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Physical Activity Integration in Blood Glucose Level Prediction: Different
Levels of Data Fusion
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Abstract— Blood glucose level (BGL) prediction contributes to
more effective management of diabetes. Physical activity (PA),
which affects BGL, is a crucial factor in diabetes management.
Due to the erratic nature of PA’s impact on BGL inter- and intra-
patients, deploying PA in BGL prediction is challenging. Hence, it is
crucial to discover optimal approaches for utilising PA to improve
the performance of BGL prediction. This work contributes to this
gap by proposing several PA-informed BGL prediction models.
Different approaches are developed to extract information from PA
data and integrate this information with BGL data at signal, feature,
and decision levels. For signal-level fusion, different automatically-
recorded PA data are fused with BGL data. Also, three feature
engineering approaches are developed for feature-level fusion:
subjective assessments of PA, objective assessments of PA, and
statistics of PA. Furthermore, in decision-level fusion, ensemble
learning is used to combine predictions from models trained with
different inputs. Then, a comparative investigation is performed
between the developed PA-informed approaches and the no-fusion
approach, as well as between themselves. The analyses are per-
formed on the publicly available Ohio dataset with rigorous eval-
uation. The results show that among the developed approaches,
fusing heart rate data at the signal-level and PA intensity categories
at the feature-level with BGL data are effective ways of deploying
PA in BGL prediction.

Index Terms— Data fusion, Deep learning, Diabetes man-
agement, Ensemble learning, Time series forecasting.

I. INTRODUCTION

Type 1 diabetes (T1D), a metabolic disorder with different com-
plications, is a significant global cause of morbidity and mortality
[1]. Adequate T1D management reduces the risk of complications
associated with the disease [2]. Management of T1D entails main-
taining Blood glucose levels (BGL) within a target range [1]. Physical
activity (PA) is a determinant of insulin sensitivity and an important
factor in T1D management [3]–[5]. Due to insufficient explicit knowl-
edge of how exactly PA impacts BGL, optimal diabetes management
is hindered in the presence of PA, and it is difficult for clinicians
to provide patients with specific advice concerning PA [6]. Part of
the complexity arises because it has recently been shown that BGL
can vary significantly for individuals during and after exercise from
one day to another, even for the same type and duration of exercise
performed at the same time of day and after consuming similar
meals[7]. Hence, although regular exercise is beneficial for T1D
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patients as it helps reduce cardiovascular disease risk, maintaining
normoglycaemia is challenging. Indeed, many people with T1D avoid
exercise so as to not increase the chances of hyperglycaemia or
hypoglycaemia events before or after exercise [8]–[10].

Accurate BGL prediction models can facilitate more effective
glycaemic control. Such models predict future BGLs from current
and past data and provide early warnings about possible abnormal
glycaemic events [11]–[13]. Predicting BGL accurately remains chal-
lenging, and any improvements are highly valued. In this regard,
recent studies deployed different advanced artificial intelligence tech-
niques, including deep learning [14]–[20], ensemble learning [21]–
[27], transfer learning [17], [28]–[31], and causal inference [32] for
further improvements in BGL prediction performance. Some studies
by deploying affecting variables on BGL, including carbohydrate
intake, injected insulin, and PA, tried to make further improvement
in BGL prediction performance [17], [33]–[35]. Although it is pos-
tulated that these variables are effective variables on BGL, according
to the literature, incorporating them in the BGL prediction tasks may
not improve the prediction’s performance, and there is no conclusive
decision regarding the optimal input for the BGL prediction task
[36]–[38]. Hence, it is essential to discover effective approaches
to incorporate each variable into BGL prediction. Among these
influencing factors, handling PA in BGL prediction is particularly
challenging due to its significantly varying effect on BGL. Therefore,
it is crucial to discover optimal approaches for leveraging PA in BGL
prediction.

Recently, several types of research have been developed to process
and fuse different information using deep learning [39]–[43]. In
diabetes, limited studies have investigated some fusion approaches
to improve the BGL prediction performance. Dudukcu et al. [44],
by developing three neural networks and fusing their outputs at the
decision level, improved the BGLP prediction for the prediction
horizon of 30 minutes. Also, Khadem et al. [26], to improve the
performance of BGL prediction, proposed a lag fusion network using
meta-learning analysis. In their work, MLP and LSTM models were
trained four times over histories of 30, 60, 90, and 120 minutes,
and then their information was fused. These studies, however, used
only BGL data to develop their models, and there is still a demand
to investigate effective approaches for fusing the information of
other affecting variables in BGL prediction. This work aims to
discover optimal approaches for leveraging PA in BGL prediction by
developing and comparing a wide range of approaches for different
levels of data fusion.

This work proposes various approaches for extracting different
types of information from PA data and fusing this PA-driven in-
formation with BGL. Different levels of fusion, including signal-
level, feature-level, and decision-level fusion, are investigated to find
effective ways of integrating PA into BGL prediction. To do so,
univariate and multivariate LSTM models are generated to predict
BGL without and with different PA fusion approaches. For signal-
level data fusion, combinations of raw PA data directly collected
from wristbands are examined. Also, for feature-level data fusion,
three feature engineering approaches are developed; subjective as-
sessments of PA, objective assessments of PA, and statistics of PA.
Lastly, in decision-level data fusion, ensemble learning is used to
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combine predictions from multiple models to make final predictions,
similar to the techniques proposed in our previous conference paper
[45]. The analyses are performed using real T1D subjects from the
publicly available Ohio dataset [46], and the performance of different
PA-informed prediction models is evaluated using regression-based
and clinical-based metrics. Moreover, rigorous statistical analysis is
performed to have a valid and conclusive deduction.

II. RELATED WORKS

Several investigations have been performed examining PA in T1D
management. As part of our review, we categorise the relevant PA-
involved works in T1D into three main areas: detection, classification,
or description of PA [47]–[50], investigation of the impact of PA on
T1D management [7], [51], [52], and inclusion of PA in adverse
glycaemic events detection and BGL prediction [5], [53]–[55]. The
following paragraphs provide a brief overview of these works.

In relation to the analysis of PA itself, in a study by Cho et al. [47],
accelerometer, heart rate (HR), and continuous glucose monitoring
(CGM) data were used to detect and classify the type and intensity
of PA by developing random forest models. Also, Cescon et al. [48]
detected and classified PA based on its intensity by developing deep
learning models using accelerometer data collected from wristbands
in free-living conditions. Moreover, Dénes-Fazakas et al. [49], by
investigating different machine learning (ML) models, detected the
presence of physical activity from CGM and HR data. Also, Ozaslan
et al. [50] proposed a physiological model for activity on board using
step counts.

ML approaches have been used in some studies to investigate the
impact of PA on managing T1D. By analysing data from 37 T1D
patients using linear regression models, Ozaslan et al. [51] concluded
that PA can have immediate and delayed effects on BGL. Also,
they found that there is a significant relationship between PA and
BGL after an evening meal, suggesting that measuring PA may be
helpful for guiding meals. Also, Ozaslan et al. [52] proposed an
insulin dosing system by adding PA information, which significantly
decreased time spent in hypoglycaemia and increased time spent in
normoglycaemia. In their study, Tyler et al. [7] collected a dataset
of highly-controlled exercise sessions and investigated several ML
models to quantify the effect of physical activity on BGL. They
developed an adaptive, personalized ML model to predict exercise-
related BGL changes. Moreover, in some studies, to cope with
artifacts and disturbances and to develop a more comprehensive
overall indicator of PA, the incorporation of multiple physiological
signals for PA has been considered for better adjustment of insulin
delivery [56]–[58].

Some studies have been performed to predict BGL or glycaemic
events by including PA. Xie and Wang [5] developed a glucose dy-
namics model by considering PA. By entering the PA, they proposed
a non-linear autoregressive moving average model with exogenous
inputs. To train and evaluate the model, they used in silico data
from the UVa/Padova simulator. They observed that during and two
hours after exercise, the nonlinear and linear models with PA made a
better prediction for BGL in a prediction horizon of 30 minutes than
the linear model without PA. Also, Bertachi et al. [54] investigated
the possibility of nocturnal hypoglycaemia prediction in T1D by
incorporating PA. They analysed the data of CGM sensors and
physical activity trackers collected in 12 weeks from 10 people with
T1D. They applied MLP and SVM models for binary classification.
They concluded it was feasible to predict nocturnal hypoglycaemia
from CGM and activity data using ML approaches. Moreover, Hobbs
et al. [53] developed a glycemic model by considering some terms
indicating different effects of PA on metabolism. They showed their
model outperformed the prediction model using only BGL.

Although several studies have focused on PA in T1D management,
to the best of our knowledge, no study has investigated different levels
of PA fusion in BGL prediction. Hence, This work contributes to this
gap by developing several PA-informed methods for BGL prediction.

III. DATASET

To accurately evaluate the developed methods, we used the Ohio
T1D dataset released in 2018 for the BGL prediction challenge [46],
and is the most commonly used publicly available clinical dataset
in the literature [59]. The dataset contained data from physiological
sensors and self-reported life events of six individuals with T1D.
The participants were four females and two males, aged between 40
and 60. Each participant had two distinct XML files for training and
testing sets. The total data for each patient was eight weeks’ worth,
of which the last 10 days were allocated to the testing set and the
rest used for the training set.

BGL data was collected with a 5-minute aggregation using a
Medtronic Enlite CGM sensor. PA data was automatically recorded
as heart rate (HR), step count (SC), galvanic skin response (GSR),
and skin temperature (ST) using a Basis Peak band with 5-minute
aggregation. Also, patients reported times and duration of sleep, work,
and exercise. An individual’s subjective assessment of physical effort
was measured for work and exercise on a scale from one to 10, with
10 indicating the highest level of PA.

The number of data points for BGL and automatic-recorded PA
data is provided in Table I. Also, Table II shows the count of self-
reported data related to PA with patients’ subjective assessment of
intensity level. Furthermore, additional details regarding the dataset,
including more information on sensors and devices, can be found in
[46].

TABLE I: The number of data points for blood glucose and automatic-
recorded physical activity in training and testing sets related to the
contributors in the Ohio dataset.

PID Training data points Testing data points
BGL PA band BGL PA band

559 10796 11979 2514 2633
563 12124 11966 2570 2706
570 10982 12328 2745 2720
575 11866 12446 2590 2698
588 12640 12980 2791 2620
591 10847 12276 2760 2668

Note. PID: patient identity; BGL: blood glucose level; PA:
physical activity.

In the present work, CGM data and automatic-recorded and self-
reported data related to PA were used. Figure 1 shows BGL and
PA-related data for a duration of 24 hours of training data for the
data contributor with PID 559.

IV. METHODS

A. Preprocessing
First, the missing data had to be dealt with in the preprocessing

phase. To do so, the missing BGL, HR, GSR, and ST data were
imputed using a linear approach, with interpolation and extrapolation
techniques used in the training and testing sets, respectively. Also,
missing SC data were filled with zero values for non-reported data
timestamps. Aligning BGL and PA data was the next preprocessing
step. Additionally, since CGM sensors and activity bands were worn
at different times, some data were unavailable at the beginning or
end of each set. To have more reliable data, these timestamps were
excluded from the analysis. Moreover, the time series forecasting task
of BGL prediction was recast to a supervised learning task. To do
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TABLE II: The number and patients’ subjective assessment of intensity levels of physical activity data.

PID No data Sleep Work/Exercise

1 2 3 4 5 6 7 8 9 10
559 7406 4771 0 57 227 810 1142 336 0 0 0 0
563 8107 3021 0 143 2737 462 249 144 0 0 0 0
570 5765 4582 718 2037 285 153 644 254 0 0 0 0
575 7554 4699 0 112 613 1386 1052 443 10 0 0 0
588 5642 5403 0 0 0 1148 3215 404 0 0 0 0
591 10983 4390 0 0 53 53 78 43 34 13 5 0
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Fig. 1: A presentation of blood glucose level and physical activity-related data for PID 559 for a duration of 24 hours. Note. BG: blood
glucose; HR: heart rate; GSR: galvanic skin response; ST: skin temperature; SC: step count.

so, the time series data were sampled, with lag observations serving
as input and future observations serving as output. Then, using a 5-
minute rolling window, history samples with 60-minute lengths were
assigned as input, and future samples with 30-minute and 60-minute
lengths were assigned as output. Finally, the scaling process was
applied to the input samples for each variable based on its minimum
and maximum values over the entire training set.

B. Prediction models
LSTM networks, a type of recurrent neural network, are capable

of predicting BGL [15], [24], [45], [60]. An LSTM model recently
developed by our team, as described in [23], [32], was used for the
BGL prediction task in the current work. The vanilla LSTM network
used had three layers: a 200-unit LSTM layer, a 100-unit dense layer,
and an output layer of one unit dense layer. The initialiser, activation
function, optimiser, and loss function were chosen as He uniform,
ReLU, Adam, and mean square error, respectively. Also, the epoch
size was set at 200 and the batch size at 32. The univariate LSTM
model was used for prediction using only BGL, and it is called the
no-fusion approach. Furthermore, according to the fusion approach,
both univariate and multivariate LSTM models were used for PA-
informed approaches.

It is worth noting that to develop the LSTM networks, two
categories of parameters needed to be determined: parameters related
to the network’s structure, including the number of hidden layers,
the number of units in each layer, the initialiser, and the activation
function, and parameters related to compilation, including batch size,
learning rate, and the optimiser. To do so, we partitioned the training
set into the first 80% for training and the following 20% for validation
purposes. The hyperparameters were then optimised by contributing
to the lowest average RMSE. We started with one hidden layer with
low units. By achieving good predictability capacity on the evaluation
set, we kept our LSTM model shallow with just one hidden layer.
Also, due to computational limitations, we used random searches

to determine the initialiser, activation function, and optimiser. More
details about the model architecture and optimization for univariate
and multivariate models can be found in [23] and [32].

C. PA fusion
From a data fusion perspective, ML approaches for data fusion

are categorised into three levels: signal fusion, feature fusion, and
decision fusion [61], [62]. In this work, different kinds of information
from PA at different levels were fused with BGL data. The perfor-
mance of the BGL prediction for different fusion information/levels
was investigated and compared with the prediction model without PA
information. In the following, the approaches for each level of data
fusion are described.

1) Signal-level PA fusion: The lowest level of data fusion was
signal-level data fusion, which used raw sensor data as inputs. In
this approach, the history data of BGL from CGM sensors and
the corresponding history of automatically recorded PA data from
wristbands were used as input for the multivariate LSTM prediction
model in three different combinations of BG+HR (BG and HR data),
BG+HRSC (BG, HR, and SC data), and BG+Band (BG, HR, SC,
GSR, and ST data).

2) Feature-level PA fusion: In this level of data fusion, features
from PA data were extracted and fused with the BGL data. To
comprehensively investigate this fusion level, three kinds of feature
engineering were utilised: subjective PA categories, objective PA
clusters, and statistics of PA data. In the following, these features
are briefly described.

a) Subjective PA categorisation: Considering that PA is defined
as any motion generated by skeletal muscle that increases energy
expenditure, it can be categorised as sedentary, light, moderate, and
vigorous in terms of relative effort and expenditure of energy [63]. In
the first feature extraction technique, self-reported data related to PA
were deployed as PA features. To do so, subjective assessments of
participants for physical exertion, which were scaled from one to 10,
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were categorised into three different intensity levels. In detail, data
reported with scales of one, two, and three were assigned to the light
category; data reported with scales of four and five were allocated
to the moderate category; and data reported with a scale of six or
more were categorised as vigorous. Also, non-reported timestamps
were assumed to be inactive and assigned to the sedentary category.
Moreover, sleep data was assigned to a separate category. Hence, five
categories related to different levels of PA intensities, including sleep,
sedentary, light, moderate, and vigorous, were used as subjective PA
features. These features were then employed as input along with the
BGL data for the multivariate LSTM prediction model. In short, this
approach is called BG+SPA.

b) Objective PA clustering: Another feature engineering ap-
proach used to extract PA information to be fused with BGL data was
clusters generated by K-means, a commonly used clustering approach
in unsupervised learning. Five clusters were considered, the same
as the number of subjective PA groups described previously. This
objective feature was generated using automatic-recorded PA data
collected from the wristbands. Similar to the subjective PA categories,
inputs for the multivariate LSTM prediction model included the five
different PA clusters and the BGL data. This approach is also referred
to as BG+OPA.

c) Statistics of PA data: In this feature category, the statistics
of the automatic-recorded PA data, which have been shown to be
effective in the BGL prediction in the literature [45], [64], were used
for the fusion with BGL data. To do so, PA statistics, including the
mean and standard deviation, were calculated for all the automatic-
recorded PA data and added to the corresponding history of BGL
data. This was fed as the input of the univariate LSTM model. It is
called the BG+StPA approach.

3) Decision-level PA fusion: The highest level of data fusion
is decision fusion, which combines information that has already
generated some decisions for a given task. To examine this level of
data fusion, a method employing stacked ensemble learning [65] was
developed based on the idea we proposed in our conference paper
[45]. The stacked regression consists of multiple models serving as
base-learners and a meta-learner fed by the outputs of the base-
learners. In this work, instead of using different models as base-
learners, the univariate LSTM model was trained twice, once using
BGL data and once using PA data. Thus, at the first level of learning,
primary decisions were generated separately using BGL and PA data.
The decisions of the first layer were then stacked and used as input
for the meta-learner, which was chosen as a linear regression model
to provide the final prediction. Accordingly, deploying the concept
of ensemble learning, PA information was fused with the BGL in a
decision-level approach.

Similar to the signal-level data fusion, the three combinations of
PA data were chosen to train the base learner. BG&HR, BG&HRSC,
and BG&Band are the names of fusion approaches for fusing BGL
with (HR), (HR and SC), and (HR, SC, GSR, and ST), respectively.

D. Evaluation criteria

In this study, the performance of BGL prediction using different
approaches for data fusion of PA was evaluated and compared for
two prediction horizons of 30 and 60 minutes. The evaluation was
performed based on regression-wised and clinical-wised criteria. The
regression-wised criteria included root mean square error (RMSE)
and mean absolute error (MAE). The clinical-wised criteria included
the Matthews correlation coefficient (MCC) and surveillance error
(SE). Definitions and equations regarding these metrics can be found
in our recent articles [23], [26], [32], [62], [66]–[69].

E. Statistical analyses

The performance of BGL prediction using various data fusion
approaches was also statistically evaluated and compared over data
contributors. Approaches for each level of PA fusion and the no-
fusion approach were compared pair-wisely based on the recom-
mended statistical tests in [70]. To do so, using a Friedman test
[71], it was determined if there was a significant difference in the
performance of BGL prediction between at least two approaches.
Next, the Post-hoc Nemenyi test [72] was performed for pair-wise
comparisons to determine which approaches performed significantly
differently in a pair-wise fashion, with a significance level of 5%.
Furthermore, the results of the post-hoc test were depicted by a
critical difference (CD) diagram [70]. These analyses were then also
performed between effective PA fusion approaches of each fusion
level.

V. RESULTS AND DISCUSSION

This section presents the evaluation results of different PA fusion
approaches along with rigorous statistical analyses for the two
prediction horizons of 30 and 60 minutes. It is worth noting that
since LSTM models rely on random initialisation, their performance
was evaluated ten times, and the mean and standard deviation are
reported for evaluation metrics.

A. No-fusion prediction

Table III presents the evaluation results of the BGL prediction
using the no-fusion approach, in which BGL data was used as the
only input for prediction horizons of 30 and 60 minutes.

B. PA-fused prediction

1) Signal-level PA fusion: Table IV shows the results of eval-
uating the BGL prediction models that use BGL data fused with
different signal-level information from PA to make predictions 30
and 60 minutes in advance.

To have a pair-wise comparison between the no-fusion approach
and signal-level PA fusion approaches, first, the Friedman test was
performed for both prediction horizons and all evaluation metrics.
According to Table V, there is sufficient evidence to be inferred
that at least two approaches may perform differently for the BGL
prediction. Therefore, in the next step, the post-hoc Nemenyi test
was performed for pair-wise comparisons to determine which PA
fusion approaches performed significantly differently. The results of
the Nemenyi tests based on each evaluation metric are graphically
represented as CD diagrams where horizontal lines link approaches
with similar performances at a significance level of 5%. Then, to have
an overview, CD diagrams according to the average ranking over all
evaluation criteria were generated for each prediction horizon of 30
and 60 minutes. To be concise, individual CD diagrams related to
each metric are presented in the Appendix section (Figure 6), and
CD diagrams based on the average over all metrics are presented in
Figure 2.

Considering Figures 2a and 2b, which show the ranking for predic-
tion horizon of 30 and 60 minutes, respectively, it can be concluded
that the BG+HR approach was the best approach among signal-level
PA fusion approaches and statistically significantly outperformed the
no-fusion approach. Considering Tables III and IV and Figure 6, it can
be concluded that among developed signal-level fusion approaches,
the BG+HR approach improved the average SE by 5.296% for the
prediction horizon of 30 minutes. Also, for the prediction horizon of
60 minutes, this fusion approach improved RMSE, MAE, MCC, and
SE by 4.466%, 6.403%, 7.479%, and 7.539%, respectively.
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TABLE III: Evaluation results of the BGL prediction using no-fusion approach for prediction horizons of 30 and 60 minutes.

PID PH: 30 min PH: 60 min

RMSE MAE MCC SE RMSE MAE MCC SE

559 19.854 ± 0.183 13.948 ± 0.222 0.787 ± 0.006 0.202 ± 0.004 35.070 ± 0.113 25.878 ± 0.186 0.618 ± 0.013 0.350 ± 0.006
563 18.800 ± 0.088 13.089 ± 0.077 0.770 ± 0.002 0.182 ± 0.001 34.156 ± 1.851 25.462 ± 1.782 0.459 ± 0.061 0.347 ± 0.025
570 23.504 ± 0.607 17.515 ± 0.628 0.820 ± 0.003 0.158 ± 0.004 29.007 ± 0.368 21.111 ± 0.271 0.790 ± 0.008 0.197 ± 0.003
575 24.075 ± 0.357 15.504 ± 0.521 0.730 ± 0.004 0.241 ± 0.012 37.858 ± 0.279 27.827 ± 1.483 0.521 ± 0.019 0.425 ± 0.033
588 18.881 ± 0.076 13.603 ± 0.053 0.738 ± 0.005 0.181 ± 0.002 37.783 ± 3.989 28.463 ± 3.451 0.430 ± 0.067 0.382 ± 0.049
591 22.683 ± 0.149 16.465 ± 0.103 0.639 ± 0.009 0.284 ± 0.002 37.851 ± 0.795 29.952 ± 0.796 0.378 ± 0.008 0.471 ± 0.011
Avg 21.299 ± 0.243 15.021 ± 0.267 0.747 ± 0.005 0.208 ± 0.004 35.288 ± 1.233 26.449 ± 1.328 0.533 ± 0.029 0.362 ± 0.021

Note. PID: patient identity; PH: prediction horizon; RMSE: root mean square error; MAE: mean absolute error; MCC: Matthews correlation coefficient; SE: surveillance
error.

TABLE IV: Evaluation results of the BGL prediction using signal-level physical activity fusion approaches for prediction horizons of 30 and
60 minutes.

PID Input PH: 30 min PH: 60 min

RMSE MAE MCC SE RMSE MAE MCC SE

559
BG+HR 19.980 ± 0.053 13.857 ± 0.130 0.813 ± 0.005 0.185 ± 0.004 35.169 ± 0.333 25.619 ± 0.301 0.632 ± 0.012 0.333 ± 0.011
BG+HRSC 23.691 ± 0.609 16.067 ± 0.258 0.782 ± 0.009 0.214 ± 0.003 39.131 ± 1.062 28.424 ± 0.884 0.609 ± 0.028 0.369 ± 0.020
BG+Band 23.411 ± 0.523 16.141 ± 0.231 0.765 ± 0.005 0.216 ± 0.004 40.323 ± 1.131 29.019 ± 0.712 0.589 ± 0.010 0.382 ± 0.012

563
BG+HR 18.942 ± 0.139 13.213 ± 0.122 0.766 ± 0.006 0.183 ± 0.002 31.398 ± 1.190 23.039 ± 1.171 0.543 ± 0.036 0.315 ± 0.020
BG+HRSC 19.256 ± 0.187 13.475 ± 0.184 0.771 ± 0.006 0.186 ± 0.002 31.674 ± 0.198 23.384 ± 0.252 0.552 ± 0.009 0.314 ± 0.003
BG+Band 19.408 ± 0.155 13.665 ± 0.098 0.772 ± 0.008 0.188 ± 0.002 32.042 ± 0.390 23.311 ± 0.583 0.543 ± 0.022 0.316 ± 0.013

570
BG+HR 16.550 ± 0.136 11.530 ± 0.108 0.871 ± 0.005 0.112 ± 0.002 28.584 ± 0.535 20.792 ± 0.453 0.785 ± 0.006 0.195 ± 0.004
BG+HRSC 16.886 ± 0.520 11.669 ± 0.318 0.866 ± 0.005 0.113 ± 0.005 28.540 ± 0.323 20.775 ± 0.231 0.782 ± 0.008 0.195 ± 0.003
BG+Band 17.929 ± 0.362 12.352 ± 0.351 0.849 ± 0.005 0.122 ± 0.004 29.655 ± 0.468 21.508 ± 0.382 0.753 ± 0.003 0.209 ± 0.004

575
BG+HR 23.996 ± 0.405 15.264 ± 0.254 0.742 ± 0.018 0.225 ± 0.006 37.712 ± 0.236 26.430 ± 0.167 0.527 ± 0.014 0.395 ± 0.004
BG+HRSC 24.317 ± 0.133 15.552 ± 0.232 0.740 ± 0.015 0.229 ± 0.005 38.549 ± 0.573 27.368 ± 0.449 0.518 ± 0.013 0.405 ± 0.009
BG+Band 24.449 ± 0.188 15.597 ± 0.164 0.742 ± 0.011 0.230 ± 0.002 39.246 ± 0.387 28.017 ± 0.330 0.519 ± 0.014 0.415 ± 0.006

588
BG+HR 18.916 ± 0.109 13.858 ± 0.294 0.750 ± 0.013 0.187 ± 0.008 32.305 ± 0.791 23.456 ± 0.400 0.556 ± 0.018 0.307 ± 0.003
BG+HRSC 19.320 ± 0.341 13.984 ± 0.298 0.736 ± 0.017 0.186 ± 0.003 32.422 ± 0.403 23.605 ± 0.327 0.556 ± 0.013 0.305 ± 0.005
BG+Band 19.483 ± 0.185 14.060 ± 0.172 0.730 ± 0.003 0.186 ± 0.001 33.430 ± 0.508 24.438 ± 0.344 0.546 ± 0.005 0.314 ± 0.004

591
BG+HR 22.644 ± 0.397 16.228 ± 0.388 0.637 ± 0.009 0.280 ± 0.007 37.102 ± 0.792 29.194 ± 0.976 0.392 ± 0.016 0.463 ± 0.013
BG+HRSC 22.807 ± 0.391 16.380 ± 0.345 0.641 ± 0.011 0.282 ± 0.006 36.995 ± 1.171 28.632 ± 1.309 0.411 ± 0.017 0.458 ± 0.020
BG+Band 22.948 ± 0.268 16.398 ± 0.226 0.653 ± 0.010 0.281 ± 0.004 36.833 ± 0.906 28.844 ± 1.232 0.428 ± 0.033 0.462 ± 0.020

Avg
BG+HR 20.171 ± 0.207 13.992 ± 0.216 0.763 ± 0.009 0.195 ± 0.005 33.712 ± 0.646 24.755 ± 0.578 0.572 ± 0.017 0.335 ± 0.009
BG+HRSC 21.046 ± 0.364 14.521 ± 0.273 0.756 ± 0.011 0.202 ± 0.004 34.552 ± 0.622 25.365 ± 0.575 0.571 ± 0.015 0.341 ± 0.010
BG+Band 21.271 ± 0.280 14.702 ± 0.207 0.752 ± 0.007 0.204 ± 0.003 35.255 ± 0.632 25.856 ± 0.597 0.563 ± 0.014 0.350 ± 0.010

Note. PID: patient identity; PH: prediction horizon; RMSE: root mean square error; MAE: mean absolute error; MCC: Matthews correlation coefficient; SE: surveillance error; BG+HR,
BG+HRSC, and BG+Band: approaches for the signal-level fusion of physical activity data with blood glucose data.

TABLE V: p-values of the Friedman test for comparing BGL predic-
tion performance using no-fusion approach and signal-level physical
activity fusion approaches for prediction horizons of 30 and 60
minutes.

PH: 30 min PH: 60 min

RMSE MAE MCC SE RMSE MAE MCC SE

0.000 0.000 0.058 0.001 0.000 0.000 0.034 0.000

Note. PH: prediction horizon; RMSE: root mean square error; MAE: mean absolute
error; MCC: Matthews correlation coefficient; SE: surveillance error.

2) Feature-level PA fusion: The evaluation results of BGL pre-
diction 30 and 60 minutes in advance using BGL data fused with
different PA-driven features are presented in Table VI.

Table VII shows the p-values of the Friedman test comparing
the no-fusion approach and feature-level PA fusion approaches.
Whenever the p-value for the Friedman test was significant for any
metric, a Nemenyi test was performed and visualised as CD diagrams.
Similar to the previous section, CD diagrams related to each metric
are shown in the Appendix section (Figure 7), and CD diagrams based
on average over all the significant metrics are visualised in Figure 3.

According to Figures 3a and 3b, it can be inferred that the
BG+SPA approach was the best among feature-level PA fusion
approaches, outperforming the no-fusion approach for both prediction
horizons of 30 and 60 minutes. Considering Tables III and VI and
Figure 7, it can be inferred that the BG+SPA approach improved
the average evaluation metrics of MCC and SE over all patients
by 2.921% and 6.063%, respectively, for the prediction horizon of
30 minutes, compared to the no-fusion approach. In addition, the
BG+SPA improved the average values of MAE and SE by 6.495%
and 8.183%, respectively, compared to the no-fusion approach for the
prediction horizon of 60 minutes.

3) Decision-level PA fusion: Table VIII displays the evaluation
results of BGL prediction models that fuse decision-level information
of PA and BGL using ensemble learning for prediction horizons of
30 and 60 minutes.

The Friedman test was performed to compare the no-fusion and
decision-level PA fusion approaches (Table IX). This was followed
by the post-hoc Nemenyi test for significantly different metrics. CD
diagrams visualising Nemenyi tests related to these metrics are shown
in the Appendix section (Figure 8), and CD diagrams based on
average over all the metrics are visualised in Figure 4.

Based on Figures 4a and 4b, it can be concluded that for both



6 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

TABLE VI: Evaluation results of the BGL prediction using feature-level physical activity fusion approaches for prediction horizons of 30
and 60 minutes.

PID Input PH: 30 min PH: 60 min

RMSE MAE MCC SE RMSE MAE MCC SE

559
BG+SPA 20.285 ± 0.270 14.208 ± 0.152 0.807 ± 0.006 0.189 ± 0.004 35.785 ± 0.483 26.098 ± 0.246 0.615 ± 0.010 0.339 ± 0.004
BG+OPA 21.394 ± 0.279 14.897 ± 0.120 0.793 ± 0.009 0.198 ± 0.005 36.592 ± 0.150 26.550 ± 0.144 0.628 ± 0.015 0.341 ± 0.006
BG+StPA 21.011 ± 0.238 14.616 ± 0.066 0.798 ± 0.008 0.201 ± 0.004 35.502 ± 0.339 25.965 ± 0.294 0.609 ± 0.019 0.347 ± 0.007

563
BG+SPA 18.881 ± 0.072 13.171 ± 0.093 0.773 ± 0.005 0.183 ± 0.002 31.401 ± 0.461 22.958 ± 0.589 0.554 ± 0.030 0.313 ± 0.012
BG+OPA 19.015 ± 0.077 13.321 ± 0.079 0.771 ± 0.006 0.184 ± 0.002 31.462 ± 0.678 23.161 ± 0.577 0.552 ± 0.016 0.315 ± 0.009
BG+StPA 20.508 ± 0.430 14.227 ± 0.415 0.731 ± 0.018 0.201 ± 0.007 32.895 ± 0.114 23.567 ± 0.321 0.509 ± 0.020 0.326 ± 0.008

570
BG+SPA 16.404 ± 0.230 11.382 ± 0.101 0.868 ± 0.005 0.112 ± 0.001 29.101 ± 1.030 21.009 ± 0.740 0.772 ± 0.008 0.201 ± 0.003
BG+OPA 17.023 ± 0.140 11.942 ± 0.113 0.870 ± 0.008 0.115 ± 0.002 28.798 ± 0.337 21.119 ± 0.247 0.785 ± 0.015 0.198 ± 0.005
BG+StPA 17.053 ± 0.477 11.959 ± 0.417 0.868 ± 0.004 0.114 ± 0.003 28.667 ± 0.445 20.924 ± 0.414 0.786 ± 0.006 0.194 ± 0.002

575
BG+SPA 23.913 ± 0.201 15.299 ± 0.070 0.735 ± 0.004 0.223 ± 0.003 37.955 ± 0.439 26.737 ± 0.229 0.499 ± 0.010 0.392 ± 0.004
BG+OPA 24.605 ± 0.411 15.461 ± 0.267 0.738 ± 0.006 0.226 ± 0.003 37.977 ± 0.344 26.605 ± 0.252 0.521 ± 0.015 0.390 ± 0.004
BG+StPA 23.520 ± 0.458 15.035 ± 0.324 0.753 ± 0.012 0.229 ± 0.009 37.593 ± 0.459 26.549 ± 0.696 0.532 ± 0.028 0.402 ± 0.018

588
BG+SPA 18.530 ± 0.414 13.669 ± 0.270 0.769 ± 0.006 0.181 ± 0.006 31.423 ± 0.222 22.680 ± 0.180 0.597 ± 0.010 0.294 ± 0.004
BG+OPA 19.018 ± 0.238 13.738 ± 0.193 0.754 ± 0.009 0.182 ± 0.004 32.311 ± 0.241 23.288 ± 0.179 0.579 ± 0.007 0.301 ± 0.003
BG+StPA 18.627 ± 0.135 13.708 ± 0.235 0.755 ± 0.005 0.181 ± 0.004 31.169 ± 0.307 22.603 ± 0.307 0.557 ± 0.007 0.296 ± 0.005

591
BG+SPA 22.595 ± 0.149 16.450 ± 0.147 0.663 ± 0.002 0.284 ± 0.003 36.649 ± 1.116 28.904 ± 1.150 0.446 ± 0.014 0.456 ± 0.016
BG+OPA 22.858 ± 0.421 16.302 ± 0.276 0.650 ± 0.004 0.277 ± 0.003 36.696 ± 0.798 28.860 ± 0.885 0.389 ± 0.010 0.455 ± 0.012
BG+StPA 22.276 ± 0.421 16.125 ± 0.380 0.633 ± 0.020 0.276 ± 0.008 34.806 ± 0.756 26.553 ± 0.811 0.436 ± 0.036 0.426 ± 0.013

Avg
BG+SPA 20.101 ± 0.222 14.030 ± 0.139 0.769 ± 0.005 0.195 ± 0.003 33.719 ± 0.625 24.731 ± 0.522 0.580 ± 0.014 0.332 ± 0.007
BG+OPA 20.652 ± 0.261 14.277 ± 0.175 0.763 ± 0.007 0.197 ± 0.003 33.972 ± 0.425 24.931 ± 0.381 0.576 ± 0.013 0.333 ± 0.007
BG+StPA 20.499 ± 0.360 14.278 ± 0.306 0.756 ± 0.011 0.200 ± 0.006 33.439 ± 0.403 24.360 ± 0.474 0.572 ± 0.019 0.332 ± 0.009

Note. PID: patient identity; PH: prediction horizon; RMSE: root mean square error; MAE: mean absolute error; MCC: Matthews correlation coefficient; SE: surveillance error; BG+SPA,
BG+OPA, and BG+StPA: approaches for the feature-level fusion of physical activity data with blood glucose data.

1 2 3 4
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BG+Band
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(a)

1 2 3 4
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CD
Fusion level: signal, PH: 60 min

(b)

Fig. 2: Critical difference diagram showing the comparison of the no-
fusion approach and signal-level physical activity fusion approaches
against each other according to average over the distinct metrics for
prediction horizon of 30 (a) and 60 (b) minutes.

prediction horizons of 30 and 60 minutes, the BG&HR approach
outperformed the no-fusion approach. Considering Tables III and
VIII and Figure 8, it can be inferred that the BG&HR approach
improved the average evaluation metrics of RMSE and MAE over
all patients by 5.265% and 6.684%, for the prediction horizon of 30
minutes, respectively, compared to the no-fusion approach. Moreover,

TABLE VII: p-values of the Friedman test for comparing BGL
prediction performance using no-fusion approach and feature-level
physical activity fusion approaches for prediction horizons of 30 and
60 minutes.

PH: 30 min PH: 60 min

RMSE MAE MCC SE RMSE MAE MCC SE

0.000 0.137 0.000 0.003 0.000 0.001 0.052 0.000

Note. PH: prediction horizon; RMSE: root mean square error; MAE: mean absolute
error; MCC: Matthews correlation coefficient; SE: surveillance error.

for the prediction horizon of 60 minutes, compared to the no-fusion
approach, the BG&HR approach improved RMSE, MAE, and SE
metrics by 1.394%, 2.128%, and 2.480%, respectively.

4) Comparison of different approaches: As mentioned previ-
ously, BG+HR, BG+SPA, and BG&HR approaches outperformed
the no-fusion approach for at least one evaluation metric for both
prediction horizons. A Friedman test was performed according to
all evaluation metrics to compare these approaches. According to
the p-values of the Friedman test (Table X), there was a significant
difference between at least two PA fusion approaches regarding the
MCC and SE evaluation metrics. Hence, the post-hoc Nemenyi test
was performed on these metrics for pairwise comparisons. Similarly,
CD diagrams visualising the outputs of Nemenyi tests based on each
metric are shown in Figure 9 in the Appendix section. Also, CD
diagrams based on the average over the two metrics are displayed in
Figure 5.

Considering Figure 5, it can be concluded that BG+HR and
BG+SPA approaches similarly performed better than the BG&HR
approach. Also, it is worth mentioning that based on Tables III, IV,
VI, and VIII, PA fusion approaches for PID 570, which based on
Table II could be considered as the most active patient, impacted more
significantly on BGL prediction performance than other patients.

The results show that the developed approaches for different
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TABLE VIII: Evaluation results of the BGL prediction using decision-level physical activity fusion approaches for prediction horizons of 30
and 60 minutes.

PID Input PH: 30 min PH: 60 min

RMSE MAE MCC SE RMSE MAE MCC SE

559
BG&HR 19.488 ± 0.060 13.548 ± 0.053 0.791 ± 0.007 0.196 ± 0.002 34.370 ± 0.287 25.534 ± 0.194 0.617 ± 0.004 0.348 ± 0.003
BG&HRSC 19.574 ± 0.065 13.631 ± 0.064 0.792 ± 0.006 0.197 ± 0.002 34.854 ± 0.241 26.022 ± 0.159 0.603 ± 0.009 0.354 ± 0.002
BG&Band 19.605 ± 0.078 13.655 ± 0.057 0.794 ± 0.005 0.196 ± 0.003 34.930 ± 0.373 26.086 ± 0.304 0.601 ± 0.002 0.355 ± 0.003

563
BG&HR 18.711 ± 0.124 13.016 ± 0.097 0.764 ± 0.005 0.181 ± 0.002 32.747 ± 1.692 24.277 ± 1.739 0.484 ± 0.059 0.334 ± 0.028
BG&HRSC 18.697 ± 0.135 13.001 ± 0.108 0.764 ± 0.005 0.180 ± 0.002 32.769 ± 1.697 24.285 ± 1.712 0.483 ± 0.062 0.334 ± 0.027
BG&Band 18.683 ± 0.158 13.019 ± 0.107 0.766 ± 0.004 0.180 ± 0.001 32.618 ± 1.683 24.120 ± 1.612 0.486 ± 0.059 0.333 ± 0.025

570
BG&HR 17.381 ± 0.473 12.111 ± 0.322 0.862 ± 0.005 0.117 ± 0.003 28.701 ± 0.266 20.823 ± 0.212 0.789 ± 0.004 0.193 ± 0.002
BG&HRSC 17.381 ± 0.479 12.113 ± 0.319 0.861 ± 0.004 0.116 ± 0.003 28.684 ± 0.267 20.816 ± 0.210 0.791 ± 0.004 0.192 ± 0.002
BG&Band 17.395 ± 0.460 12.125 ± 0.312 0.863 ± 0.004 0.116 ± 0.003 28.736 ± 0.324 20.865 ± 0.247 0.789 ± 0.004 0.193 ± 0.002

575
BG&HR 24.030 ± 0.394 15.296 ± 0.251 0.736 ± 0.011 0.235 ± 0.006 37.351 ± 0.558 26.741 ± 0.517 0.513 ± 0.015 0.404 ± 0.008
BG&HRSC 24.036 ± 0.398 15.306 ± 0.248 0.737 ± 0.011 0.235 ± 0.007 37.312 ± 0.568 26.695 ± 0.541 0.513 ± 0.014 0.403 ± 0.008
BG&Band 24.027 ± 0.404 15.301 ± 0.253 0.735 ± 0.012 0.235 ± 0.007 37.303 ± 0.591 26.713 ± 0.557 0.510 ± 0.014 0.403 ± 0.008

588
BG&HR 19.126 ± 0.078 13.706 ± 0.077 0.744 ± 0.008 0.182 ± 0.002 38.258 ± 4.209 28.279 ± 3.472 0.440 ± 0.070 0.371 ± 0.045
BG&HRSC 19.086 ± 0.097 13.738 ± 0.070 0.738 ± 0.010 0.182 ± 0.002 38.366 ± 4.206 28.427 ± 3.439 0.431 ± 0.069 0.374 ± 0.045
BG&Band 19.314 ± 0.079 13.818 ± 0.086 0.740 ± 0.007 0.184 ± 0.002 38.500 ± 4.124 28.425 ± 3.387 0.449 ± 0.069 0.371 ± 0.043

591
BG&HR 22.332 ± 0.265 16.423 ± 0.284 0.624 ± 0.012 0.286 ± 0.004 37.346 ± 0.610 29.662 ± 0.566 0.363 ± 0.008 0.467 ± 0.008
BG&HRSC 22.322 ± 0.243 16.420 ± 0.251 0.624 ± 0.011 0.286 ± 0.004 37.638 ± 0.644 29.936 ± 0.566 0.347 ± 0.014 0.472 ± 0.008
BG&Band 22.528 ± 0.310 16.857 ± 0.342 0.620 ± 0.003 0.291 ± 0.005 38.161 ± 0.756 30.605 ± 0.595 0.340 ± 0.013 0.483 ± 0.007

Avg
BG&HR 20.178 ± 0.232 14.017 ± 0.181 0.754 ± 0.008 0.199 ± 0.003 34.796 ± 1.271 25.886 ± 1.117 0.534 ± 0.027 0.353 ± 0.015
BG&HRSC 20.183 ± 0.236 14.035 ± 0.176 0.753 ± 0.008 0.199 ± 0.003 34.937 ± 1.271 26.030 ± 1.105 0.528 ± 0.029 0.355 ± 0.015
BG&Band 20.259 ± 0.248 14.129 ± 0.193 0.753 ± 0.006 0.200 ± 0.003 35.041 ± 1.308 26.136 ± 1.117 0.529 ± 0.027 0.356 ± 0.014

Note. PID: patient identity; PH: prediction horizon; RMSE: root mean square error; MAE: mean absolute error; MCC: Matthews correlation coefficient; SE: surveillance error; BG&HR,
BG&HRSC, and BG&Band: approaches for the decision-level fusion of physical activity data with blood glucose data.
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Fig. 3: Critical difference diagram showing the comparison of the no-
fusion approach and feature-level physical activity fusion approaches
against each other according to average over the distinct metrics for
prediction horizon of 30 (a) and 60 (b) minutes.

fusion levels of PA data with BGL data are promising in improving
BGL prediction performance. Hence, it is worth noting that, by
making some adjustments, similar approaches can be applied to fuse
information on other affecting variables, including carbohydrates and
insulin, with BGL data. More generally, apart from BGL prediction,
the developed approaches can also be considered as data fusion
methods for fusing two types of data for prediction tasks in related

TABLE IX: p-values of the Friedman test for comparing BGL
prediction performance using no-fusion approach and decision-level
physical activity fusion approaches for prediction horizons of 30 and
60 minutes.

PH: 30 min PH: 60 min

RMSE MAE MCC SE RMSE MAE MCC SE

0.002 0.001 0.199 0.106 0.001 0.000 0.215 0.012

Note. PH: prediction horizon; RMSE: root mean square error; MAE: mean absolute
error; MCC: Matthews correlation coefficient; SE: surveillance error.

TABLE X: p-values of the Friedman test for comparing the effective
physical activity fusion approaches from different levels for predic-
tion horizons of 30 and 60 minutes.

PH: 30 min PH: 60 min

RMSE MAE MCC SE RMSE MAE MCC SE

0.393 0.967 0.000 0.004 0.531 0.150 0.012 0.001

Note. PH: prediction horizon; RMSE: root mean square error; MAE: mean absolute
error; MCC: Matthews correlation coefficient; SE: surveillance error.

domains.

VI. CONCLUSION

The goal of this work was to contribute to finding optimal
approaches for PA deployment in BGL prediction models, including
the kind of PA information and the level of integration. This work
comprehensively investigated leveraging PA in BGL prediction by de-
veloping different approaches for extracting various information from
PA data and fusing this information with BGL data in signal, feature,
and decision levels. To do so, for the signal fusion, three different
combinations of automatically-recorded PA data from wristbands
including (HR), (HR and SC), and (HR, SC, GSR, and ST) were fused
with BGL data. Also, three feature engineering approaches, including
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Fig. 4: Critical difference diagram showing the comparison of the
no-fusion approach and decision-level physical activity fusion ap-
proaches against each other according to average over the distinct
metrics for prediction horizon of 30 (a) and 60 (b) minutes.

1 2 3

BG+SPA
BG+HR

BG&HR

CD
PH: 30 min

(a)

1 2 3

BG+HR
BG+SPA

BG&HR

CD
PH: 60 min

(b)

Fig. 5: Critical difference diagram showing the comparison of the
effective physical activity fusion approaches against each other ac-
cording to average over the distinct metrics for prediction horizon of
30 (a) and 60 (b) minutes.

subjective PA categorisation, objective PA clustering, and statistics
of PA, were used to fuse feature-level PA information with BGL
data. Moreover, for decision-level PA fusion, the primary decisions
made by the base-learner using BGL data and PA data separately
were stacked and used as inputs of the meta-learner. Three different
decision-level approaches were developed based on the kind of PA
data. In total, nine PA fusion approaches were developed. These
approaches were compared with the no-fusion approach and also with
each other. All in all, the evaluation and statistical analyses showed
that fusing PA information with BGL can significantly improve the
performance of BGL prediction. Among all the developed PA fusion

approaches, fusing BGL with automatically recorded HR data and
with categories of self-reported PA-related events outperformed the
no-fusion and other PA fusion approaches. Hence, it can be concluded
that the BGL prediction task can benefit from using PA bands.

Examining the developed methods for different levels of PA fusion
was a preliminary investigation to find effective approaches for
leveraging PA in BGL prediction. There are different ways in which
this can be improved and further developed. In this work, we used
different levels of PA categorised subjectively, which were useful
information for BGL prediction models. Automating this procedure
by automatically classifying PA data into various intensity levels
would be valuable as a future direction. Also, it would be beneficial
to investigate the developed approaches further by exploring more
prediction models, specifically more advanced and efficient ones.
Moreover, similar to the developed approaches and considering
some adjustments, further investigation would involve methods for
other affecting variables. It is also worth noting that testing newly
developed models in as many datasets as possible can show their
robustness. However, we only had access to the Ohio dataset in this
work. Hence, implementing the proposed approaches on other good-
quality datasets would be suggested.

VII. CODE AND DATA AVAILABILITY

The methodologies were implemented using Python 3.6,
TensorFlow 1.15.0 [73], and Keras 2.2.5 [74], deploying
the following packages: pandas [75], NumPy [76], SciPy [77],
scikit-learn [78], statsmodels [79], scikit-posthocs
[80]. Codes implemented are accessible via the Gitlab repository. It
is also possible to access the publicly available Ohio dataset through
a data use agreement.

APPENDIX

CD diagrams according to the evaluation metrics with a significant
p-value outcome for Friedman test are displayed in Figures 6, 7,
and 8. These diagrams compare the no-fusion approach with signal-
level, feature-level, and decision-level PA fusion approaches. Also,
CD diagrams in Figure 9 compare the effective PA fusion approaches.

https://gitlab.com/Hoda-Nemat/activity-fusion.git
https://ohio.qualtrics.com/jfe/form/SV_02QtWEVm7ARIKIl
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Fig. 6: Critical difference diagram showing the comparison of the no-
fusion approach and signal-level physical activity fusion approaches
against each other according to RMSE (a), MAE (b), and SE (c) for
the prediction horizon of 30 minutes as well as RMSE (d), MAE (e),
MCC (f), and SE (g) for the prediction horizon of 60 minutes.
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Fig. 7: Critical difference diagram showing the comparison of the no-
fusion approach and feature-level physical activity fusion approaches
against each other according to RMSE (a), MCC (b), and SE (c) for
the prediction horizon of 30 minutes as well as RMSE (d), MAE (e),
and SE (f) for the prediction horizon of 60 minutes.
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Fig. 8: Critical difference diagram showing the comparison of the
no-fusion approach and decision-level physical activity fusion ap-
proaches against each other according to RMSE (a) and MAE (b)
for the prediction horizon of 30 minutes as well as RMSE (c), MAE
(d), and SE (e) for the prediction horizon of 60 minutes.
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Fig. 9: Critical difference diagram showing the comparison of the
effective physical activity fusion approaches against each other ac-
cording to MCC (a) and SE (b) for the prediction horizon of 30
minutes as well as MCC (c) and SE (d) for the prediction horizon of
60 minutes.
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