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ABSTRACT
BACKGROUND Detecting atrial fibrillation (AF) after stroke is a key component of secondary prevention, but indiscriminate pro-
longed cardiac monitoring is costly and burdensome. Multivariable prediction models could be used to inform selection of pa-
tients.

OBJECTIVE This study aimed to determine the performance of available models for predicting AF after a stroke.

METHODS We searched for studies of multivariable models that were derived, validated, or augmented for prediction of AF in
patients with a stroke, using MEDLINE and Embase from inception through September 20, 2024. Discrimination measures for
tools with C statistic data from �3 cohorts were pooled by bayesian meta-analysis, with heterogeneity assessed through a
95% prediction interval. The risk of bias was assessed with the Prediction model Risk Of Bias Assessment tool (PROBAST).

RESULTS We included 75 studies with 58 prediction models; 66% had a high risk of bias. Fifteen multivariable models were
eligible for meta-analysis. Three models showed excellent discrimination: SAFE (C statistic, 0.856; 95% confidence interval
[CI], 0.796–0.916), SURF (0.815; 95% CI, 0.728–0.893), and iPAB (0.888; 95% CI, 0.824–0.957). Excluding high-bias studies,
only SAFE showed excellent discrimination (0.856; 95% CI 0.800–0.915). No model showed excellent discrimination when
limited to external validation or studies with �100 AF events. No clinical impact studies were found.

CONCLUSION Three of the 58 identified multivariable prediction models for AF after stroke demonstrated excellent statistical
performance on meta-analysis. However, prospective validation is required to understand the effectiveness of these models in
clinical practice before they can be recommended for inclusion in clinical guidelines.
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Introduction

Atrial fibrillation (AF)–related strokes exhibit a high rate of
recurrence and are associated with substantial morbidity,
long-term disability, and mortality.1–3 Initiation of appropriate
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short-term monitoring and may require extended cardiac
monitoring.6–9

Multivariable prediction models could identify stroke pa-
tients without knownAFwho are at higher risk of undiagnosed
AF, enabling a more personalized and cost-effective
approach to selection of those for extended cardiac moni-
toring. Previous reviews have considered the prediction of
AF after stroke but have failed to conduct a meta-analysis10,11

or to include validation studies,10 limiting the generalizability
of the findings. Evenwhenmeta-analysis has been performed,
the absence of sensitivity analyses calls into question the
robustness of findings.11

To address this knowledge gap, we conducted a system-
atic review of multivariable prediction models for incident
AF after a stroke and performed a quantitative synthesis of
performance to determine whether any may be suitable for
clinical use.

Methods

Search strategy and inclusion criteria

We searched all articles in Embase and MEDLINE databases
(Ovid platform) from inception to September 20, 2024. Full
details of the search strategy are available in the
Supplemental Materials. For a study to be eligible for inclu-
sion, it had to be an original study in human adults (�18 years
of age) that developed or validated a multivariable model for
the prediction of AF in patients with a stroke or transient
ischemic attack (TIA) and excluded patients with AF at base-
line.

All identified articles were uploaded onto the Rayyan sys-
tematic review web application.12 Four investigators (A.H.,
K.R., T.Y., W.G.) independently screened the articles for inclu-
sion by looking through their titles, abstracts, full text, and
supplemental material. Any disagreements were resolved by
discussion with the fifth and sixth investigators (E.R. and
R.N.). Artificial intelligence tools aided screening but were
not used for data extraction. This review was registered on
PROSPERO (CRD42024523250) and informed by the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses statement and CHecklist for critical Appraisal and
data extraction for systematic Reviews of prediction Model-
Abbreviations

AF: atrial fibrillation

AUROC: area under the
receiver operating character-
istic curve

CI: confidence interval

ECG: electrocardiogram

NRI: net reclassification
improvement

PI: prediction interval

PROBAST: Prediction model
Risk Of Bias Assessment Tool

TIA: transient ischemic attack
ling Studies (Supplemental
Materials).13,14

Data extraction and quality
assessment

Two independent investiga-
tors (A.H. and R.N.) extracted
data and assessed each
model’s risk of bias and appli-
cability using Prediction model
Risk Of Bias Assessment Tool
(PROBAST).15 Discrepancies
between reviewers were
resolved through group dis-
cussions.
Discriminationmeasures were extracted to quantify the pre-
dictive performance of the tools.16 We extracted data on the
area under the receiver operating characteristic curve (AUROC)
or the C statistic and the associated 95% confidence intervals
(CIs).When the 95%CI was not reported in the study, we calcu-
lated it by previously described methods.17 We also extracted
calibration metrics and, for studies on model augmentation,
data on discrimination performance, the net reclassification
improvement (NRI) index, and integrated discrimination
improvement. We searched for clinical utility data through de-
cision curve analysis or decision analytical modeling. In addi-
tion, forward citation searches were conducted to identify
studies on the impact of these models in clinical practice.

Data synthesis and statistical analysis

Numerical variables were reported as mean6 standard devi-
ation or median with the interquartile range. Statistical signif-
icance was set at .05. We assessed the C statistic or AUROC
for individual studies and defined a positive NRI with a 95%
CI excluding 0 as an improvement in augmented models.
For studies with multiple cohorts, we assessed tool perfor-
mance for each cohort separately. We generated funnel plots
and calculated Egger test18 to check for publication bias.

We carried out a bayesian meta-analysis to assess discrim-
ination using a summary measure of the C statistics and corre-
sponding 95% CIs (Supplemental Materials). We also
calculated the 95% prediction interval (PI) to portray the de-
gree of heterogeneity between studies and to suggest a po-
tential spectrum for the prediction models’ performance in a
new validation.17 Bayesianmethods were chosen because un-
like frequentist approaches, they use structured probability
models to quantify uncertainty in parameter estimates.16,19,20

Thesemethods are useful in dealing with sparse data and sub-
stantial between-study variability or when PIs are required as
they allow a more accurate representation of uncertainty in
parameter estimates compared with frequentist methods.16

Research has shown that frequentist methods can produce
unreliable CIs and PIs, especially when study sizes vary.21,22

Summary C statistics were defined a priori on the basis of prior
literature,23,24 as follows: <0.60, inadequate; 0.60 to 0.69,
adequate; 0.70 to 0.79, acceptable; and >0.80, excellent.

We performed the meta-analyses in R using the metafor
and metamisc packages (version 4.3.2; R Foundation for Sta-
tistical Computing, Vienna, Austria).25

Our primary meta-analysis evaluated the overall discrimina-
tion for predictive tools with C statistic data from 3 or more co-
horts.24,26,27 We then performed analyses to check the
sensitivity of our methods based on subsets of studies: those re-
porting external validation results, thosewith a lowor unclear risk
of bias in PROBAST, studies reporting >100 events, and studies
with >100 events and low or unclear risk of bias in PROBAST.

Results

Study selection

We found 8125 unique reports, reviewed 184 full-text re-
cords, and included 75 studies (Figure 1). The Supplemental
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Materials lists studies that were excluded but met several in-
clusion criteria.

Characteristics of included studies

The included studies assessed multivariable prediction
models in 82 cohorts (Supplemental Tables S1 and S2). Of
the cohorts, 33 (40.2%) included patients with ischemic
strokes, 13 (15.9%) included those with either ischemic stroke
or TIA, 17 (20.7%) included only cases of cryptogenic stroke or
embolic stroke of undetermined source, another 7 (8.4%)
included cryptogenic stroke or TIA, and 12 (14.6%) included
patients with stroke without further phenotypic characteriza-
tion (Supplemental Table S2).
Figure 1
Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram s
lation; AUC 5 area under the receiver operating characteristic curve.
The number of included participants ranged from 48 to
392,155, with a mean age and percentage of women ranging
from 43.0 years to 77.5 years and 25.2% to 55.3%, respectively.
The number of incident AF cases per study ranged from 7 to
21,103, with 71% (n 5 60) reporting fewer than 100 events.

Characteristics of included prediction models

The included studies represented data on 58 uniquemultivar-
iable prediction models. Of the multivariable prediction
models, 3 used only electrocardiogram (ECG) variables, 19
used only clinical variables, and 36 used a combination of mo-
dalities (Supplemental Tables S3–S8). Age was the most
frequently used clinical variable (77%), followed by
howing the paper selection process for this systematic review. AF5 atrial fibril-
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hypertension (43%) and heart failure (37%; Figure 2). Eight
multivariable prediction models originally developed for
other purposes were evaluated for prediction of AF after a
stroke (Supplemental Table S9).
Model performance

All studies reported a measure of discrimination, with re-
ported C statistics or AUROCs ranging from 0.511 (95% CI,
0.442–0.580)28 to 0.990 (95% CI, 0.853–0.999)29

(Supplemental Table S10). Only 23 of 58 (40%) models had
calibration estimated, and 30 (52%) models were externally
validated, with 12 (21%) externally validated in >1 other
data set.
Clinical utility and clinical impact

None of the included studies assessed clinical utility, and no
studies on the clinical impact of the prediction models were
found through a forward citation search.
Model augmentation

Fifteen studies conducted augmentation of a multivariable
prediction model (Supplemental Table S11). Stroke severity
improved the prediction performance for 3 models:
CHA2DS2-VASc (NRI of 57.6%; 95%CI, 49%–63.3%), CHADS 2

(NRI of 57.6%; 95% CI, 50.4–64.7%), and HATCH (NRI of
50.6%; 95% CI, 43.5%–57.7%).30
Risk of bias assessment

Overall, 66% of results had a high risk of bias (Figure 3), mainly
because of issues in the analysis domain (65%), such as lack of
calibration performance and improper handling of missing
data.
Figure 2
Overview of the 10 most common predictors in risk models for AF after stroke. BNP5
Institutes of Health Stroke Scale score.
Meta-analysis

Fifteen multivariable prediction models were eligible for
meta-analysis. Of the multivariable prediction models, 5
models were previously developed for different indications
(C2HEST, CHADS2, CHA2DS2-VASc, CHARGE-AF, HATCH)
and 10 models were designed specifically for predicting AF
after a stroke (AS5F, BROWN ESUS-AF, CHASE-LESS, HAV-
OC, iPAB, LADS, RE-CHARGE AF, SAFE, STAF, SURF).

Despite high heterogeneity, 3 models developed for AF
after a stroke demonstrated excellent discriminative perfor-
mance (SAFE, summary C statistic, 0.856 [95% CI, 0.796–
0.916]; SURF, 0.815 [95% CI 0.728–0.893]; iPAB, 0.888 [95%
CI 0.824–0.957]), 1 model was just below the threshold for
excellent performance (STAF, summary C statistic, 0.792
[95% CI, 0.704–0.873]), and 4 other models showed accept-
able summary discrimination performance (AS5F, summary
C statistic, 0.739 [95% CI, 0.717–0.761]; CHASE-LESS, 0.734
[95% CI, 0.71–0.760]; LADS, 0.713 [95% CI, 0.538–0.881];
RE-CHARGE AF, 0.705 [95% CI, 0.642–0.0.785]; Figure 4).
None of the models originally derived for another purpose
but validated for prediction of AF after a stroke achieved bet-
ter than adequate discriminative performance (Figure 5).

In our sensitivity analysis, the exclusion of studies at high
risk of bias left only the SAFEmodel with excellent discrimina-
tion performance (summary C statistic, 0.856 [95% CI, 0.800–
0.915]; Supplemental Figure S1). In restricting analyses to
either external validation results or studies with >100 AF
events, no model had excellent discrimination performance
(Supplemental Figures S2–S4). In restricting analyses to only
studies with >100 AF events and a low or uncertain risk of
bias, only the CHASE-LESS model (summary C statistic,
0.738 [95% CI, 0.712–0.767]) had adequate discrimination
performance (Supplemental Figure S4). The funnel plot was
symmetric (Egger test P 5 .45; Supplemental Figure S5) but
B-type natriuretic peptide; CAD5 coronary artery disease; NIHSS5 National



Figure 3
Risk of bias of included studies to the review question. Judgments on the 3 Prediction model Risk Of Bias Assessment Tool (PROBAST) applicability domains are
presented as percentages across all included studies.
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with additional scatter consistent with the presence of
between-study heterogeneity.

Discussion

This systematic review and meta-analysis provides an over-
view of 58 different multivariable prediction models to esti-
mate patients’ risk of having AF detected after a stroke. In
the meta-analysis, 3 multivariable risk prediction models—
SAFE, SURF, and iPAB—showed excellent discrimination per-
formance for AF after stroke. However, studies were often at
high risk of bias or included fewer than 100 AF events. On
sensitivity analysis, prediction performance measures were
not robust and prospective validation was absent, suggesting
that their clinical utility is unproven.

Previous work

Consistent with previous reviews, we identified suboptimal
model development practices31 and a lack of progression to
have an impact on studies for risk scores.24,32 Previous reports
have summarized multivariable prediction models but lacked
a quantitative synthesis of discrimination performance,
limiting their utility in identifying the best models for clinical
use.10,11 Furthermore, previous reviews lacked sensitivity an-
alyses, potentially inflating their pooled performance esti-
mates.10,33,34 Unlike previous studies, our analysis
incorporated prediction models developed with machine
learning and artificial intelligence techniques.10,11,31 Notably,
on most occasions, these models did not consistently outper-
form those based on traditional regression methods. Our
quantitative synthesis and sensitivity analysis provide deeper
insights into the performance and generalizability of multivari-
able prediction models for AF after a stroke event.

Clinical relevance

In ischemic stroke survivors, the European Society of Cardiol-
ogy recommends class IIa long-term ECG monitoring with
noninvasive monitors or implanted loop recorders,35 whereas
US guidelines include a class IIa indication for an insertable
cardiac monitor in patients with cryptogenic stroke when
external ambulatory monitoring is inconclusive.36 In routine
clinical practice, long-term ECGmonitoring is now commonly
used after presentation with ischemic stroke. Evidence from
randomized clinical trials and observational studies shows
that extended cardiac monitoring after stroke doubles AF
detection and anticoagulation rates compared with shorter
monitoring durations.37–39 However, even when an
implantable loop recorder is placed in patients with an
ischemic stroke, most patients are not diagnosed with AF,40

leading to cost and patient burden. Risk stratification could
make this process more efficient and cost-effective for health
care systems.

The SAFE, SURF, and iPAB models showed excellent
discrimination performance, although this was not robust in
sensitivity analysis. In addition, they require the determination
of B-type natriuretic peptide levels, which may not be stan-
dard in post-stroke pathways. In contrast, the CHASE-LESS
model showed adequate discrimination after excluding
biased studies or those with few events and used only clinical
variables routinely available in stroke care. The BROWN-ESUS
AF and HAVOC scores were recommended by the ESCWork-
ing Group on e-Cardiology41 but did not perform best in this
meta-analysis.

Beyond multivariable models, other approaches have been
investigated to predict AF after a stroke. In a small study, a
higher probability of AF by artificial intelligence–enabled
ECG, a deep neural network trained on sinus rhythm 12-lead
ECGs, was associated with AF detection on ambulatory rhythm
monitoring in patients after a stroke.42 A subanalysis of the
FIND-AFRANDOMIZED clinical trial suggested that use of B-type
natriuretic peptide to select patients for prolonged monitoring
could reduce the number needed to screen from 18 to 3.43

However, without clinical impact studies or decision curve
analyses, it remains uncertain whether implementing these



Figure 4
Forest plot of models developed for the prediction of atrial fibrillation after stroke. CI 5 confidence interval.
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Figure 5
Forest plot of models developed for other indications but used to predict atrial fibrillation after stroke. CI 5 confidence interval.
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multivariable prediction models will increase the yield of AF
detected during extended monitoring. Furthermore, pro-
spective studies and piloting are essential to establish the
positive predictive value and negative predictive value of
these models in clinical practice and the optimal thresholds
to be used for ruling in patients for extended monitoring
(for which high specificity would be prioritized).44 Therefore,
more data are needed on how these models should be imple-
mented in clinical practice before they can be recommended
for inclusion in clinical guidelines.

Strengths and limitations

We used a comprehensive search strategy and thorough anal-
ysis involving experts in cardiology and neurology. We
included any multivariable prediction model for predicting
AF after stroke, broadening our scope tomodels not originally
designed for this outcome but with potential merits.

However, we acknowledge our study’s limitations. First, the
prediction models included in the analyses are derived and
validated in vastly different populations regarding participant
characteristics, the underlying stroke risk, and the prevalence
of the various risk factors that influence the probability of AF
detection or AF occurrence and used different methods for
AF detection. We included both prospective and retrospective
cohort studies, which may introduce bias as AF is often asymp-
tomatic, and detection rates in routine care may be lower than
in scheduled prospective investigations.45We included studies
that had cohorts with varying stroke phenotypes, which may
have affected the AF event rates between studies.46 Variability
in stroke causes can have an impact on the occurrence of AF
detection after a stroke,7 although prolonged searches for AF
have been demonstrated to improve AF detection rates in
both ischemic stroke and cryptogenic stroke.40,47

We did not perform meta-regression or subgroup meta-
analysis because of the absence of individual patient data,
as such analyses could be prone to ecologic bias,48 and indi-
vidual participant data meta-analysis was outside the scope.
In addition, we could not analyze model calibration perfor-
mance because of a lack of relevant studies.

Conclusion

In this systematic review and meta-analysis, 3 multivariable
prediction models had excellent discrimination for prediction
of AF after a stroke. However, reports are limited by a high risk
of bias, a low number of events in study cohorts, and a lack of
impact studies. The integration of prediction models into clin-
ical practice for identifying high-risk patients for extended car-
diac monitoring after stroke requires prospective assessment
before being recommended in guidelines.
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Supplementary data
Supplementary data associated with this article can be found
in the online version at https://doi.org/10.1016/j.hrthm.2025.
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