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Abstract 11 

The dynamics of flow-type landslides, including earthflows and debris flows, is still not fully 12 

understood, primarily due to the complexity of the physical processes that govern the flow and the 13 

challenges in acquiring direct field measurements. In modern monitoring stations, cameras represent 14 

cost-effective data sources, providing essential information for characterising documented 15 

reactivation events. Particle Image Velocimetry (PIV) algorithms have been extensively employed in 16 

the literature to reconstruct velocity fields and rheological behaviour of laboratory physical models 17 

under ideal conditions. However, the resolution of camera footage in the field typically falls short of 18 

being optimal due to lighting and weather conditions, as well as non-zenithal recording geometry, 19 

hindering a straightforward application of PIV. This study presents two primary sets of laboratory 20 

flume tests conducted to explore a broad range of recording conditions, bridging the gap between 21 

ideal laboratory settings and actual field acquisitions. The experiments enabled the evaluation of PIV 22 

performance for each image quality scenario, detailing and quantifying the main uncertainties as well 23 

as their impact on the resulting velocity fields while discussing underlying reasons and mitigation 24 

measures. The experimental results reveal that, with due adjustments, suboptimal-quality footage can 25 

be used to estimate the actual flow velocity field and infer the rheological behaviour of the flow. 26 

Furthermore, distortions related to non-zenithal perspectives can be reliably minimised through 27 

suitable orthorectification algorithms. These findings support the potential for broader application of 28 

the tested PIV-based methodological approach in field scenarios to investigate the dynamics of flow-29 

type landslides. 30 
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1. Introduction 64 

The dynamics and mechanisms underlying the behaviour of flow-type landslides kinematics are still 65 

subject to debate and not fully understood in the literature, encompassing both faster debris flows 66 

(Kaitna et al. 2016; Nagl et al. 2020) and slower earthflows (Picarelli et al. 2005; Carrière et al. 2018;  67 

Berti et al. 2022). This knowledge gap primarily stems from the complexities of the processes and 68 

from the difficulties in acquiring direct field measurements (Hürlimann et al. 2003; McArdell et al. 69 

2007), as well as in replicating these phenomena through representative laboratory-scaled physical 70 

models (Iverson 2015; Turnbull et al. 2015). Modern monitoring stations frequently employ a variety 71 

of sensors to investigate flow dynamics, including geophones (Mainsant 2012; Walter 2017; Coviello 72 

et al. 2019), infrasound sensors (Leng et al. 2017), pore water pressure transducers and load cells 73 

(Hürlimann et al. 2019), typically coupled with video cameras to document the events. Field cameras, 74 

in particular, represent a cost-effective and highly valuable tool for data collection, providing essential 75 

information to characterise captured flow-type landslides. When flow depth is known, surface 76 

velocity observations enable the reconstruction of the transverse distribution of the depth-averaged 77 

shear rate. This, in turn, allows at least a qualitative inference of the rheological properties of the 78 

flow. 79 

Image-based analysis techniques, such as Particle Image Velocimetry (PIV) and Particle Tracking 80 

Velocimetry (PTV), have been extensively reported in the literature to accurately reconstruct internal 81 

and surface deformation and velocity fields, and to investigate the rheological behaviour of physical 82 

models under ideal and controlled laboratory conditions (e.g. GDR MiDi 2004; Faug et al. 2015). 83 

Over the past 30 years, PIV algorithms have also been frequently applied to larger scales, referred to 84 

as Large-Scale Particle Image Velocimetry (LSPIV), particularly in hydraulic applications to analyse 85 

the surface velocity distribution of rivers and evaluate their discharge (e.g. Fujita et al. 1998; Le Coz 86 

et al. 2010; Gunawan et al. 2012; Muste et al. 2014). More recently, LSPIV has also been employed 87 

to estimate the surface velocity of debris flows (e.g. Theule et al. 2018). In particular,  Schöffl et al. 88 

(2023) combined LSPV-derived surface velocity measurements with contextual Pulse-Doppler high-89 

frequency radar observations, while Aaron et al. (2023) and Spielmann & Aaron (2024)  proposed a 90 

novel approach utilising high-frequency 3D LiDAR (Light Detection And Ranging) point clouds as 91 

an alternative to conventional camera recordings for LSPIV analysis. 92 

The determination of the surface velocity distribution through the implementation of these methods 93 

with adequate spatial resolution would allow the assessment of flow boundary conditions. Integrating 94 

information from qualitative observations on the recorded footage and independent morphological 95 

assessments enables inference of the rheological behaviour of the landslide material. However, since 96 

PIV outcomes are highly dependent on input footage quality (Prasad et al. 1992), its transposition to 97 



larger-scale field scenarios and processes is not straightforward. Factors such as adverse weather 98 

conditions or inadequate and inconsistent lighting can significantly impact the quality of the acquired 99 

images. Physical barriers, including fog, dust or raindrops, may distort captured footage by scattering 100 

light or causing uneven focus, resulting in a blurred effect. Furthermore, due to frequently limited 101 

accessibility and difficult setup conditions in the field, cameras are often placed at a non-zenithal 102 

perspective on the channel and non-optimal recording distances. This potentially introduces severe 103 

distortions in the acquired footage, leading to the reconstruction of velocity values and distributions 104 

that are not representative of the flowing landslide mass. Additionally, image quality may be further 105 

impacted by motion blur, which occurs when the frame rate of the installed cameras, especially in the 106 

context of low-cost monitoring stations, is not sufficient to fully capture the movement of the flow. 107 

In this study, two sets of flume experiments were conducted to test the applicability of PIV algorithms 108 

under different input image quality conditions, from ideal laboratory acquisitions to suboptimal 109 

recordings that mimic typical field footage. The main objective is to assess PIV's ability to produce 110 

reliable flow field data using blurred images and non-zenithal recording angles and to identify 111 

uncertainties arising from these suboptimal conditions.  112 

Section 2 outlines the experimental setup and the analysis workflow adopted. Section 3 presents the 113 

main experimental results, while Section 4 explores the main sources of uncertainties in the 114 

techniques employed, considering their application in the field. 115 

 116 

2. Methods 117 

2.1 Experimental setup 118 

Figure 1a schematically illustrates the experimental setup employed in the two sets of landslide flume 119 

experiments, referred to as F1 and F2, conducted at the Department of Civil and Structural 120 

Engineering at the University of Sheffield (Figure 1b) and the British Geological Survey site in 121 

Keyworth (Figure 1c), respectively. Both series of tests focused on observing dry granular flows from 122 

different perspectives as they were gradually released from the flume hopper. The selection of dry 123 

granular materials was driven by the need to design straightforward experimental setups, prioritising 124 

data acquisition and processing over the precise replication of in situ phenomena in terms of material 125 

properties and scaling. Despite the similarity of the processes observed, the recording conditions in 126 

the two sets of experiments, summarised in Table 1, were systematically different, as detailed in the 127 

following sections.  128 

 129 

 130 

 131 



2.1.1 F1 tests 132 

The F1 tests featured recordings from two optimal perspectives utilising a high-performance high-133 

speed camera, sharply capturing dry granular flows of approximately 3.85 mm Denstone® ceramic 134 

beads (Zhao et al. 2023) at 1000 frames per second (fps). The first recording geometry (R1) positioned 135 

the camera above, facing the chute surface perpendicularly to capture the flow from an ideal zenithal 136 

perspective. The second viewing angle involved positioning the camera perpendicularly to the side 137 

of the flume, recording the side of the flow through the smooth Perspex wall and aligning with the 138 

fixed chute’s slope (θ) at 30° from the horizontal. This ideal perspective, while not accessible in the 139 

field, is commonly utilised in flume experiments to investigate internal flow dynamics (e.g. 140 

Wiederseiner et al. 2011; Li et al. 2022).  141 

These acquisition geometries were established to frame fixed regions on both the surface and side of 142 

the chute, as indicated by the green and blue squares in Figure 1a, respectively. This setup enabled 143 

consistent recording and characterisation of surface and internal velocity distributions within the same 144 

portion of the flow. Cameras were positioned to focus on regions around the flume’s midpoint, aiming 145 

to capture as uniform flow as possible and minimise potential effects from the material release at the 146 

upper slope or the transition to free-fall motion near the chute’s end.  147 

To facilitate the generation of a regular flow, potentially reaching a steady-state condition over time, 148 

upon which to focus the analyses, the granular material was progressively released from the flume 149 

hopper through a sluice gate, avoiding dam-break release mechanisms, typically employed in debris 150 

flow physical models (e.g. Iverson et al. 2010; Eu et al. 2017). The initial thickness of the flow (h0) 151 

and the material’s release rate were controlled by the gate opening (H) and the material’s head in the 152 

hopper, which gradually decreased during the experiment. Care was taken to maximise the initial 153 

head while maintaining an even distribution of the material within the hopper, ensuring a uniform 154 

release rate throughout a significant portion of the test. 155 

With a single high-speed camera available, each flow was repeatedly captured from different 156 

recording geometries, while maintaining consistent boundary and initial conditions. Subsequently, 157 

the boundary conditions at the chute’s base were systematically altered to increase surface roughness, 158 

documenting eventual variations in the flow dynamics. The transparent Perspex sidewalls were 159 

consistently kept unchanged to ensure continuous observation. As detailed in Table 1, three main 160 

tests have been conducted: one employing the standard smooth aluminium base, another with an 161 

intermediate roughness base composed of glued ceramic beads of about 1 mm diameter, and a third 162 

using a coarse sand base with particle sizes ranging from 1 to 2 mm. 163 

Unlike similar experiments described in the literature, which often include a seeding phase, where 164 

coloured, fluorescent or reflective tracer particles are added to the material to enhance flow patterns 165 



(Savage 1979;  Parsons et al. 2001; Lindken 2009), the tests performed omitted this procedure. The 166 

texture of the granular materials employed was deemed adequate to enable the reconstruction of flow 167 

dynamics, given proper lighting. This was achieved using 50W DC LED floodlights (Figure 1b). 168 

 169 

2.1.2 F2 tests 170 

In contrast to the F1 experiments, which involved the application of the PIV algorithm to sharp 171 

footage captured from optimal recording angles, the F2 experiments explored different acquisition 172 

geometries and image quality scenarios. In addition to the ideal perspectives (R1 and R3) used in the 173 

F1 experiment set, the F2 tests implemented an additional recording geometry (R2). This other 174 

observation angle involved positioning the camera slightly to the side of the flume, facing downslope 175 

with an inclination of 20° relative to the flume slope (θ), capturing the surface of the flow from a 176 

more oblique, non-zenithal perspective (Figures 1c and 3). This suboptimal camera orientation 177 

mirrors the recording geometry typically employed in the field, where achieving a perfectly zenithal 178 

perspective can be challenging (Patalano et al. 2017). In the field, cameras are commonly placed to 179 

the side of the channel, slightly inclined downward to minimise interference from rain droplets and 180 

at a generally low angle relative to the horizontal. 181 

The F2 experiments featured simultaneous recordings of the same region of the flume from the three 182 

described perspectives of dry granular flows composed of fine sand (dmean ≈ 0.28 mm), utilising 183 

regular cameras with maximum frame rates of 240 fps. Multiple tests were conducted at progressively 184 

higher flume slope angles (θ) while maintaining the other boundary conditions constant. This 185 

approach resulted in increasingly faster flows and, given the fixed camera frame rate, gradually 186 

blurrier and lower-quality footage, enabling the consideration of a wide spectrum of image quality 187 

conditions. 188 

Despite these methodological differences, the F2 tests were conducted with the same care and 189 

precautions as detailed for the F1 experiments, specifically regarding material preparation and 190 

release, as well as camera positioning around the mid-portion of the flume length, ensuring the 191 

recording of flows as regular and uniform as possible.  192 

As with the F1 experiments, the F2 tests were performed under the assumption that no seeding phase 193 

was needed, contributing to the generation of challenging conditions for the application of the PIV 194 

algorithm to suboptimal quality footage (see Section 3.2). Nevertheless, this setup is representative 195 

of field conditions, where seeding is not possible. Similar to F1 tests, lighting was provided using 196 

multiple 50W DC LED floodlights (Figure 1c). 197 

 198 

 199 



2.2 Analysis workflow 200 

Despite the slight differences in experimental procedures between the two described sets of tests, the 201 

acquired footage was processed following the same analysis workflow schematised in Figure 2.  202 

 203 

2.2.1 The PIV algorithm 204 

PIV algorithms are non-intrusive optical measurement techniques used to determine the velocity field 205 

of recorded fluid flows. This is achieved by identifying the displacement of similar groups of pixels 206 

(or particles) in successive images through cross-correlation methods (Adrian 1991). The captured 207 

frames are initially subdivided into a grid of smaller sub-regions, framed by a moving interrogation 208 

window, or patch, whose size and shift define the final measurement resolution. For each consecutive 209 

image pair, the cross-correlation matrix is evaluated within the moving interrogation patch. The 210 

location of resulting cross-correlation peaks provides the most probable displacement vectors, 211 

connecting the similar groups of pixels identified between the two consecutive frames along a straight 212 

line (Raffel et al. 2007; Thielicke and Stamhuis 2014). This information, combined with the timestep 213 

between images, ultimately yields the frame-by-frame flow velocity field. Unlike Lagrangian PTV 214 

techniques, which reconstruct the trajectory of individual tracer particles (Kreizer et al. 2010), PIV 215 

algorithms are Eulerian methods that enable the reconstruction of the flow vectors regardless of single 216 

particle characteristics (Patalano et al. 2017). 217 

For both the F1 and F2 experiments, a PIV analysis was conducted on the frames extracted from the 218 

footage recorded from the different perspectives based on the camera’s frame rate, employing the 219 

open-source algorithm PIVlab (Thielicke and Stamhuis 2014). This particular algorithm utilises a 220 

multi-pass approach, where each flow vector results from successive computational steps during 221 

which the original moving interrogation patch is progressively deformed and refined. The first step 222 

involves computing the frame-by-frame displacement vectors between similar groups of pixels by 223 

evaluating two-dimensional cross-correlation peaks within a moving interrogation patch (Thielicke 224 

and Sonntag 2021), following the described basic PIV principles. In the subsequent step, the 225 

displacement information obtained within the first interrogation patch is interpolated for every 226 

enclosed pixel and used to deform the second-pass patch. Within this finer patch, the cross-correlation 227 

matrix peaks are evaluated by repeating the procedure followed in the previous pass, thereby refining 228 

the input displacement information. Through this iterative process, the algorithm yields progressively 229 

more accurate and refined displacement vectors, enhancing correlation robustness and decreasing 230 

random error contributions (Thielicke 2014). 231 

 232 

 233 



2.2.2 Optimal images 234 

In the flume experiments performed in this study, a two-pass PIV approach was adopted in the PIVlab 235 

environment defining interrogation patch sequences of  64x64 – 32x32 pixels and 24x24 – 12x12 236 

pixels, for F1 and F2 tests, respectively. The interrogation patch size, especially for F1 experiments 237 

where larger particles were employed, was defined to enclose around 5 – 15 particles on average to 238 

improve correlation significance (Adrian and Westerweel 2011; Gollin et al. 2017). Additionally, the 239 

interrogation patch shift in the moving window algorithm was consistently set to 50% of its size. 240 

Consequently, as depicted in Figure 2a, for each pair of extracted frames, the two-dimensional flow 241 

displacement and corresponding velocity fields were derived, with a flow vector density determined 242 

by the size and shift of the moving patch. The obtained velocity fields, initially expressed in 243 

pixels/frame, were converted to real units (m/s) by defining the time step between frames and the 244 

pixel size. The latter was determined by calibrating the images against known distances: the chute 245 

width for the surface velocity field and a reference distance measured on a ruler taped to the flume 246 

sidewall within the camera’s field of view for R3 recordings. 247 

After retrieving the frame-by-frame velocity field, the analysis focused on a specific subset where the 248 

flow exhibited steady-state behaviour. This approach facilitated more meaningful comparisons 249 

between recordings acquired from different geometries, whether obtained in separate tests (F1) or 250 

simultaneously (F2). The extraction of the steady-state frames subset was performed as follows. First, 251 

two section traces were defined perpendicular to the flow direction, bounding the edges of an ideal 252 

plane transversally crossing both the surface and the side of the flume at the same distance from the 253 

hopper, applicable to the R1  and R3 recording geometries, respectively. Along these traces, for R1 254 

acquisitions, a short section, indicated as Section (I) and represented by a red solid line in Figure 2a, 255 

was traced around the mid portion of the chute to capture the central part of the flow surface. 256 

Similarly, another short section, limited to the upper portion of the flow, was considered for R3 257 

footage. Subsequently, for each recording geometry, the frame-by-frame mean velocity value along 258 

the defined sections was computed and observed over time, as illustrated in the chart in Figure 2b. 259 

The subset of frames exhibiting an overall constant mean velocity, indicated by a null slope of the 260 

regression line and suggesting steady-state flow conditions, was isolated and extracted, while the 261 

preceding frames were discarded. The steady-state surface and side velocity profiles were then 262 

extracted for the selected frame subset along the same sections, but this time considering the entire 263 

extent of the flow, as indicated by the red dashed line in Figure 2a for R1 recordings, labelled as 264 

Section (II). The resulting velocity profiles, along with their mean distribution resampled at regular 265 

intervals, and the corresponding standard deviation values were ultimately plotted as shown in Figure 266 

2c to summarise the steady-state surface and internal velocity distributions of the recorded flow. For 267 



validation, the reconstructed velocity values were compared with manually derived measurements 268 

obtained by visually tracking frame-by-frame individual particle trajectories at multiple flow depths 269 

on the same steady-state subset of  R3 recordings. These independent velocity measurements were 270 

taken using a ruler affixed to the side of the flume and visible within the camera's field of view. 271 

 272 

2.2.3 Suboptimal images 273 

The methodological approach detailed in the previous section for analysing sharp footage from ideal 274 

perspectives in both experiment sets was also applied to suboptimal images, with minor 275 

modifications. Specifically, the analysis workflow remained unchanged for the blurred footage 276 

captured in the F2 experiments from the ideal perspectives, whereas it was properly adjusted for R2 277 

acquisitions regardless of image quality. While pixel size is uniform across the image for R1 and R3 278 

acquisitions, this is not the case for R2. In such instances, the non-zenithal recording angle introduces 279 

a significant disproportion between pixel sizes in the foreground and background. Background pixels 280 

are generally more poorly resolved, with differences and gradients depending on the geometric 281 

relationship between the captured portion of the channel and the camera, both in terms of recording 282 

angle and distance (Jolley et al. 2021). 283 

Consequently, converting and transposing the pixel reference system of the images to real coordinates 284 

and units is not as straightforward as with R1 and R3 recordings. Applying the same methodology 285 

could result in significant deviations of the reconstructed flow velocities from the actual values. 286 

Therefore, to assess the contribution and remove such optical distortions, the obtained R2 surface 287 

velocity field (Figure 3a) was appropriately orthorectified using the open-source algorithm RIVeR 288 

(Patalano et al. 2017). This software enables orthorectification operations directly on PIV-derived 289 

flow velocity fields within a user-defined two-dimensional region of interest. This is accomplished 290 

by computing the homography matrix (Corke 2011), which uniquely maps real-world coordinates to 291 

their planar projection on the image within the selected area. This matrix is solved using the Camera 292 

Calibration Toolbox (Vision Caltech 2009) for MATLAB by specifying the real-world and image 293 

coordinates of a series of known control points (Figure 3b). While four control points are sufficient 294 

to perform 2D orthorectification, solving the homography matrix in three dimensions requires the 295 

spatial coordinates of at least six points. Given the controlled conditions of the present experiments, 296 

which focused on steady-state flows over flat and regularly shaped chutes, the simpler 2D 297 

orthorectification approach using four control points was deemed adequate. However, as noted in 298 

Section 4.3, more complex field scenarios may necessitate 3D orthorectification to account for 299 

irregular geometries and unsteady flow conditions. 300 



The calculated homography matrix is then utilised to extend the image-to-real-world coordinate 301 

system relationship to the entire region of interest, accurately determining the actual pixel size (Figure 302 

3c) and reprojecting the flow velocity vectors as if derived from a zenithal observation (Figure 3d). 303 

The resulting R2 orthorectified velocity profiles were ultimately compared and plotted against the 304 

corresponding uncorrected ones and those derived from the zenithal perspective (R1), which ideally 305 

represent the actual surface velocity distribution of the flow. 306 

Despite the existence of advanced techniques for mitigating motion blur and restoring image 307 

sharpness, including deconvolution algorithms (Lucy 1974; Hosseini & Plataniotis 2020; Satish et al. 308 

2020) and more sophisticated machine learning approaches (Zhang et al. 2017; Lian & Wang 2023; 309 

Chen 2024), the described methodology was applied directly to the unprocessed camera footage, 310 

prioritising operational simplicity and straightforward implementation for future field applications. 311 

 312 

3. Results 313 

This section presents the results obtained from the F1 (Section 3.1) and F2 (Section 3.2) laboratory 314 

flume tests, conducted employing the experimental setup and processing procedures detailed in 315 

Section 2. 316 

 317 

3.1 F1 tests 318 

Figure 4 summarises the results of the three main flume experiments in the F1 set, comparing the 319 

mean velocity profiles and corresponding standard deviation bands of the steady-state flows recorded 320 

from R1 (Figure 4a) and R3 (Figure 4c) perspectives, under the three varying boundary conditions at 321 

the base of the flow indicated in Table 1. The velocity profiles reconstructed for the flows with the 322 

smooth aluminium, intermediate roughness (1 mm ceramic beads), and coarse angular sand beds are 323 

displayed in blue, green, and red, respectively. The blue curves exhibit the highest velocities, with 324 

values of approximately 1.7 m/s around the central region and 1.5 m/s towards the shallower portions 325 

of the flow in the surface and side velocity distributions, respectively. Conversely, the green and 326 

particularly the red curves consistently display lower velocities, with mean values of 1.6 m/s and 1.3 327 

m/s, and 1.2 m/s and 0.7 m/s, respectively, evaluated in the same regions of the flow. These curves 328 

not only highlight a significant overall velocity reduction with increasing chute surface roughness but 329 

also display a consistent marked continuity between surface and side velocity distributions, revealing 330 

comparable values at the intersections between the analysed section pairs.  331 

Examining the side velocity profiles (Figure 4c), the employed sluice gate opening (H) of 85 mm, 332 

corresponding to a flow thickness normalised by particle size ratio (h/d) of approximately 22, resulted 333 

in varying flow thicknesses across the different bed types. The angular sand bed produced the thickest 334 



flows, measuring around 38 mm, while values of 27 and 24 mm were documented for the smooth and 335 

intermediate roughness bases, respectively. In terms of normalised h/d ratios, these values correspond 336 

to approximately 10, 7 and 6.  337 

Additionally, the side velocity profiles reveal progressively different flow conditions as bed 338 

roughness increases and overall flow velocity decreases. The faster flows over smooth and 339 

intermediate roughness beds share similar velocity distributions, with progressively lower values with 340 

depth that remain visibly above zero at the bottom, indicating a slip-flow rheological behaviour (Nagl 341 

et al. 2020). In contrast, the high-roughness bed produces distinct flow conditions, characterised by a 342 

steeply decreasing velocity profile, reaching zero at the base. This particular rheological behaviour, 343 

alternatively referred to as heap flow (GDR MiDi 2004; Jop et al. 2005, 2006), where the flow is 344 

concentrated in the upper portions, marks the transition from inclined plane flow to flow on an 345 

erodible bed. Within this flow, the grains effectively move over a lower, thinner quasi-static layer 346 

(Jop 2015) of interlocked particles due to the base roughness.  347 

The distinct rheological behaviours observed are also quantitatively highlighted by the velocity 348 

coefficient α, computed as the ratio between the depth-averaged velocity along the vertical 349 

investigated in the proximity of the transparent sidewall and the corresponding surface velocity. 350 

Flows over smooth and intermediate roughness bases, exhibiting similar rheological behaviour, 351 

reveal comparable α values of 0.73 and 0.68, respectively, aligning with the 0.6 – 0.8 range reported 352 

in the literature for flows in dense granular media (Cui et al. 2018; Nagl et al. 2020; Aaron et al. 2023; 353 

Spielmann & Aaron 2024). In contrast, flow conditions over the rough sand base yield a remarkably 354 

lower α value of 0.34. 355 

Although this rheological behaviour transition is remarkable in the side profiles, the corresponding 356 

surface ones (Figure 4a), net of the overall varying velocities, do not reflect any indication of the 357 

documented changes in internal flow conditions. This is further highlighted in the normalised profiles 358 

displayed in Figure 4b, with velocity distributions consistently collapsing onto a common trend, 359 

making it virtually impossible to infer the actual rheological behaviour and internal flow structure 360 

from surface observations alone. This complexity, common in flume experiments, arises from 361 

systematically different boundary conditions at the bottom and the side of the flow, framed by a 362 

progressively rougher base and smooth Perspex walls, resulting in undifferentiated slip-flow 363 

conditions along the sides.  364 

Overall, F1 tests indicate the effectiveness of the PIV technique in characterising flows under optimal 365 

conditions. This is evidenced by the consistent agreement between PIV-derived velocity and 366 

independent manual measurements performed at four distinct flow depths, which systematically fall 367 

within the standard deviation bands of the mean steady-state profiles displayed in Figure 4c. The low 368 



standard deviation values relative to the mean enable the proper identification of the flow velocity 369 

profiles. Notably, the quality of the reconstructed side velocity distributions allows for the observation 370 

of varying flow regimes, which align with the expected behaviour of the flow under the defined 371 

boundary conditions. 372 

 373 

3.2 F2 tests 374 

Figure 5 summarises the results from F2 experiments testing and assessing the applicability of the 375 

described PIV methodology under varying input image quality conditions. Among the various 376 

experiments performed, two reference cases are presented, depicting ideal and sub-optimal 377 

acquisition conditions within the spectrum of recording scenarios explored. These configurations are 378 

represented by the blue and red curves in the figure, corresponding to slower flows with a slope angle 379 

(θ) of 28° and faster ones with θ = 30°, respectively. As illustrated by the frames in Figure 5a, for a 380 

fixed camera frame rate, increasingly faster flows due to higher slope angles (θ) translate into 381 

progressively poorer image quality, transitioning from ideal, sharp images to blurrier frames. Similar 382 

to Figure 4 for the F1 experiments, the curves displayed represent the mean velocity distributions 383 

along with the corresponding standard deviation values of the steady-state flows recorded from the 384 

R1 (Figure 5a) and R3 (Figure 5b) camera geometries. Apart from a consistently greater dispersion 385 

around the mean values for the blurrier footage, the curves reveal that the applied methodology can 386 

coherently reproduce the flow, estimating velocity distributions in both scenarios. This is further 387 

corroborated by the positive correspondence with independent, visually determined velocities at three 388 

different flow depths, which consistently align with and fall within the standard deviation values of 389 

the R3 profiles shown in Figure 5b. Despite the different flow velocities, the two sets of curves exhibit 390 

similar distributions with slip-flow behaviour at the interfaces with the smooth aluminium base and 391 

Perspex walls, consistent with the rheological behaviour expected for a dry granular flow governed 392 

by the described boundary conditions. The observed similarity in flow conditions is further supported 393 

by the numerical values of the velocity coefficient (α), calculated consistently with the F1 experiment 394 

set. The tests conducted at θ = 28° and θ = 30° yield analogous α values of 0.83 and 0.81, respectively, 395 

both comparable with the previously reported literature range of 0.6 – 0.8 for such phenomena. 396 

The side velocity profiles in Figure 5b reveal slight differences in flow thickness. With an initial gate 397 

opening (H) of 40 mm (h/d ≈ 143), thicker flows of about 10.5 mm were observed at θ = 30°, while 398 

slightly lower values around 9.5 mm were observed at θ = 28°. These thicknesses correspond to 399 

normalised h/d ratios of approximately 34 and 38, respectively. 400 

Additionally, as highlighted in the F1 tests, the velocity profiles in Figure 5 display a systematic 401 

continuity between the surface and side velocity fields, with values of approximately 0.1 m/s and 0.3 402 



m/s documented for θ = 28° and θ = 30° flows, respectively, near the intersection of the analysis 403 

sections. 404 

Figure 6 condenses the results of the F2 tests focused on evaluating the effects of a non-zenithal 405 

recording geometry (R2) on reconstructing the surface velocity distribution of the flow compared to 406 

its actual velocity field, ideally determined from a zenithal perspective (R1). The R1 surface velocity 407 

profiles reconstructed for the flows observed at θ = 28° and θ = 30°, described in Figure 5a, are 408 

reported as green curves in Figures 6a and 6b, respectively. In both figures, the blue profiles represent 409 

the surface velocity distributions obtained for the same flows from recording geometry R2, where 410 

pixel size was considered homogeneous across the entire image and defined uniquely based on a 411 

known distance coinciding with the chute width. These curves, for which input image distortion was 412 

not corrected, significantly and systematically underestimate the real flow velocity distribution, with 413 

an average offset of approximately 55% for θ = 28° and 65%  for θ = 30°. Conversely, a consistent 414 

alignment with the real surface velocity distribution is documented in both scenarios for the 415 

orthorectified R2 profiles, depicted in red in Figures 6a and 6b, exhibiting comparable offsets of about 416 

2% on average. This highlights that sub-optimal quality footage from non-zenithal recording 417 

geometries can be effectively employed for estimating the surface velocity field of a flow when 418 

appropriate orthorectification algorithms are applied.  419 

 420 

4. Discussion 421 

4.1 Effects of suboptimal image quality 422 

The results from the F2 flume tests revealed that the methodological approach employed enables a 423 

reasonable estimate of flow velocity fields even under suboptimal image quality conditions (Section 424 

3.2). However, to consistently assess and quantify the effects of image blur on the PIV-derived 425 

velocity distributions, the F2 experimental footage captured at θ = 28° from the zenithal perspective 426 

(R1) was considered. The quality of the original sharp footage was progressively artificially decreased 427 

by applying a Gaussian smoothing algorithm. Gaussian smoothing is a two-dimensional convolution 428 

operation that utilises a moving kernel represented by a Gaussian function to transform the enclosed 429 

original image pixels, reducing their noise and detail, and resulting in blurred images (Marr and 430 

Hildreth 1980; Shapiro and Stockman 2001). The blur level is controlled by the standard deviation 431 

(σ) of the Gaussian distribution employed. A wide spectrum of image blur scenarios was considered, 432 

using values of σ ranging from 1 to 5. For each σ, the mean surface velocity profile was reconstructed 433 

along the same section and compared to the original. 434 

The mean velocity profiles obtained reveal a consistent increase in uncertainty with σ, with standard 435 

deviation values 20% higher than the original for σ  = 1, and up to 2 or 5 times the original for σ  = 3 436 



and σ  = 5, respectively. Additionally, as displayed in Figure 7a, the shape of the original velocity 437 

distribution reported in green is gradually less recognisable transitioning to higher blur levels. Besides 438 

the greater uncertainty, these velocity profiles consistently and sensibly underestimate the original 439 

values, up to an average difference of approximately 45 % for σ  = 5. This bias is attributable to the 440 

poorer quality of the input images, which results in broader and less distinct peaks in the cross-441 

correlation matrix evaluated in the PIV algorithm, leading to a decrease in the signal-to-noise ratio, 442 

and, consequently, reduced correlation accuracy (Elsinga et al. 2005). This causes the generation of 443 

spurious velocity vectors that do not accurately represent the recorded flow. These vectors exhibit 444 

orientations that can significantly deviate from the actual flow direction, as displayed qualitatively in 445 

the plan view (Figures 7b, c) and quantitatively along a reference section (Figures 7d, e) for the same 446 

frames pair under optimal and blurred (σ = 5) image quality conditions. While in the former case, the 447 

flow vectors are uniformly oriented at about 90° relative to the analysis section, they become more 448 

chaotic for σ = 5, revealing diverging orientations characterised by peak differences of approximately 449 

± 60°, indicating fictitious transversal velocity components. These transversal components may lead 450 

to a substantial reduction in the velocity magnitude values extracted along the reference section, 451 

thereby motivating the consistent velocity underestimation observed.  452 

As synthetically shown in Figure 7 and further detailed in Figures 8 and 9 in the supplementary 453 

materials, the effect of image blur may be partially mitigated by defining a sequence of larger 454 

interrogation patches in the PIV analysis. For instance, Figure 7 highlights how the adoption of an 455 

interrogation window sequence of 96 – 48 pixels, four times larger than the 24 – 12 pixels patches 456 

used in the initial analysis, produces a clear reduction in uncertainty and underestimation of the flow 457 

velocity as σ increases, albeit with a reduced spatial resolution. In this case, for σ = 5, the deviation 458 

of the velocity distribution from the original values, indicated by the red and green dashed curves in 459 

Figure 7a, respectively, decreases from approximately 45% to 20%. Additionally, the distribution of 460 

the velocity vector orientations along the analysis section, depicted by the black dashed curves in 461 

Figures 7d and 7e, more closely aligns with the original, with deviations consistently below ± 10° 462 

from the true flow direction.  463 

While the usage of larger interrogation windows visibly enhances PIV analysis results for suboptimal-464 

quality footage, with the improvement proportional to the level of image blur, the effect is less 465 

pronounced for sharp images. Maximum differences of approximately 2% were observed between 466 

the velocity profiles reconstructed from sharp frames employing interrogation patch sequences of 24 467 

– 12 pixels and 96 – 48 pixels, depicted by the two green curves in Figure 7a. 468 

 469 



The fact that the accurate reconstruction of flow dynamics is not hampered when individual particles 470 

within the flow are not clearly recognisable, provided the discussed adjustments are applied, supports 471 

the reasonable extension of the adopted methodology to the analysis of more complex multiphase 472 

flows in both laboratory and field settings. 473 

 474 

4.2 Effects of inadequate frame rate  475 

Another crucial parameter in field acquisitions, particularly in the context of low-cost monitoring 476 

systems, is the recording camera’s frame rate. To investigate the impact of inadequate sampling 477 

frequency on flow velocity field reconstruction, the F2 experimental footage captured at θ = 28° from 478 

the zenithal perspective (R1) was again used as a reference. The original 240 fps footage was 479 

progressively undersampled down to 30 fps, with PIV analysis performed at each intermediate step 480 

to compare the reconstructed surface velocity distributions. 481 

The resulting mean velocity profiles reveal a marked increase in uncertainty towards lower frame 482 

rates. Standard deviation values were 20% higher than the original at 120 fps, and up to 2 and 4 times 483 

higher at 60 fps and 30 fps, respectively. Similar to the motion blur effect described in the previous 484 

section, Figure 10 illustrates how the shape of the original velocity distribution (reported in green) 485 

becomes less recognisable towards lower frame rates, consistently underestimating velocity values. 486 

This discrepancy stems from the reduced temporal resolution in the undersampled footage, where 487 

actual particle displacements exceed the size and shift of the PIV moving interrogation window. This 488 

aliasing effect leads to a systematic loss of correlation between frame pairs (Raffel et al. 2007), 489 

generating biased flow velocity vectors that inaccurately reflect the observed flow. These spurious 490 

vectors display orientations that diverge remarkably from the true flow direction, as shown 491 

qualitatively from a zenithal perspective in Figures 10b and 10c, and numerically along a reference 492 

section in Figures 10d and 10e, for the same image pairs captured at the original and reduced (30 fps) 493 

frame rates. While properly sampled footage, produces a homogeneously oriented velocity field at 494 

about 90° relative to the analysis section, undersampled recordings exhibit a more chaotic distribution 495 

of vectors, with some even directed upstream and orientation deviations of up to ± 120° from the 496 

actual direction.  497 

Figure 10 also briefly illustrates that undersampling effects can be effectively mitigated by adopting 498 

larger interrogation patch sequences during PIV analysis. Specifically, employing a window sequence 499 

of 96 – 48 pixels, four times larger than the original, leads to a sharp reduction in uncertainty and 500 

underestimation of flow velocity at lower frame rates, albeit at the cost of a coarser spatial resolution. 501 

For example, at 30 fps, the velocity deviation from the original values drops approximately from 80% 502 

to 1%. Similarly, the velocity vector orientations along the analysis section, highlighted by the black 503 



dashed curves in Figures 10d and 10e, closely align with the original, with deviations consistently 504 

under  ± 2° from the true flow direction. 505 

The effects of using larger interrogation windows are further illustrated in Figures 11 and 12 in the 506 

supplementary materials, concerning patch sequences of 48 – 24 pixels and 94 – 48 pixels, 507 

respectively.  508 

4.3 Orthorectification uncertainties 509 

The methodological approach adopted in the F2 experiments highlighted that the use of appropriate 510 

orthorectification algorithms on the PIV-derived surface velocity field can mitigate distortions 511 

introduced by non-zenithal recording geometries (R2). The two-dimensional orthorectification 512 

algorithm employed requires specifying the coordinates of four known control points, framing an 513 

ideal plane where the transposition between the pixel reference system and the real-world coordinates 514 

is performed based on the actual size of the pixels enclosed. While defining these control points as 515 

well as their respective distances in a controlled, small-scale laboratory environment is 516 

straightforward, in the field, these operations may present a more significant challenge depending on 517 

the accessibility of the landslide channel. This could lead to inaccuracies in determining these 518 

distances and, consequently, in estimating the actual flow velocity field.  519 

To assess and quantify the potential effects of measurement errors on the final surface velocity 520 

distribution, the orthorectification procedure was repeated on the same footage captured at θ = 28° 521 

multiple times, artificially modifying the control points' distance values. The real distances were 522 

progressively altered considering errors of ± 5%, 10% and 15%. The resulting velocity profiles are 523 

compared in Figure 13. Overestimations of the actual distances result in profiles that increasingly 524 

overestimate both the channel width and flow velocity, whereas underestimations yield the opposite 525 

effect. These deviations are represented in the figure by curves grading from green (actual values) to 526 

red (overestimation) or blue (underestimation). The displayed distributions reveal that, in our 527 

experiments, the input percentage error in the distances approximately corresponds to the deviation 528 

observed with respect to the real velocity profile, both positively and negatively. 529 

In addition to evaluating uniformly distributed errors across the region of interest, the potential effect 530 

of measurement errors affecting a single control point was also considered. Artificially altering the 531 

inter-distances associated with one control point, simulating its misidentification in the field, 532 

produced a pronounced distortion of the orthorectified velocity field towards the modified point. This 533 

resulted in surface velocity profiles that not only exhibited different flow widths but also displayed 534 

markedly asymmetric trends, deviating from the original distribution with an intensity proportional 535 

to the error magnitude. The abnormal shape of these velocity distributions, characterised by values 536 

progressively increasing towards one side of the channel, could serve as an indicator in field 537 



applications, suggesting the presence of errors concentrated on the identification of a single control 538 

point. 539 

Given the potential significance of such errors, it is crucial in the field to measure the channel 540 

geometry within the field of view of the monitoring camera as accurately as possible. 541 

In natural environments, challenges in orthorectification extend beyond the discussed complex 542 

channel geometries, which may hinder the uniform distribution of control points and compromise 543 

their precise positioning. Further complexities arise from the transient nature of the observed 544 

phenomena. While the flume experiments described in this study focused on steady-state flows with 545 

constant thickness and velocity, such stable conditions are rarely encountered in real-world scenarios. 546 

Under fluctuating flow levels, the recording distance between the camera and the flowing mass 547 

becomes variable, and pronounced changes can significantly alter the area encompassed within the 548 

region of interest identified for PIV analysis and orthorectification procedures. These fluctuations 549 

complicate the accurate mapping of real-world coordinates into the 2D image plane where the flow 550 

velocity field is reconstructed (Li et al. 2019). For instance, flow level underestimation leads to 551 

exaggerated horizontal distances and, in turn, velocity overestimation, while flow level 552 

overestimation produces opposite effects (Dramais et al. 2011). Consequently, flow level variability 553 

represents a primary source of uncertainty in LSPIV analyses (Le Boursicaud et al. 2016).  554 

Recent literature shows that LSPIV has predominantly been  applied in riverine environments (Muste 555 

et al. 2008; Zhu & Lipeme Kouyi 2019). Studies indicate that 2D orthorectification algorithms, 556 

similar to those employed in the flume tests described, are suitable for relatively narrow channels 557 

(approximately 10 – 20 m wide) with regular geometries, where the four specified control points and 558 

flowing water can be reasonably assumed to lie within the same plane (Patalano et al. 2017; Bodart 559 

et al. 2024). Conversely, in cases involving more complex channel geometries, irregular riverbank 560 

topographies, or fluctuating flow levels, more advanced 3D orthorectification algorithms are 561 

generally required (Le Coz et al. 2010; Detert 2021). These methods typically necessitate identifying 562 

at least six control points, preferably up to ten for redundancy and better reliability (Fujita and Kunita 563 

2011; Jolley et al. 2021), distributed uniformly along the observed channel segment. Notably, simply 564 

increasing the number of control points does not inherently reduce orthorectification uncertainty. 565 

Rather, the precision in locating these points is critical, making fewer but highly accurate control 566 

points generally preferable to a larger number with less precise measurements (Le Coz et al. 2021; 567 

Bodart et al. 2024).  568 

Episodic flow-like landslides, such as debris flows, typically exhibit transitions between a front, a 569 

central body, and a tail, potentially grading into hyperconcentrated water flows (Turnbull et al. 2015). 570 

These events may feature successive surges, resulting in significant flow depth variations up to 571 



several meters (Zanuttigh & Lamberti 2007; Meyrat et al. 2022). Therefore, adopting 3D 572 

orthorectification algorithms is essential for field applications. Additionally, segmenting the acquired 573 

footage into subsets based on homogeneous flow levels can help mitigate orthorectification 574 

uncertainty caused by fluctuating flow depths (Theule et al. 2018).  575 

 576 

Further laboratory flume tests would be required to thoroughly investigate and quantify errors and 577 

limitations of the orthorectification process, particularly as a function of the non-zenithal (R2) camera 578 

placement. This would involve systematically varying the viewing angle, recording distance, and 579 

potentially the flow level, enabling a comprehensive understanding of how these factors impact the 580 

accuracy of reconstructed velocity fields. 581 

 582 

5. Conclusions 583 

In this study, two sets of laboratory flume experiments were performed between the Department of 584 

Civil and Structural Engineering at the University of Sheffield (F1) and the British Geological Survey 585 

site in Keyworth (F2). The primary goal was to assess PIV algorithm capabilities across a range of 586 

recording scenarios, from ideal laboratory settings to suboptimal conditions typical of field 587 

observations, and validate a methodology that could be employed to reconstruct the surface velocity 588 

distribution of flow-type landslides and acquire insights into their rheological behaviour. 589 

Based on the research findings, the following conclusions can be drawn: 590 

1) The experiments performed under optimal conditions demonstrate the efficacy of the PIV 591 

algorithm in reconstructing the velocity distributions of observed flows. Additionally, the processing 592 

of tests monitored using zenithal and lateral cameras emphasises the critical role of understanding the 593 

boundary conditions at the base and sides of the flow to reasonably estimate its rheological behaviour. 594 

This is particularly crucial in field applications, especially if attempts are made to infer the internal 595 

dynamics of the flow based on the exclusively available surface velocity distribution. 596 

2) Non-zenithal footage, commonly available from field acquisitions, can be effectively utilised to 597 

retrieve the real surface velocity distribution of the flow by adopting appropriate orthorectification 598 

techniques. The analyses underscore the importance of accurately defining suitable control points in 599 

the field for the orthorectification algorithm, noting that percentage errors in measuring their inter-600 

distances result in comparable deviations in the reconstructed velocity profiles. 601 

3) Footage from widely deployed low-cost field camera monitoring systems, often characterised by 602 

blurriness, suboptimal quality, or insufficient sampling rates, can still be used to estimate the surface 603 

velocity distribution of flows, albeit with non-negligible uncertainty. This uncertainty may include 604 



significant underestimations of the actual flow velocity, which can be detected and reasonably 605 

mitigated by adopting sequences of larger interrogation patches in the PIV analysis, at the cost of 606 

slightly lower spatial resolution. 607 

 608 

The present work establishes the foundation for applying the detailed and tested methodological 609 

framework to the in-depth characterisation of field-recorded debris flow events, addressing both 610 

rheological behaviour and hydrodynamic parameters. A comprehensive analysis is currently 611 

underway, including rigorous comparisons with field observations and numerical modelling analyses, 612 

which will be presented in a forthcoming study. 613 

 614 
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 796 

Fig. 1 – Experimental setup scheme (a) and pictures of the different laboratory equipment employed for F1 (b) and F2 797 
(c) flume test sets.   798 

 799 

 800 

 801 



Experimental 
setup 

F1 F2 

Flume length (L) 1.2 m 4 m 

Flume width (W) 0.1 m 0.1 m 

Flume slope (θ) 30° 0 – 33° 

Hopper volume (V) 0.021 m³ 0.05 m³ 

Gate opening (H) 0.085 m 0.04 m 

Chute surface 

- Smooth (aluminium) 

- Ceramic beads (d ≈ 1 mm) 

- Angular sand (d ≈ 1 – 2 mm) 

Smooth (aluminium) 

Material employed 
Denstone® ceramic beads 

(dmean ≈ 3.85 mm) 

Fine sand  

(dmean ≈ 0.28 mm) 

Material volume 0.008 m³ 0.03 m³ 

Cameras 
Phantom Miro M310  

(Frame rate = 1000 fps) 

GoPro Hero 10 [R1, R3] – 11 [R2] 

(Frame rate = 240 fps) 

Recording 

geometries 
R1, R3 R1, R2, R3 

Recording 

Distances 

- R1 = 0.45 m 

- R3 = 0.40 m 

- R1 = 0.25 m 

- R2 = 0.30 m 

- R3 = 0.20 m 

 802 
Table 1 – Summary of the primary characteristics of the flume apparatus, granular material, cameras and recording 803 
geometries utilised in the F1 (blue) and F2 (orange) experiment sets. 804 



 805 

Fig. 2 – Summary of the processing chain employed to reconstruct the velocity profiles of the recorded flows, including 806 
determination of the flow velocity vectors through PIV (a), evaluation of the quasi-steady-state of the flow (b), and 807 
extraction of the velocity profiles for the identified steady-state frames subset along reference sections (c).  808 



 809 

Fig. 3 – Camera perspective and example of the distorted PIV-derived flow velocity filed from R2 recording geometry in 810 
F2 flume tests (a). Locations of the four control points on the flume chute (b) required for applying the orthorectification 811 
algorithm in RIVeR (Patalano et al. 2017) to mitigate distortions from non-zenithal acquisitions by calculating the 812 
distribution of the actual pixel sizes across the image (c) and reprojecting the flow velocity vectors as if observed from a 813 
zenithal perspective (d). 814 



 815 

Fig. 4 – Surface velocity distributions, both original (a) and normalised (b), along with side velocity profiles (c) relative 816 
to the flows recorded in the F1 flume experiments set. The velocity distributions are colour-coded based on the boundary 817 
conditions imposed at the base of the flow, achieved by varying its roughness: smooth (blue), intermediate (green, 818 
constituted of 1mm ceramic beads), and coarse sand (red). The grey circles in (b) indicate manually determined velocity 819 
values, with circle size corresponding to the diameter of visually tracked beads. 820 



 821 

Fig. 5 – Surface (a) and side (b) velocity profiles for the flows captured in the F2 flume experiments set. The velocity 822 
distributions are depicted in blue and red for the flows recorded at θ = 28° and θ = 30°, respectively. Examples of plan 823 
view frames captured for the two image quality scenarios are also provided (a). The mild asymmetry in the surface velocity 824 
distributions in (a) may be attributed to a slight tilt in the flume chute. The grey circles in (b) indicate manually determined 825 
velocity values, with circle size corresponding to the diameter of visually tracked particles. 826 



 827 

Fig. 6 – Comparison of the surface velocity distributions reconstructed along the same section from the R1 perspective 828 
(green) and R2 uncorrected (blue) and orthorectified (red) flow velocity fields, corresponding to two reference image 829 
quality scenarios of θ = 28° (a) and θ = 30° (b) considered in the F2 experiments. The mild asymmetry in the surface 830 
velocity distributions in (a) may be attributed to a slight tilt in the flume chute. 831 



 832 

Fig. 7 – Surface velocity distributions reconstructed along a reference section from the R1 perspective using a sequence 833 
of moving interrogation patches of 24 – 12 pixels in the PIV analysis of the F2 test performed at θ = 28°. Curves are 834 
colour-coded based on the image blur level, expressed by the Gaussian smoothing filter parameter σ, increasing from blue 835 
to red. The green profile refers to the original sharp images. Dashed green and red lines represent the velocity profiles 836 
obtained from the real frames and highly blurred images (σ = 5), respectively, using an interrogation patch sequence of 837 
96 – 48 pixels (a). Zenithal view of flow vectors reconstructed for the same frame pair analysed at σ = 5 (b) and for clear 838 
footage (c). Orientation of flow velocity vectors extracted along the purple line shown in (b) and (c) for highly blurred 839 
footage (d) and original images (e). The dashed black lines represent velocity vector orientations determined along the 840 
same section employing an interrogation patch sequence of 96 – 48 pixels in the PIV analysis. 841 



 842 

Fig. 8 – Surface velocity distributions reconstructed along a reference section from the R1 perspective using a sequence 843 
of moving interrogation patches of 48 – 24 pixels in the PIV analysis of the F2 test performed at θ = 28°.  Curves are 844 
colour-coded based on the image blur level, expressed by the Gaussian smoothing filter parameter σ, increasing from blue 845 
to red. The green profile refers to the original sharp images (a). Zenithal view of flow vectors reconstructed for the same 846 
frame pair analysed at σ = 5 (b) and for clear footage (c). Orientation of flow velocity vectors extracted along the purple 847 
line shown in (b) and (c) for highly blurred footage (d) and original images (e). 848 



 849 

Fig. 9 – Surface velocity distributions reconstructed along a reference section from the R1 perspective using a sequence 850 
of moving interrogation patches of 96 – 48 pixels in the PIV analysis of the F2 test performed at θ = 28°.  Curves are 851 
colour-coded based on the image blur level, expressed by the Gaussian smoothing filter parameter σ, increasing from blue 852 
to red. The green profile refers to the original sharp images (a). Zenithal view of flow vectors reconstructed for the same 853 
frame pair analysed at σ = 5 (b) and for clear footage (c). Orientation of flow velocity vectors extracted along the purple 854 
line shown in (b) and (c) for highly blurred footage (d) and original images (e). 855 



 856 

Fig. 10 – Surface velocity distributions reconstructed along a reference section from the R1 perspective using a sequence 857 
of moving interrogation patches of 24 – 12 pixels in the PIV analysis of the F2 test performed at θ = 28°. Curves are 858 
colour-coded based on the recording frame rate, decreasing from blue to red. The green profile refers to the original 859 
images captured at 240 fps. Dashed green and red lines represent the velocity profiles obtained from the original images 860 
and footage undersampled at 30 fps, respectively, using an interrogation patch sequence of 96 – 48 pixels (a). Zenithal 861 
view of flow vectors reconstructed for the same frame pair analysed at 30 fps (b) and 240 fps footage (c). Orientation of 862 
flow velocity vectors extracted along the purple line shown in (b) and (c) for undersampled footage (d) and original 863 
images (e). The dashed black lines represent velocity vector orientations determined along the same section employing 864 
an interrogation patch sequence of 96 – 48 pixels in the PIV analysis. 865 



 866 

Fig. 11 – Surface velocity distributions reconstructed along a reference section from the R1 perspective using a sequence 867 
of moving interrogation patches of 48 – 24 pixels in the PIV analysis of the F2 test performed at θ = 28°. Curves are 868 
colour-coded based on the recording frame rate, decreasing from blue to red. The green profile refers to the original 869 
images captured at 240 fps (a). Zenithal view of flow vectors reconstructed for the same frame pair analysed at 30 fps (b) 870 
and 240 fps footage (c). Orientation of flow velocity vectors extracted along the purple line shown in (b) and (c) for 871 
undersampled footage (d) and original images (e). 872 



 873 

Fig. 12 – Surface velocity distributions reconstructed along a reference section from the R1 perspective using a sequence 874 
of moving interrogation patches of 96 – 48 pixels in the PIV analysis of the F2 test performed at θ = 28°. Curves are 875 
colour-coded based on the recording frame rate, decreasing from blue to red. The green profile refers to the original 876 
images captured at 240 fps (a). Zenithal view of flow vectors reconstructed for the same frame pair analysed at 30 fps (b) 877 
and 240 fps footage (c). Orientation of flow velocity vectors extracted along the purple line shown in (b) and (c) for 878 
undersampled footage (d) and original images (e). 879 



 880 

Fig. 13 – Comparison of the surface velocity distributions obtained from the orthorectified velocity fields from R2 non-881 
zenithal recordings of the F2 test performed at θ = 28°, assuming errors in the estimation of distances between control 882 
points of ± 5%, 10%, and 15% in the orthorectification procedure. The actual orthorectified velocity profile is shown in 883 
green. The curves grading towards red refer to overestimations, while those grading towards blue indicate 884 
underestimations. 885 


