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Abstract

1. Nitrogen (N) and phosphorus (P) are soil macronutrients that influence ecosystem 
productivity through strong impacts on plant metabolism. The influence of nutri-
ent supply on the relationships between leaf respiration rate (R) and leaf N con-
centration ([N]) has been widely investigated. By contrast, how root R responds 
to variations in nutrient availability and whether there remains a general response 
across a wide range of species is less well known.

2. We conducted an experiment assessing the effects of N and P supply on root R 

in 10 woody plant species, with root R being determined by the in vivo rate of 
oxygen (O2) consumption. Maximum R (Rmax) was also quantified by O2 uptake in 
the presence of an exogenous substrate and a respiratory uncoupler

3. Our results showed that high- N and high- P supply significantly stimulated mass- 
based root R in woody plants, with the effects of N supply significant only when 
P supply was high. The promoting effect of high- P treatment remained consistent 
despite N supply. Root R- [N] bivariate relationships were altered by nutrient avail-
ability across all species, with higher root R at a given root [N] under low-  than 
high- N supply. Similarly, root R at a given P concentration ([P]) was higher under 
low-  than high- P supply. Root Rmax was significantly higher than in vivo R for all 

nutrient treatments, showing that in vivo root R was limited by substrate supply 
and/or adenylates, with no significant difference in R/Rmax ratios among nutrient 
treatments.
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1  |  INTRODUC TION

Root respiration (R), which accounts for 30%–60% of total soil car-
bon (C) efflux (Chen et al., 2021; Hirano et al., 2023; Jian et al., 2022), 
is a fundamental process of C exchange. Root R can mediate the 
terrestrial ecosystem C balance via its responses to changes in the 
environment (Govind & Kumari, 2014). Nutrient availability in soil 
is known to directly affect root R through regulating the demand 
for respiratory energy (e.g., for nutrient uptake) and indirectly 
through effects on processes in remote organs, such as the stem or 
leaves (Eissenstat et al., 2000; Freschet et al., 2021). Nitrogen (N) 
and phosphorus (P) are two key elements for plant growth (Wang, 
Cresswell, et al., 2021), with multiple roles in metabolism (Bloomfield 
et al., 2014; Luo et al., 2013; Vitousek et al., 2010), so it is not sur-
prising that variation in plant N and P concentrations is often linked 
to changes in respiration rates, both in leaves and roots (Dusenge 
et al., 2019; Rubio- Asensio & Bloom, 2017).

N- rich roots are likely to exhibit greater R because respira-
tory energy is needed for the acquisition and assimilation of N 
(Amthor, 2000; Rubio- Asensio & Bloom, 2017) and the increased 
energy requirements of cellular maintenance in organs/tissues 
with high protein concentrations (Atkinson et al., 2007; Burton 
et al., 2012; Eissenstat et al., 2000). However, the extent to which 
variation in root N is linked to changes in root R likely depends on 
how N is partitioned between metabolically active and inactive 
components. Past work has shown that N partitioning is crucial in 
leaves (Evans, 1989), with preferential investment in N- rich proteins 
maintaining demand for respiratory energy even in tissues with low 
N concentrations ([N]). Given the functional links between tissue 
N and respiratory metabolism, strong relationships linking spe-
cific R and tissue [N] have been reported, both in leaves and roots 
(Atkin et al., 2015; Atkinson et al., 2007; Burton et al., 2012; Crous 
et al., 2017; Han & Zhu, 2021; Reich et al., 2008). How relationships 
between R and tissue [N] are influenced by variations in N supply 
remains less studied, especially for roots.

Root R can also be strongly affected by P availability, as low tis-
sue P concentrations ([P]) can increase the level of adenylate restric-
tion of mitochondrial electron transport (Covey- Crump et al., 2002; 

Gonzalez- Meler et al., 2001; Jarvi & Burton, 2018) and limit the 
activity of ATP- dependent phosphofructokinase, a key enzyme 
in glycolysis (Bligny & Gout, 2017; Theodorou & Plaxton, 1993). P 
limitations can also affect leaf photosynthetic metabolism, result-
ing in suppressed substrate supply to roots (Hartley et al., 2006; 

Lewis et al., 1994). Together, the concentration of N and P avail-
able in soils and the resultant concentration in tissues should exert 
a profound influence on root R. There is growing evidence that N- 
mediated changes in R also depend on P availability and how P is dis-
tributed in cells (Bloomfield et al., 2014; Crous et al., 2017; Lambers 
& Oliveira, 2019; Meir et al., 2001, 2007). For example, inorganic 
phosphate (Pi) stored in vacuoles can be transported into the cyto-
sol and subsequently to other organelles when soil P is limiting (Liu 
et al., 2015; Luan et al., 2017; Wang, Chen, & Wu, 2021), with the re-
sult that the cytoplasmic P pools can remain relatively homeostatic 
in response to changes in P supply (Yang et al., 2017). Crucially, it 
is the metabolic fraction of total P in the cytoplasm (i.e. the size of 
physiologically active P pools) that exerts the greatest influence on 
plant R, with the size of the metabolic P pools differing among plant 
taxa; as a result, the effects of P limitation on R of leaves and roots 
are likely to differ among PFTs (Veneklaas et al., 2012).

Given the functional links between tissue N and respiratory 
metabolism, strong relationships linking specific rates of respira-
tion and tissue [N] have been reported, both in leaves and roots 
(Atkin et al., 2015; Atkinson et al., 2007; Burton et al., 2012; Crous 
et al., 2017; Reich et al., 2008). Leaf R- [N] scaling relationships often 
shift in response to changes in growth temperature and nutrient 
availability (Atkin et al., 2015). Burton et al. (2012) showed that root 
R- [N] correlations altered significantly under contrasting N supply 
in hardwood forests. In addition, N- deficient plants can allocate a 
greater fraction of leaf N investment to defence rather than met-
abolic activities compared with their high- N grown counterparts 
(Bryant et al., 1983; Crous et al., 2017; Evans & Poorter, 2001; 

Onoda et al., 2004). Whether the same is true for roots is, however, 
not known. Moreover, while we know that R- [N] scaling relationships 
differ between leaves and roots (Reich et al., 2008), less is known 
about the impacts of different nutrient supply on R- nutrient scaling 
in roots compared with that of leaves (Lambers et al., 2002).

Given the additional metabolic roles that N and P play in leaves 
(e.g. photosynthesis) compared with roots, it is unclear whether the 
effects of contrasting nutrient supply on root R will be similar to 
those on leaf R. In this study, we investigated whether the response 
of root R to nutrient availability (N or P) varies with the other nutri-
ent (P or N) supply in woody plants. Our first hypothesis was that 
root R would be higher in plants grown in high- N or high- P supply 
compared with low- nutrient supply, with the promoting effect of 
high- N or high- P supply being more effective when the other nu-
trient (P or N) is not limiting (Hyp. 1). Second, because respiration 

4. These results indicate that ecosystem models should consider different scaling 
relationships linking root R to root N or P concentrations for woody species when 
predicting the effects of nutrient availability on carbon cycle dynamics and cli-
mate–biosphere feedback.

K E Y W O R D S

nitrogen, nutrient availability, phosphorus, respiration capacity, root respiration
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can be significantly impacted by the concentration of key metabolic 
enzymes which are associated with the level of tissue [N] (Reich 
et al., 2008), we hypothesized that the effect of nutrient supply on 
root R- [N] (or [P]) relationships will be similar to those reported for 
leaves (Crous et al., 2017), with low- nutrient availability resulting in 
an increase in the proportionality coefficient (i.e. intercept of log 
root R- root nutrient relationships), but not the scaling exponent (i.e. 
slope of log root R- root nutrient relationships) (Hyp. 2).

We also assessed whether contrasting N and P supply affected 
the regulatory control (adenylate/substrate) of root and leaf R in 

woody species, with our study focusing on the effect of nutrient sup-
ply on maximum R (Rmax) and the proportion of R engaged in vivo (i.e. 
R/Rmax). Here, we tested a third hypothesis that Rmax would be lower 

in plants grown on low- N or low- P supply and that R/Rmax would be 

lower in low- P grown plants (due to greater adenylate restriction of 
respiration when P is limiting), but not in low- N grown plants (Hyp. 
3). Our experiments used a subset of 10 woody species from the 
same sand/hydroponic- grown plants in a previously published study 
that reported on leaf- level CO2 exchange (Crous et al., 2017).

2  |  MATERIAL S AND METHODS

2.1  |  Experimental design

For this study, 10 woody species were used (Table S1) for growth 
treatments, see Crous et al. (2017). Briefly, seedlings were trans-
planted into 3.18 L plastic cylinders (50 cm in height and 9 cm in 
diameter) containing sterilized sand in November 2008 and were 
measured in June and July 2009. All the seedlings were less than 
1 year old when they were transplanted. Plants were divided into 
four treatment groups, with each group receiving modified Hoagland 
No. 1 solution (Hoagland & Arnon, 1950) containing specific concen-
trations of N and P. Here, our aim was to achieve changes in foliar 
chemistry that were also reflected in rates of leaf metabolism, rather 
than necessarily provide field- relevant levels of nutrient availability 
for any of the species in question. N and P were provided at nomi-
nally ‘high’ and ‘low’ levels in four treatment combinations consisting 
of high N and high P (HNHP), high N and low P (HNLP), low N and 
high P (LNHP), and low N and low P (LNLP). The high N solution con-
tained 5 mM KNO3 and the low N solution 0.4 mM KNO3 (modified 
after Atkinson et al., 2007). The high P solutions contained 1 mM 
KH2PO4 (Edwards et al., 2006) whereas low P had 2.0 μM KH2PO4 

to limit storage of P in the vacuole as a buffer (after Campbell & 
Sage, 2006). Thus, N:P supply ratios varied from 5:1 for HNHP to 
2500:1 for HNLP, 0.4:1 for LNHP and finally 200:1 for LNLP. In ad-
dition to N and P, the modified Hoagland solution also contained 
0.07 mM Ca2Cl and 0.45 mM MgSO4, as well as several micronutri-
ents (4.2 μM boron, 1.2 μM manganese, 0.8 μM zinc, 0.03 μM copper, 
0.04 μM molybdenum and 0.01 μM cobalt). Each nutrient solution 
was balanced for cations and iron (Fe) was added as ferric EDTA to a 
level of approximately 8 μM Fe. These micronutrient concentrations 
were one- tenth of those in the recommended Hoagland solution 

because full strength can result in toxic symptoms (Leggett, 1971). 
Immediately after transplanting, between 120 and 150 mL of nutri-
ent solution was applied to individual plants each day at the rate 
of 20 mL min−1, pumped from 200- L storage containers which were 
refilled regularly. All plants and nutrient treatments were randomly 
assigned to six replicate blocks spread across two adjacent glass-
houses (with three replicate blocks in each glasshouse). The glass-
houses employed natural light and the growth temperature was 
maintained at 25°C/18°C day/night.

The experimental approach above was previously shown to 
be effective in generating a range of leaf- nutrient and functional 
phenotypes between ‘deficient’ and ‘adequate- abundant’ (Crous 
et al., 2017) and tissue N and P concentrations were consistent 
with the range of previously published values (Johri et al., 2015; 

Li et al., 2022). There was no evidence from leaf physiological re-
sponses (Crous et al., 2017) of toxicity effects in the HNHP treat-
ments. Additionally, leaf P concentrations (Crous et al., 2017; 

Table S1) in the two most likely P- sensitive Hakea species did not 
reach levels previously reported as critical for toxicity effects (Shane 
et al., 2004), with the exception of Hakea multilineata in the HNHP 
treatment only. Roots from this species in this treatment were not 
included in the analysis.

2.2  |  Measurement protocols

Respiration (R) measurements were made after 7 months of growth 
following the commencement of nutrient treatments. Oxygen (O2) 
uptake by detached roots was measured polarographically in cu-
vettes containing 30–40 mL of aerated modified Hoagland's nutri-
ent solution (pH 5.8) buffered with 10 mM MES (2- (N- Morpholino) 
ethanesulfonic acid) using Clark- type O2 electrodes (Dual Digital 
Model 20; Rank Brothers, Cambridge, UK) coupled to a computer- 
based data acquisition system (NI- DAQ for Windows 2000, 
National Instruments, Berkshire, UK). The cuvette was maintained 
at a constant measurement temperature of 25°C in a water bath. 
Measurements were made in solutions containing the same N and 
P concentrations in which each plant was grown. Whole roots were 
removed from the growth cylinders and carefully washed in water. 
Uniformly metabolically active young roots were sub- sampled for 
the R measurements, as these are responsible for active exploration 
and nutrient uptake (Liang et al., 2023). Following a 10 min stabiliza-
tion, O2 depletion was recorded over a 10 min period, with all meas-
urements terminating before the O2 concentration was 40% of air 
saturation.

Following measurements, roots were oven- dried (2 days at 70°C) 
and the dry mass was recorded. Root [N] and [P] were analysed on 
dried and ground root samples after Kjeldahl digestion (Sáez- Plaza 
et al., 2013) using a flow injection analyser (Lachat Instruments, 
Loveland, CO, USA) for N and P using the indophenol blue and am-
monium molybdate methods, respectively. It should be noted that 
for those woody species that formed proteoid root systems (cluster 
roots), only non- proteoid roots were selected to evaluate the R rate.
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Leaf O2 uptake was measured using a Hansatech Oxygraph 
(Norfolk, England) O2 electrode system, using 2 mL cuvettes. Intact leaf 
discs (cut with a sharpened 0.7 cm2 leaf corer) from the lamina region 
of the most recently fully expanded leaves were sliced into 2 mm thick 
slides while immersed in a measurement buffer [10 mM Hepes, 10 mM 
MES and 0.2 mM CaCl2.2H2O (pH 7.2)]; leaf slices in buffer solution 
were kept in darkness for 30 min to overcome post- illumination tran-
sients and wounding effects (Lantz et al., 2019). Following the mea-
surements of respiratory O2 uptake (10 min stabilization, followed by 
O2 depletion being recorded for several minutes, with measurements 
terminating before O2 concentration was 40% of air saturation), sam-
ples were oven- dried at 70°C for at least 2 days to determine dry mass.

To assess the impact of nutrient treatments on the proportional 
engagement of respiratory capacity (R/Rmax), we measured the rates of 
O2 uptake by roots and leaves of woody plants in the combined pres-
ence of an uncoupler and exogenous substrate. These were done at 
the same time as the above measurements using a matched sample 
from the same plants. We adopted a similar approach to that adopted 
previously (Atkin et al., 2009; Jiang et al., 2023), with exogenous sub-
strate (50 mM glucose from a 2 M stock) and uncoupler (3 μM carbonyl 

cyanide m- chlorophenyl hydrazone) prepared as previously described 
(Covey- Crump et al., 2002). The proportional engagement of respira-
tory capacity was indicated by the ratio of root R to Rmax (R/Rmax).

2.2.1  |  Replication statement

Scale of 

inference

Scale at which the factor 

of interest is applied

Number of replicates at 

the appropriate scale

Plant Plot 6 of each nutrient 
combination

2.3  |  Data analysis

All data were log- transformed before analysis due to the non- normal 
distribution of the raw data. All calculations and analyses were per-
formed using the R language (R Development Core Team, 2015). 
Initial analysis found no significant effect of finer- scale plant func-
tional types (PFTs) on root R with respect to the impacts of the four 
nutrient treatments (Figure S1; Table S2); hence, we proceeded with 
the single ‘woody’ grouping. Linear mixed effects models (LMMs) 
were employed to test the fixed effects of nutrient treatments on 
root respiration and root chemistry, with species included as a ran-
dom effect to account for interspecific variation (R package: “lme4”; 
Table 1). Significant effects were tested using the “anova” function in 
R, implemented through the “lmerTest” package. One- way ANOVA 
based on LMMs was also used to test the main and random effects 
on leaf respiration, root and leaf Rmax rate, and R/Rmax. Pairwise com-
parisons were performed using the “emmeans” package in R, based 
on least- squares means, where significant fixed effects were de-
tected (p < 0.05).

Standardized Major Axis (SMA) regression was used to describe bi-
variate relationships linking root R with root chemistry (Table 2) using 
log- transformed values. Differences in coefficients of SMA regres-
sions between treatments were also tested using the R package ‘smatr’ 
(Warton et al., 2006). SMA models were fitted by treatment groups; if 
regressions were significant, we then tested whether the slope of the 
regression for each treatment group was significantly different from 
each other. If the treatment groups shared a common slope, the signif-
icant differences in the intercepts were then tested using the common 
slope. Post- hoc pairwise comparison was conducted following the test 
of coefficient significance where there was a significant difference.

3  |  RESULTS

3.1  |  Effect of nutrient supply on root nutrient 
content and R

Nutrient treatments had significant effects on the overall means of 
root [N], root [P], root [N]/[P] ratio and root R across all woody spe-
cies (p < 0.05; Figure 1; Table 1). Additionally, significant random ef-
fects of species were observed for root [N] and root R (p < 0.05), but 
not for root [P] and [N]/[P] (p > 0.05; Table 1). Specifically, the high-
 N treatment significantly increased root [N] regardless of P supply, 
resulting in a 52% increase (p < 0.05; Figure 1a). P supply also had a 
significant effect on root [N], with high- P treatment enhancing root 
[N] in plants receiving high- N supply, whereas no significant effect 
of P treatment was observed in plants grown under low- N supply 
(Figure 1a). High- P supply led to high root [P], but N treatment did 
not induce significant changes in root [P] (Figure 1b). P treatment 
also significantly affected root [N]/[P], with values being signifi-
cantly higher under low-  than high- P treatment (p < 0.05; Figure 1c). 
High- N treatment significantly increased root [N]/[P] in plants grown 
under low- P supply, but no effect was found in plants under high- P 
supply (Figure 1c).

Root R was significantly impacted by both N and P treatments, 
but the response of root R to N treatment differed between high-  
and low- P treatment groups (Figure 1d). High- N supply increased 
root R by 40% under high- P supply (p < 0.05), while it had no sig-
nificant effect on root R under low- P supply (p > 0.05; Figure 1d). 
High- P treatment significantly increased root R by 67% irrespec-
tive of N supply (p < 0.05; Figure 1d). Nutrient treatments also sig-
nificantly impacted leaf R (Table S3), with high- P supply leading to 
high leaf R, but only in the high- N treatment groups (Figure 1e). By 
contrast, N treatment had no significant effect on O2- based leaf 
R (Figure 1e).

3.2  |  Impacts of nutrient supply on relationships 
between root R and nutrients

To determine whether the relationships linking mass- based root 
R with root [N] and [P] were affected by nutrient availability, we 
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constructed log–log plots for root R against [N] and [P] (Figure 2). 
The root R- nutrient relationships across woody species varied sig-
nificantly among the treatment groups, as evidenced by differences 
in slopes (scaling exponents; Figure 2a; Table 2). The root R- [N] rela-
tionship exhibited a significantly greater slope in high- N treatment 
groups than in low- N groups, despite the non- significant regression 
in the high- N and low- P group (HNLP; Figure 2a; Table 2). R- [N] 
regression slopes did not differ significantly between high-  and 
low- P treatments for plants grown under low- N supply (Figure 2a; 

Table 2). Significant root R- [P] relationships were observed for 
plants grown under low- N supply, with a greater slope in the low- P 
treatment group compared with the high- P treatment group (LNHP: 
0.45, LNLP: 1.09; Figure 2b; Table 2). There was no significant root 
R- [P] relationship in the two high- N treatment groups (HNHP and 
HNLP).

3.3  |  Proportional engagement of maximum 
respiratory capacity

As was the case with in vivo respiration, rates of root Rmax (i.e. res-
piration measured in the presence of uncoupler and substrate) dif-
fered significantly between plants grown on high vs. low N and P 
treatments, with the effect of N depending on the availability of 
P and vice versa (Figure 3a; Table 3; for pairwise comparisons be-
tween R and Rmax, see Table 4; Figure S3). Leaf Rmax was affected 
by P availability but not N (Figure 3b; Table 3). Interestingly, nutri-
ent treatment had no significant effect (Table 3) on root R/Rmax, 
which averaged ~0.9 (Figure 3c) or leaf R/Rmax, which averaged ~0.8 

(Figure 3d). Thus, the proportional effect of nutrient supply on R 

largely mirrored that of the effect on Rmax in leaves and roots.

4  |  DISCUSSION

The primary aim of this study was to investigate how nutrient supply 
affects root R and the relationships between root R and root nutri-
ents in selected woody plant species. We found nutrient supply- driven 
changes in root chemistry, root R and root R- root nutrient relation-
ships. Root [N] and [P] were significantly increased by high levels of 
nutrient supply. Both high- N and high- P supply significantly stimulated 
mass- based root R in the woody plants (Hyp. 1), with the effect of N 
treatment being significant only when P supply was high. Responses 
to nutrient supply were generally similar among a finer categorisation 
of woody plant functional types (i.e. broadleaved trees, broadleaved 
shrubs and needle leaved trees; Figure S1). The scaling exponent (slope) 
of root R- root nutrient relationships differed among treatment groups 
(Hyp. 2), which led to a situation in which root R at a given root nutrient 
concentration was greater in plants receiving low-  than high- nutrient 
supply. High- P supply also significantly increased Rmax in roots and 
leaves of woody species, with N treatment only significantly impacting 

TA B L E  1  One- way ANOVA for differences in root nutrient 
concentrations (N concentration, [N]; P concentration, [P] and 
the ratio of [N]/[P]) and root respiration (R) among nutrient 
treatments using linear mixed models with species as a random 
factor.

Variables Source of variance p

[N] Fixed effects Treatment <0.01

Random effects Species <0.01

[P] Fixed effects Treatment <0.01

Random effects Species 0.07

[N]/[P] Fixed effects Treatment <0.01

Random effects Species 0.08

Root R Fixed effects Treatment <0.01

Random effects Species <0.01

TA B L E  2  Coefficients of Standard Major Axis (SMA) regression for relationships linking root respiration (R) with root N concentration 
([N]) and P concentration ([P]) shown in Figure 2.

Model Treatment R
2

p Slope Elevation H0 for slope Pairwise com Figure

Root R- [N] HNHP 0.13 0.03 2.07 (1.50, 2.85) −1.52 (−2.49, −0.56) <0.01 A Figure 2a

HNLP <0.01 0.82

LNHP 0.21 <0.01 0.86 (0.64, 1.16) 0.30 (−0.01, 0.60) B

LNLP 0.26 <0.01 1.03 (0.78, 1.37) 0.00 (−0.33, 0.34) B

Root R- [P] HNHP 0.04 0.23 <0.01 Figure 2b

HNLP <0.01 0.58

LNHP 0.10 <0.05 0.45 (0.33, 0.62) 0.95 (0.83, 1.08) B

LNLP 0.19 <0.01 1.09 (0.81, 1.45) 1.09 (1.03, 1.16) A

Note: Models of root R- [N] and root R- [P] were fitted by treatment groups across all woody species using the Standard Major Axis (SMA) method, the 
determination coefficients (R2) and significance values (p- values) are shown for each treatment group. Scaling exponents (slope) and proportional 
coefficients (elevation) with 95% confidence intervals are also shown if the regressions are significant. Significant differences of the regressions 
were tested between treatment groups. Scaling exponents significantly differed between nutrient treatments, and post- hoc pairwise differences are 
indicated via different capital letters. Treatment abbreviations: HNHP (high N high P), HNLP (high N low P), LNHP (low N high P), LNLP (low N low P).
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6  |    ZHAI et al.

root Rmax (Hyp. 3). Regardless, nutrient treatment had no impact on the 
relative in vivo engagement of maximum respiratory capacity (R/Rmax) 
(Hyp. 3). Taken together, these results provide strong insights into driv-
ers of root R, with important implications as discussed below.

4.1  |  Effects of nutrient treatments on root R

Supporting Hyp. 1 that root R will be higher in plants grown in high- N 
or high- P supply compared with low- nutrient supply, we found that 
high- N and high- P supply significantly stimulated root R of woody 

plants, with the effect of N supply depending on the availability of P 
(Figure 1d). Conceptually, this is supported by previous findings that 
when N is in limited supply, the demands for respiratory products 
(ATP, NADPH and C skeletons) to assimilate N are relatively lower, 
which suppresses root R (Nunes- Nesi et al., 2010; O'Leary et al., 2019). 
Previous reports found increases in N availability significantly in-
creased root R (Hasselquist et al., 2012; Van Der Werf et al., 1993, 

1994; Zeng et al., 2018). The reason why N supply had no effect on 
root R when P was in low supply could be ascribed to the fact that P de-
ficiency exerts a downregulation of ATP turnover on root R, which po-
tentially obscures the effect of N availability (Carstensen et al., 2018; 

Yang et al., 2021). The inhibitory effect of P deficiency was still evident 
when N was limiting, but the extent to which low- P supply decreased 
root R was less under low- N supply than high- N supply (Figure 1d). The 
strong effect of low- P supply on root R in woody plants exposed to 
high- N solution agrees with previously published results for leaves that 
the response to P addition was strongest when N was abundant (Crous 
et al., 2017; Meir et al., 2001).

4.2  |  Changes in root R- root nutrient relationships 

in response to N and P

Based on Crous et al. (2017), who reported nutrient- mediated 
changes in leaf R- [N] relationships when R and [N] were expressed 

F I G U R E  1  Means and standard errors of root nitrogen concentration ([N], (a), root phosphorus concentration ([P], (b), the ratio of root 
nitrogen to phosphorus concentration ([N]/[P], (c), dry mass- based root respiration (root RDM, (d), and dry mass- based leaf respiration (leaf 
RDM, (e) of woody species under four nutrient treatments (HNHP: high N high P; HNLP: high N low P; LNHP: low N high P; LNLP: low N low 
P). Different uppercase letters above the bars show significant differences among the four treatments.
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on a leaf area basis, we predicted (Hyp. 2) that low- nutrient sup-
ply would increase the proportional coefficient (intercept) but not 
alter the scaling exponent (slope) of root R- [N] relationships (Hyp. 
2). Contrary to this hypothesis, we found that nutrient supply sig-
nificantly altered the scaling exponent of mass- based root R- [N] 
relationships, with low N supply decreasing the slope of the R- 
[N] relationships, irrespective of P supply (Figure 2a; Table 2). One 
consequence of this change in scaling exponent was that rates of 
root R at a given root [N] were higher in plants grown under limit-
ing N supply, particularly in species that exhibit inherently low [N] 
values (Figure 2a). Interestingly, in plots of mass- based values of 
leaf R vs. [N], Crous et al. (2017) reported a similar finding—that 
being that low N supply significantly reduced the scaling exponent 
of mass- based leaf R- [N] relationships, irrespective of P supply. 
Thus, the phenomenon of low N treatment decreasing the scaling 
exponent of mass- based R- [N] relationships appears to be similar 
in roots and leaves.

Why would the scaling exponent change under different nutrient 
treatments? Although little is known of the N reallocation in roots, 
previous work on leaves (Crous et al., 2017) suggests that low- N 
treatment may result in the reallocation of N to metabolism, such that 
a decrease in leaf [N] is not proportionally matched by the decreas-
ing rate of photosynthesis or respiration. Similarly, it is possible that 
the change in root R- nutrient relationships under different nutrient 
supply might be largely due to the trade- off in organic N realloca-
tion in roots between metabolic and non- metabolic pools (Millard & 
Grelet, 2010). The change in the root R- [N] relationship under low- N 
supply suggests that the reallocation of N may help maintain meta-
bolic rates when N is deficient (Mantelin & Touraine, 2004).

In addition, high- P supply resulted in significantly higher root R 

at a given [N], but only under conditions of high- N supply (Figure 2a; 

Figure S1a). A range of factors might contribute to this observa-
tion, including the role of P supply in determining the level of ad-
enylate restriction on root R (Gonzalez- Meler et al., 2001; Rychter 
et al., 1992), as well as how P supply affects uptake and assimila-
tion of nitrate by roots, and thus the extent to which N accumulates 
in roots. As an example of how P supply influences N metabolism, 
Rufty et al. (1990) found that P deficiency reduced nitrate uptake by 
roots, which in turn subsequently limited the synthesis of shoot pro-
tein in P- stressed plants. Similarly, Gniazdowska and Rychter (2000) 
found that nitrate uptake and nitrate assimilation in Phaseolus vul-

garis were both suppressed under low P conditions, with decreases 
in the latter being greater than the former; as a result, nitrate accu-
mulated to a greater extent in roots under low compared to high P 
supply. These studies reflect the importance of P for the process of 
protein synthesis, as well as the effect of P limitations on mitochon-
drial ATP synthesis, with ATP needed for nitrate transport and amino 
acid synthesis. Such observations highlight the linkage between N 
and P metabolism that result in root R being greater in high- P grown 
plants than their low- P counterparts, at least for plants grown under 
high- N supply. They also provide a possible explanation for why root 
R at a given root [N] is lower under P- limited conditions.

Although there was no significant root R- [P] relationship in 
high- N grown woody plants (Figure 2b), low- P supply significantly 
decreased the root [P] in all plants (Figure 1b), while root R at a given 
[P] was higher in low- P grown plants than in their high- P grown 
counterparts (Figure S2b). As a result, rates of root R at a given root 
[P] were higher in P- limited plants. Previous studies have observed 

F I G U R E  2  Relationships of mass- based root respiration (root RDM) as a function of nitrogen concentration (root R- [N], (a) and as a 
function of phosphorus concentration (root R- [P], (b) across woody species. Standardized Major Axis (SMA) regressions were fitted by 
treatment groups, with regression coefficients reported in Table 2. Different colours indicate nutrient treatments (HNHP: high N high P; 
HNLP: high N low P; LNHP: low N high P; LNLP: low N low P).
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that when P is limiting, stored inorganic phosphorus (Pi) in vacuoles 
is translocated into the cytoplasm to compensate for the shortage 
of metabolically active P, which in turn enables the (relative) mainte-
nance of respiratory metabolism (Liu et al., 2015; Yang et al., 2017). 
Thus, the higher rates of root R per unit P may result from the reallo-
cation of vacuolar P to the cytosol, which in turn enables respiration 

to continue (albeit at a reduced rate compared to high- P grown 
plants; Tsujii et al., 2024).

4.3  |  The effects of nutrient availability on in vivo 
engagement of respiratory capacity

The third hypothesis of our study had two components: (a) Rmax 

would be lower in plants grown on low- N or low- P supply; and (b) 
R/Rmax would be lower in low- P grown plants but not in low- N grown 
plants. Related to both was the question of whether observed, 
in vivo rates of R were lower than Rmax; we found that Rmax was 
significantly higher than in vivo R in both roots (+10%) and leaves 
(+33%) of woody species (Figure 3; Figure S3; Table 3). At moderate 
temperatures, the rate of R is usually not constrained by the capacity 
of respiratory enzymes (Atkin et al., 2000; Atkin & Tjoelker, 2003; 

Covey- Crump et al., 2002). In our study, all O2 consumption rates 
were measured at 25°C, which allows achievement of capacity for 
respiratory enzymes disregarding tissue [N] levels. Thus, our results 
of the significantly higher Rmax indicate that in vivo woody root R was 
limited by adenylates and/or substrates (Covey- Crump et al., 2002; 

Jarvi & Burton, 2018). Importantly, the extent to which in vivo R was 
lower than Rmax was unaffected by nutrient treatment, with nutrient 
supply- induced changes in in vivo R being matched by concomitant 
changes in Rmax (Figure 3; Table 3). Thus, while nutrient supply did 
indeed influence Rmax (supporting Hyp. 3(a)), the results do not sup-
port Hyp. 3(b).

Low- P supply can lead to adenylate restriction of electron 
transport in the mitochondrial inner membrane and restricted 
rates of ATP synthesis (Carstensen et al., 2018; Igamberdiev & 
Kleczkowski, 2015; O'Leary et al., 2017), potentially reducing 
in vivo R. However, the fact that R/Rmax was unaffected by nutrient 
treatment suggests that respiratory capacity scaled with in vivo 
demand for respiratory products. Past work has shown that plants 
receiving low- P supply tend to exhibit a relatively slow growth rate 
(Constan- Aguilar et al., 2014; Varkitzi et al., 2010) and decreased 
rates of photosynthesis (Chaudhary et al., 2008)—conditions that 

F I G U R E  3  Violin plots of maximum respiration (Rmax, a, b) and 
proportional engagement of Rmax (R/Rmax, c, d) in woody species 
for roots (a, c) and leaves (b, d) under four nutrient treatments 
(HNHP: high N high P; HNLP: high N low P; LNHP: low N high P; 
LNLP: low N low P) and at the whole woody- group level (Overall). 
The green diamond in each box indicates the mean value for each 
group. Statistical comparisons between treatments are denoted by 
horizontal lines with asterisks (*p < 0.05; **p < 0.01; ***p < 0.001).

TA B L E  3  One- way ANOVA for differences in maximum 
respiration (Rmax) and proportional engagement of Rmax (R/Rmax) 
in roots and leaves of woody species among nutrient treatments, 
using linear mixed models with species as a random factor.

Items Source of variance p

Root Rmax Fixed effects Treatment <0.01

Random effects Species <0.01

Leaf Rmax Fixed effects Treatment <0.01

Random effects Species <0.01

Root R/Rmax Fixed effects Treatment 0.37

Random effects Species 0.93

Leaf R/Rmax Fixed effects Treatment 0.19

Random effects Species <0.01
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would reduce demand for energy under low- P supply, leading to 
lower investment in cytochrome oxidase, followed by reduced 
amounts of mitochondrial protein and Rmax. Hence, one possibil-
ity is that the selected plants grown under low P matched ATP 
capacity with metabolic needs in low- P supply to achieve optimal 
resource use.

5  |  CONCLUSIONS

Collectively, our results suggest mass- based root R was signifi-
cantly affected both by N and P treatments. The scaling relation-
ships linking root R to root nutrient concentrations shifted when 
plants received different levels of nutrients, likely underpinned 
by changes in nutrient allocation within plant tissues. Although 
low- nutrient supply induced significant inhibitory effects on root 
R, our study highlights the relatively high efficiency of nutrient 
usage for root R when nutrients are in limited supply, illustrated 
by the greater root nutrient- based R under low- nutrient supply. 
Considering the lack of studies on root R under controlled envi-
ronments, our findings provide important insights, particularly 
with respect to the effect of nutrient supply on root R and root 
R- [N]- [P] scaling relationships. They are of particular relevance to 
Earth System Models seeking to predict the impact of future cli-
mates on below- ground respiration rates with the consideration 

of nutrient cycles both in soils and plants (Bonan et al., 2002). For 
such models, further work characterising the impact of nutrient 
supply across a broader spectrum of species growing in a range 
of contrasting biomes, along with consideration of the role of on-
togeny in regulating root respiration responses to nutrient supply, 
is needed to test the generality of the relationships observed in 
our study.
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Organ

Treatment 

group R Means ± SE t df p

Root HNHP Root in vivo R 29.91 ± 2.13 1.91 35 0.06

Root Rmax 31.60 ± 1.78

HNLP Root in vivo R 14.52 ± 0.73 3.15 34 <0.01

Root Rmax 16.66 ± 0.92

LNHP Root in vivo R 21.16 ± 1.08 1.86 35 0.07

Root Rmax 22.46 ± 1.02

LNLP Root in vivo R 15.93 ± 0.96 3.87 39 <0.01

Root Rmax 18.59 ± 1.11

Overall Root in vivo R 20.30 ± 0.82 5.43 146 <0.01

Root Rmax 22.26 ± 0.78

Leaf HNHP Leaf in vivo R 7.47 ± 0.51 6.31 34 <0.01

Leaf Rmax 9.97 ± 0.84

HNLP Leaf in vivo R 5.03 ± 0.34 5.44 38 <0.01

Leaf Rmax 6.75 ± 0.54

LNHP Leaf in vivo R 7.79 ± 0.71 6.84 37 <0.01

Leaf Rmax 11.26 ± 1.17

LNLP Leaf in vivo R 6.45 ± 0.60 5.83 38 <0.01

Leaf Rmax 7.77 ± 0.63

Overall Leaf in vivo R 6.66 ± 0.29 12.07 150 <0.01

Leaf Rmax 8.89 ± 0.43

Note: The abbreviations for treatments were as follows: High N high P, HNHP; high N low P, HNLP; 
low N high P, LNHP; and low N low P, LNLP.

TA B L E  4  Paired t- test for differences 
between the in vivo respiration (R) and 
respiratory capacity (Rmax) of root and leaf 
in woody species.
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