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Abstract

Generating a bird’s eye view of road users is beneficial for a variety of applications, including navigation,
detecting agent conflicts, and measuring space occupancy, as well as the ability to utilise the metric system to
measure distances between different objects. In this research, we introduce a simple approach for estimating a
bird’s eye view from images without prior knowledge of a given camera’s intrinsic and extrinsic parameters. The
model is based on the orthogonal projection of objects from various fields of view to a bird’s eye view by learning
the vanishing point of a given scene. Additionally, we utilised the learned vanishing point alongside the trajectory
line to transform the 2D bounding boxes of road users into 3D bounding information. The introduced framework
has been applied to several applications to generate a live Map from camera feeds and to analyse social distancing
violations at the city scale. The introduced framework shows a high validation in geolocating road users in
various uncalibrated cameras. It also paves the way for new adaptations in urban modelling techniques and
simulating the built environment accurately, which could benefit agent-based modelling by relying on deep
learning and computer vision.

Keywords Bird’s eye view - Homography - Deep learning - Urban scenes

1 Introduction

Scene awareness across different views of a given scene represents an important subject not only in machine
learning but also in studies related to understanding flows in cities and transports. Estimating a vectorised bird-
eye view (BEV) representation of a given visual scene is useful for many real-world applications [1, 2], including
navigation, motion prediction [3], robotics, or simply measuring distances and evaluating conflicts among road
users whether it is a for understanding occupancy rates, social distancing, accidents, or near misses.
Understanding cities using computer vision, or more generally through machine learning, has gained the
interest of planners and urbanists in the last few years [4]. However, the obstacles to combining both machine-
based approaches and their outputs with the most frequent planning tool (maps) persist. If only the content of
street-level imagery could automatically blend and localise to maps, this might benefit the utility of machine
learning in cities at scale. Most recently, substantial progress has been made to create methods that can learn to
generate a BEV representation for autonomous driving [1, 2]. However, most of these methods either tend to rely
on a given camera’s parameters (intrinsic and extrinsic) for calibration making it limited for generalisation when
cameras’ parameters are unknown [5-11], or generate an image-based representation (i.e. image-to-image tran-
sition) [1, 12, 13] makes the yielding outcome useful only for few applications, excluding the ability to generate
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trajectories, or measuring distances without the need for an extra step of vectorising the raster output. Here we
introduce a simple approach but a powerful one for generating a vector BEV representation from uncalibrated
images which makes it applicable for both known and unknown cameras’ parameters, including internet data, and
CCTV feeds whereas other current methods face shortcomings. The introduced approach, known as TopView,
relies on learning the vanishing point of a given scene, while geometrically estimating the BEV vector space of a
given space and the 3D representation of a given object from its 2D boxes estimated from the backbone of the
model.

This study significantly extends the current methodologies used in computer vision for urban analytics by
introducing a novel framework that supports robust and scalable analysis without the need for camera calibration.
Our major contributions are detailed as follows: We propose a novel method for estimating bird’s eye view
(BEV) that operates independently of the camera’s intrinsic and extrinsic parameters. This facilitates the appli-
cation of BEV generation techniques to a broader range of uncalibrated images sourced from varied devices and
viewpoints, thus making advanced visual analytics accessible in environments where camera calibration is
impractical or unknown. Our approach simplifies the process of mapping and geolocating road users’ trajectories
from uncalibrated 2D images to the geographic coordinate system through the innovative application of vanishing
points to infer depth and scale. This significantly enhances the accuracy of object placement in virtual space,
providing crucial data for traffic management and urban planning. Extending our method to video streams, we
introduce a spatiotemporal representation of moving objects, encapsulating them as streams of tokens that capture
dynamic changes over time. This provides a detailed and continuous narrative of object movements, which is
invaluable for traffic flow analysis and surveillance. Additionally, we ensure the privacy of individuals by
anonymising the representation of road users in both still images and video streams. This adherence to privacy
laws and ethical standards makes our method suitable for sensitive environments where user consent may be
unattainable. Finally, the practicality of our method is demonstrated through applications on diverse datasets,
including CCTV footage from urban traffic systems (see Fig. 1). These applications showcase the method’s
robustness across different settings and its capability to provide actionable insights for real-world challenges.

2 Background

We are not aware of any method for estimating BEV based solely on learning a vanishing point without knowing
the cameras’ matrix or providing key points for a given perspective. However, our introduced method links with
several knowledge domains:

2.1 Object detection

Object detection is a cornerstone of computer vision with applications ranging from autonomous driving to
security surveillance [14-16]. Traditionally, object detection relied on manual feature extraction combined with
machine learning algorithms, using techniques like histogram of oriented gradients (HOG) [17] and scale-
invariant feature transform (SIFT) [18] alongside classifiers such as support vector machines (SVM) [19].
However, the advent of deep learning has revolutionised the field, introducing more sophisticated and effective
methods [14-16]. Convolutional neural networks (CNNs) now dominate object detection, facilitating powerful
feature extraction and recognition capabilities. Significant milestones include the development of Region-based
CNNs (R-CNN) and its iterations [20, 21], which efficiently localise and classify objects using region proposals.
The you only look once (YOLO) framework and its successors [22-24]) simplify detection into a single
regression problem, enhancing the speed and feasibility of real-time applications. Similarly, the single shot
multibox detector (SSD) eliminates the need for proposal generation [25], directly predicting multiple bounding
boxes and class probabilities, thus balancing speed with accuracy. These advancements in object detection pave
the way for robust object localisation in bird’s-eye view applications.
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2.2 Multiview awareness based on homography

In photogrammetry, moving from a given camera’s coordinates system to the world coordinate system is achieved
by knowing the camera matrix including both intrinsic and extrinsic parameters [6, 9-11, 26-28], as follows:
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given that M represents the camera matrix, K and R T denote the intrinsic and extrinsic parameters of the camera,
respectively. They are defined as:

o vy ¢ O
K=|0 o ¢ O0f, where ay =f-m, and o, = f - m, (2)
0 0 1 O

given that f represents the focal length of the camera in pixels, m, and m, represent the scale factors of relating
pixels to distance, y is the skew coefficient between the two axes of x and y, which is often equal to zero. Lastly,
¢ and ¢y denote the principle point.
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Generally, extrinsic parameters represent the camera’s position and heading in the world coordinates, where T
represents the origin position of the world coordinate system defined in the camera coordinate system, and R
represents the rotation matrix of the camera. After calibrating cameras to world coordinates and by relying on
homography, we can move from one camera pose to another as follows:

z,-xQ Xi
Ziy; =H Yi |» (4)
% 1

where dst(i) = (x},y!), src(i) = (x;,y:), i =0,1,2,3

given that src and dst represent the coordinates of the quadrangle vertices in the camera view and world
coordinates, respectively, (x;,y;) and (x}, y!) represent paired coordinate points in the camera and top-view planes,
respectively. Lastly, H represents the homography or the transformation matrix that is defined as:

hoo  hot  hoz
H= |ho hy hn (5)
hy hy ha

where H is solved and calibrated by inputting the four paired points in the camera and top-view planes.
Accordingly, by solving H, the detected object in the camera plane can be transformed into the top-view plane.

Several studies have provided approaches with slight changes for image calibration based on this method
[6-9, 26, 28-30]. However, this method faces several shortcomings for automation and scalability such as (1) its
requirement for calibrating cameras, limiting its usability to internet data, (2) the requirement for at least inputs of
4 points to represent the perspective to unwrap them in BEV image or corresponding points to estimate the
transformation matrix, (3) Even when providing these points, without knowing the vanishing point, the BEV
faces a high level of distortion for objects outside the bounds of the provided points.
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2.3 Geometric-based models for scene awareness

Combining both features of Geometric constraints and machine learning, several methods have been achieved to
generate a BEV map from a camera view [1, 2, 5, 31, 32] relied on a CNN model to obtain a homography matrix
by transforming a monocular camera input to a BVP map. However, this approach lacks vectorising road users.
However, these methods still require the camera’s model or several camera inputs lacking the ability of these
models to apply directly to the ubiquitous uncalibrated images.

2.4 Multi-sensors fusion-based models

Several methods have focused on estimating a BEV map based on fusing both RGB images and actual LiDAR
data [1, 33-35] or pseudo-LiDAR generated from depth estimation [36]. This approach relies on generating a
BEV map by encoding both data sources with early fusion or post-feature extraction to guide the model to
learning orthogonal features. For instance, [37] introduced a method for producing spatiotemporal birds-eye-view
(BEV) representations from multi-camera footage and reasoning about multiple tasks collaboratively for vision-
centric autonomous driving. [38] developed a model that learns the 3D representation of road users by fusing
multiple camera inputs and extracting 2D and 3D feature streams based on the underlying geometric constraints
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in the BEV. While this approach has shown strength in localising objects, it is limited to when LiDAR data is
available, limiting its utility to certain applications primarily autonomous driving. Furthermore, it requires
multiple calibration processes, as it requires not only calibrating the RGB images but also integrating the LIDAR
data.

2.5 Image-to-image translation

While the objective of this research is to provide a vector representation rather than a raster one, it is worth
mentioning that there have been several approaches that utilised image-to-image translation whether through
adversarial learning or other approaches to generate an estimate of BEV map [1, 12, 13, 39]. These approaches
included generating not only road users but also a semantic representation of the street layout [13, 40, 41] used
encoder-decoder architecture to generate semantic segmentation for vehicle layouts from multiple camera
sources. [42] developed a transformer-based model to extract the local road network layout in a BEV map based
on a directed graph representation. [43] introduce a framework that includes a Hybrid Feature Transformation
module that decouples learning and camera-based model approaches to output a semantic BEV map. [44]
introduced a two-stage geometry-guided framework to generate a semantic BEV map from a monocular camera
input. However, in practice, this approach, without geometric constraints, tends to provide noisy and unreliable
outcomes when experimented with in unseen scenes, which we will report when comparing our results to existing
methods.

3 Methodology
3.1 TopView framework

Humans tend to navigate by knowing the relationship between objects and avoiding obstacles instead of knowing
the exact depth of each point in a given scene. Here we present a framework, called TopView, to generate
temporal and BEV representations of road users when feed with sequential images or BEV representation alone
when feed with single images. The topview framework only requires an image input without the need camera’s
model which makes it scalable to different data sources when camera parameters are alone. Figure 2 shows the
architecture of the overall framework. After a given input, the framework comprises five sub-models that output a
vector BEV map of road users only in case of a given image, or a vector BEV map and temporal localisation of
the tracked road users. First, the framework takes a given input to pass it through a deep model to regress the
vanishing point (VP) and the horizon of a given scene. Afterwards, an object detector with a tracker system is
utilised to localise road users. The tracked road users alongside the VP and the horizon line are passed through a
Geometric transformation module that aims to transform the 2D bounding representation of road users into 3D
bounding boxes. Last, all outcomes are based on a Homographic module to transform the data into the spatial
representation of the BEV map alongside temporarily localising road users and finetuning the generated temporal
paths to account for spatial occlusion and objects re-identification related issues such as miss-matched objects’ ids
filtered based on the spatiotemporal patterns over multiple frame sequence. Besides the BEV map, the final output
is a stream of paths representing road users’ trajectories of multi-dimensional information such as object id, type,
3D bounding boxes, and stationary status.

VP model: By relying on geometric principles, vanishing points are a well-known concept in 3D vision research
for their ability to estimate 3D structures from 2D images [45, 46]. Accordingly, we developed a model to
estimate vanishing points from natural uncalibrated scenes. To learn the vanishing point of a given scene, we
trained a deep learning model that takes a given image to output the X and Y coordinates of its vanishing point.
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The model is built on the backbone of a truncated pre-trained model, and two additional branches of two Fully-
Connected layers output each value of the coordinates of the vanishing point. The main reason for training our
model is to ensure its accuracy and performance when used on the overall framework.

Object detection and tracking system: We relied on YOLO architecture [22, 24], in particular, we used a
YoloV5m [23] as a backbone for TopView to detect road users including persons, cars, buses, trucks, bicycles,
and motorbikes pre-trained on COCO dataset [47], in which we find the results are optimal in terms of accuracy
and speed in deployment. In the case of sequential frames are given, we used DeepSort architecture [48] to track
objects, which based on Sort algorithms [49] coupled with a deep learning model to handle object occlusion.

Geometric transformation: To define the confined 3D bounding box within a 2D box, we used a simple
geometric transformation that utilised both trajectory lines and the vanishing point to estimate the 3D bounding
box for a given road user within a scene. Figure 3 shows a few examples of different poses of a given object and
the potential representation of the 3D bounding box that belongs to a given motion pose. We are aware of the
efforts in the literature that aimed towards learning to estimate the 3D bounding box from the 2D bounding box of
a given object [22, 36, 50-54]. However, despite learning the 3D representation from 2D representation, this
method is still a given camera’s model limiting its utility to other data sources. Here we show that we can achieve
the same output with a simple Geometric transformation between both scenes, utilising scene information such as
VP that we already automated and trajectory lines and therefore we will not need a given camera’s model as
presented by the learned method.

Algorithm 1 shows the algorithm for transforming 2D bounding boxes to 3D bounding boxes by heuristically
estimating and bounding the 6DOF of a 3D bounding box in the given 2D bounding box. The algorithm estimates
the geometry of a given 3D box by understanding the orientation of a given road user. This can be estimated by
understanding the relationship between a given object’s trajectory line, horizon, and the reference line derived
from the location of the vanishing point in a given scene. The variables used in the algorithm are as follows:
Otrajectory _line 18 the set of points that form the trajectory line of the moving object. Each point in the set is
represented as ¢. The vanishing point in the image, represented by its coordinates (vpy, vpy), is denoted as vp. The
width of the image is represented by w. The coordinates that define the corners of the 2D bounding box around
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Fig. 3 Estimating 3D bounding boxes from 2D bounding boxes from different poses of a given road user
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the detected object are x;, xp,y1,y2, where x; and x; are the x-coordinates of the left and right edges of the 2D
bounding box, respectively, and y; and y, are the y-coordinates of the top and bottom edges, respectively. The
variable F represents the estimated orientation of the car (moving object) and is initially set to “Undefined.” The
top edge of the 2D bounding box, Ly, is represented by the two points: (x,y;) and (x,y;). The midpoint of the

top edge, denoted as M, is calculated as M = (’“2& The algorithm checks for intersections between points on the
trajectory line and the top edge L4 to determine the object’s orientation relative to the midpoint M and the
vanishing point vp. If no intersection is found, the orientation F is set to “side view.” Based on these calculations
and conditions, the estimated car orientation F and the 3D bounding box are the outputs. Our approach is
effective in creating reliable and explainable bounding boxes inside the scene for non-stationary objects even
without learning. This approach can also be utilised for stationary objects by replacing the trajectory line with the
edge line of a given object; however, we leave this for future investigation.

Algorithm 1 Estimation of car orientation and 3D bounding box from trajectory lines

1: Input: Qrajectory_line set of trajectory line points g

2: Input: vp vanishing point in image coordinates (vp,,vpy)

3: Input: w width of the image

4: Input: z1,x2,y1,y2 coordinates of the 2D bounding box

5: F' < Undefined > Initialize car orientation
6: La [(x1,91), (x2,11)] > Top edge of the bounding box
7. for all ¢ € Quajectory line Such that ¢ N Ly # 0 do

8: (Gz,qy) < qNLa > Intersection point of trajectory line with L 4
9: M &tz > Midpoint of L4
10 if |va — %| ~ 0 then > Check if vanishing point is at image center

if g, < M then
F + “turning left”
else if g, > M then
F + “turning right”
else
F + “moving straight”
end if
else
if ¢, < M — ‘Upm — %‘ then
F + “turning left”
else if ¢, > M — }vpac — %’ then
F' + “turning right”
else
F + “moving straight”
end if
end if
: end for
. if F' = Undefined then
F + “side view” > Case when no intersection is found
30: end if
: Output: F > Estimated car orientation
: Output: 3D bounding box > Based on F' and 2D box dimensions

W oW W NN NN NN NN NN R 2 R e e e e 2 e
M EQ© ® ISR QO TR w R

Homography: To estimate a perspective plane grid, we create a horizontal line at the bottom of a given scene that
is evenly subdivided by several points, and we utilise the detected VP to draw several lines from this VP to the
bottom of each point at the above-mentioned horizontal line. We employed the four intersection points generated
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Fig. 4 Transforming a given image input to a Bird’s eye view

by these radial lines originating by the VP point and the upper and lower horizontal lines inside the confines of a
specific image’s VP and lower half. As a result, we developed an automated four-point representation of a
particular scene in which they match a corresponding four-point rectangle representation of the BEV map’s vector
space. We applied homography to connect road users’ point coordinates in a particular image plane to the newly
estimated vector space of the BEV map (see Fig. 4).

3.2 Objective loss and evaluations

For the VP model, we trained the model based on the logcosh loss function for each coordinate of the point. For
small values of x and the big one, respectively, log(cosh(x)) is roughly equivalent to (x*)/2 and | x| — log(2).
Consequently, the logcosh function is mostly like the mean squared error while being less sensitive to the rare
extremely inaccurate prediction.

For Object localisations, the objective loss is defined based on the weighted sum of the localisation loss (Lj,.)
and confidence loss (L.y,y) for the introduced backbone of object detection to detect and localise humans as
follows:

L(x,l,g) = % (Leons (x,¢) + oLioe(x,1, 8)) (6)

By cross-validating the model, the loss is set to 0 if N = 0 and « is set to 1 given that N is the default bounding
box. Based on a Softmax loss for each class, the confidence loss is a cross-entropy loss (c). The default bounding
box’s centre (cx, xy), as well as its width (w) and height (%), establish the parameters of the predicted box (/), and
the localisation loss is defined as a smooth loss between those parameters and the ground truth bounding box (g).
It is defined as follows:

N
Lic(x,1,g) =Y | > xfsmoothL (' — g!") (7)

i€Pos | me{cx,xy,w,h}

Evaluating a BEV map in a new dataset remains a challenge which poses an open question in the literature. Even
though we have taken a heuristic approach to generate a BEV map, we evaluate the relationship between the
different mapped objects after calibrating the image to its geolocation. We used Google Maps as a qualitative
measure for verifying the localisations of the objects from the image plane to the real-world coordinate.
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3.3 Implementations

Data processing: Each image used for training the VP model was normalised and downsized to a (300 x 300)
grayscale image. To ensure the model focused on the geometric structures within the image, we applied the
Canny edge detector filter to all images, preserving the edge details. The filtered images were then fed into the VP
model for further processing.

VP model training: We employed a MobileNet architecture [55], pre-trained on ImageNet, as the backbone for
our VP model. This involves removing the fully connected layers from the pre-trained MobileNet. We then
applied a Global Average Pooling layer to determine the X and Y coordinates of the vanishing point. The network
was extended with two separate branches, each designed to predict one of the coordinates (X or Y). Each branch
consisted of two Fully-Connected layers with 100 neurons each, activated by a ReLU function to ensure
nonlinearity. To prevent overfitting, a dropout layer with a dropout rate of 0.5 was added after each Fully-
Connected layer. The final output layer of each branch consisted of a single neuron activated by a linear function.
This architecture was trained for 100 epochs with a batch size of 256, using the Adam optimiser [56]. An early
stopping callback was utilised to halt the training process if the model’s loss did not improve for 5 consecutive
epochs, thereby optimising training time and improving the model’s generalisation capability.

Object detection and tracking system: For object detection, we used the YOLOvS5m [23] architecture, pre-
trained on the COCO dataset [47] for detecting several classes of road users, including pedestrians, cars, buses,
trucks, bicycles, and motorbikes. Given sequential frames as input, object tracking was achieved using the
DeepSORT algorithm [48], which combines the SORT algorithm for data association based on bounding box
overlaps, and a deep appearance descriptor to maintain object identities during occlusion. This tracking mech-
anism is crucial for analysing the temporal localisation and movement patterns of objects.

Geometric transformation: The transformation from 2D to 3D bounding boxes leverages the geometric rela-
tionship between the object’s position, its trajectory line, and the vanishing point. This transformation is auto-
mated using the algorithm described in Algorithm 1. In essence, the algorithm adjusts the 3D bounding box to fit
within the 2D bounding box, derived from the predicted trajectory line and vanishing point, ensuring minimal
error in the computed 3D orientation and dimensions.

Homography: We automated the computation of the homography matrix to map points from the image plane to
the Bird’s Eye View (BEV) vector space. This was done by delineating a horizontal line at the bottom of the
image, subdividing it evenly, and drawing lines from the vanishing point to each of these subdivisions. We
identified four intersection points between these lines and upper and lower horizontal lines, using them for the
homography transformation. These points represent the bounding quadrilateral in the image plane, which was
mapped to a corresponding rectangle representing the BEV space. This transformation facilitated the precise
localisation of road users in the BEV map.

Table 1 Datasets for train-

ing VP model Dataset Number of images
London Streetview 46,281
Boston Streetview 38,215
Norway Streetview 84,447
Flickr 959
AVA 1315
TfL London CCTV 1359
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3.4 Materials and experiments

We trained the model for inferring the vanishing point in a given scene by combining multiple open-access data
sources to ensure the diversity of outdoor scenes. These datasets include six different types of datasets: (1)
London Streetview [57], (2) Boston Streetview [57], (3) Norway Streetview [57], (4) Flickr [58], (5) AVA [58]
and (6) TfL London CCTV [59] (See Table 1). The combined dataset comprises 172,576 images. The variety of
these datasets ensures that the model sees data at different times of the day (for instance, Google Streetview data
is only day-time whereas the rest contains nighttime dataset), different weather, and different fields of view. We
randomly divided the dataset into training, validation, and testing groups in the following ratios: 80%, 10%, and
10%.

To further report on the robustness of our orthogonal-based approach to the overall framework, we imple-
mented and tested our model in sequential datasets by utilising London CCTV video streams to verify geolo-
cational references of objects in a given scene in a Google map. Nevertheless, we also apply our approach to a
sample of internet data to scale its validity.

4 Results

Performance across different scenarios: We assessed the robustness of the proposed framework under various
conditions, including different lighting environments and weather scenarios. The results of this evaluation are
summarised in Table 2. We utilise mean average precision (mAP) to evaluate the accuracy of object detection and
mean squared error (MSE) to measure the accuracy of vanishing point (VP) estimation. Table 2 illustrates that the
framework performs exceptionally well under daylight conditions, achieving an object detection mAP of 90.1%
and a VP estimation MSE of 0.038. These results demonstrate the system’s high accuracy and low error in
optimal lighting conditions. However, in nighttime scenarios, the performance slightly decreases, achieving an
object detection mAP of 85.7% and a VP estimation MSE of 0.045. The decrease is expected due to the
challenges presented by low-light environments. In adverse weather conditions, the framework faces the most
significant challenges, with the object detection mAP dropping to 82.3% and the VP estimation MSE increasing
to 0.060. These variations indicate the impact of environmental factors on detection and estimation accuracy.
Overall, while the framework exhibits robustness across different scenarios, there is a noticeable performance
decline in less favourable conditions, emphasising the need for algorithms that can adapt to such variability.

Estimating vanishing points: After training the VP model, Fig. 5 shows a sample of the predicted vanishing
point (in red) and the ground truth one (in blue) in a variety of images with varying lighting conditions and fields
of view obtained from various data sources. Despite the complexity of the presented scene layouts and their
varying conditions, the trained model demonstrates good validation in grasping the orthogonal structure of a
given scene and recognising its vanishing point. Based on these observed scenarios, there is still a small margin of
error between the predicted and ground truth values of the vanishing points, particularly for the vanishing points’
X coordinates.

Localising road users in a BEV map: Figure 6 shows an example of estimating a BEV map for a given video
file from TfL London CCTV data. It shows first the transition of video frames to BEV maps with and without

Table 2 Robustness evalu-

. . Scenario Object detection mAP (%) VP estimation MSE
ation across different
scenarios Daylight 90.1 0.038
Nighttime 85.7 0.045
Adverse weather 82.3 0.060
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Fig. 5 Sample of estimated VP points in the various dataset types (Predicted point in red dot, ground truth in blue dot)

Google Maps. It shows a highly accurate localisation when qualifying the patterns of road users in Google Maps.
It also shows the temporal localisations of road users as tokens, highlighting the appearance and disappearance
through the time interval of the given video file. Furthermore, Fig. 7 shows another scene from the dataset, with a
semantic representation of the street layout. This scene exemplifies the accuracy of localising a variety of road
users, such as the bicycle on the pavement (left-hand side) and the pedestrian on the pavement (right-hand side),
as well as the complexity of the many vehicles at the road junction, taking into account their stationary state. It is
worth mentioning that we only highlight the semantic segmentation here without showing or assessing how to
generate a given street layout, leaving it for future investigation on how to use this approach for the gamification
of London CCTYV video streams. In doing so, this gamified approach could be useful for several studies and
modelling techniques, particularly agent-based modelling and data assimilation while protecting individual road
users’ privacy.

3D bounding box estimation: Figure 8 shows an example of how a 3D bounding box can be effectively
inferred, deterministically without prior learning, based on geometry and the orientation of road users in a given
scene, using only the introduced algorithm that constrains 3D bounding boxes based on a given input of a 2D
bounding box, a trajectory line, and a vanishing point. The diagram also depicts road users’ orientation and
stationary state.

4.1 Comparing the results with state-of-the-art methods

The comparison evaluates various bird’s eye view (BEV) generation methods across multiple dimensions,
including their ability to localise road users, perform object tracking, and generate 3D bounding boxes. Tables 3
and 4 present a qualitative and quantitative comparison of various BEV generation methods. The qualitative
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video input

table (Table 3) highlights key features of each method, such as the need for camera calibration, object classes
detectable, ability to generate 3D bounding boxes, tracking capabilities, and whether the method produces vector
data. The “TopView” framework, proposed in this paper, stands out by not requiring camera calibration and
supporting a wide range of object classes, including pedestrians, cars, and bicycles. It can generate 3D bounding
boxes through geometric transformation and includes temporal tracking capabilities, producing vector data
suitable for multiple applications. In contrast, methods like Geometry-based Homography and Learned Depth
Estimation require camera calibration and are limited in their object class detection and tracking capabilities. The
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Fig. 8 An example of the
estimated 3D bounding box
based on the introduced
Algorithm

Table 3 Qualitative com-

g . Method Modalit Calib. Req. Obj. classes 3D BBox  Trackin, Vector data
parison of BEV generation Y d : -

methods. Modality: 1 = OFT-net (BEV) [5] 1 Yes Vehicles only  No No No

Camera, 2 = LiDAR, 1 &2 y,00¢ t0-image [12] 1 No None No No No

.= Both. All ObJ‘?CtS PillarFlow [34] 2 Yes Vehicles Yes Yes No

includes Pedestrian, Cars,

Bicycles BEVerse [37] 1 Yes Vehicles Yes No No
GitNet [44] 1 No All No No No
CenterFusion [60] 1&2 Yes All Yes Yes Yes
VoxelNet [61] 2 Yes All Yes Yes Yes
PointPillar [62] 2 Yes All Yes Yes Yes
CenterNet [63] 1 Yes All Yes Yes Yes
FCOS3D [64] 1 Yes All Yes Yes Yes
DETR3D [65] 1 Yes All Yes Yes Yes
PGD [66] 1 Yes All Yes Yes Yes
PETR-R50 [67] 1 Yes All Yes Yes Yes
PETR-R101 [67] 1 Yes All Yes Yes Yes
PETR-Tiny [67] 1 Yes All Yes Yes Yes
BEVDet-Tiny [68] 1 Yes All Yes Yes Yes
BEVDet-Base [68] 1 Yes All Yes Yes Yes
TopView (Proposed) 1 No All Yes Yes Yes

Multi-sensor fusion approach, although capable of producing 3D bounding boxes, relies on additional data
sources such as LiDAR.The quantitative comparison table (Table 4) presents metrics such as average translation
error (MATE), average scale error (mASE), average orientation error (mAOE), average velocity error (nAVE),
and average attribute error (mAAE), as well as NuScenes detection score (NDS) and mean average precision
(mAP) for the different methods. The “TopView” framework shows competitive performance across various
metrics. Other methods, such as CenterFusion and VoxelNet, are also compared to highlight their effectiveness in
3D object detection on the nuScenes validation set. These tables collectively provide a comprehensive com-
parison of the methods, highlighting the strengths and limitations of each and positioning the “TopView”
framework as a versatile and effective approach for BEV generation in uncalibrated street-level imagery.

4.2 Analysis, discussion and applications

In this research, we introduce a new framework to transform CCTV video feeds into a live representation of
objects and events in Google Maps that can be used for multipurpose urban analytics. We provide two major
contributions: (1) We provide extensive analysis of London traffic at scale, detailing the contributions of each
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Table 4 Comparison with the state-of-the-art methods for 3D object detection on the nuScenes [69] validation set. Modality:
1 = Camera, 2 = LiDAR, 1 & 2 = Both

Method Modality mATE | mASE| mAOE | mAVE | mAAE | NDS 1 mAP T
CenterFusion [60] 1&2 0.540 0.142 0.649 0.263 0.535 0.453 0.332
VoxelNet [61] 2 0.292 0.253 0.316 0.328 0.306 0.716 0.264
PointPillar [62] 2 0.295 0.803 0.268 0.511 0.374 0.303 0.860
CenterNet [63] 1 0.321 0.818 0.188 0.326 0.191 0.330 0.183
FCOS3D [64] 1 0.285 0.935 0.200 1.242 0.361 0.311 0.751
DETR3D [65] 1 0.303 0.794 0.216 1.152 0.356 0.343 0.710
PGD [66] 1 0.278 0.909 0.267 0.938 0.346 0.352 0.681
PETR-R50 [67] 1 0.225 0.859 0.314 0.862 0.271 0.376 0.605
PETR-R101 [67] 1 0.219 0.873 0.302 0.870 0.268 0.378 0.608
PETR-Tiny [67] 1 0.285 0.913 0.311 1.014 0.295 0.372 0.612
BEVDet-Tiny [68] 1 0.299 0.925 0.290 0.995 0.302 0.362 0.631
BEVDet-Base [68] 1 0.281 0.946 0.284 0.912 0.326 0.323 0.672
TopView (Proposed) 1 0.312 0.869 0.291 0.914 0.323 0.354 0.612

Adjust zvalue Adjust z value Adjust zvalue

© —e —e
Manual calibration of bird’s eye view ° w0 oo e e
With knowing camera’s model Adjust x value Adjust x value Adjust x value
—_— — —

100 1000 100 1000 100 1000

Fig. 9 A manual calibration tool for adjusting the estimated bird’s eye view map from uncalibrated camera input such as
internet images

traffic mode to congestion during their various actions (i.e. standing or moving). (2) We provide a new approach
for visualising CCTV data spatially and temporally. In doing so, we transform video data into a summary of
lower-dimensional anonymised data that can be stored and retrieved with minimal memory and computational
requirements. Google Maps’ realistic approach may enable further spatial analysis using standard spatial methods
directly from scaled maps.

Generated trajectories and stream of paths:

The introduced approach is not only useful for BEV map representation but also for representing high-
dimensional streams of events of multifaced features as token objects with unique IDs over a given time interval
(i.e. length of a given video file). Accordingly, this provides a summary of highly dimensional data such as video
streams into ordered, easy to retrieve and anonymous data representation that is suitable for multipurpose
analysis. We showed multiple examples of how a video file can be transformed into a multi-dimensional vector
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representation, with road users represented as tokens in the video file’s time interval, where each point in time of a
given token carries information such as 3D bounding box, stationary status, class name, and so on.

A simple manual calibration: Figure 9 shows a simple tool for calibrating a bird’s eye map based on two values:
(1) the z-value and (2) the x-value, without knowing the intrinsic and extrinsic parameters of a given camera. The
z-value represents the spatial adjustment among the different objects in a given scene, and the x-value represents
the shifting of road users in x-coordinates. While our framework generates an automatic bird’s eye map, this tool
provides additional control over the quality of the bird’s eye map for manual calibration when necessary,
particularly when linked to a Google Map.

Application 1: high precision geo-localisation of road users and objects in a given scene: A direct application
for the TopView framework is to localise and generate GPS trajectories of road users through a given camera’s
location without knowing the GPS coordinates of individual road users. Here we show a few examples of
localising road users through our framework in several CCTV cameras in London to show its versatility despite
the complexity of road layouts. We showed a high precision in localising road users in the BEV map when
compared to the road layouts of the camera feeds (see Fig. 1). Despite the complexity of the street layout, we
showed some examples of the estimated BEV map of road users at a top of a Google Map. It shows how
accurately the model localises objects within a given street layout, paving the way for many applications that rely
on data related to GPS trajectories or understanding the interactions among road users in a given scene.

Application 2: analysis of spatial occupancy of road and open spaces layouts: Understanding who uses which
space of a given street, sidewalk or open space could be useful for several studies related to urban analytics and
street design. Through the introduced framework, several studies can translate video streams of a given space to
an occupancy map, highlighting the busiest spaces used by several road users, and spaces that are more likely to
be deserted by road users. By doing so, current road layouts and open spaces can be evaluated and re-designed to
meet the needs of their users based on their occupancy. In the future, pedestrian activities and actions can be
analysed alongside their spatial occupancy to give empirical evidence of how spaces are used post-occupation.

Application 3: exposure based on violating social distancing at the city scale: Another application of the
introduced framework is to utilise the BEV map to analyse distances and safety-based thresholds among different

Fig. 10 A map showing the
level of exposure of pedes-
trians based on violating
social distancing for a
given hour (20210813 —
08007900) as an applica-
tion of the estimated BEV
map

1200

800

400
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road users to understand for instance, exposure, collisions, or even near misses. Here we utilised the BEV map to
analyse distances between pedestrians with a two-metre threshold to show the level of exposure across London
from 857 cameras at a given hour of a given day. Figure 10 shows the count of human contacts that violate social
distancing. Across all of London, the map shows that the majority of violations occurred in the city centre of
London. This application shows the framework’s versatility in shifting from observing several sites at a micro-
level to a city scale.

Limitations and future work: Several future investigations can be conducted to advance the introduced
framework. First, the estimated 3D bounding boxes are based on moving objects, whereas it is limited when
objects are stationary in a given scene. Further study can be done to rely on the relationship between the vanishing
point of a given scene and the pose of a given object for stationary objects, instead of its trajectory line. Second,
developing an automated method to transform scene components such as road layout [38, 39] and lane lines
[70, 71] into a semantic vector representation would appear to be the next logical step in improving the introduced
framework.

5 Conclusion

Scene awareness for a multiview representation represents a crucial domain in vision and machine learning
research. In this paper, we presented a hybrid method for estimating a vector representation of objects in a BEV
without relying on the camera matrix information. This offers a similar approach to human navigation in spaces
by understanding the relationship between objects rather than the exact depth of individual ones. Nevertheless,
based on simple calibration, we also presented a geo-tagging of objects in a Google map with a very high spatial
resolution which is useful for many applications related to urban analytics and autonomous navigation. Fur-
thermore, this approach also provides a 3D bounding representation based solely on the geometric transformation
of the 2D bounding box and trajectory lines, in the case of sequential frames. This paper presents two oppor-
tunities for future research such as (1) 3D mesh representations of objects in complex scenes by learning from
their multi-dimensional vector representation of point data, and (2) gamification of urban scene data and
anonymising video stream data.

Data availability All raw data used in this study can be accessed online. The sources and methods for obtaining this data
have been explained in the methodology section of this article.
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