQGs from the UQG, (3) unfolding

the LQGs to nets, and (4) obtaining faithful embeddings from the

nets.85 This method allows us to control the formation of types

of nets over generated structures and does not rely on predefined

nets. In addition, as discussed earlier, both LQGs and UQGs can

be represented by crystal-SELFIES. Thus, following Thimm’s

approach, structure generation using crystal-SELFIES can be, for

example, a mapping: chemical composition / UQG (crystal-

SELFIES)/ LQG (crystal-SELFIES)/ net/ embedding.

Ashortcomingofnet-based representations is theobscurecon-

nections between the net of a crystal and the physical/chemical

properties of that crystal. From a SMILES string or a molecular

graph, properties (e.g., 2D descriptors) like logP can be readily

estimatedwithoutembedding thegraph (i.e.,molecular conforma-

tions).However, for crystals, currently, bothphysical andchemical

properties are calculated from embeddings. Thus, a calculator

connecting net and crystal properties would greatly benefit the

development of this field. It has been demonstrated that the

dimensionality of a crystal structure can be derived from its

LQG.94 More information regarding relations between a net and

its embeddings canbe found in a study byBlatov andProserpio.95

Finally, for crystal generative models using SELFIES, some gen-

eral considerations are listed here:

1. The alphabet of SELFIES can be extended to include build-

ing units and linkers used in reticular or inorganic chemis-

try. This also helps to minimize the space of LQGs by

reducing the number of vertices. An alternative would be

to use contraction operations.

2. It has been demonstrated that the symmetry and topolog-

ical features of an LQG are related to that of the corre-

sponding net.96,97 Thus, the model can be conditioned

on these features.

3. While a UQG does not determine a net, it does preserve

neighborhoods. This means that it is possible to generate

nets with specific local structures bymaking the neighbors

of a vertex immutable.

Figure 6. Nets for representing crystals
(A) Crystal structure of graphene (2D honeycomb
lattice).
(B) 2D carbon structure of an orthorhombic lattice.
The structures are two different faithful 2D embed-
dings of the same underlying net. This shows that
a net, unlike its real space realization, does not
bear spatial information (e.g., bond lengths, co-
ordinates). Inspired by the success of SELFIES in
representing finite molecular graphs, in the section
"Net and quotient graph," we discuss how SELFIES

can be extended to represent crystal nets.
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4. Some nets cannot be (faithfully) embedded in 3D. Crystal

generative models should be conditioned such that these

‘‘pathological nets’’ are excluded from generations. Some

properties used to identify such nets are introduced by

Thimm.85

BEYOND ORGANIC CHEMISTRY:

COMPLICATED BONDS

In this section, we discuss the challenges and prospects of ex-

tending SELFIES beyond organic chemistry. In contrast to

organic molecules,60 transition metal, lanthanide, actinide,

and main-group metal compounds are difficult to handle with

current digital molecular representations28 due to special

bonding situations and intricate 3D structures, combined with

technical limitations that have evolved for historical reasons.

Most problems trace back to (1) the assumption that bonding

is localized and thus can be described with valence bond

(VB) theory, (2) the non-explicit representation of terminal

hydrogen atoms, which are added to the heavy (non-H) atoms

based on rules derived from VB models in an approach

called ‘‘implicit hydrogens,’’ and (3) the inability to describe

stereochemistry that goes beyond the usual restrictions of

organic chemistry, i.e., stereogenic carbon centers plus some

cases of cis/trans isomerism in C=C double bonds and

cumulenes. While organic chemistry has plenty of examples

of more advanced stereochemistry such as planar and helical

chirality,98–100 current digital molecular representations are

generally not equipped to handle those.

Therefore, any approach toward a general digital molecular

representation covering all elements of the periodic table will

fail if it is unable to handle the issues mentioned above. Here,

we will illustrate a number of prominent examples that highlight

the urgent need to improve the situation, as otherwise, a major

part of chemical spacewill remain inaccessible tomodern chem-

informatics and AI approaches.2

Complex, ‘‘fuzzy’’ bonding situations versus VB theory

One reason for including connectivity information in a molecular

string representation is that it allows chemists to describe struc-

tures in a simple way, for example by decomposing them into

substructures. Furthermore, from anML perspective, connectiv-

ity informationmight also be thought of as an additional inductive

bias that can help a model to generalize.101

However, bonding information turns into a significant technical

problem if there is no algorithmically unambiguous way to define

it102 and when there is a wide array of possible interactions of

different strength and origin. This ambiguity in defining bonds

has led some chemists to call them ‘‘convenient fiction,’’103

which is also reflected in the widespread use of the bond type

‘‘any’’ for substructure queries in databases such as the CSD

to ensure no entries are missed. In some domains of chemistry,

VB theory provides a convenient and intuitive way to think about

chemical bonding that is easy to encode in widely used data

structures. In standard organic chemistry, for instance, most

bonding situations can be described as two-center two-electron

(2c-2e) bonds, a scenario that translates well into molecular

string representations where atoms are nodes and covalent

bonds between two atoms sharing two electrons are edges of

a molecule graph. However, as the OpenSMILES standard

notes, ‘‘This simple mental model has little resemblance to the

underlying quantum mechanical reality of electrons, protons,

and neutrons.’’104

Two prominent examples from main-group element and tran-

sition-metal compounds, respectively, will be discussed here to

outline the corresponding major issues. Figure 8A shows four

different molecular structural models for diborane (B2H6), an

important reducing agent and key reactant for hydroboration re-

actions. Most (inorganic) chemists, when asked to sketch the

molecule, will likely draw structure 1, which properly captures

the two bridging m2-hydrido ligands but results in an incorrect

valence electron (VE) count of 16 VEs instead of the proper 12

VEs, when each line connecting two element symbols is

assumed to represent two electrons. In order to preserve the

electron-counting function of the lines representing 2c-2e

bonds, sometimes structure 2 is used, wherein additional inter-

actions between the two BH3 subunits are indicated by dashed

lines, which are assumed not to contribute to the electron count-

ing and thus have been termed ‘‘zero-order bonds’’ by Clark.105

However, this structure 2 incorrectly implies the symmetry of the

molecule to be C2h, while X-ray structure analysis has demon-

strated that diborane belongs to the D2h point group. All four ter-

minal B–H bonds are equivalent at approximately 1.09 Å, and the

four B–H distances in the B2H6 ‘‘diamond-shaped core’’ are also

essentially equivalent at about 1.24 Å. Notably, the observed

Figure 7. Construction of the labeled quotient graph (LQG) for the underlying net of graphene
(A) Embed the net corresponding to graphene.
(B) Define a coordinate systemwith two basis vectors (solid arrows) and an origin in the (0, 0) cell encompassed by solid lines. Index cells by their positions relative
to the cell containing the origin.
(C) Group bonds into three bond classes (black, blue, green) by translational invariance.
(D) The result is the LQG. The label of (0, 0) bonds is dropped by convention.
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differences of <0.03 Å in these formally equivalent B–H bond dis-

tances are possibly caused by packing effects.106 Therefore,

some chemistry textbooks use structure 3 with two bent ‘‘ba-

nana bonds,’’ with the two arched lines each representing two

VEs. Such a representation, although it gives the correct VE

count, cannot be used in standard molecular graphs, which as-

sume that each edge connects two—and only two—nodes

(atoms). A better description of the structure of diborane makes

use of 3c-2e bonds, where two electrons are fully delocalized

over the B–H–B unit, as highlighted in yellow in structure 4.

Another complex bonding situation arises in organometallic

‘‘sandwich’’ complexes such as ferrocene (C10H10Fe), which

are common building blocks in organic chemistry and have

important industrial applications, for example in Ziegler-

Natta catalysis.107 Some databases such as PubChem108 uti-

lize ionic structure 5, as shown in Figure 8B, assuming a

‘‘naked’’ Fe(II) cation without any coordinated ligands, com-

bined with two separate cyclopentadienyl anions. This struc-

ture, however, is utterly wrong, as ferrocene is a compound

without separate charged ions that can be purified by vacuum

sublimation and is insoluble in polar solvents such as water

but dissolves well in non-polar organic solvents such as

n-hexane and toluene. The uncharged structure 6 would be

in line with these properties but does not account for the 1H

and 13C nuclear magnetic resonance (NMR) spectra, which

both exhibit only one single peak, indicating that all ten CH

units are chemically equivalent, while the NMR spectra of rep-

resentation 6 would feature three different peaks for each nu-

cleus. Furthermore, two-coordinate iron centers are exceed-

ingly rare and require very bulky ligands to be stabilize.109

Alternatively, structure 7 has the Fe(II) center sandwiched-

between the two cyclopentadienyl rings but still cannot ac-

count for the NMR spectra due to the combination of two

localized C=C double bonds and one carbanionic center per

ring. Only structure 8 correctly captures both the NMR prop-

erties and the X-ray data, which indicate ten equivalent Fe–

C and C–H bonds and an identical length for all ten C–C

bonds.110 This, however, goes at the expense of any kind of

VE counting, as the actual bonding requires a molecular

orbital (MO) treatment that at least considers both the cyclo-

pentadienyl p system and the iron d orbitals. The situation be-

comes even more complicated when one attempts to capture

not only covalent bonds but also weaker agostic interactions,

in which the two electrons of a C–H bond interact with empty

metal d orbitals in another example of 3c-2e bonding. The

same applies to other weak interactions such as hydrogen

bonds, raising important questions as to which interactions

should actually be captured in a digital molecular representa-

tion as a ‘‘bond’’ (and which should not) and how to automat-

ically detect them from a set of atomic coordinates, ultimately

leading to a rather arbitrary distinction between bonded and

non-bonded. To quote Democritus: ‘‘Nothing exists except

atoms and empty space; everything else is only opinion.’’

No ‘‘standard’’ valences

Current molecular string representations make use of models

based in VB theory, as it allows the definition of standard va-

lences for the different elements. Missing hydrogen atoms are in-

ferred and inserted implicitly, which allows for a more compact

representation. These standard valences are usually fixed to

satisfy the octet rule, which is not generally applicable. Even

many main-group elements do not follow that rule. For the

d and f elements, such a rule is largely irrelevant due to strongly

delocalized bonding with significant mixing between metal and

ligand orbitals that require an MO theory treatment, something

that cannot be captured by structural representations exclu-

sively based on 2c-2e bonds.

For example, while the noble gas elements have to be

formally assigned a standard valence of zero, many stable

compounds with them, such as XeOF4, are known and readily

prepared. Even carbon does not necessarily obey the octet

rule, as the catalytic center of nitrogenase, the enzyme that

is central for biological nitrogen fixation, contains an FeMo

cofactor with the composition [Fe7MoS9C] that is built around

a carbide center with a formal charge of �IV and six equiva-

lent Fe–C bonds, as demonstrated by X-ray crystallog-

raphy.111 Beyond such surprising structural motifs created

by nature itself, inorganic chemists in particular constantly

look for new oxidation states112 and bond orders.113,114

Furthermore, there needs to be a critical discussion of the

Figure 8. Examples of molecules with
complicated bonds

(A) Different structural representations for diborane
(B2H6), where 1 properly accounts for the symmetri-
cal B2H6 ‘‘diamond core’’ but gives an incorrect
valence electron (VE) count;2uses zero-order bonds,
indicated as dashed lines, to preserve the VE count
but features a molecular symmetry that is too low; 3
attempts to capture the actual three-center two-
electron (3c-2e) bonding by use of arced ‘‘banana
bonds’’ but cannot be used in molecular graph ap-
proaches, which only allow for each edge to connect
two nodes (atoms); and 4 shows the full delocaliza-
tion of an electron pair over the B–H–B unit.
(B) Lewis structures of ferrocene (C10H10Fe), where 5

is unfortunately used by PubChem but is wrong, as
the compound is not ionic. 6 and 7 cannot account
for the 1H and 13C NMR spectra, both of which
feature only one singlet, indicative of ten chemically
equivalent CH units. Only 8 is fully in line with
crystallographic and spectroscopic data but at the
expense of making electron counting impossible.
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term valence itself, as in inorganic chemistry, it is normally

used to describe the physical oxidation state (related to the

spectroscopically accessible d-electron count) of a metal cen-

ter (e.g., trivalent iron is Fe(III), which is usually six coordinate),

while in the context of INCHI and SMILES, it refers to the number

of bonds to neighboring atoms. Therefore, any approach to

generally applicable digital molecular representations should

not make use of standard valences and needs to treat all

hydrogen atoms explicitly.

Stereochemistry beyond the tetrahedron

Most organic molecules feature either linear sp, planar sp2, or

tetrahedral sp3 carbon centers, and, thus, their stereochemistry

is usually restricted to point chirality from stereogenic centres,

cis/trans isomerism of C=C double bonds in alkenes, or axial

chirality in allenes/cumulenes. However, in more complex struc-

tures, even within organic chemistry, planar or axial chiral ele-

ments can additionally come into play. Prominent examples of

the latter include ortho-condensed polycyclic aromatic com-

pounds from the class of the [n]helicenes (Figure 9A). Such sys-

tems are far from academic curiosities, as axial chirality is impor-

tant to enantioselective catalysis. This is apparent in the BINAP

class of ligands, for which Noyori was awarded the 2001 Nobel

Prize in Chemistry (Figure 9B).

Furthermore, metal complexes are characterized by a wide

range of coordination geometries with coordination numbers

in the range of 2–16. The structural motif assumed is often

dictated by electronic ligand field (LF) effects rather than ste-

ric repulsion, as in the widely used VSEPR model applicable to

main group chemistry. For example, a metal center with four

ligands, in addition to a tetrahedral structure, could also as-

sume a square-planar coordination environment, where the

central metal atom and the ligands are in one plane, with

L-M-L angles of 90� and 180�, respectively. In MA2B2-type

compounds, this gives rise to two stereoisomers, with cis-

and trans-[PtCl2(NH3)2] as some of the most important exam-

Figure 9. More examples of molecules with
complicated bonds

(A and B) Examples of (A) helical and (B) axial
chirality in organic compounds
(C) Diastereomeric coordination compounds:
cisplatin is an approved anticancer drug, while its
isomer transplatin is inactive.
(D) Helical chirality in metal complexes.

ples (Figure 9C). The compound cisplatin

is an approved anticancer drug with

wide applications in chemotherapy and

annual multibillion-dollar sales, while

transplatin shows no biological activity.

Unfortunately, PubChem considers both

compounds simply as ‘‘synonyms’’ and

thus provides an incorrect record for

them.115 The reason for this is rooted in

the erroneous application of the concept

of standard valences. Since the Pt(II)

center is assigned a valence of two, the

compound is incorrectly represented as

a mixture of a bent(!) PtCl2 unit and two

separate NH3 molecules to also preserve the standard

valence of three for nitrogen. However, the two ammine li-

gands are bonded to the metal in a fashion that is comparable

to covalent bonds in organic chemistry, and in aqueous solu-

tion, it is actually the chlorido ligands that are exchangeable to

water, not the ammine ligands. When moving from four to six

coordination, the range of accessible structures becomes

even broader, and one has to additionally consider new ster-

eocenters generated by fixation of ligand atoms to the metal,

which can lead to helical structures, as discovered by Alfred

Werner more than 100 years ago116 (Figure 9D). To complicate

matters even further, coordination numbers of 12 and higher

have been reported. One example is [Ph4P][Hf(BH4)5], in which

each borohydride unit [BH4]� act as either bi- or tridentate li-

gands to the Hf(IV) metal center, which leads to a maximum

possible coordination number of 5 3 3 = 15.117

Alternative approaches

Many alternative molecular representations that have been put

forward try to bemore faithful in representing chemical concepts

such as multicenter bonds or stereochemistry.

Separation of s- and p-electron systems

In conventional molecular string representations (e.g., SMILES and

SELFIES), atoms are considered to be nodes and bonds to be

edges of a molecular graph. These are then assigned numerical

values such as atomic number, number of unshared electrons,

and bond order, which are considered invariants of the graph,

as they do not depend on the labeling scheme of the nodes

(atoms).118 Most approaches allow all edges to connect just

two nodes, in line with the standard 2c-2e bonds that dominate

most of organic chemistry.

In the symbolically extended BE (sXBE) matrices,119–122

however, delocalized electron systems are encoded using

special bond types such as pisys (e.g., benzene) or edsys (for

electron-deficient systems such as boranes). Therefore, these

representations allow for a better representation of the true
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multicenter bonding nature of some systems such as diborane or

ferrocene (Figures 10A and 10B).

Dietz representation

As an alternative, Dietz suggested a hypergraph concept123

where edges are allowed to contain more than two nodes, ac-

counting for multicenter bonding (Figure 10C). However, the

approach of Dietz, Ugi, and Stein is based on groups of nodes

and edges, which are additionally characterized by the number

of unshared VEs and delocalized electrons.118 This approach

tries to exactly capture the electronic structure but leads to

complicated nested sets of brackets that may be hard to

comprehend. Furthermore, a clear assignment of VEs is often

not possible in transition-metal chemistry due to extensive delo-

calization. Consequently, as the resulting representation and

terminology is difficult to tackle, to our knowledge, they have

not been used in any digital structure representation to date.

Furthermore, as noted by Bauerschmidt andGasteiger, the Dietz

system (and all others described so far) cannot easily distinguish

between different spin states of the electrons.124 This is relevant

for carbenes, where the singlet and triplet states have a vastly

different reactivity, and also applies tomolecules as simple as di-

oxygen. Hence, together with its complexity, this representation

has not found widespread use.

Zero-order bonds

To address the issue of multicenter bonding, non-specified bond

orders, and the related problems with implicit hydrogens, in

2011, Clark proposed two backward-compatible modifications

to connection table (CT)-based molecular representations.105

In that work, it was suggested to allow for a bond order of zero

for all interactions or bonds that do not fit the conventional

scheme and to add a property that explicitly describes the num-

ber of connected hydrogen (Figure 10D). Interestingly, the zero-

bond order reflects the fact that, due to the ambiguity of bond or-

ders, many chemists perform database substructure searches

with ‘‘any’’ as the bond type. However, as discussed in the pre-

vious section (Figure 8A, structure 2), this can lead to an incorrect

decrease in molecular symmetry. There are also cases where

ambiguities appear regarding which bonds should be denoted

as zero order and which ones should not. A common resort to

be expected in that context is that many users will then simply

label all bonds as zero order.

Thus, it should be stressed again that in d- and f-block chem-

istry, as well as main-group organometallic compounds, it is

often impossible to assign any particular bond orders without

high-level quantum chemical calculations, due to the highly de-

localized nature of the bonding, where electrons are often spread

out over a significant number of atoms, including the metal cen-

ter itself, the immediately coordinated atoms, and additional

ligand groups. In summary, despite more than 25 years of

research into the issue, little progress has been made toward a

generally applicable and domain-independent digital molecular

representation, as some of the concepts that representations

are built upon (standard valences, 2c-2e bonding, and the pos-

sibility to assign bonds and bond orders unambiguously) are

ill defined for many compounds outside of classic organic

chemistry.

Tooling and the value of simplicity

In this section, a number of essentials characterizing molecular

assemblies of atoms and what is needed to create a digital rep-

resentation thereof are outlined. The high variability of metal

complexes, in particular in terms of electronic structure and co-

ordination geometry, calls for a flexible and extensible ‘‘layer

Figure 10. Current possibilities to represent molecules with complicated bonds (here ferrocene)
Top left: bond-agnostic edges neglect some physical constraints and can be written as SMILES or a graph. Top right: separation of s- and p-electron systems.
Bottom left: Dietz representation. Bottom right: zero-order bonds.

ll
OPEN ACCESS

14 Patterns 3, October 14, 2022

Perspective



approach,’’ in which the essentials strictly required to describe a

molecular structure are included in a base layer, while all

domain-specific information is covered by additional and user-

definable property layers, which can be used or ignored depend-

ing on the users’ goals.

1. Base layer (domain independent): The nodes (atoms)

‘‘carry’’ the atomic number and (non-standard) isotope dis-

tribution. Edges (bonds) indicate strong pairwise attractive

interactions, although it remains to be defined which inter-

actions should be captured and which ones not.

2. Property layer #1 (domain dependent): Nodes carry infor-

mation about local stereochemistry and charge; edges

carry bond order and type information (such as single,

double, triple, aromatic bonds).

3. Higher-level property layer #2 (domain dependent): Infor-

mation from ML models, handcrafted information, experi-

mental data such as NMR chemical shifts, ‘‘strategic

bonds’’ for either retrosynthesis or reactivity prediction.

An interesting aspect of the additional property layers is that,

beyond certain values assigned based on user interaction or

software-encoded domain-specific models, these might also

be generated from ML approaches, which could allow for a

more nuanced picture than simple binary assignments often

governing current models.125 To conclude, the need to describe

all of chemical space is at odds with imposing strong rules on the

allowed valence or connectivity, and more elaborate derivation

rules need to be developed.

Future project 6: Generalization of SELFIES and automatic

compilation of complex rules from data

Many of the properties described above could directly be imple-

mented into string-based representations, following IUPAC rec-

ommendations. For example, to represent non-tetrahedral metal

complexes, the coordination environment can be specified by

adding the ‘‘polyhedral symbol’’126 to the SELFIES string. A general

approach for the representation itself is outlined in the previous

section (tooling and the value of simplicity).

These thoughts are applicable to general string-based repre-

sentations. We now focus on the possibility of defining a robust

generalization of SELFIES that incorporates molecules beyond

VBs. The following idea is one possibility to achieve this goal—

however, it is clear that it requires more clever ideas or a modi-

fied way to practically achieve a robust representation of mole-

cules with complex bonds.

Most chemists may possibly agree on which structures are

‘‘correct’’ (andwhich are not) by visual inspection of structural for-

mulas. As this ability is based on knowledge obtained by inspec-

tion of other compounds and the underlying trends that govern

their bonding, it should be possible to train an ML model to

deduce these rules (i.e., the necessary extended SELFIES grammat-

ical rules) for general SELFIES from an appropriate dataset. This

project is a further extension of the topic described in future proj-

ect 1 (metaSELFIES). One of the most extensive and curated struc-

ture collections is the CSD. However, one has to keep inmind that

there will be biases in such a dataset that need to be accounted

for. For example, the CSD only contains compounds that could

be crystallized and were deemed to be of sufficient interest for

X-ray structure analysis. This could potentially be corrected by

supplementing the model with data from other databases and

by the addition of manually selected structures. Furthermore,

state-of-the-art quantum chemical calculations are nowadays

able to provide optimized geometries that often approach the ac-

curacy of experimentally obtained structures and might thus also

be of interest to feed to suchmodels. One potential means of pro-

gression is to create a neural network that learns to classify com-

pounds into ‘‘correct’’ or ‘‘incorrect’’ categories. After training,

symbolic regression127 could be used to extract symbolic rules

that can be used directly by SELFIES.

REACTIONS

So far, we have discussed only representations of molecules.

However, a significant part of chemistry consists of themodifica-

tions of molecules via reactions. In this section, the applications

of ML in reactions are discussed and what role molecular repre-

sentations play.

A chemical reaction can be divided into four distinct parts: re-

actants, agents, products, and overall conditions. Products are

the outcome of the reaction or the molecule(s) obtained once

the reaction is done. Reactants are the building blocks of the

product(s): the initial compounds containing atoms that will be

incorporated into the product. Agents can be anything from cat-

alysts to solvents that are added to the reaction mixture but will

not be part of the product molecule(s). (This is a simplification, as

sometimes it is not possible to identify which molecule contrib-

utes to the product, such as in reactions involving protic cata-

lysts.) Conditions are, for example, the temperature and pres-

sure at which the reaction is run or other more complex

variables such as heating profiles, the order of addition of reac-

tants and agents, and so on. The agents and conditions describe

the environment in which the reaction happens. Depending on

the available dataset, conditions and agents may not always

be fully described.

Openly available datasets are derived from either pat-

ents128,129 or chemical journals130 and, more rarely, experi-

mental procedures directly.131 These datasets are distributed

using SMILES as a representation for the reaction itself and usu-

ally include extra information in various formats. There is no

standard format that allows for conveying information about re-

actions and their details simultaneously. Initially intended for

organic chemists, these datasets also attracted the attention

of computational chemists, as they enabled the development

of new methods and algorithms. The Open Reaction Database

provides a centralized platform to collect and access reaction

datasets.132

Chemical reactions are commonly investigated in ML for

chemistry regarding two broad categories: reaction completion

and property prediction. Usually, the full reaction is provided

when running property predictions. A typical variable to predict

could be the yield of the reaction or the energy profile. Reaction

completion consists of completing a reaction scheme, where

some of the molecules or conditions are missing. Two subcate-

gories of interest are reaction prediction, where the goal is to

predict a product based on a given set of reactants, and retro-

synthesis, where the goal is to predict a set of reactants given

a particular product. Likewise, prediction of reaction conditions

and/or agents represents a major current challenge.
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1. Reaction completion

(a) Reaction prediction

(b) Retrosynthesis

(c) Condition and agent prediction

2. Property prediction

Reaction completion is the category of tasks where the repre-

sentationmattersmost, as algorithms not only takemolecules as

input but also need to output molecules. Therefore, the main dis-

cussion here will be about possible algorithms and representa-

tions of reactions with respect to reaction completion.

There are three broad categories of methods designed for re-

action completion:

1. Template-based methods

2. Graph-based methods

3. Text-based methods.

Template-based methods use a set of reaction templates that

encode the possible changes effected during a reaction. These

templates are either written by domain experts133 or are directly

extracted from data using atom mapping.134,135 Atom mapping

links the product atoms with the corresponding reactant atoms

and, hence, specifies the reaction center. In template-based re-

action completion methods, it is common to see the outcome of

these templates ranked by a neural network134,135 to define

which reaction is the most likely to happen. Graph-based

methods134,136 typically use graph neural networks (GNNs).

Generally, this kind of method splits the project into two sub-

tasks: the first step localizes where the changes in the graph

should happen by selecting atoms, and in a later step, the

changes are performed. Similar to template-based methods,

the bond changes used for training of the graph-based methods

are extracted from atom mapping. Therefore, their performance

depends on the quality of the underlying atom mapping.137

Text-basedmethods use textual representations of molecules

to take advantage of models initially developed for neural

machine translation, such as the transformer model138 (see

Figure 11). Such sequence-2-sequence methods for forward

prediction, retrosynthesis, and agent completion can be atom-

mapping independent, as the reactant and product atoms do

not have to be linked in the training reactions.139–141

All these reaction completion methods could benefit from

improving the underlying representation of the reactions they

are using. The following paragraphs will focus on themost prom-

ising improvements, and we will discuss how the three methods

presented will benefit from it.

The reactions present in the current datasets are rarely

balanced, meaning not every atom from the left-hand side of

the chemical equation can theoretically be mapped to an atom

to the right-hand side. Indeed, in the literature, parts of a reaction

are often omitted when they are either considered irrelevant or

are unknown (for instance, not mentioning the side products)

or so obvious it does not need to bementioned (for instance, dis-

regarding counterions or necessary byproducts such as CO2).

While this makes sense when a human reads a reaction, since

it improves clarity, it would be beneficial if the reactions were

complete for an algorithm to learn from them. For graph-based

methods, this would reduce the number of graph edits that

need to be predicted as there would be less variation on both

sides of the reaction. For text-based methods, this would allow

a user to enforce an atom count at inference, which would

most likely improve the performance. Finally, template-based

methods would also benefit, as the templates extracted from

the data would be more consistent.

A way to enforce the atom count of a reaction would be to

describe only one side of the reaction, for instance the reactants,

and then describe only the changes happening during the reac-

tion.142 This would not only enforce balanced reactions but also

remove the unnecessary redundancy of the current representa-

tion, as illustrated in Figure 12. Bort et al.143 proposed the use of

such a text-based condensed graph of reaction (CGR) represen-

tation to perform property prediction. Extra symbols were added

to the reactants to describe the reaction. This representation is

well-suited for template-based methods, as it turns every reac-

tion into a ready-to-use template. This would also be convenient

for graph-based methods, as there is no need to extract the

graph edits. Further work is required to make this kind of repre-

sentation useful for text-based methods. The application of such

methods is difficult if there is no separation between the changes

and the initial molecules, which to some extent also applies to

graph-based methods.

However, the atom mapping that enables extracting reaction

templates or graph edits and building CGRs is typically not

directly available for experimentally observed reactions. More-

over, human labeling is prohibitively time consuming for large

databases. Traditionally, automated atom mapping was per-

formed using extended-connectivity-, maximum common sub-

structure-, and optimization-based approaches.144 Schwaller

Figure 11. An example of a molecular transformer, which uses SMILES to represent and transform reactant and agent molecules into the
product of the reaction, as used by Schwaller et al.139

The tokenization of the SMILES is shown by the bold characters separated with spaces.
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et al.137 recently showed that accurate atom mapping could be

learned from reactions represented as SMILES without existing

atom mapping through unsupervised training.

So far, we have discussed methods to improve the represen-

tation but have not considered extending SELFIES to represent

reactions. We will consider two cases: a representation that

is syntactically robust, and one that is semantically robust. A

syntactically robust representation would ensure the validity

of the graph edits proposed. However, this would not guar-

antee that the results make sense chemically. This is the goal

of the semantically correct representation. In the following proj-

ect, we will discuss the benefits and the feasibility of such a

representation.

Future project 7: Graph edit rules and metaSELFIES for

reactions

A syntactically robust reaction representation would most likely

improve the performance of predictive models, as it is no longer

possible to predict an invalid representation or an invalid graph

edit sequence. To achieve this representation, the rule set that

defines SELFIES has to be extended significantly. Although they

are significantly more comprehensive, it should still be possible

to write down the set of rules corresponding to the possible

graph edits.

The first important semantic constraint that should be imple-

mented in a 100% robust representation of reactions are phys-

ical conservation laws. For example, a representation should

allow only reactions that conserve the number of atoms of

different elements and the total charge of the involved com-

pounds.

More advanced semantic constraints in reaction representa-

tions will be harder to achieve. The number of rules needed is

probably extremely high. Our best estimate of the number of

rules needed is from the work of Szymku�c,133 with over 50,000

Figure 12. In most cases, the changes
happening during the reaction affect only a
small fraction of themolecule, and everything
else is left unchanged
However, current representations, like reaction
SMILES, do not capture that, and major parts of
the molecules are actually repeated. In contrast,
condensed graphs of representation (CGRs) repre-
sent the bond changes in the reactions. To generate
a CGR from a reaction SMILES, the atom mapping
has to be determined first. Agents and conditions
are not shown in the figure.

rules. Applying a similar approach to reac-

tion SELFIES will be quite an endeavor and

will not be scalable, as the number of rules

is too high. A more suitable approach

would be to extract the rules from the

data directly. Such rules could either be

extracted using hand-crafted algorithms

(similar to the project on metaSELFIES for

organic molecules) or could be learned

with ML. The latter case requires the

extraction of rules from the ML model,

which could be achieved with symbolic

regression of a trained neural network. This project is conceptu-

ally related with the project for molecules with compli-

cated bonds.

STRINGS AS PROGRAMMING LANGUAGES

String representations such as SMILES or SELFIES are often consid-

ered less expressive and powerful than true ‘‘graph-based’’

representations, for instance those used in GNNs. However,

fundamentally, quite the opposite is true for two very appealing

reasons:

d Strings and matrices can represent graphs: Often, graph-

based representations are understood implicitly as adja-

cency matrices. However, graphs are abstract objects

and can indeed be represented in diverse ways, for

example by adjacency matrices but also by strings (or

other ways such as images). In that sense, both strings

and matrices can be representations for graphs.

d Strings can store Turing-complete programming lan-

guages: In themost general case, one can store the source

code of computer programs as strings. For example, a

Python file is a simple string, which is executed by the Py-

thon interpreter. Python is, of course, a Turing-complete

language, which means that strings can encode the most

powerful computational algorithms. Coming back to graph

representations, one can imagine that SMILES or SELFIES are

programming languages that are executed by an inter-

preter (for instance, by RDKit). The output of the program

is a graph.

Arguably, SMILES and SELFIES are rather simple programming

languages, but this way of thinking indicates that one can

develop much more powerful string-based molecular graph rep-

resentations. These newmolecular programming languages can
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be Turing complete and thus can encode arbitrary properties of a

molecule that can be encoded in a computer. What follows now

are a number of interesting future research questions that study

the consequences of these ideas.

Future project 8: A molecular programming languages

Besides the performance of current string-based representa-

tions, the question remains how to extend string representations

or SELFIES to incorporate more prior information without losing

desirable properties such as robustness. In the following, we

propose two possible extensions to SELFIES:

d Including 3D information such as bond angles and dihedral

angles: By incorporating 3D information, a SELFIES could

directly map to a specific molecular conformer, which

could be beneficial in structure generation and embedding

methods.145 In practice, extensive conformer searches

could be circumvented if a specific configuration is already

defined in a SELFIES. A possible implementation of such

3D-SELFIES could be envisioned through the use of pointer

variables that locate positions in memory. The positions

cannot directly be encoded using coordinates, as they

do not necessarily correspond to valid structures. Rather,

a more implicit encoding (such as those of rings and

branches) could be envisioned by overloading symbols.

Clearly, more conceptual ideas are necessary for imple-

menting this idea.

d Including meta-characters for loops and logic: Another

important extension would include basic expressions of

programming languages that can be used to enable

different types of logic such as for loops to repeat sub-

structures or characters for symmetric branches. Such

characters could be of immense value to generate SELFIES

for larger and more complicated molecules (such as poly-

mers or crystals, as discussed in previous sections). The

general idea of meta-characters goes hand in hand with

the creation of a general purpose and domain-independent

representation (i.e., metaSELFIES), as discussed in future

project 1.

Future project 9: A 100% robust programming language

The discussion in the previous project motivates another leap:

the possibility of a Turing-complete programming language

that is 100% robust, i.e., every combination of elements in

the instruction set gives a valid computer program. This ques-

tion goes beyond chemistry but follows directly from the pre-

vious discussion. As such, we chose to add it as one exciting

future project that might be impactful for AI research in

general.

The question of deep generative models for code genera-

tion has just recently seen impressive progress in OpenAI’s

Codex, a GPT language model clone that was trained on all

Python codes on GitHub.146 It would be exciting to explore

possibilities for generative ML models that have access to a

scripting language that produces valid code in every instance.

Interestingly, the question of robust programming languages

has been discussed in the field of artificial life since the pio-

neering 1993 work of Tierra.147,148 Extensions of these ideas

have since been applied to studies on artificial evolu-

tion.149,150 We hope inspiration can be taken from that field

of study.

COMPARING STRINGS, ADJACENCY MATRICES, AND

IMAGES AS MOLECULAR GRAPH REPRESENTATIONS

FOR ML

Strings may be graph representations in the same way as ad-

jacency matrix representations or image-based representa-

tions (cf. Figure 13). Since strings are directly related to pro-

gramming languages, they are in general the most

expressive of all graph representations. A very important

question is how these different graph representations differ

in actual ML applications.

To answer this, it is interesting to note that different represen-

tations are suitable for different, specialized neural network ar-

chitectures. Image-based representations can benefit from con-

volutional neural networks (CNNs), adjacency matrix-based

representations are the foundations for GNNs, and string-based

Figure 13. Graphs can be represented in numerous ways, for example using images, adjacency matrices, or strings
All of them are graph representations. By relating string-based representations to programming languages, we show that they are in general the most expressive
representations. For SELFIES, B1 and R1 are abbreviations for Branch1 and Ring1, respectively.
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representations work well for languagemodels such as recurrent

neural networks (RNNs) and transformers.

The question of how these representations and their related

ML models compete in the same task is so far underexplored.

One very recent study has shown that chemical language

models (using SELFIES) and RNNs are powerful enough to

generate very complex molecular distributions, including the

largest molecules from PubChem.151 So far, GNN-based gener-

ative models struggle with this task and do not yet scale to these

large sizes.

The comparison between the representations (and their corre-

sponding models) leads to a number of interesting questions:

d Memory footprint: As vehicles for storing molecular data,

both strings and matrices should provide characteristic

descriptions of the data. A fundamental principle for data

description in ML is minimal description length (MDL).

That is, the best description of the data is given by the

model that compresses it best. One example of MDL is

Kolmogorov complexity,152 which is defined as the length

of the shortest computer program that produces the

sequence of data. Even though Kolmogorov complexity it-

self is not computable, practical approximations of Kolmo-

gorov complexity can be used to quantify thememory foot-

print of the molecular representation. This is especially

important when using the strings or matrices as input to

downstream algorithms for molecular property prediction

or molecular generation. The level of physical memory

burden incurred from using different representations can

have significant impact on the execution speed, processor

utilization, and energy cost of the program.

d Optimization difficulty: Even if representations have the

same memory footprint, their impact on the outcome of

theML algorithmsmay still vary. One reason is the difficulty

of non-convex optimization. The resulting deep-learning

model may not be able to fully exploit the information in

the data. The choice of input representation may also

have an effect on the loss landscape of the neural network

optimization problem, which would certainly influence

training dynamics. Different molecular representations

could lead to distinct local optima, producing models

that differ in terms of generalization performance and

sensitivity to input perturbation.

d Computational efficiency: From a computational perspec-

tive, string versus graph representation can also have

different complexities due to the differences in numerical

algorithms. For example, for strings of different lengths,

one can either use sequential processing models such as

RNNs or transformers with padding, which can be easily

parallelized. However, the padded strings would have

different sparsity structures (the patterns of zeros) than

the matrix representations. These sparsity structures can

be utilized to a varying degree in order to accelerate nu-

merical operations including addition, multiplication, or

eigenvalue decomposition. The efficiency of the entire pro-

gram, thus, can be easily affected.

To shed light onto these different properties, we suggest the

following project.

Future project 10: Comparisons in various data regimes

in a regression task

While string-based representations tend to be more expressive

and easier to generate, adjacency matrices in conjunction with

GNNs have important advantages, such as permutation invari-

ance. Images of the molecular graphs (which can be understood

as another graph representation) could take advantage of

extremely efficient, pretrained CNNs. A suitable experiment

could be a discriminative task in the various data regimes. This

of course depends on the target property to be learned. For

example, for learning coordinate-dependent properties, it is still

unknown how much prior information is actually necessary and

whether string-based representations will outperform graph-

based representations in the high data regime for specific tasks.

We suggest the development of a benchmark to compare im-

age, adjacency matrix, and string representations for graphs in

various data regimes for discriminative tasks. The PCQM4M-

LSC dataset may be useful for these comparisons: with approx-

imately 3.8 million molecules and their associated highest occu-

pied molecular orbital-lowest unoccupied molecular orbital

(HOMO-LUMO) energy gaps (as estimated by density functional

theory [DFT] simulation), it poses a formidable chemical regres-

sion task.153,154

The comparison should measure all three models in (at least)

the prediction quality over the following characteristics:

d The number of training epochs.

d The number of model parameters.

d Various numbers of examples in the training data.

d Various sizes (measured in edges) of the largest molecules

in the training dataset.

These experiments will give insightful answers about the char-

acteristics of different data modalities in ML tasks and will give

experimental evidence about which models should be used in

which situations in future practical applications.

Future project 11: Comparisons in generative tasks

A main motivation of SELFIES is its application in generative, in-

verse-design tasks. We therefore suggest the development of

new generative model benchmarks. For that, a number of impor-

tant precautions need to be considered. First, when SELFIES is

used, a comparison among models based on their ability to

generate valid molecules is no longer a useful design objective.155

Interestingly, previously used benchmarks155,156 have also placed

great importance on distributional learning metrics. However, this

approach is reported to have multiple flaws in the form of edge

cases.157 For instance, simple algorithms that place carbonatoms

at random positions within molecules have been shown to

perform well on distribution matching objectives. Additionally,

the recent proposal of the STONED algorithm,64 which makes

use of random SELFIES mutations, has demonstrated ease in

matching the structural distribution of molecules. FastFlows158

uses normalizing flows to model distributions of molecules repre-

sented asSELFIES and achieve fast sampling speeds. Another class

of methods used for comparing molecular generative models can

be classified as goal-directed benchmarks. In these, generative

models compete among one another to optimize one ormoremo-

lecular property functions. It can also be important to generate
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dense local chemical spaces, for example to create counterfac-

tuals to explain black-boxmodels.159Manyof these tasks are pro-

videdwithinGuacaMol;156 however, given the current rise ofmore

sophisticatedmodels, these benchmarks have becomeoutdated.

Recently,many generativemodels have been able to achieve per-

fect results on many of the GuacaMol tasks,160–162 making it

difficult to establish comparisons between models. Therefore, to

compare deep generative models, one needs more sophisticated

objectives that reflect the complexity of real-world molecular

design. We anticipate that the next generations of benchmarks

will estimate more complex and physically relevant properties

within catalysis, drug discovery, and materials science using

semi-empirical quantum chemistry and DFT.

INTERPRETABILITY AND USABILITY OF STRING-BASED

REPRESENTATIONS

For humans

Historically, representations have been developed with humans

in mind for reading and writing molecules. String-based repre-

sentations are more difficult to interpret than images of mole-

cules, and an important question is their understandability for hu-

mans. On the one hand, human chemists might want to write

molecules quickly as text instead of drawing them, might be

able to get a quick understanding of the structure without insert-

ing it into a plotting tool, or might be interested in identifying sub-

structures. On the other hand, readability for humans might not

always be necessary. For example, INCHI strings are broadly

used despite the fact that the human readability was considered

to be of low importance when INCHI was designed.163 It is also

worth pointing out that while human readability is one of the

often-cited advantages of SMILES, figuring out what a SMILES actu-

ally stands for can require significant intellectual effort. We just

have to look at the SMILES for a simple steroid such as testos-

terone to see that this is the case:

O=C1CC[C@]2(C)[C@@]3([H])CC[C@]4(C)[C@@H](O)CC[C@@]

4([H])[C@]3([H])CCC2=C1.

This suggests a trade-off in the necessity of readability and

concrete computational applications. However, there is certainly

a natural question of how well humans can interpret molecular

string representations, which has not been investigated experi-

mentally to the best of our knowledge. Therefore, we suggest

the following project.

Future project 12: Experiment on readability of

molecular string representations

We suggest an experiment that tests the human readability of

SMILES-, DEEPSMILES-, SELFIES-, and adjacency matrix-based rep-

resentations of molecules. We envision a study with 50 or

more participants from different countries. None of the partici-

pants may be previously familiar with these representations, to

guarantee a fair comparison. The participants will get instruc-

tions for understanding each of the representations, with which

they should familiarize themselves before the experiments start.

At the evaluation phase, the participants are asked to solve a

number of tasks, such as substructure identification and trans-

lating the representation from and to molecular graphs. The par-

ticipants will also be asked to solve some tasks in which they

need to actively choose their preferred representation(s). The re-

sults might help us to understand which representations are

easiest to read by analyzing the accuracy, speed, and partici-

pant’s preference of representations. Post-hoc interviews could

then elaborate on the challenges of different representations and

might help to design a potential Esperanto for Chemistry—an

easy-to-understand language for molecules.

For many chemistry applications, readability is not necessary,

as the human operator can readily translate molecular strings to

2D graph of the molecule. However, we argue that beyond hu-

man readability, such an experiment might allow us to compare

and contrast which properties of representations are challenging

for humans compared with computers. These results could

potentially lead to interesting findings on the differences be-

tween humans and machines, thus showing where we should

place our trust in our intuitions around ML for chemistry.

For machines

An interesting question is howMLmodels interpret different rep-

resentations. Specifically, if SELFIES is used in a generative model,

all generatedmolecules are correct. In this case, how can one be

sure that the model’s output is meaningful concerning some

metrics such as usefulness and not just a collection of random

strings, which, by construction, lead to valid molecules? Further-

more, how can the machine interpretability of different represen-

tations be compared, specifically between SMILES and SELFIES? In

other words, which one is ‘‘easier’’ to learn for machines?

In deep generative models using VAEs, the latent space using

SMILES consists of numerous, scattered, valid regions that exist

within invalid valleys (see Figure 3). In contrast, the entire latent

space corresponds to valid molecular structures if SELFIES is em-

ployed instead. This fact allows for the application of continuous

gradient descent optimization in the latent space, where the opti-

mizer will always provide meaningful structures. The robustness,

however, does not necessarily correspond to a smooth encod-

ing in the latent space, per se, where small changes in the latent

space lead to small modifications in the molecule. Therefore, it

remains to be seen whether generative models can actually learn

structure-property relations using SELFIES.

Deep molecular dreaming

One experiment that tackles the problem of interpretability and

smoothness to a certain extent employs the technique of Deep-

Dreaming.164 The generative model denoted as Pasithea con-

sists of a single neural network that is used for the generation

of molecules in two steps. In the first of these, the network learns

to predict a chemical property given a one-hot encoding of a

SELFIES. In the second step, the neural network weights are

frozen, and a target value of the property is fixed. Gradient

descent is then used with respect to the one-hot encoding,

meaning that the input molecule is continuously modified. The

results of two design processes are shown in Figure 14. While

the model continuously decreases the loss, the one-hot encod-

ing of the molecule is changed within the discrete space. It is

apparent that the target property increases/decreases for posi-

tive/negative target values of logP in a nearly monotonous

way. This indicates that the model has indeed understood an

essence of logP and its relation to the structure of the molecule

and is not exploiting only the robustness of SELFIES. A comple-

mentary approach is to use directly invertible neural networks

for generative models, such as presented in Hu.165
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DECIMER

Optical chemical structure recognition (OCSR) tools have been

developed to extract chemical structures and convert them into

a computer-readable format. The best-performing OCSR tools

are mostly rule-based algorithms. To address the OCSR problem

by using the latest computational intelligence techniques and

provide an automated open-source software solution, deep

learning for chemical image recognition (DECIMER) was launched

(Figure 15).166 One of the biggest challenges in developing

DECIMER was to use the string representation of chemical struc-

tures in a meaningful way. The issue encountered initially with

SMILES was splitting them into meaningful tokens during training

and evaluation, when the predicted SMILES were syntactically

and semantically incorrect, reducing the accuracy of the tool. As

a result of using SELFIES, this issue was resolved, leading to better

training of models. Additionally, it demonstrates how efficiently

neural networks can be trained to read and write SELFIES strings.

STOUT

A conceptually related tool is SMILES-to-IUPAC name translator

(STOUT). It was developed to translate between the IUPAC

names and string representations of molecules. IUPAC devel-

oped a naming scheme for chemistry based on a set of rules.

Due to the complexity of this rule set, assigning a chemical

name is challenging for humans, and there are a limited number

of rule-based cheminformatics applications available to assist

with this process, all of which are commercial. STOUT is an

open-source, deep-learning-based neural machine translation

approach developed to generate the IUPAC name for a given

molecule from its SMILES string and carry out the reverse transla-

tion.167One key observation was that STOUTworks better when

using SELFIES as an internal representation than with SMILES.

Therefore, the SMILES strings are internally converted into SELFIES

before the input is processed by the model. Likewise, the pre-

dicted SELFIES are decoded back into SMILES during reverse trans-

lation. This is another indication that SELFIES is understood better

than SMILES for some complex deep-learning tasks. The precise

reason for the advantage is not well understood, therefore it

will be very interesting to understand the behavior of more com-

plex grammars in deep neural networks (future projects 2 and

14). This will then hopefully indicate other tasks that could benefit

from SELFIES or other advanced representations.

SELFIES in a language model

It was shown recently that an RNN language model trained on

SELFIES is more robust to overfitting thanwith SMILES.151 This is un-

derstood from the larger novelty of the generated molecules at

similar quality of the learned distribution.

There are numerous future experiments that could shed light

into the ‘‘understandability’’ of different representations. We

summarize a few of them here.

Future project 13: Translation between different

representations

It would be interesting to train a neural network that can translate

between different representations ofmolecular graphs, including

(current or future) string-based representations, adjacency ma-

trix representations, or images of molecular graphs. This would

be exciting for two reasons. Firstly, if the neural network learns

to work with three entirely different representations, it might build

up an interesting and robust internal representation, which could

subsequently be analyzed. Secondly, it gives the opportunity to

combine three of the most powerful ML methods at the same

time, namely GNNs for the adjacency matrix representation,

transformers for strings, and CNNs for the images of molecular

graphs. A concrete use case could look like this: the goal is to

predict a molecular property from a molecule that is encoded

as a SELFIES. The neural network translates the SELFIES to an adja-

cencymatrix and an image, producing a latent meta-representa-

tion of the molecule in one of its hidden layers in the process. All

or some of these four representations are provided to down-

stream models with appropriate architectures (e.g., GNN for an

adjacency matrix or transformer for a string), which are then en-

sembled to produce better predictions and overcome defi-

ciencies in each individual chemical representation. Note that

some important progress has already been achieved in transla-

tion tasks. Examples are image-to-string representation transla-

tions166,168 and string-to-IUPAC translations.167,169

Future project 14: Which string-based representation

allows for simpler models and faster training?

Several experiments could be performed to determine how the

use of different representations for training ML models on the

same set of regression tasks impacts learning and final quality

Figure 14. Pasithea, the DeepDreaming generative model
While the model continuously decreases the loss, the molecule changes in discrete steps. The target property was logP of the molecule. The network is able to
increase or decrease the molecular property almost steadily, which indicates a certain ‘‘understanding’’ of the representation. Image from Shen et al.164
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metrics, such as accuracy. Initially, these projects should

comprise the usual benchmark endpoints for ML prediction,

such as boiling points, logP, and pKa. In addition, tasks known

to be influenced by the 3D structure of the compounds, such

as predicting HOMO or LUMO energies or activity toward a bio-

logical target, could also be explored.

In a first experiment, models with the same end goal could be

trained to determine how different representations impact the

final accuracy and how they impact themodel’s ability to achieve

better performance with less training time. In another experi-

ment, the numbers of neurons and layers of neural networks

would be decreased, and the number of episodes necessary

to reach a certain quality would be recorded. This project would

allow us to verify the ability of models trained on SELFIES to gener-

alize better, provided the performance after these model simpli-

fications does not decrease as fast as for models trained on

different representations.

One of the reasons why this future project might be important

is the following: there are studies that investigate DEEPSMILES in

deep neural networks and indicate that the advanced grammar

has a detrimental effect on the learning capability in some spe-

cific tasks.170 The overloading of symbols certainly is a complex

operation (related to task 2), thus it will be interesting to investi-

gate the learning capability of SELFIES.

Future project 15: Smoothness of latent space in deep

generative models

Another interesting experiment would be to investigate the

smoothness of latent spaces of VAEs trained with SMILES,

DEEPSMILES, and SELFIES. If one wants to use gradient-based

optimizers in the latent space, it would be desirable if

the properties of the generated molecules changed to a

small extent when sampling from closely related points in

the latent space. We suggest measuring a set of properties

for each generated molecule while continuously wandering

in the latent space. Notably, the design of such an ML exper-

iment needs to take the invalid regions of the latent space into

account.

Future project 16: Learning what the machine has

learned in the latent space

The latent space represents the intrinsic representation that has

been learned by themodel to solve a given task. It will be exciting

to understand what this representation stands for. If one under-

stands how a VAE encodes and decodes molecules to and from

the latent space, some of the questions presented above can

likely be answered even without performing further experiments.

To that end, t-stochastic neighbor embedding (t-SNE)171 and

other dimensionality reduction tools are expected to be chal-

lenging to interpret, thus one direction could be the applications

of latent spaces with only two or three dimensions, which can be

displayed without projections. Related projects have rediscov-

ered interesting physical concepts such as the heliocentric coor-

dinates,172 the arrow of time,173 or interpretation in quantum op-

tics,174,175 and we expect similar exciting possibilities in

materials science and chemistry.

CONCLUSION

The resolution of the 16 proposed challenges could significantly

advance the applicability of AI in diverse fields of chemistry and

beyond. Furthermore, questions about the interpretability of lan-

guages for machines could help us understand how a machine

solves complex tasks in chemistry—what principles or concepts

it uses. This could be a path for human scientists to learn ideas

from AI in chemistry. We hope that our journey of possibilities

will inspire researchers in the cheminformatics and applied AI

community and lead to exciting new results and advances inmo-

lecular string representations.
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Csányi, G. (2021). Gaussian process regression for materials and mole-
cules. Chem. Rev. 121, 10073–10141.

13. Nandy, A., Duan, C., Taylor, M.G., Liu, F., Steeves, A.H., and Kulik, H.J.
(2021). Computational discovery of transition-metal complexes: from
high-throughput screening to machine learning. Chem. Rev. 121,
9927–10000.

14. Gallegos, L.C., Luchini, G., St John, P.C., Kim, S., and Paton, R.S. (2021).
Importance of engineered and learned molecular representations in pre-
dicting organic reactivity, selectivity, and chemical properties. Acc.
Chem. Res. 54, 827–836.

15. _Zura�nski, A.M., Martinez Alvarado, J.I., Shields, B.J., and Doyle, A.G.
(2021). Predicting reaction yields via supervised learning. Acc. Chem.
Res. 54, 1856–1865.

16. Meuwly, M. (2021). Machine learning for chemical reactions. Chem. Rev.
121, 10218–10239.

17. Jorner, K., Tomberg, A., Bauer, C., Sköld, C., and Norrby, P.O. (2021).
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