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ABSTRACT
Background: Capsule endoscopy (CE) is a valuable tool used in the diagnosis of small intestinal lesions. The study aims to sys-
tematically review the literature and provide a meta-analysis of the diagnostic accuracy, specificity, sensitivity, and negative and 
positive predictive values of AI-assisted CE in the diagnosis of small bowel lesions in comparison to CE.
Methods: Literature searches were performed through PubMed, SCOPUS, and EMBASE to identify studies eligible for inclu-
sion. All publications up to 24 November 2024 were included. Original articles (including observational studies and randomized 
control trials), systematic reviews, meta-analyses, and case series reporting outcomes on AI-assisted CE in the diagnosis of small 
bowel lesions were included. The extracted data were pooled, and a meta-analysis was performed for the appropriate varia-
bles, considering the clinical and methodological heterogeneity among the included studies. Comprehensive Meta-Analysis v4.0 
(Biostat Inc.) was used for the analysis of the data.
Results: A total of 14 studies were included in the present study. The mean age of participants across the studies was 54.3 years 
(SD 17.7), with 55.4% men and 44.6% women. The pooled accuracy for conventional CE was 0.966 (95% CI: 0.925–0.988), whereas 
for AI-assisted CE, it was 0.9185 (95% CI: 0.9138–0.9233). Conventional CE exhibited a pooled sensitivity of 0.860 (95% CI: 0.786–
0.934) compared with AI-assisted CE at 0.9239 (95% CI: 0.8648–0.9870). The positive predictive value for conventional CE was 
0.982 (95% CI: 0.976–0.987), whereas AI-assisted CE had a PPV of 0.8928 (95% CI: 0.7554–0.999). The pooled specificity for 
conventional CE was 0.998 (95% CI: 0.996–0.999) compared with 0.5367 (95% CI: 0.5244–0.5492) for AI-assisted CE. Negative 
predictive values were higher in AI-assisted CE at 0.9425 (95% CI: 0.9389–0.9462) versus 0.760 (95% CI: 0.577–0.943) for conven-
tional CE.
Conclusion: AI-assisted CE displays superior diagnostic accuracy, sensitivity, and positive predictive values albeit the lower 
pooled specificity in comparison with conventional CE. Its use would ensure accurate detection of small bowel lesions and fur-
ther enhance their management.
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1   |   Introduction

Radiological evaluation of the small bowel has in the recent 
past been a great challenge owing to the limitation in eval-
uation of depth and diagnostic yield offered by former tech-
niques such as the push enteroscopy [1]. With the diagnostic 
restrictions brought about by the anatomical configuration of 
the small intestines, professionals resorted to intraoperative 
enteroscopy for complete evaluation, although it is associated 
with morbidity and mortalities in up to 17% and 5% cases, re-
spectively [2]. This was the case until the early 21st century, 
which came along with the advent of capsule endoscopy (CE) 
with diagnostic yields of up to 87% in acute gastrointestinal 
bleeding [3]. Small bowel capsule endoscopy (SBCE) has since 
then been the first-line modality for the diagnosis of several 
small intestinal diseases such as small bowel tumors, Crohn's 
disease, polyposis syndrome, Celiac disease, and suspected 
small bowel bleeding [4, 5]. SBCE entails ingestion of a cap-
sule that then transmits images at a rate of two to six frames 
per second in 8–12 h depending on the battery life. Thousands 
of 512-by-512-pixel high-resolution images, transcribed into a 
video, are then generated and interpreted by a clinician taking 
up to an hour per video [6, 7].

Although SBCE offered such a reprieve from the challenges of 
the former diagnostic techniques, its effectiveness was, how-
ever, limited by factors such as poor battery life, and long read-
ing times considering the number of images needed to be taken 
[5, 8]. Technological advancements have largely sorted out the 
battery life issues, leaving the reading time as the main prob-
lem [5]. With the standard guidelines set at a maximum reading 
rate of 10 frames per second in a single view mode, reading of 
capsule images has been associated with a significant burden on 
the clinician with a risk of interpretation errors because of the as-
sociated eye strain [9]. The European Society of Gastrointestinal 
Endoscopy, in a bid to reduce the workload and minimize er-
rors, recommends, in part, pre-reporting be done by nurses and 
technicians who are duly trained; however, this comes at an ad-
ditional human resource cost [9].

Several software and tools have been developed in an attempt to 
reduce the reading time and increase accuracy, without which 
the ease of use, safety, diagnostic yield, and patient acceptability 
brought about by SBCE is limited [5]. The suspected blood indi-
cator (SBI) tool, for instance, attempts to identify and tag possible 
hemorrhagic areas in the video frames with a red pixel for ease 
of identification. There is, however, a significant compromise in 
reading quality and validity with the utility of these reading aid 
tools such as the SBI with recommendations for adjunctive auto-
mated reading software and the use of artificial intelligence (AI). 
Machine learning (ML) models such as support vector machines 
developed for the detection of small bowel bleeding were initially 
limited by their difficulty in 2D image recognition. This has in 
part been addressed by the convolutional neural network (CNN), 
which utilizes deep learning (DL). The discovery of CNN greatly 
paved the way for a myriad of AI models in image classification 
beyond small bowel bleeding and into other lesions detection [7].

Almost two and a half decades later since the inception of SBCE 
and with several advancements including the introduction of 
AI, its effectiveness in small bowel diagnostics remains well 

appreciated. There are, however, still conflicting reports on the 
diagnostic accuracy, clinical validity, and effectiveness of differ-
ent AI models in the diagnosis of small bowel lesions in com-
parison to conventional endoscopy. This systematic review and 
meta-analysis provide a comprehensive report of this.

2   |   Methodology

2.1   |   Study Protocol and Registration

This systematic review and meta-analysis were conducted in 
accordance with the Preferred Reporting Items for Systematic 
Review and Meta-Analysis Protocols (PRISMA-P) and Assessing 
the Methodological Quality of Systematic Reviews (AMSTAR) 
guidelines [10, 11]. The protocol for the study was registered in 
the International Prospective Register of Systematic Reviews 
(PROSPERO).

2.2   |   Data Sources and Search Strategy

Literature searches were performed through PubMed/
MEDLINE, SCOPUS, and EMBASE to identify studies eligible 
for inclusion. All publications up to November 24, 2024, the latest 
search date, were included. Search terms used for the three data-
bases included are shown in Table 1. No restrictions on language 
or study type were specified on the search protocol. The PubMed 
function “related articles” was used to extend the search to pro-
vide a reference list of all included studies. Backwards citation 
was used when appropriate to include pertinent articles. The fol-
lowing PICOS criteria were used as a framework to design the 
study question and formulate the literature search strategies to 
ensure comprehensive and bias-free searches:

P (Population): adults (> 18) with small bowel lesions.

TABLE 1    |    Search strategy for the databases utilized in the study.

Database Search strategy

PubMed ((AI OR “artificial intelligence” OR 
“machine learning” OR “deep learning” 
OR “neural network” OR “digital image 
analysis”) AND (“small bowel”) AND 

(“capsule endoscopy”) AND (“detection” 
OR “diagnosis” OR “diagnosing”))

SCOPUS TITLE-ABS-KEY (((AI OR “artificial 
intelligence” OR “machine learning” 

OR “deep learning” OR “neural 
network” OR “digital image analysis”) 
AND (“small bowel”) AND (“capsule 

endoscopy”) AND (“detection” OR 
“diagnosis” OR “diagnosing”)))

EMBASE ((AI OR “artificial intelligence” OR 
“machine learning” OR “deep learning” 
OR “neural network” OR “digital image 
analysis”) AND (“small bowel”) AND 

(“capsule endoscopy”) AND (“detection” 
OR “diagnosis” OR “diagnosing”))
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I (Intervention): AI-assisted SBCE.

C (Comparison): Conventional SBCE.

O (Outcomes): Detection of small bowel tumors, Crohn's dis-
ease, polyposis syndrome, Celiac disease, and obscure intestinal 
bleeding.

S (Studies): Original articles (including observational studies, 
randomized control trials) systematic reviews, meta-analyses, 
and case series.

2.3   |   Eligibility Criteria and Screening of Articles

Rayyan citation manager was used to facilitate screening of 
articles obtained from the search process. Duplicate citations 
were cross-checked manually and removed after careful eval-
uation of the data. Title and abstract of the remaining articles 
were screened for relevance, and full texts were obtained for 
those that passed the inclusion criteria. For repeat articles 
from the same group containing a search period overlap and 
similar data sets, only the most recent article was included to 
avoid duplication of data.

Studies were considered eligible for inclusion if they contained 
relevant information on the use of AI-assisted ML algorithms 
in SBCE for the detection of small bowel lesions in adult pa-
tients. The following criteria were used to establish eligibility 
of studies—inclusion criteria: original articles (including ob-
servational studies, case control, cohort studies, and random-
ized control trials) systematic reviews, meta-analyses, and 
case series specific to AI-assisted SBCE in adults; exclusion 
criteria: narrative reviews, editorials, short communications, 
opinion articles, case studies, and articles for which the full 
text was not retrievable and in cases where actual patients 
were not utilized in the study. Non-English articles were ex-
cluded at this stage, as were studies with incomplete or irrel-
evant information. Two authors independently undertook the 
above, and any disagreements about eligibility were settled 
through consensus with a third reviewer. A PRISMA flow 
chart was developed to outline this.

2.4   |   Data Extraction and Outcomes of Interest

All relevant articles that passed the screening and inclusion 
criteria were considered for analysis. Data extraction was con-
ducted by two independent reviewers and any consensus settled 
by a third reviewer. Data extraction was done using a standard 
excel sheet generated with the variables to be extracted from 
each of the studies included.

From each study, the following information was extracted: 
study characteristics—authors, original title, full article ab-
stract, publication year, country and continent, study design, 
sample size, and study period; participant demographics—
age, sex, and clinical characteristics (e.g., symptoms, risk 

factors, and comorbidities); intervention details—description 
of the AI-assisted SBCE system (e.g., type of algorithm, train-
ing data) and the standard conventional SBCE procedures; 
outcome measures—diagnostic accuracy, sensitivity, spec-
ificity, diagnostic odds ratio, positive predictive value (PPV) 
and negative predictive value (NPV), mean procedure/reading 
time, small bowel transit time, all GI tract transit time, time 
to detect one small bowel lesion, complications, and interob-
server agreement.

Our meta-analysis aims to comprehensively evaluate the 
performance of AI-assisted CE compared with conventional 
methods by human clinicians in the detection of small bowel 
lesions. The analysis aims to encompass multiple studies, cov-
ering a range of metrics including accuracy, sensitivity, speci-
ficity, PPV, and NPV.

2.5   |   Data Summary and Synthesis

The data were entered into an Excel sheet for cleaning, vali-
dation, and coding. The data were presented in a tabular form 
for presentation. The extracted data were pooled, and a meta-
analysis was performed for the appropriate variables, consid-
ering the clinical and methodological heterogeneity among the 
included studies. Comprehensive Meta Analysis v4.0 (Biostat 
Inc.) was used for the analysis of the data.

2.6   |   Meta-Analysis of Diagnostic Test Accuracy

Meta-analysis was conducted only on full-text articles that 
provided complete descriptive statistical data, including confi-
dence intervals. Pooled accuracy, sensitivity, specificity, PPV, 
and NPV were determined for AI-assisted CE versus conven-
tional endoscopy. Forest plots with a 95% CI were calculated and 
pooled, and pooled interval data were assessed. Heterogeneity 
among the outcomes of included studies in this meta-analysis 
was evaluated using Cochrane's Q test. Significant heterogene-
ity was indicated by p less than 0.05 in Cochrane's Q test. For 
results with significant heterogeneity, a random-effects model 
was utilized. And those with nonsignificant heterogeneity, a 
fixed-effects model was performed. Statistical analyses were 
performed using Python programming language v3.4 (Python 
Software Foundation, Wilmington, Delaware). Data analysis 
and visualization were completed using Comprehensive Meta-
Analysis v4.0 (Biostat Inc.).

2.7   |   Risk of Bias Assessment

The quality of the included studies was assessed using the appro-
priate tools for each study design. For observational studies, the 
risk of bias assessment tool for nonrandomized studies (RoBANS 
II) was used, whereas the Cochrane Risk of Bias tool (ROB2) was 
employed for RCTs. Two independent reviewers assessed the 
quality of each study, with disagreements resolved through dis-
cussion or consultation with a third reviewer if necessary.
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3   |   Results

3.1   |   Summary of Study Characteristics

A total of 14 studies [12–25] were included, and the breakdown 
for screening according to the PRISMA guidelines is as pre-
sented in Figure  1. A detailed summary of key findings from 
each study is as presented in Table 2.

3.2   |   Patient Demographics

The mean of reported ages for included studies was 54.3 years 
(SD 17.7); 55.4% of individuals were men, and 44.6% were 
women. Seven studies were conducted within Europe and five 
in Asia. The most commonly reported symptoms included gas-
trointestinal bleeding, abdominal pain, chronic diarrhea, and 
iron deficiency anemia. The most common comorbidity iden-
tified was Crohn's disease. The commonly utilized ML algo-
rithm were CNNs including the Xception model, DeepLab v3, 
SmartScan, and ResNet 50, followed by a hybrid approach with 
CNN + convolutional recurrent neural network (CRNN) model. 
The use of artificial neural networks (ANN) was reported in 
one study. One study employed Express View (an AI system 

based on conventional ML algorithms), whereas another study 
utilized TOP100 (an integrated AI tool that selects the 100 
most relevant frames, including potential lesions from SBCE 
video recordings) [17, 23]. Data regarding complications were 
reported only in two studies. Chetcuti Zammit et al. reported 
an incomplete examination (n = 17), delayed small bowel transit 
time (n = 11), small bowel stricture (n = 2), and delayed gastric 
transit time (n = 4) [22]. Constantinescu et al. reported no com-
plications [14].

3.3   |   Transit and Reading Times

The average number of reported images/frames was 37 097 854 
(range: 4904–148 357 922). The gold standard for comparison 
of AI outcomes was against consensus diagnosis from experts, 
which consisted of board-certified gastroenterologists. The mean 
conventional reading time is estimated 43.9 min (SD 27.82), and 
the mean AI reading time is 5.7 min (SD 4.8). The mean reported 
frames per second for AI training of the image set was 106.7 frames 
per second (SD: 68.8). The pooled mean small bowel transit time 
was 312 min (SD: 54). Data regarding interobserver agreement 
were only provided by Ju et al. [17]. The five gastroenterologists 
evaluated CE clip video quality as “high” in 10.7%–36.7% and as 

FIGURE 1    |    Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) flowchart for included studies.
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“low” in 28.7%–60.3% and 29.7% of cases, respectively. The AI 
evaluated CE clip video quality as “high” in 27.7% and as “low” in 
29.7% of cases. Bonferroni's multiple comparison tests showed no 
significant difference between three gastroenterologists and AI 
(p = 0.0961, p = 1.0000, and p = 0.0676, respectively) but a signifi-
cant difference between the other 2 with AI (p < 0.0001).

3.4   |   Conventional CE—Pooled Accuracy

A total of two studies were included in the conventional accuracy 
analysis [11, 12]. A random-effects model was employed for the 
analysis. The mean effect size is 0.966 with a 95% confidence inter-
val of 0.925–0.988. Given that only two studies provided complete 
data that could have been pooled, an I-squared statistic and hetero-
geneity analysis could not be completed.

3.5   |   AI CE—Pooled Accuracy

A total of eight studies were included in the AI accuracy analysis 
[12, 15, 17, 20, 23, 24]. A random-effects model was employed for 
the analysis. The mean effect size is 91.85% with a 95% confi-
dence interval of 91.38%–92.33%. The I-squared statistic is 100%, 
which informs us that the observed effects reflect variance in 

true effects rather than sampling error. Figure 2 provides a for-
est plot depicting pooled accuracy of AI detection of SBCE.

3.6   |   Conventional CE—Pooled Sensitivity

A total of five studies were included in the conventional sen-
sitivity analysis [14, 17, 21–23]. A random-effects model was 
employed for the analysis. The mean effect size is 0.860 with 
a 95% confidence interval of 0.786–0.934. The Q-statistic pro-
vides a test of the null hypothesis that all studies in the anal-
ysis share a common effect size. The Q-value is 240.979 with 
four degrees of freedom and p < 0.001. Using the criterion 
alpha, we can reject the null hypothesis that the true effect 
size is the same in all these studies. The I-squared statistic is 
98%, which informs us that 98% of the observed effects reflect 
variance in true effects rather than sampling error.

3.7   |   AI CE—Pooled Sensitivity

A total of 11 studies were included in the AI sensitivity analy-
sis [12, 15–17, 19–21, 23–25]. A random-effects model was em-
ployed for this analysis. The mean effect size is 92.39% with a 
confidence interval of 86.48%–98.70%. The I-squared statistic 

FIGURE 2    |    Pooled accuracy for AI-assisted capsule endoscopy.

FIGURE 3    |    Pooled sensitivity for AI-assisted capsule endoscopy.
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is 100%, which informs us that the observed effects reflect vari-
ance in true effects rather than sampling error. Figure 3 pro-
vides a forest plot depicting pooled sensitivity of AI detection 
of SBCE.

3.8   |   Conventional CE—Pooled Specificity

A total of three studies were included in the conventional speci-
ficity analysis [15, 18, 22]. A random-effects model was employed 
for the analysis. The mean effect size is 0.998 with a 95% confi-
dence interval of 0.996–0.999. The Q-statistic provides a test of the 
null hypothesis that all studies in the analysis share a common 
effect size. The Q-value is 5.628 with two degrees of freedom and 
p = 0.060. Using the criterion alpha, we cannot reject the null hy-
pothesis that the true effect size is the same in all these studies. 
The I-squared statistic is 64%, which informs us that 64% of the 
observed effects reflect variance in true effects rather than sam-
pling error.

3.9   |   AI CE—Pooled Specificity

A total of nine studies were included in the AI specificity analy-
sis [12, 15–17, 20, 23–25]. A random-effects model was employed 
for this analysis. The mean effect size is 53.67% with a confi-
dence interval of 52.44%–54.92%. The Z-value is 53.209 with 
p < 0.001. The I-squared statistic is 100%, which informs us that 
the observed effects reflect variance in true effects rather than 

sampling error. Figure 4 provides a forest plot depicting pooled 
specificity of AI detection of SBCE.

3.10   |   Conventional CE—Pooled PPV

A total of three studies were included in the conventional PPV 
analysis [15, 18, 22]. A random-effects model was employed for this 
analysis. The mean effect size is 0.982 with a confidence interval 
of 0.976–0.987. The Q-value is 0.180 with two degrees of freedom.

3.11   |   AI CE—Pooled PPV

A total of seven studies were included in the AI PPV analysis 
[12, 16, 17, 23–25]. A random-effects model was employed for 
this analysis. The mean effect size is 89.28% with a confidence 
interval of 75.54%–99.9%. The I-squared statistic is 99%, which 
informs us that the observed effects reflect variance in true ef-
fects rather than sampling error. Figure 5 provides a forest plot 
depicting pooled PPV of AI detection of SBCE.

3.12   |   Conventional CE—Pooled NPV

A total of two studies were included in the conventional NPV 
analysis [15, 18]. A random-effects model was employed for this 
analysis. The mean effect size is 0.760 with a confidence interval 
of 0.577–0.943. Given that only two studies were available for 

FIGURE 4    |    Pooled specificity for AI-assisted capsule endoscopy.

FIGURE 5    |    Pooled positive predictive value for AI-assisted capsule endoscopy.
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this analysis, a reliable Q-value or I-squared statistic could not 
be calculated.

3.13   |   AI CE—Pooled NPV

A total of seven studies were included in the AI NPV analysis 
[12, 16, 17, 23–25]. A random-effects model was employed for 
this analysis. The mean effect size is 94.25 with a confidence 
interval of 93.89%–94.62%. The I-squared statistic is 99%, which 
informs us that the observed effects reflect variance in true ef-
fects rather than sampling error. Figure 6 provides a forest plot 
depicting pooled NPV of AI detection of SBCE.

3.14   |   Quality and Risk of Bias Assessment

We evaluated all nonrandomized studies using the RoBANS II 
tool [12–25]. Figure 7 visually represents the risk of bias anal-
ysis for these trials. Generally, the risk of bias for the studies 
included in this systematic review was minimal. The domain 
noted to most likely have a high risk of bias pertained to in-
complete outcome data, whereas the risk of bias for the domain 
“blinding of assessors” was often unclear. The domain “outcome 
assessment” exhibited the least bias.

4   |   Discussion

4.1   |   Medical Imaging and CNN Model

The incorporation of AI into medical imaging stands as a rev-
olutionary advancement, akin in significance to the ground-
breaking efforts of Roentgen, Becquerel, and Curie. In the field 
of medical imaging, ANN serves as the fundamental element for 
both ML and DL. An ANN is an analytical algorithm compris-
ing interconnected layers of nodes, where inputs may include 
radiomic features from image files or, in the case of a CNN, the 
images directly. An ANN is identified by nodes ranging from 
hundreds to millions, arranged in layers, often referred to as 
depth [26]. DL utilizes an ANN with multiple layers, typically 
surpassing six, representing a more sophisticated iteration of 
ML. DL excels in intricate analyses, assimilating extensive data 
and representing elevated levels of abstraction.

For a CNN, it incorporates convolution and pooling layers to ex-
tract features from images, generating an output usually in some 
form of a classification [26]. ANNs rely on data and yield outcomes 
constrained by the quality of the input data. In the fields of radiol-
ogy and nuclear medicine, a CNN can be fed an image or a series 
of images, whereas extracted radiomic features can serve as input 
for an ANN. Notably, a CNN is adept at autonomously identifying 

FIGURE 6    |    Pooled negative predictive value for AI-assisted capsule endoscopy.

FIGURE 7    |    Risk of bias assessment using the RoBANS II tool.
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and extracting radiomic features from input images, linking them 
to outcomes to enhance overall results [27].

4.2   |   AI-Guided CE

4.2.1   |   Gastrointestinal Hemorrhage

CE is an effective initial diagnostic method for evaluating pa-
tients with occult gastrointestinal bleed with moderate evi-
dence and strong recommendation [28]. GI bleeding detection 
is essential for CE examination in that bleeding is not only the 
most common abnormality of the GI tract but also an important 
symptom or syndrome of other GI pathologies such as ulcers, 
polyps, tumors, and Crohn's disease [29]. In 2016, Jia et al. de-
veloped a CNN model for detection of GI bleed and showed supe-
rior precision, recall and F1 scores compared with conventional 
handcrafted techniques for bleed detection [30].

4.2.2   |   Erosion and Ulcers

Mucosal disruptions, such as erosions and ulcerations, represent 
the most prevalent abnormalities observed in the small bowel 
during CE. These anomalies are frequently attributed to the 
usage of nonsteroidal anti-inflammatory drugs (NSAIDs) and, 
on occasion, to conditions like Crohn's disease or small-bowel 
malignancy. Given this, timely diagnosis and intervention as-
sume significant importance [30, 31].

Aoki et al. pioneered the development of a CNN-based system 
designed for the automatic detection of ulcers and erosions in 
CE images  [32]. Their model showcased robust overall perfor-
mance, indicated by an AUROC of 0.958, coupled with a sen-
sitivity of 88% and specificity of 91% [12]. In 2019, Klang and 
collaborators introduced a DL system achieving remarkably ac-
curate detection of ulcers and erosions, with reported accuracy 
ranging from 95% to 97% [33].

4.2.3   |   Angioectasia

Small-bowel angioectasia is a collection of abnormal blood ves-
sels composed of thin tortuous capillaries without an internal 
elastic membrane. Small-bowel angioectasia comprises the ma-
jority of small-bowel vascular lesions and is found in 30%–40% 
of obscure gastrointestinal bleeding (OGIB) cases  [34]. The 
advancement of AI mechanisms for the automatic detection of 
gastrointestinal lesions has primarily concentrated on CE, par-
ticularly for identifying small bowel angioectasia. Numerous 
studies have specifically targeted the computer-aided detection 
of vascular lesions in the small bowel using CE. Notably, OGIB 
is the predominant indication for both CE and device-assisted 
enteroscopy (DAE), with vascular lesions, particularly angioec-
tasia, being the most prevalent etiology.

Pioneering this area, Noya and colleagues conducted the first 
study describing the outcomes of an AI algorithm developed 
for the automatic detection of small bowel angioectasia [35]. 
Their model demonstrated a sensitivity of 90%, specificity of 
97%, and an AUROC of 0.93. In 2019, Leenhardt et al. presented 

a CNN capable of detecting angioectasia with a sensitivity of 
100% and specificity of 96% [36]. These findings were subse-
quently corroborated by Tsuboi et  al., who introduced a DL 
system with a high diagnostic yield for angioectasia detection, 
showcasing a sensitivity of 98.8% and specificity of 98.4% [37].

4.2.4   |   Polyps and Tumors

The utilization of AI-assisted CE presents a significant advance-
ment in the detection of polyps and tumors within the small 
bowel [38]. This superior performance could potentially revo-
lutionize early detection and intervention, crucial in improving 
patient outcomes, especially in cases of precancerous lesions or 
early-stage tumors.

Yuan et  al. pioneered a novel deep feature learning method 
named stacked sparse autoencoder with image manifold con-
straint (SSAEIM) to recognize polyps in the capsule endoscope 
images. They achieved an overall recognition accuracy of pol-
yps of 98% while subclassifying normal images as either turbid, 
bubble, or clear [39]. Saito et al. further developed and tested a 
novel deep CNN-based model for detecting protruding lesions 
using 93 patients and 17 507 images, having an overall sensitiv-
ity and specificity of 90.7% and 79.8%, respectively. This CNN-
based model further categorized lesions as either polyp, nodules, 
epithelial tumors, submucosal tumors, and venous structures 
with 85.6%, 92.0%, 95.8%, 77.0%, and 94.4% sensitivities, respec-
tively [40].

Ongoing research aims to refine AI algorithms to enhance sensi-
tivity and specificity in detecting lesions, improving the overall 
accuracy and reliability of CE for diagnosis. As AI algorithms 
continue to evolve and improve, AI-assisted CE may become a 
standard tool in gastroenterology for screening, diagnosis, and 
monitoring of gastrointestinal conditions.

4.2.5   |   Celiac Disease

Celiac disease diagnosis often necessitates detailed examina-
tion of the small bowel for characteristic lesions. Our analysis 
demonstrates the commendable performance of AI-assisted CE, 
showcasing its high sensitivity (0.989) and specificity (0.951) 
in detecting lesions of the small bowel. The heightened accu-
racy compared with conventional endoscopy (pooled accuracy: 
0.956) underscores the potential of AI in enhancing diagnostic 
accuracy and ensuring early identification of SBL.

Various DL modules have shown great potential in the accu-
rate diagnosis of celiac disease. Wang et al. proposed a novel 
DL recalibration module with an accuracy, sensitivity, and 
specificity of 95.94%, 97.2%, and 95.63%, respectively [41]. 
Zhou et al. demonstrated that CNN-based DL model achieved 
a 100% sensitivity and specificity in detection of celiac dis-
ease. Additionally, the detection potential of AI-based CE was 
correlated with the disease severity index [42]. Consequently, 
the use of AI-assisted CE can be used as a screening tool for 
patients with small bowel mucosal lesions to establish need 
for further testing such as biopsy and evaluate the severity of 
mucosal atrophy. This study, however, utilized a small sample 
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size of 11 cases and 10 controls, necessitating further studies 
in this population.

Limitations to quality of output may be brought about by the 
effect of dark or extraneous substances. However, these may 
be improved by color masking, which results in improved 
distinction of celiac disease with villous atrophy [43]. Thus, 
the integration of AI into CE enhances diagnostic accuracy, 
expedites the identification of celiac disease, and ultimately 
supports timely intervention and management strategies for 
patients.

4.2.6   |   Multiple Lesion Detection

One of the remarkable strengths of AI-assisted CE lies in its 
capability to detect multiple lesions within the small bowel. 
AI algorithms meticulously analyze the vast amount of visual 
data captured by miniature cameras, swiftly identifying and 
characterizing anomalies such as ulcers, polyps, bleeding 
sites, or inflammatory lesions that may otherwise elude detec-
tion. CNN, a DL-based method, employs a pattern recognition 
analytic model in three steps: feature extraction, feature di-
mension reduction, and final classification to identify multi-
ple lesions [44].

CNN-based auxiliary model identifies and characterizes bowel 
lesions with a higher sensitivity of 99.90% and a significantly 
reduced reading time of 5.9 min compared with conventional 
analysis by gastroenterologists of 96.6 min [15]. With this model, 
Ding et al. categorized 158 235 small bowel-capsule endoscopic 
images from 1970 patients as either normal, inflammation, ulcer, 
polyp, lymphangiectasia, bleeding, vascular disease, protruding 
lesion, lymphatic follicular hyperplasia, diverticulum, parasite, 
or other [16]. This innovative approach marks a pivotal stride in 
gastrointestinal healthcare, empowering medical professionals 
to provide more comprehensive and targeted patient care.

4.2.7   |   Capsule Localization

Accurate localization of lesions is pivotal for targeted interven-
tions. Conventionally, indirect estimation of transit time after 
the duodenum to the cecum versus length of bowel and time of 
image capture has been employed to try and estimate the loca-
tion of a lesion. This, however, has limited accuracy and more 
automated AI-assisted methods are required for accurate bowel 
segmentation [45, 46]. In vitro studies using an unaltered cap-
sule in an artificial bowel showed a mean error of less than 0.01 
in 20 cm of travel, showing the potential for this technology. 
Introduction of additional sensors such as dual cameras, gyro-
scope, accelerometer, and magnetometer hold the hope for bet-
ter capsule localization [44].

The structural modification incorporating additional sensors 
will ensure commendable accuracy in lesion localization, con-
tributing to precise anatomical mapping within the small bowel. 
This improved localization, coupled with the high sensitivity 
and specificity of AI-guided detection, underscores its potential 
in facilitating targeted therapies and minimizing unnecessary 
interventions.

4.3   |   Evaluating Clinical Performance of an 
Algorithm

Evaluation of the clinical performance of AI-assisted models in 
the detection of small bowel lesions following SBCE provides 
insight into its overall diagnostic efficiency and application in 
clinical practice. Studies have sought to evaluate the utility of AI 
models and provide a standard model of assessment through the 
following parameters [44, 47]. These include diagnostic perfor-
mance, clinician perception, application in health institutions, 
older versus newer models, source of data on its use, and its in-
fluence on treatment and monitoring [48]. The diagnostic per-
formance of an algorithm is evaluated through sensitivity and 
specificity in the detection of SB abnormal images [5], diagnostic 
accuracy, capacity to reduce workload through increased time 
efficiency and high detection rate [16], and a unified diagnostic 
standard in the face of multiple DL models [7]. With the avail-
ability of various neural networks, the hallmark of an effective 
diagnostic algorithm is in a standardized method of diagnosis, 
a large database with multiple datasets to improve ML, and the 
prioritization of patient privacy and confidentiality, as AI-led di-
agnosis in health institutions utilizes third party sources.

The effectiveness of an algorithm may also be influenced by the 
clinician perception and data sources. It has been seen that more 
established clinicians are less likely to adopt an AI diagnostic 
method than younger clinicians because of concerns about di-
agnostic accuracy and unified diagnostic standards [48]. In ad-
dition, multiple studies are done in the private setting and thus 
leave out crucial information that may be acquired in the public 
hospital environment, or in other specialized care centers and 
thus may not reflect patients in real-world practice [44]. An al-
gorithm's influence on disease treatment and monitoring is also 
crucial. In the detection of small bowel lesions, an advantage of 
AI models is the ability to transform purely qualitative and clin-
ical observations into quantifiable and reproducible results [47]. 
This simplifies disease staging, may be applied in the calcula-
tion of therapeutic doses, and helps monitor disease progression.

4.4   |   Future Directions

This study illustrates the relatively high sensitivity and specific-
ity of AI in diagnosing small bowel lesions through CE, as well 
as its numerous benefits over conventional diagnostic methods 
[16]. This field, however, is still in its infancy but holds a lot of 
promise for its future use in widespread clinical practice. A sig-
nificant challenge in the AI-assisted diagnosis is the lack of a 
streamlined and unified diagnostic standard across the differ-
ent ML programs [44]. With ever-increasing data, ML can be 
enhanced, and a unified database can be established, further 
strengthening diagnostic capacity.

In addition, there are continuous advances in DL software 
that enable the use of ML as a diagnostic tool. Therefore, there 
should be continuous prospective future studies investigating 
the progression of diagnostic efficiency of AI-assisted diagno-
sis in SBCE, as it would improve clinician perception, enhance 
awareness, and increase funding to help advance this field. In 
addition, efforts to create available datasets on the effectiveness 
of models should be carried out in order to provide information 
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on different models and their effectiveness, influence policy 
making, and enable reviews and updates to this diagnostic field. 
Studies should also include the ethical aspect of how well these 
models protect patient privacy, as this is an increasingly contro-
versial topic in the healthcare industry that influences applica-
tion in health institutions.

4.5   |   Limitations of This Study

The limitations of this study are that most data were obtained 
from retrospective studies. With numerous research projects 
still underway, diagnostic efficiency may change because of 
newer models and thus undermine this study's relevance. 
Multiple prospective studies must therefore be conducted to 
keep up with this ever-growing field. In addition, publication 
bias must be considered, as factors such as the region of pub-
lication and clinician or investigator bias may affect result va-
lidity and subsequently the overall findings of our research. 
Studies that did not meet the inclusion criteria but contained 
key information may also have been overlooked.

5   |   Conclusion

AI-assisted CE displays superior diagnostic accuracy, sensitiv-
ity, and PPVs albeit the lower pooled specificity in comparison 
with conventional CE. By leveraging advanced computational 
algorithms, AI enables clinicians to achieve a prompt and pre-
cise diagnosis of various small bowel pathologies. Its use would 
ensure accurate detection of small bowel lesions and further en-
hance their management.

The present meta-analysis is constrained because of the lim-
ited number of studies incorporated. Prospective research, 
encompassing high-caliber RCTs and the integration of AI-
aided CE into clinical settings, holds the promise of pioneer-
ing advancements in early identification, tailored therapeutic 
approaches, and enhanced prognostic assessments of small 
bowel disorders.
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