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Findings 

Twitter has established itself as a valuable social media platform for urban 
research over the last 10 years, by providing free and accessible data. However, 
recent shift towards the monetization of its data, raises questions on its future 
use. To investigate this, bibliometric analysis and topic modeling techniques are 
used to explore trends in urban research publications and wider consequences 
of reduced data access. The results illustrate a period of ‘hype’ towards Twitter 
data, followed by decline in recent years. Application areas and topics are also 
identified, highlighting the distinct ways in which social media data contributes 
to urban research. 

1. Questions   
This bibliometric analysis addresses two questions, 1) Is use of Twitter data 
declining in urban research? 2) What might be lost for urban research if 
Twitter data remains less accessible? 

The focus on Twitter (now ‘X’ but referred to as Twitter) within urban 
research is a result of recent changes to data access. In 2023, Twitter 
introduced monetized access tiers and a limited ‘free’ tier. The number of 
Tweets that can be collected for free reduced from 500,000 to 1,500 per 
month (Mehta 2023). For the monetized tiers, ‘Basic’ costs $100 a month for 
10,000 Tweets, ‘Pro’ costs $5,000 per month for 1m tweets, and above these 
costs are negotiable for projects/organizations (X 2024). Generally, urban 
research that have previously used Twitter data would fall into the ‘Pro’ or 
above categories, as it is typical to use more than 1m tweets i.e. 11m Tweets 
(Claramunt et al. 2011) or 275m Tweets (Murty, Gross, and Pensavalle 2016). 

As a result of these changes, Twitter’s attractiveness, and accessibility as a 
data source for urban research has been potentially undermined (Davidson 
et al. 2023). To understand the implications of these changes, it is useful to 
investigate the trends in use of social media data within urban research. 

2. Methods   
Papers reporting urban research that use social media (SM) data were 
extracted from Web of Science and Scopus, up until 1st January 2025. To 
search for and analyze the papers, a bibliometric analysis procedure was 
adopted based on Donthu et al. (2021) methodology. Firstly, search terms 
were used to identify journal articles and conference papers, employing terms 
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Table 1. Top 10 most used social media data source in urban SM research papers (research papers using multiple SM data sources are 
counted separately) 

Social Media Platform Social Media Platform % Urban SM Research Papers % Urban SM Research Papers 

Twitter 35.7% 

Weibo 15.5% 

Instagram 7% 

Foursquare 6.8% 

Flickr 6.2% 

Facebook 6.1% 

WeChat 3.5% 

Dianping 2.4% 

Tencent QQ 1.7% 

Strava 1.2% 

related to 'urban’, ‘social media’ and data analysis or data types (i.e. ‘mining’, 
‘geotag’). Searches were made within the title, abstract and keywords, and 
filtered using urban related topics, retrieving 2,812 papers. A qualitative 
review was performed on all abstracts to identify SM data sources. During 
which, irrelevant papers were removed, and a total 1,409 papers remained. A 
further search identified 122,398 urban research papers, by reducing search 
terms to ‘urban’ keywords and filtering for urban related topics. 

Topic modeling was performed on the 1,409 urban SM abstracts using 
BERTopic model (Bidirectional Encoder Representations from 
Transformations) (Grootendorst 2022). BERTopic converts all documents to 
embedding representations using a pre-trained language model (Grootendorst 
2022). Embeddings are then clustered, and topic representations extracted 
using a term frequency-inverse document frequency (TF-IDF) measure 
(Grootendorst 2022). Each abstract was assigned a topic, whilst outliers 
(not assigned a topic) were redistributed using BERTopic outlier reduction 
function. Similar topics were merged, and topic names were derived from 
keywords and representative documents. 

3. Findings   
Of the 1,409 urban SM research papers, 76 different SM platforms were 
identified as a data source. Twitter was observed as most frequently used, 
accounting for 35.7% of all papers, followed by Weibo (15.5%) (Table 1). 
In comparison, an earlier review by Stock (2018) on SM data in geospatial 
research, reported a larger share for Twitter (54.2%) and limited use of Weibo 
(2.9%). The popularity of Chinese social media platforms in urban research 
(Weibo, WeChat, Dianping, Tencent QQ) was also not previously identified 
(Stock 2018). 

Observing temporal trends in publications, Figure 1 shows steady growth in 
SM data in urban research from 2011. Growth peaks between 2018-2021, 
as the publication rate exceeds urban research, highlighting widespread use 
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Figure 1. Normalized publication rates for Urban Research, Urban Research using SM Data and Urban Research using 
Twitter Data 

of SM data. Publication rate then starts to decline from 2021. Despite this, 
publication rate is above earlier levels, suggesting SM remains a relevant data 
source however its growth is shifting. 

Urban research using Twitter data shows a similar trend but with some key 
differences. It’s growth starts earlier than SM data, and rises more sharply 
between 2013-2018, indicating it’s popularity over other SM data sources 
(Figure 1). Publication rate also declines earlier and shows a more appreciable 
drop from 2022, suggesting Twitter data is declining more intensely. 

When Twitter is compared to other SM data sources in urban research, Figure 
2 shows in more detail the declining share of Twitter from 2022. Most other 
SM platforms fluctuate in publications across the period, but have showed 
previous drops in usage (Facebook, Foursquare and Flickr). Only Weibo and 
‘Other’ platforms are substantially increasing their share. 

To explore what might be lost for urban research from declining use of SM 
data, topics were identified in the urban SM research papers (Table 2). From 
the topics, broad application areas can be defined which align to previously 
reported urban SM research areas (Niu and Silva 2020). Mobility/Activity 
flows (30.3% of papers) are the most common focus, typically leveraging 
spatio-temporal data to analyze urban movement and activity. Research on 
urban perception is also frequently studied (26% of papers), often utilizing 
text and image data to capture experiences and emotions about urban spaces. 
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Figure 2. Percentage share of identified urban research papers using SM by different platform 

SM platforms contribute differently to urban topics, as shown in Figure 
3. Twitter is frequently used across most topics. Previous findings have 
shown the overwhelming use of the ‘geotag’ in geospatial research, which 
are commonly collected from Twitter (Stock 2018). Foursquare, Flickr and 
Instagram are often applied to urban perception topics (3,7), due to 
providing geo-located image data. Chinese SM platforms (Weibo, WeChat 
and Tencent QQ) are present across many topics, but contribute frequently 
to a few (5, 9, 12). The variation in SM data source by urban topic, suggests 
changes in data accessibility could possibly reshape not only the volume of 
research but also the types of urban phenomena that can be studied. 

This analysis highlights a broad decline in the use of SM data in urban 
research, with a notable drop in Twitter data. The reasons for this shift 
remain unclear, though reduced accessibility and declining interest in the 
platform may be contributing factors. This trend could continue, with active 
U.S. users of X decreasing by 8.4% since October 2024, while its competitor 
Bluesky has grown its user base by 1,064% (Boyd 2024). It will remain to 
be seen whether the decline in Twitter data access will prompt researchers to 
look elsewhere for urban analytics, and whether new forms of data can fill the 
gap that is left. 
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Table 2. Application areas (bold) and topics (1-15) identified from BERTopic analysis (Keywords are three most frequently used) 

Application Area & Topic Application Area & Topic Keywords Keywords Representative Documents Representative Documents % % 

Mobility/Activity Patterns Mobility/Activity Patterns 30.30% 

(13) Mobility and Activity Flows trajectories, mobility, activities 
Rizwan et al. (2020) and Yin and Chi 
(2021) 

19.30% 

(9) Urban Functional Areas and 
Vibrancy 

buildings, residential, areas Lang et al. (2022) and M. Li et al. (2016) 9.20% 

(1) Cycling cycling, bricycle, mobrility 
Brum-Bastos et al. (2019) and Livingston 
et al. (2021) 

1.70% 

Urban Perception Urban Perception 26.30% 

(3) Green Space park, visitors, recreation J. Li et al. (2024) and Ma et al. (2023) 11.50% 

(7) Tourism 
tourists, attractions, 
destinations 

Gunter and Önder (2021) and Païl I 
Agustí (2018) 

8.20% 

(5) Emotions and Sentiment 
Detection 

emotions, sentiment, 
environment 

Ashkezari-Toussi et al. (2019) and Duan 
et al. (2022) 

6.50% 

Event Detection/Emergency Event Detection/Emergency 
Management Management 

17.60% 

(4) Pandemic and Cowid-19 epidemic, pandemic, outbreak Sun et al. (2024) and Wu et al. (2022) 6.50% 

(14) Traffic Management/
Transport 

traffic, congestion, 
transportation 

Huang et al. (2019) and Shoaeinamini et 
al. (2022) 

6.30% 

(12) Disasters and Flooding 
disasters, floods, 
spatiotemporal 

Xu et al. (2016) and Yigitcanlar et al. 
(2022) 

4.80% 

Urban Planning/Management Urban Planning/Management 17.30% 

(6) Smart Cities and Civic 
Engagement 

municipalitiek, infrastructure, 
initiatives 

Molinillo et al. (2019) and Stan and 
Tasente (2024) 

8.30% 

(15) Neighborhoods and Urban 
Areas 

geographiek, neighborhoods, 
kegregation 

Levy et al. (2020) and Poorthuis et al. 
(2022) 

5.80% 

(2) Land Use Classification land, classification, urbanization 
Zhan et al. (2014) and X. Zhao et al. 
(2023) 

3.30% 

Social Dynamics Social Dynamics 8.50% 

(11) Communities and Migration cultures, communities, migrant 
Te Lintelo et al. (2024) and Verselinov et 
al. (2021) 

4.10% 

(10) Protest and Activism protests, activism, political Askanins (2013) and M. Zhao et al. (2018) 2.30% 

(8) Cultures and Languages 
cultures, communities, 
language. 

Väisinnen et al. (2022) and N. Zhao and 
Cao (2017) 

2.10% 
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Figure 3. Most frequently used SM data source for urban research topics 

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 
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