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A B S T R A C T

Food, energy and water insecurity are concomitant challenges facing many communities in East Africa. Agri-
voltaic systems – agriculture integrated with photovoltaic panels – address all three challenges, providing low 
carbon electricity, food production and water conservation on the same land area. Agrivoltaics have proven 
benefits for the food-energy-water nexus in the USA, Europe and Asia, but research is lacking in sub-Saharan 
Africa, where energy access remains low, and climate change and water scarcity threaten food systems. This 
study presents evidence for concomitant electricity generation, food production and water conservation from 
agrivoltaic systems in Tanzania and Kenya, demonstrating the viability of these systems for both grid-tied ag-
ribusinesses and rural, off-grid communities. Performance of some crops improved under agrivoltaics, generating 
higher incomes for farmers and agribusinesses while reducing energy bills and/or enhancing energy supply. Crop 
survivability during a warm period was greater under the agrivoltaic system, indicating potential for climate 
change resilience. Panel shading reduced irrigation demand, thus some crops achieved greater yields while 
needing less water input. Rainwater harvesting from panel runoff further reduced irrigation needs. Combining 
energy infrastructure with agriculture enhanced land productivity for all crops at both sites. Agrivoltaics, 
whether grid-tied or off-grid, could address multiple Sustainable Development Goals in East Africa simulta-
neously by contributing to energy security, climate change-resilient food production, and water conservation in 
the region.

1. Introduction

Electrification improves quality of life and is crucial for achieving 
almost all Sustainable Development Goals (SDGs), from advancing 
health and economic development to accessing more secure water 
supplies [1], but more than half of the population in East Africa lacked 
access to electricity in 2020 and many rely on biomass for energy [2,3]. 
To address this challenge, East Africa is experiencing one of the fastest 
electrification rates in the world, with millions gaining access every year 
and electricity consumption forecasted to triple by 2040 [2]. However, 
underdeveloped national infrastructure is a barrier to this scaling up of 

electrification in the region [4], as it is typically only available in 
densely populated areas and subject to frequent blackouts [5]. The cost 
of extending grid access to rural and remote areas is prohibitively high 
[4], leaving decentralised systems (off-grid and mini-grid) as the only 
means to economically provide electricity to rural, off-grid communities 
[6]. Solar photovoltaic (PV) technologies can offer low carbon, renew-
able electricity both on- and off-grid, and the deployment of PV is 
forecast to expand [7,8]. The unrealised capacity for PV technologies to 
meet energy needs in East Africa is enormous: the region receives an 
average of 4.0–6.9 kWh/m2/day of solar insolation [9], which could 
deliver universal electricity access [10], yet solar electricity accounts for 
less than one percent of the electricity generation mix. However, 
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recognising the potential of solar energy, governments have established 
several electrification initiatives and collaborations to provide elec-
tricity for those without access [11–13], which has led to substantial 
growth in PV [14–16].

Food insecurity also impairs well-being and hinders poorer com-
munities from sustainable economic growth in East Africa. Irrigation is 
unavailable or unreliable for most smallholder farmers [17], and this 
challenge is prevalent in drier arid and semi-arid lands (ASALs) [18]. 
Nearly half of households, 48 %, experienced some form of food inse-
curity in 2018/19 [19], and climate change is forecast to decrease major 
crop yields 8–45 % by 2050 [20]. Increased solar electricity generation 
will help meet the growing demand for sustainable electricity sources, 
but without appropriate implementation it may cause conflicts with 
other development objectives [1]; for example, PV infrastructure can 
come at the expense of traditional land rights and uses [21]. Where 
agricultural land previously used for food production is converted for 
PV, electricity benefits may come at the expense of food security. 
Realising multiple development objectives while avoiding potential 
trade-offs between them is a critical challenge for achieving the SDGs: 
there is an urgent need to develop innovations that offer climate change 
resilience and food and energy security in synergy.

Agrivoltaics - PV panels integrated with agriculture - offer energy 
and food security, improved crop-water relations, while also mitigating 
potential land use conflicts associated with conventional ground- 
mounted solar [1,22–24]. The technology can be implemented with 
either crops or livestock [25–28]; this research focuses on the former. 
The past decade has seen a rapid increase in agrivoltaic research in 
Europe, North America, and Central and East Asia, with studies 
demonstrating that agrivoltaics can deliver synergies for energy, food 
and water security [29–33] (reviewed in Refs. [34–36]) if conducted 
with appropriate crop selection and designed for local environmental 
conditions. With appropriate design, gaps between panels allow a suf-
ficient amount of photosynthetically active radiation (PAR) to reach 
underlying shade-tolerant crops. The panels partially shade the crops 
and soil from direct solar radiation, reducing ultraviolet (UV) radiation 
damage, growth-limiting evapotranspiration and, consequently, irriga-
tion demands [29–31,35] – particular challenges in semi-arid regions 
such as East Africa. These features may result in an improved 
crop-growing environment, depending on a range of factors such as crop 

type, local environmental conditions, soil type and agrivoltaic system 
design, but research to establish the impact of these parameters on crop 
performance is lacking in this region. Interviews with stakeholders in the 
region highlighted the potential for the technology to address energy 
and climate change challenges facing farmers and agribusinesses, but 
note both the lack of, and the need for, evidence of system performance 
and value to support decision making [37]. Given the reported impacts 
of agrivoltaics on the challenging environmental conditions that reduce 
agricultural productivity in East Africa [38], and combined with high 
solar potential and an expanding PV market, research investigating the 
performance of the technology in the region is required to determine if it 
could be a viable approach for addressing these challenges.

This work presents empirical data on crop performance, electricity 
production, irrigation and environmental parameters collected from two 
fully operational agrivoltaic systems in East Africa: an off-grid system in 
Tanzania and a grid-tie system in Kenya. The study aimed to answer the 
following research questions. 

1. Crop performance: How are the yields and morphological traits of 
locally relevant crops affected when grown under agrivoltaic systems 
in East Africa?

2. Water use: To what extent does the partial shading of solar panels 
reduce irrigation needs?

3. Energy potential: What impact do the agrivoltaic systems have on a) 
the energy supply and consumption for an off-grid agribusiness, and 
b) the energy supply and bills of a grid-tied agribusiness?

4. Land use: To what extent does combining electricity generation and 
crop production affect land use productivity?

The yields (and growth and market value in some cases) of nine 
locally relevant crops from both sites and several seasonal timepoints 
are investigated. The crop yields per water input are calculated by 
combining yield data with irrigation and precipitation data, and the 
monetary savings of the electricity generated by the panels are quanti-
fied. The relative land use productivities of the different crop-energy 
combinations are compared to respective single use alternatives. The 
findings evidence the potential for agrivoltaics to synergistically address 
the food-energy-water nexus. The challenges facing the application of 
these systems in East Africa are discussed – a region where the benefits 

Nomenclature

Abbreviations
ANOVA Analysis of variance
AV Agrivoltaic
C Control plot
GDP Gross domestic product
GHI Global Horizontal Irradiation
KES Kenyan shilling
LAS Latia Agribusiness Solutions
Lat Latitude
LER Land use Equivalent Ratio
LMM Linear mixed-effects model
Long Longitude
max maximum
min minimum
MKES Million Kenyan shillings
MTsh Million Tanzanian Shillings
NS Not significant
PAR Photosynthetically active radiation
PV Photovoltaic
SAT Sustainable Agriculture Tanzania
Tsh Tanzanian shilling

USA United States of America
USD United States Dollar
Symbols
Ya Yield from agrivoltaic plot
Yc Yield from control plot
Da Panel density of agrivoltaic system
Dc Panel density of conventional ground-mounted solar park
Units
◦C degrees Celsius
Ah Amp hour
cm centimetre
g gram
GW Gigawatt
ha hectare
kg kilogram
kWh kilowatt hour
kWp kilowatt peak
L Litre
m metre
mm millimetre
W Watt
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of the technology for food and energy security may be far greater than 
existing installations in Europe, the US and Asia, but where research to 
demonstrate these benefits is currently lacking.

2. Material and methods

2.1. Experiment locations and climates

The agrivoltaic system in Tanzania is located at Sustainable Agri-
culture Tanzania (SAT)’s Farmer Training Centre, Morogoro (lat. 
−6.7413, long. 37.5494). The site is at an elevation of 537 m, and the 
climate is tropical and semi-arid. The mean annual temperature is 
22.6 ◦C, ranging from 20.4 ◦C in July to 24.4 ◦C in February, and 
Morogoro is characterised by a bimodal annual precipitation cycle with 
a mean of 972 mm (max: 199 mm in March, min: 15 mm in July). The 
area receives an average of 8.0 h of sunshine a day, and 5.2 kWh/m2/day 
of global horizontal irradiation (GHI).

The agrivoltaic system in Kenya is located at Latia Agribusiness So-
lutions (LAS), Isinya, Kajiado County (lat. −1.6850, long. 36.8308). The 
site is at an elevation of 1646 m and is characterised by clayey soils 
associated with gypsum, silicified lithics and limestone. The climate is 
tropical semi-arid, with a bimodal annual precipitation cycle. The mean 
annual temperature is 19.1 ◦C, ranging from 17.3 ◦C in July to 20.8 ◦C in 
February, and there is 687 mm of mean precipitation annually (max: 
115 mm in April, min: 14 mm in September). The area receives an 
average of 7.5 h of sunshine a day, and 5.4 kWh/m2/day of GHI.

2.2. System designs

The agrivoltaic system at SAT has a peak capacity of 36.6 kWp. It 
comprises 106 × 345 W PV modules, measuring 34 × 13 m (442 m2). It 
is off-grid with a 19,200 Ah lead-acid battery storage system, providing 
electricity to the farmer training centre that previously relied on diesel 
generators. The system at LAS has a peak capacity of 62.1 kWp, com-
prises 180 × 345 W PV modules, measures 40 × 20 m (800 m2), and is 
grid-tied, supplementing the grid electricity supply. Drone images an-
notated with key design and experiment features for both systems are 
displayed in Fig. 1. The system capacity at SAT, an off-grid location 
previously with little electricity supply powered by diesel generators, 
was based on a forecast demand given electrification of the site and the 
farming machinery where applicable. At LAS, the system capacity was 
based on the existing electricity consumption of the site.

In both systems, the PV modules are connected into groups of three 
along the wider edges of the modules, and these panel groups are tilted 
10◦ towards the north. A lower angle of ~2–3◦ would maximise PV 
generation, but a tilt of 10◦ was selected to allow for sufficient water 
runoff and reduce panel soiling. The panels are raised 3m above the 
ground at the lower edges to provide sufficient space for manual farming 
labour and use of tools. The PV arrays are supported by a steel mounting 
structure fixed into concrete foundations. Both systems have a 50 % 
panel density. While studies in Europe revealed that such higher den-
sities reduced the yields of most crops [39], in those locations solar 
insolation is lower than in semi-arid tropical locations with high solar 
insolation, such as at SAT and LAS [9], and thus likely more of a limiting 
factor for most crops. Conversely, given the high solar insolation in East 
Africa, water loss is a greater challenge for many farmers, and shade 
netting is already used to alleviate heat and water loss stresses [37–39]; 
thus, a higher panel density was selected under the assumption that the 
greater partial shading would reduce water loss while permitting suffi-
cient sunlight to reach the underlying crops. The arrays are oriented on a 
north-south axis to improve diurnal distribution of sunlight over the 
underlying crops; if the panels were oriented on an east-west axis, 
typical for conventional solar parks, then the crops directly underneath 
the panels would primarily be in the shade, while those directly under 
the gaps between the panels would primarily be unshaded.

A rainwater harvesting system with guttering at the lower edges of 

the PV panels channels rainwater and panel cleaning water runoff into 
10,000 L storage tanks, supplementing the existing centralised irrigation 
systems during periods of water scarcity. Open-field control plots of the 
same dimensions were established adjacent to the agrivoltaic systems, 
separated by a 2.5 m gap.

2.3. Agricultural experiments

The crops studied were selected by the farming managers and tech-
nicians at each study site based on the relevance of the crops to their 
local agronomic systems. Table 1 lists each crop type that was studied, 
along with the dates for the period that they were grown and the mea-
surements taken from them during those periods.

At SAT weeding was conducted manually, and biofertilisers and 
biopesticides were applied by the farming technicians. The mixture of 
bokashi and compost was used before transplanting, and super magro 
was used as a liquid soil booster. Neem extracts and apichi were used to 
control crickets and grasshoppers immediately after transplanting. Bi-
carbonate of soda was used to control powdery mildew on spinach and 
leaf spots on sweet pepper. The compositions, quantities and application 

Fig. 1. Aerial photos of the two agrivoltaic systems. A) The 36.6 kWp off-grid 
system at Sustainable Agriculture Tanzania (SAT), illustrating the nested 
experimental design with each of the agrivoltaic and control plots split into 
three replicate blocks. Each replicate block contains eight growing beds with 
four rows of crops. B) The 62.1 kWp system grid-tie system at Latia Agribusiness 
Solutions (LAS), Kenya, comprising 12 growing beds running the length of the 
plot. Guttering at the lower edges of the panels channels water run-off into the 
rainwater harvesting tanks, which can supplement the centralised irrigation 
systems. Photo credits: Chloride Exide Ltd.
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of the biofertilisers and pesticides are listed in Table 2.
The yields, morphological traits and market values of onion, sweet 

pepper, Swiss chard, beans, maize, eggplant and kale were studied over 
three growing seasons at SAT. The agrivoltaic and control experiment 
plots were split into three 11 × 13 m blocks, with eight 10 m long 
growing beds per block. Each bed contained four rows of crops, each row 
containing one crop type, and crop row planting was randomised across 
all the beds. Control beds 7–8 were not planted during the first growing 
season and the control plant numbers were standardised to the agri-
voltaic plot size to account for the reduced control plot size. The sale 
values of the produce were provided by the SAT finance office.

Data were collected from every plant at either the plant level or the 
bed level. Four soil moisture samples were recorded using soil moisture 
probes at random locations in every bed immediately after irrigation in 
the morning and again at 16:00 in the afternoon, biweekly between 7 
Feb - March 21, 2023. In the agrivoltaic plot the soil moisture content 
was recorded directly underneath the PV panels and underneath the 
gaps between the panels. Photosynthetically active radiation (PAR) was 
recorded using a PAR meter at five random locations in the control plot, 
underneath the PV panels, and underneath the gaps between the panels 
in the morning, at midday and in the afternoon between 11–20 March 
2023, excluding the 12 and 19 March. Direct PAR values in the maize 
crop were reduced by shading from the foliage in both plots, though 
clear differences between the treatments were still detected.

At LAS, Wuxal foliar NPK fertilisers and pesticides (Actara, Belt 
480SC, Escort, Luna Sensation, Oshothane, Pentagon 50 EC (Lambda 
cyhalothrin), Thunder 145 OD) were applied as per LAS’ crop man-
agement strategy. Growth and yield parameters for cabbages, onions, 

coriander and kale were measured between May and August 2023. Eight 
2 × 2 m blocks were randomly selected from each plot, excluding the 
edges, and five plants (in the first growing season) or three plants (in the 
second growing season) were randomly selected from these blocks for 
measurement. Photosynthetically active radiation was recorded in the 
control plot, under a solar panel and under a gap between the solar 
panels every 5 min using PAR sensors (HOBO RXW-LIA-868; Onset, 
Massachusetts, US).

At both sites, each plot was irrigated for a period of 1 h per experi-
mental block when the top 5 cm of soil was observed as dry by the field 
technicians. Irrigation quantity was recorded via analogue water meters. 
Total yields were measured using mechanical scales, while plant-specific 
weights such as fruit or leaf weights were recorded using digital scales.

2.4. Electricity recording and PV modelling

Electricity generation data at SAT were recorded online via the 
Fronius inverter web app (Fronius International, Wels, Austria), while 
the sources of consumption (direct PV vs battery supply) were recorded 
online via the Victron Energy portal (Victron Energy B.V., Almere, The 
Netherlands). Electricity generation and consumption (direct PV vs. grid 
consumption) data at LAS were recorded online via the Fronius inverter 
web app. The potential PV performance of each system was estimated 
using the European Commission’s international PVGIS (v5.2) PV per-
formance tool, assuming a 14 % system performance loss over a 20 year 
operating period [40].

Table 1 
Crops studied and parameters recorded at the two sites. An asterisk (*) denotes crops harvested throughout the harvest period. Crops without an asterisk were 
harvested in one harvest. AV = Agrivoltaics; C = Control.

Date Crop Total plant 
count

Plants 
sampled

Sampling resolution Parameters recorded

Sustainable Agriculture Tanzania
2 Jun - 6 Oct 2022 Onion (Allium cepa, var. red creole) AV: 13,056 N/A Bed Total yield and value

C: 9272
2 Jun - 31 Oct 

2022
Sweet pepper (Capsicum annum, var. 
yolo wonder)*

AV: 699 AV: 699 Plant Total yield and values; number of fruiting plants; number 
of fruits per plant; fruit weight per plantC: 562 C: 562

2 Jun - 6 Oct 2022 Swiss chard (Beta vulgaris, var. 
fordhook giant)*

AV: 756 
C: 526

1st harvest: Leaf Total yield and value; leaf length, width and weight
AV-panel: 
96
AV-gap: 94
C: 93
2nd 
harvest:
AV-panel: 
150
AV-gap: 
115
C: 113

16 Dec 2022–29 
Mar 2023

Beans (Phaseolus vulgaris, bush type) AV: 3053 AV: 50 pods Plant Total yield and values; germination and survival rate; pod 
length and weightC: 2964 C: 50 pods

16 Dec 2022–29 
Mar 2023

Maize (Zea mays, landrace yellow 
type)

AV: 1586 AV: 691 
cobs

Plant Total yield and values; germination and survival rate; cob 
length and weight

C: 1572 C: 708 cobs
16 Jun - 26 Sep 

2023
Eggplant (Solanum melongena, var. 
black beauty)*

AV: 677 AV: 677 Plant Total yield and values; fruit count; fruit weight per plant
C: 672 C: 672

16 Jun - 1 Sep 
2023

Kale (Brassica oleraceae, var. collard 
sukuma)*

AV: 1090 AV: 1090 Plant Total yield and values; leaf count; plant yield
C: 1073 C: 1073

16 Jun - 5 Oct 
2023

Onion (A. cepa, var. red creole) AV: ~10,080 
C: ~10,080

N/A Bed Total yield and values;

Latia Agribusiness Solutions
27 Jan–Apr 2023 Cabbage (Brassica oleraceae, var. 

Kiboko F1)
AV: 24 AV: 24 Plant Weight and diameter
C: 24 C: 24

28 Jan–Apr 2023 Onion (Allium cepa, var. red pinoi) AV: 24 AV: 24 Plant Weight and diameter
C: 24 C: 24

22 July – 24 Aug 
2023

Coriander (Coriandrum sativum, var. 
American longstanding)

AV: 24 AV: 24 Plant (height) and 
block (yield)

Plant height and yield
C: 24 C: 24

8 Jul – 26 Aug 
2023

Kale (B. oleraceae, var. Ahadi F1) AV: 24 AV: 24 Plant Plant height; leaf length and width
C: 24 C: 24
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2.5. Data analysis

Data were analysed with R (v4.1.2) using the lme4 (v1.1.34) pack-
age. Yield data from SAT were standardised to t/ha and differences in 
yields between the agrivoltaic and the control plots were compared. A 
linear mixed-effects model (LMM) was fitted using the lme4 package to 
test for significant effects of the agrivoltaic system on the measurement 
parameters (i.e. the yields and morphological traits). The LMM 
comprised two sub-models: a full model and a reduced model. The full 
model tested the effects of the independent variable (i.e. the agrivoltaic 
treatment) and random variables (e.g. the blocks, beds, and, depending 
on the crop, the individual plant), while the reduced model tested only 
the effects of the random variables. A likelihood ratio test determined 
the significance of effects of the agrivoltaic system on the measurement 
parameters by performing ANOVAs between the full model (i.e. with the 
fixed variable) and the reduced model (i.e. without the fixed variable). 
Where data were not collected on the random variables, such as for the 
bean pod morphology at SAT, significant differences between the 
treatments were assessed using Mann-Whitney or Kruskal-Wallis tests. 
All p values were corrected for multiple comparison false discoveries 
using the Benjamini-Hochberg method, and null hypotheses of no sig-
nificant differences between assessed groups were rejected if the cor-
rected p values were less than 0.05. Unless stated otherwise, percentages 

are reported as the difference in the agrivoltaic plot compared to the 
control plot.

Crop yield:water input ratios at SAT were calculated as a function of 
the amount of irrigation from both the centralised irrigation system and 
the rainwater harvesting system applied to each bed, and the amount of 
precipitation recorded with the site’s HOBO weather station. Precipi-
tation quantities were halved for the agrivoltaic plot to account for the 
50 % panel density, with the panel runoff accounted for in the harvested 
rainwater use.

The land use equivalent ratio (LER) was calculated to compare the 
combined crop and electricity land use productivity from the SAT 
agrivoltaic plot with equivalent sole use agriculture or sole use energy 
plots (Equation (1)). The difference between the panel coverage density 
of the agrivoltaic system (50 %) at either SAT or LAS and of a conven-
tional ground mounted solar park (~66 %) at Garissa in northeast Kenya 
was used as a proxy for the difference in electricity generation. 

LER=
Yai
Yci

+
Da
Dc (1) 

The land equivalent ratio (LER) is calculated for each crop by 
combining the difference between the yields from the agrivoltaics plot 
(Ya) and the yields from the control plot (Yc) with the difference be-
tween the agrivoltaic plot panel density (Da) and a conventional ground- 
mounted solar park panel density (Dc).

3. Results

3.1. Crop performance – sustainable agriculture Tanzania

Performance varied between the crops, with some producing greater 
yields under the agrivoltaic system while others had similar or lower 
yields. At Sustainable Agriculture Tanzania (SAT), beans and Swiss 
chard had significantly greater yields under the agrivoltaic system, 
while onions (the 2022 crop), sweet peppers and eggplants had signif-
icantly lower yields. Despite the yield reductions in the latter crops, 
these generated the largest incomes in absolute terms, highlighting that 
yield changes alone do not represent the full impact of agrivoltaics on 
livelihoods. Beans had a substantial increase in yield under the agri-
voltaic system, reflecting improved plant survival compared with the 
control plot. Further, the bean pods were longer and heavier than those 
from the control plot, and the SAT farming technicians stated that such 
beans are more desirable at the point of sale. The maize, grown during 
the same period, also had greater survival; this maintained the same 
overall yield as the control plot, despite cobs being shorter and lighter 
under the agrivoltaic system. The increase in Swiss chard yield under the 
agrivoltaic system reflected the larger and heavier leaves of plants 
grown there compared to those grown in the control plot. Fig. 2 shows 
the yields and sale values of the crops studied at SAT. Figs. 3 and 4 show 
the plant survival rate and pod/cob morphology for beans and maize, 
respectively. Fig. 5 shows the Swiss chard leaf morphology results.

While the sweet pepper yields per fruiting plant were not signifi-
cantly different between the plots (control: 109.1 ± 0.8 g, agrivoltaics: 
108.0 ± 0.8), the fruiting rates were 30.9 % lower under the agrivoltaic 
system (p < 0.001), resulting in an overall lower yield. In eggplants, 
overall yield was lower in the agrivoltaic plot, as were fruiting rate 
(−31.8 %, p < 0.001) and yield per plant (−17.5 %, p = 0.002).

3.2. Crop performance – Latia Agribusiness Solutions

Similar to the Swiss chard at SAT, the kale leaves at Latia Agribusi-
ness Solutions (LAS), Kenya, were heavier and wider, and the plants 
taller in the agrivoltaic plot compared with the control. There was no 
significant difference between the kale plants growing directly under-
neath a solar panel and underneath a gap between the panels. Coriander 
was also taller on the agrivoltaic plot, with no difference between 
whether the plant was under a panel or under a gap between panels; 

Table 2 
Biofertiliser and biopesticide inputs at SAT. The compositions, quantities and 
application of biofertilisers and biopesticides at SAT.

Input Composition Quantity per 
plot per 
growing 
season

Application

Biofertilisers
Compost Ash, cow dung, 

Gliricidia plant, 
dried glasses.

1440 kg Applied at the start of 
each growing season.

Bokashi Rice husk, charcoal, 
molasses, cow 
dung, maize bran, 
soil

250 kg Applied in the first 
growing season only.

Super magro Cow dung, water, 
milk, molasses, 
yeast, ash,

550 L dilution 1:11 dilution with water. 
Applied five times per 
growing season: once 
during the first month 
then twice per month 
thereafter due to 
flowering or harvesting 
stages.

Biopesticides
Apichi Chilli pepper, 

ginger, garlic and 
vinegar

50 L 1:11 dilution with water. 
Applied in the first 
growing season only, 
twice a week for the first 
three weeks due to 
cricket and grasshopper 
infestations.

Neem extract Grounded neem 
mixed with chilli

120 L 3 kg of grounded neem 
and 1 kg of grounded 
chilli mixed in 20 L of 
water. Applied in the first 
growing season only, 
twice a week for the first 
three weeks due to 
cricket and grasshopper 
infestations.

Bicarbonate 
of soda

Bicarbonate of soda 1 kg 200 g diluted in 20 L of 
water. 
Applied in the first and 
third growing seasons 
only, five times per 
growing season. 
Application depended on 
the intensity of infection.
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however, the plants under a gap produced a similar weight yield to those 
in the control plot, while those directly under a panel produced a 
significantly higher yield. In contrast, onions were smaller and lighter in 
the agrivoltaic plot than the control plot, and there was no significant 
difference in the agrivoltaic plots between those grown under a panel 
and those under a gap between the panels. Cabbages displayed similar 
trends to the onions, with smaller and lighter crops under the solar 
panels compared with the control, although crops grown under a gap 
between the panels were not significantly different from either the 
control plot or those grown directly under a panel. Fig. 6 shows the 

cabbage, coriander, kale and onion yields recorded at LAS, and Fig. 7
shows the morphologies of the harvested produce.

3.3. Environmental parameters, irrigation and crop yields:water input

Photosynthetically active radiation (PAR) was significantly lower 
under the agrivoltaic plot compared with the control plot at SAT, 
especially directly underneath the PV panels; here it was 77.5 % lower 
than the control during midday during the March 2023 recording 
period. There were similar patterns in PAR at LAS. The PAR observations 

Fig. 2. Crop yields and values. Mean standardised crop yields and sale values from the eight crops studied at SAT. Error bars represent standard errors, p values were 
calculated with the LMM, asterisks denote statistical significance (NS = not significant, *p < 0.05, ***p < 0.001), a 

= 2022 growing season, b 
= 2023 growing season, 

and sale values are in k$ USD per ha.

Fig. 3. Bean survival rate and pod morphology. a) The mean number of bean plants that were planted, that germinated, and that reached maturity during the Nov 
2022–Jan 2023 growing season. Error bars represent standard errors. The percentage of the planted crop lost to mortality is shown. b) and c) The median and 
interquartile ranges of bean pod length (b) and weight (c) from beans grown in the control plot (n = 50) and in the agrivoltaic plot (n = 50) at SAT. P values were 
calculated with Wilcoxon tests, and asterisks denote statistical significance (*p < 0.05).
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for SAT and LAS are displayed in Fig. 8.
Reflecting the reduced direct solar radiation and associated evapo-

rative water loss, soil moisture content was higher under the agrivoltaic 
system at SAT, more so directly under the panels (control plot: 21.33 ±
0.16 %; under gaps between PV panels: 30.64 ± 0.32 %; under panels: 
37.83 ± 0.44 %). This resulted in a 12.6 % reduction in total irrigation 
use (Control: 1057 L/m2; Agrivoltaics: 925 L/m2). The rainwater har-
vesting system contributed 12.7 % (20 L/m2) of irrigation used for the 
agrivoltaics plot during the second growing season, reducing the overall 
demand on SAT’s centralised irrigation system by 14.4 % for the dura-
tion of the experiment (Control: 1057 L/m2; Agrivoltaics: 905 L/m2). 
This was most prominent during the first growing season, which saw a 
21.7 % reduction in irrigation use, followed by a 7.6 % and a 6.1 % 
reduction in the second and third growing seasons, respectively. The 
cumulative irrigation consumption from the site’s centralised irrigation 
source is displayed in Fig. 9, which is also annotated to indicate the three 
growing seasons.

Beans and Swiss chard produced significantly greater yields under 
the agrivoltaic system while simultaneously requiring significantly less 
water. Maize and the 2022 crop of onions had no significant differences 
in the yields, but they were grown with significantly less water per kg 
output. Only the eggplant crop received significantly more water per kg 
output. The crop yields per water input are displayed in Fig. 10.

3.4. Electricity generation

The off-grid agrivoltaic system at SAT generated 12.55 MWh/year to 
meet the consumption demand between June 2022 and May 2023, 
inclusively. The equivalent cost to purchase this electricity from the 
Tanzanian national grid would be 2.97 MTsh/year ($12,686 USD/year), 
based on 236.37 Tsh/kWh (0.101 USD/kWh) as of Aug 2023 (SAT 
electricity bills). As a new electrification initiative for this site, it is not 
yet used to its full capacity. The PVGIS tool [40] estimates that the 
system could provide up to 4.38 MWh/m, worth 12.42 MTsh/year 
($5310 USD/year).

Latia Agribusiness Solutions consumed 54.31 MWh/year of elec-
tricity between June 2022 and May 2023, inclusively, from both the 
national grid supply and the agrivoltaic system. The monthly con-
sumption, displayed in Fig. 11, ranged from 2.52 to 6.06 MWh/m. The 
agrivoltaic system generated 30.13 MWh/year (min 1.62 – max 3.40 
MWh), which is 56 % of the total electricity consumed. Based on the 
mean electricity price of 30.0 KES/kWh (0.19 $/kWh USD) between 
Jan–July 2023 (LAS electricity bills), the agrivoltaic system is saving the 
farm approximately 903,900 KES ($5725 USD) annually. Fully utilised, 
this system could generate up to 96.9 MWh/year worth 2.9 MKES/year 
($18,461 USD/year).

Fig. 4. Maize survival rate and cob morphology. a) The mean number of maize plants that were planted, that germinated, and that reached maturity during the Nov 
2022–Jan 2023 growing season. Error bars represent standard errors. The percentage of the planted crop lost to mortality is shown. b) and c) The median and 
interquartile ranges of maize cob length (b) and weight (c) from maize grown in the control plot (n = 708) and in the agrivoltaic plot (n = 691) at SAT. P values were 
calculated with the LMM, and asterisks denote statistical significance (***p < 0.001).

Fig. 5. Swiss chard leaf morphology. The median and interquartile ranges of leaf length, width and weight from Swiss chard grown in the control plot (n = 206) and 
in the agrivoltaic plot under a gap between solar panels (AV-gap, n = 209) and directly underneath a solar panel (AV-panel, n = 246) at SAT. P values were calculated 
with the LMM, and asterisks denote statistical significance (**p < 0.01, ***p < 0.001).
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3.5. Land productivity

Combining the different crop yield results with the reduction in 
panel density - and hence potential electricity generation over conven-
tional solar - reveals that land productivity for food and energy com-
bined, measured as the land equivalent ratio (LER), increases in all crop 
scenarios, even when crop productivity was reduced. The LERs for each 
crop are displayed in Fig. 12, and the mean LERs across all the growing 
seasons were 1.88 at SAT and 1.77 at LAS.

4. Discussion

4.1. Crop performance

This study demonstrates the extent to which agrivoltaic systems can 
deliver food production, electricity generation and water conservation 
concomitantly in East Africa, providing evidence for the benefits of this 
technology in this region, and potentially for other semi-arid locations 
globally. Generally, yields increased in leafy vegetables or drought 
sensitive crops (e.g. beans), and decreased for shade intolerant species 
such as those in the Solanaceae family. The crops tested are all region-
ally important, contributing to nutritious diets e.g. beans and leafy 
greens, and/or providing a staple food source and income for farmers e. 
g. maize and onions. Maize, for example, is grown on ca. 25 % of 
farmland in Tanzania [41] and 80 % of production is grown by small-
holder farmers for food and for sale [42]. Maize, a C4 plant, is generally 
shade intolerant [43], and agrivoltaic studies in France observed lower 
yields [44]. The lack of such a decrease in this study was therefore 
surprising, especially considering the yield was 11.8 % higher under the 
agrivoltaic system and 2.7 times higher than the average for the region 
[45]. Maize grown under agroforestry systems in the region also pro-
duced higher yields [46], and while agrivoltaics does not benefit soil 
fertility as agroforestry does, the partial shading influences evapo-
transpiration in a similar way. These results demonstrate the potential 

for agrivoltaics to reduce physiological stress in maize under future 
climate change scenarios [47,48].

The positive yield results for Swiss chard have promising implica-
tions for growing nutritious crops with agrivoltaics. The control plot was 
sufficiently irrigated, with yields comparable to those in a rainfed study 
in South Africa [49], so drought stress does not explain the lower yields 
compared to the agrivoltaic plot. Instead, the partial panel cover is 
potentially creating a more suitable growing environment by protecting 
the crops from heat stress and/or UV damage. More comprehensive 
microclimate monitoring together with plant physiological data is 
needed to identify the mechanisms underpinning the benefits of growing 
beneath PV panels. For example, research in a semi-arid region of the 
USA found that tomato and jalapeno water use efficiencies increased 
under agrivoltaics [29]. Shade netting and shade trees are already used 
in East Africa to protect some crops from excessive light, associated 
radiation damage and temperature stress [50–52], and the results from 
this study show that partial shading from PV panels can also reduce 
plant losses. At SAT beans are typically grown in cooler periods but were 
trialled in a warmer period to assess if this was possible under the 
agrivoltaic shading. Although the yields under the panels were more 
than four times lower than the expected yield for Tanzania [45], the 
situation was significantly worse for the control plot yields, which were 
an order of magnitude lower than typical and where the beans had 
higher mortality. Agrivoltaic systems may therefore provide improved 
resilience to the yield-reducing temperature rises forecast under climate 
change [20,47,48].

Only eggplants had a yield more than a third lower than the control, 
although both plots were within the expected range for yields in 
Tanzania [53]. Similar yield reductions were observed for eggplants 
under agroforestry systems in West Africa [54], suggesting partial 
shading inhibits eggplant fruit production. While eggplants, onions (in 
2022) and sweet peppers had lower yields in the agrivoltaic plots 
compared to the control plot, these were still the highest value crops, 
generating the greatest incomes for the farm regardless of the plot 

Fig. 6. Cabbage, coriander, kale and onion yields. The median and interquartile ranges of cabbage, coriander, kale and onion yields grown in the control plot and in 
the agrivoltaic plot under a gap between the solar panels (AV-gap) and directly underneath a solar panel (AV-panel) at LAS (n = 24 for each crop and treatment). P 
values were calculated with the LMM, and asterisks denote statistical significance (NS = not significant, *p < 0.05, **p < 0.01, ***p < 0.001).
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treatment. Growing these crops under agrivoltaics could therefore still 
be economically viable because of the high value per kg of produce.

The farming technicians at LAS noted that the kales were “greener 
with more vigour”, an observation mirrored for Swiss chard at SAT; the 
fuller and greener appearance of the Swiss chard, and the longer bean 
stems, were more attractive for sale, indicating that agrivoltaics could 
improve marketability of crops as well as overall yields.

The variations observed for the same crops grown between different 
seasons, between similar crops grown at the two sites during the same 
time of year, and between different crop types, all support the obser-
vation from much research on agrivoltaics that crop yields under these 
systems vary depending on the crop type, system design, local envi-
ronmental context, and seasonal variations in climate (see Refs. [35,36,
55,56] for reviews and examples). Further studies are needed in East 
Africa if the findings are to support this goal: much of the published 
research on agrivoltaics is from temperate regions with lower levels of 
solar radiation and evaporative water loss. For example, a recent 
meta-analysis of studies in temperate regions found that panel densities 
correlated negatively with crop productivity [39], whereas this study 
reveals that a relatively high panel density can result in significant yield 
improvements in the environmental conditions of East Africa.

4.2. Water conservation and rainwater harvesting

Some crops produced more food using less water, valuable in a re-
gion where water scarcity threatens food security, most farmers rely on 
rainfall for their crops, and climate change is likely to make rainfall less 
predictable [57]. Swiss chard grown during a dry period had the second 
greatest increase in yield:water ratio, indicating the potential of agri-
voltaics to support otherwise drought-sensitive leafy greens. The re-
ductions in irrigation demand under the agrivoltaic system means more 
water is available for other uses and can be stored for use during periods 
of drought. The 10,000 L rainwater harvesting tank at SAT filled up with 
just a few days of heavy rainfall and provided up to eight days of 
additional irrigation, which could be sufficient to prevent livelihood 
losses through a crop failing to reach maturity. Long-term storage of 
water will be particularly susceptible to evaporation, although this will 
be minimised with covered systems like the water tanks used in this 
study, which are commonly available across the region. Combined with 
the improved survival rates observed, these findings have promising 
implications for climate change resilience offered by agrivoltaic systems 
that incorporate rainwater harvesting.

Fig. 7. Cabbage, coriander, kale and onion morphologies. The median and interquartile ranges of morphological results for cabbages, coriander, kale and onions 
grown in the control plot and in the agrivoltaic plot under a gap between the solar panels (AV-gap) and directly underneath a solar panel (AV-panel) at LAS (n = 24 
for each crop and treatment). P values were calculated with the LMM, and asterisks denote statistical significance (NS = not significant, *p < 0.05, **p < 0.01, ***p 
< 0.001).
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4.3. Energy potential

At SAT, the off-grid system has been used to enhance the capabilities 
of the Farmer Training Centre by powering charging points for students’ 

devices, lighting for evening studying and activities, and fridges to store 
food and drinks. As the off-grid site did not previously have such a 
supply capacity, demand has increased as the training centre has taken 
advantage of the new source of power, and SAT now plans to replace 
polluting and expensive diesel generators with electric connections. This 
progressive connection of electrical devices which is below the system’s 
capacity partly explains the underutilisation of the system compared to 
the modelled theoretical maximum. The system has remaining capacity 
for connection of additional devices, which SAT plans to do once the 
cable infrastructure is expanded to the farther farm buildings housing 
the higher load machinery. The size and capacity of the agrivoltaic 
demonstrator is appropriate for the scale of PV mini-grid implementa-
tion for rural electrification in sub-Saharan Africa, powering small- 
medium agribusinesses or a village of ~500 people (based on the 
trend of electricity demand per capita in Tanzania [58]). This experi-
ment therefore represents a real-world application of agrivoltaics. The 
grid-tie system at LAS has reduced the agribusiness’ operating costs, 
thus redistributing money for enhancing the training facilities. The 
system is not fully utilised as some consumption occurs outside of 
daylight hours, relying on the grid supply. Further, consumption during 
cloudy periods may be greater than the effect of clouds on surface 
insolation used in the PVGIS model. This explains why the system only 
provides 58 % of the site’s consumption, despite having the capacity to 
provide it all. Adding battery storage will maximise the use of the 
generated electricity and avoid curtailing excessive generation during 
peak sun and minimising grid requirements during nighttime or low 
levels of insolation. Like most PV technologies, agrivoltaics is modular 
and easily scalable to achieve higher capacities where required.

4.4. Land use

Combining the crop yields with electricity generation potential, 
agrivoltaics land productivity was higher than the land use with either 
energy or agriculture alone, in every growing season and at both sites. 
This echoes the LER models in France [59], Germany [33], India [60], 
Italy [61] and Spain [62], which found similar, but slightly lower, LER 
ranges. Notably, the high LERs in this East African study were greater 
than those reported previously, mainly due to the substantial yield in-
creases observed. Furthermore, they were very similar at both sites, 
despite differences in the crops grown and the local conditions. This 
indicates that agrivoltaics can address land use conflicts in East Africa 
(see Ref. [63]). Detailed economic analyses, such as those that build on 
levelised cost of energy (LCOE) methods [64] and account for agricul-
tural outputs and operating costs, will extend this assessment of the 
multifunctional value of agrivoltaics.

4.5. Limitations

The conclusions presented in this study reflect the specific locations, 
crops, timescales and experimental designs of the study. The study 
tested the performance of an off-grid and a grid-tie agrivoltaic system 
with 50 % panel density at two semi-arid locations in East Africa using 
nine different crops over three growing periods. This provides valuable 
insights regarding the performance of agrivoltaics in this region, but the 
results for other crops may be different, especially for shade intolerant 
crops where growth under panels could lower yields. Further, electricity 
generation, crop performance and water conservation will likely vary in 
other climatic zones. For example, in more arid regions the benefits for 
crop yields and water conservation may be greater as evapotranspiration 
rates and heat stress will typically be higher, and thus the partial shading 
could better protect plants from such stresses, as long as water supply is 
sufficient to enable agriculture in these regions. Conversely, in humid 

Fig. 8. Photosynthetically active radiation (PAR). a) SAT: Mean PAR recorded 
in the control plot, underneath a gap between the agrivoltaic solar panels (AV- 
gap) and directly underneath a solar panel (AV-panel), at approximately 08:00 
in the morning, midday, and 16:00 in the afternoon. Error bars represent 
standard error, and p values were calculated with the LLM, testing for the ef-
fects of the treatments on the model for each time point. Asterisks denote sta-
tistical significance (***p < 0.001). All LLM post-hoc test p values were <0.05. 
b) LAS: Mean daytime PAR, recorded every 5 min between April and July 2023 
in the control plot, underneath a gap between the agrivoltaic solar panels (AV- 
gap) and directly underneath a solar panel (AV-panel). Shaded areas represent 
standard error.

Fig. 9. Irrigation consumption. The cumulative centralised irrigation con-
sumption by the control and the agrivoltaic plots at SAT for the duration of the 
experiment. The rainwater harvesting system contributed a further 20 L/m2 to 
the agrivoltaic plot during the second growing season.
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and cloudy regions the PV performance may be lower, and panel den-
sities may need to be decreased to improve direct PAR levels reaching 
the underlying crops. Enhancing the predictability of outputs from 
agrivoltaic systems through more replicated studies across multiple 
sites, seasons, system designs (especially panel densities) and crop types 
(including for mechanised agriculture) will improve confidence in the 
ability to deliver enhanced food, energy and water security, and 
potentially support increased deployment across different climatic zones 
in East Africa.

4.6. Supporting agrivoltaics for sustainable development in East Africa

This study demonstrates the application of agrivoltaics for off-grid 
and grid-tied agribusinesses. With the potential for local and decen-
tralised electricity generation, grid-tie opportunities and scalable de-
signs, agrivoltaics could also have a range of other applications in East 
Africa. For example, off-grid agricultural communities seeking electri-
fication could develop PV mini-grids as agrivoltaic systems, potentially 
supported by government initiatives [14]. This would avoid either 
losing existing farmland to conventional mini-grids, or seeking alter-
native land further from settlements for PV development - which would 
increase transmission costs and raise other land use conflicts [1]. 
Grid-tie systems for government and civil society organisations with 
farming activities and seeking self-sustainable energy solutions could 
also be developed as agrivoltaics, adding local electricity generation 
while supporting agriculture. As a scalable technology [65], PV in the 
form of agrivoltaics could be developed at both small and large scales, 
although the economic viability must be determined. Innovative busi-
ness models to determine the financial viability of this technology will 
be needed if solar developers, agricultural communities and agribusi-
nesses are to capitalise on the opportunity to deliver low carbon elec-
tricity integrated with agricultural services – particularly in the context 
of improving energy access for rural communities currently lacking grid 
connection [66]. Solar PV offers energy price stability, averting the 
challenge of fluctuating grid-supplied electricity prices or fuel prices for 
diesel generators. Despite this, high upfront costs and access to finance 
form a major barrier for developing solar energy solutions in the region 
[37,67]. Improved and diversified incomes offered by agrivoltaics, 
particularly with the sale of high value crops, could help secure finance 
to cover these costs: a cost-benefit analysis of a similar agrivoltaic 

Fig. 10. Crop yields and water input. The mean crop yields as a function of the amount of irrigation, rainwater harvesting and precipitation input. Error bars 
represent standard errors, p values were calculated with the LMM, asterisks denote statistical significance (NS = not significant, *p < 0.05, ***p < 0.001), a 

= 2022 
growing season, and b 

= 2023 growing season.

Fig. 11. Electricity consumption at LAS. The monthly electricity consumption 
from the grid-tied agrivoltaic system and the national grid at LAS.
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system design in India estimated a payback period of just under eight 
years [68]. Business models utilised for conventional PV in East Africa 
[69] are a potential starting point for creating agrivoltaic business 
models, so could provide a basis for solar developers to explore new 
markets with farming communities and agribusiness. Studying the 
economics of agrivoltaics combined with different agricultural contexts, 
e.g. staple crops, high value crops and livestock, will identify where the 
greatest livelihood benefits can be achieved and how best to realise 
them.

The Africa Renewable Energy Initiative aims to triple the current 
installed renewable energy capacity to 300 GW by 2030 [70,71], while 
the Comprehensive Africa Agriculture Development Programme seeks 
more than 6 % annual growth in agricultural GDP to achieve food se-
curity and economic development [72]. Agrivoltaics could progress both 
these goals. As a multifunctional land use spanning two distinct sectors - 
energy and agriculture - development policy reform may be necessary to 
enable such co-uses of land [73–76].

East African nations also have significant ambitions to meet the 
targets of the UN Sustainable Development Goals, but a recent UN report 
[77] highlights that progress has been uneven, with significant differ-
ences among sub regions, countries, and rural and urban areas. The 
findings here suggest agrivoltaic systems could be a way to address 
multiple SDGs simultaneously and on the same land area. For example, 
with appropriate design and crop selection, agrivoltaics could support 
progress towards SDG 2 – Zero Hunger, specifically targets 2.1, 2.3 and 
2.4 [78], by improving yields of – and thus access to – nutritious crops 
and enhancing resilience to climate change challenges for crop pro-
duction, such as high temperature stress and more unpredictable rain-
fall. Reducing susceptibility to climate change-induced droughts by 
reducing water loss also advances progress towards SDG 13 – Climate 
Action target 13.1, whilst the energy produced from agrivoltaic systems 
clearly addresses SDG 7 – Affordable and Clean Energy targets 7.1 and 

7.2 [78] by advancing low carbon, sustainable electrification for rural 
agricultural communities.

5. Conclusion

This study provides a multi-site, multi-season, and multi-crop 
assessment of agrivoltaics in a tropical semi-arid region, informing 
how the development of on- and off-grid PV infrastructure can address 
the food-energy-water nexus in East Africa, and potentially other semi- 
arid locations. Several crop yields either increased or were maintained 
under agrivoltaics, while those that had lower yields still generated 
economic returns expected for the region. The benefits for energy se-
curity were clear, as were those for water security: the results show a 
clear reduction in evaporative water loss and irrigation demand – a 
critical issue for farmers facing unpredictable rainfall and water scarcity 
under future climates.

These results contrast with those found from existing agrivoltaics 
research in temperate regions, highlighting that agrivoltaic systems 
must be based on locally relevant assessments, rather than transferred 
from existing regions where the contexts and environmental conditions 
differ. With the potential for generating low-carbon, off-grid electricity 
concomitantly with food production, water conservation and better 
resilience to climate change, agrivoltaics could address multiple Sus-
tainable Development Goals simultaneously. This technology could 
therefore offer significant benefits to governments and decision-makers 
seeking to optimise development investments for maximum impact.
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Fig. 12. Land productivity. The land equivalent ratios (LERs) of the agrivoltaic 
crop yields relative to the control yields, combined with the difference in 
electricity generation potential between the agrivoltaic system and a reference 
ground mounted solar park at Garissa. This relative energy productivity was 
calculated as 0.76, based on the difference in panel density between the agri-
voltaic systems and Garissa solar park. S 

= Sustainable Agriculture Tanzania, L 

= Latia Agribusiness Solutions, a 
= 2022 growing season, and b 

= 2023 growing 
season. The horizontal black line signifies an LER of 1, where land productivity 
is equal to single use for energy or agriculture.
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[26] Afpa Faria, Maia ASC, Moura GAB, Fonsêca VFC, Nascimento ST, Milan HFM, et al. 
Use of solar panels for shade for holstein heifers. Animals 2023;13:329. https:// 
doi.org/10.3390/ani13030329.

[27] Andrew AC, Higgins CW, Smallman MA, Graham M, Ates S. Herbage yield, lamb 
growth and foraging behavior in agrivoltaic production system. Front Sustain Food 
Syst 2021;5.

[28] Handler R, Pearce JM. Greener sheep: life cycle analysis of integrated sheep 
agrivoltaic systems. Clean Energy Syst 2022;3:100036. https://doi.org/10.1016/j. 
cles.2022.100036.

[29] Barron-Gafford GA, Pavao-Zuckerman MA, Minor RL, Sutter LF, Barnett-Moreno I, 
Blackett DT, et al. Agrivoltaics provide mutual benefits across the 
food–energy–water nexus in drylands. Nat Sustain 2019;2:848–55. https://doi. 
org/10.1038/s41893-019-0364-5.

[30] Marrou H, Wery J, Dufour L, Dupraz C. Productivity and radiation use efficiency of 
lettuces grown in the partial shade of photovoltaic panels. Eur J Agron 2013;44: 
54–66. https://doi.org/10.1016/j.eja.2012.08.003.

[31] Marrou H, Dufour L, Wery J. How does a shelter of solar panels influence water 
flows in a soil–crop system? Eur J Agron 2013;50:38–51. https://doi.org/10.1016/ 
j.eja.2013.05.004.

[32] Malu PR, Sharma US, Pearce JM. Agrivoltaic potential on grape farms in India. 
Sustain Energy Technol Assess 2017;23:104–10. https://doi.org/10.1016/j. 
seta.2017.08.004.

[33] Trommsdorff M, Kang J, Reise C, Schindele S, Bopp G, Ehmann A, et al. Combining 
food and energy production: design of an agrivoltaic system applied in arable and 
vegetable farming in Germany. Renew Sustain Energy Rev 2021;140:110694. 
https://doi.org/10.1016/j.rser.2020.110694.

[34] Touil S, Richa A, Fizir M, Bingwa B. Shading effect of photovoltaic panels on 
horticulture crops production: a mini review. Rev Environ Sci Biotechnol 2021;20: 
281–96. https://doi.org/10.1007/s11157-021-09572-2.

[35] Weselek A, Ehmann A, Zikeli S, Lewandowski I, Schindele S, Högy P. 
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