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Abstract. Let X(n) ∈Rd be a sequence of random vectors, where n ∈N and d= d(n). Under certain weakly dependence conditions,
we prove that the distribution of the maximal component of X and the distribution of the maximum of their independent copies are
asymptotically equivalent. Our result on extremal independence relies on new lower and upper bounds for the probability that none of
a given finite set of events occurs. As applications, we obtain the distribution of various extremal characteristics of random discrete
structures such as maximum codegree in binomial random hypergraphs and the maximum number of cliques sharing a given vertex
in binomial random graphs. We also generalise Berman-type conditions for a sequence of Gaussian random vectors to possess the
extremal independence property.
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1. Introduction

Fisher–Tippett–Gnedenko theorem is central in the extreme value theory; it was discovered first by Fisher and Tippett
[15] and later proved in full generality by Gnedenko [19]. This theorem states that if the maximum of the first n terms
of a sequence of independent and identically distributed (i.i.d.) random variables has a non-degenerate limit distribution
after a proper normalisation, then it belongs to either the Gumbel, the Fréchet, or the Weibull families of distributions.

The FTG theorem generalises to stationary random sequences of dependent random variables under the additional as-
sumptions that its distant terms are independent [47] or weakly dependent [32]. Leadbetter in [28] significantly relaxed the
assumptions of [32, 47]. The analogues of Leadbetter’s conditions were also found for non-stationary sequences [20, 21]
and for random fields [30, 31, 38]. In fact, the behaviour of maxima for non-stationary sequences is more complicated
than that for the stationary case. Even in the simplest case when the variables are independent, the limit distribution might
not belong to any of the Gumbel, the Frechet or the Weibull families, see [14, Section 8.3]. That is, it is impossible to
classify all possible limit distributions for general random systems with dependencies. Nevertheless, extremal characteris-
tics of such systems always attracted significant attention of researchers in computer science, statistical physics, financial
mathematics and network studies. For example, in a recent work [45], the authors study tail indices of in-degree and
out-degree of the nodes of social networks. However, they lack to justify that their methods such as Hill estimator can be
extended to non-i.i.d. data. Similar lack of mathematically rigorous justification occurs in several papers on ranking web
pages [27, 46].

In this paper, we focus on the following extremal independence property that helps to reduce general random systems to
the independent case, where standard statistical techniques apply. Let X(n) = (X1(n), . . . ,Xd(n))T ∈Rd be a sequence
of random vectors, where d= d(n) be a sequence of positive integers. We give sufficient conditions for the property that

(1.1)

∣∣∣∣∣∣Pr

(
max
i∈[d]

Xi 6 x

)
−
∏
i∈[d]

Pr (Xi 6 x)

∣∣∣∣∣∣→ 0 for any fixed x ∈R.

All asymptotics in this paper refer to the passage of n to infinity and the notations o(·), O(·), ω(·), Ω(·), Θ(·) have the
standard meaning.
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Allowing arbitrary sequences of vectors X(n) in (1.1) encapsulates several similar questions arising in the studies
of sequences of random variables, triangular arrays, random fields, and so on. For example, for a sequence ξ1, ξ2, . . . of
identically distributed (i.d.) random variables, one can set

Xi(n) :=
ξi − an
bn

,

where an and bn are the normalising constants from the FTG theorem. This immediately extends the FTG theorem to the
sequences of dependent i.d. random variables that satisfy our sufficient conditions.

Clearly, the extremal independence property (1.1) is equivalent to

(1.2)

∣∣∣∣∣∣Pr

⋂
i∈[d]

Ai

− ∏
i∈[d]

Pr
(
Ai
)∣∣∣∣∣∣→ 0,

where the system of events A is defined by

A = A(n,x) := (Ai)i∈[d], Ai := {Xi > x},(1.3)

and Ai is the complement event of Ai. Estimates for the probability of non-occurrence of events appear in many appli-
cations in probabilistic combinatorics and number theory. In particular, to justify the existence of a certain object, it is
sufficient to show that the related probability (over all places where this object might appear) is positive; see, for example,
[1, Section 5].

In this paper, we establish new bounds for (1.2) by developing the idea proposed by Galambos [16, 17] and Arratia,
Goldstein, Gordon [2]: the weak and strong dependencies between events (Ai)i∈[d] are considered separately, and the
bounds do not incorporate the computation of moments of the number of occurrences Z =

∑
i∈[d] 1(Ai) higher than

the second one. This allows to overcome the disadvantages of classical bounds. In particular, bounds based on depen-
dency graphs (Lovász Local Lemma (LLL) [12], Janson’s inequality [25], Suen’s inequality [44]) allow complicated
dependence structures, but often fail to characterise the relations quantitatively. Applying the method of moments gets
complicated when high factorial moments diverge or are hard to compute. Both the Stein-Chen method [2, 3] and the
method of moments often give suboptimal bounds in (1.2) as they deal with the whole distribution of Z instead of focus-
ing on the probability at 0. Our bounds for (1.2) do not require computation of high moments and the proofs are based
on elementary techniques inspired by LLL. To demonstrate the simplicity in application and effectiveness of our bounds,
we derive new results on distributions of extremal characteristics of Gaussian systems and of maximal pattern extensions
counts in random network models.

The paper is organised as follows. Our new bounds for the extremal independence property (1.1) are stated in Section
2 as Theorem 2.1. In Section 2.1, we give a detailed comparison of Theorem 2.1 to the related results including aforemen-
tioned papers [2, 16, 17]. In Section 2.2, we give two useful lemmas that facilitate verifying the assumptions. We prove
Theorem 2.1 in Section 3: the upper and lower bounds are treated separately in Section 3.1 and Section 3.2, respectively.
Section 4 is devoted to applications of our new bounds to Gaussian random vectors. In Section 5, we apply Theorem 2.1
for finding the asymptotic distribution of maximum number of pattern extensions in binomial random graphs.

2. Sufficient conditions for extremal independence

Let A := (Ai)i∈[d] be a system of events. Everywhere below we assume that Pr(Ai) 6= 0. Clearly, this assumption does
not lead the loss of the generality since the events of zero probability can be excluded from A without affecting the
expression in (1.2). We represent the dependencies among the events of A by a graph D on the vertex set [d] with edges
indicating the pairs of ‘strongly dependent’ events, while non-adjacent vertices correspond to ‘weakly dependent’ events.
One can think of D as a set system (Di)i∈[d], where Di ⊆ [d] is the closed neighbourhood of vertex i in graph D.
Moreover, we allow D to be a directed graph, that is, there might exist i, j ∈ [d], such that i ∈Dj and j 6∈Di.

To measure the quality of the representation of the dependencies for A by a graph D, we introduce the following
mixing coefficient:

ϕ(A,D) := max
i∈[d]

∣∣∣∣∣∣Pr

 ⋃
j∈[i−1]\Di

Aj

∣∣∣∣∣∣ Ai
−Pr

 ⋃
j∈[i−1]\Di

Aj

∣∣∣∣∣∣ .(2.1)
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This is a special case of φ-mixing coefficient widely used in the probability theory; see, for example, survey [9].
The influence of ‘strongly dependent’ events is measured by declustering coefficients ∆1 and ∆2 defined by

∆1(A,D) :=
∑
i∈[d]

Pr

Ai ∩ ⋃
j∈[i−1]∩Di

Aj

 ∏
k∈[d]\[i]

Pr
(
Ak
)
,(2.2)

∆2(A,D) :=
∑
i∈[d]

Pr (Ai) Pr

 ⋃
j∈[i−1]∩Di

Aj

 ∏
k∈[d]\[i]

Pr
(
Ak
)
.(2.3)

In our model, the choice of graph D is arbitrary, and therefore the flexibility may leads to the trade-off between the mixing
coefficient ϕ(A,D) and declustering coefficients ∆1(A,D) and ∆2(A,D) for different applications, since ∆1(A,D)
and ∆2(A,D) increase as D gets denser, and ϕ(A,D) typically decreases.

We are ready to state our sufficient condition for satisfying (1.2).

Theorem 2.1. For any system of events A = (Ai)i∈[d] and graph D with vertex set [d], the following bound holds∣∣∣∣∣∣Pr

⋂
i∈[d]

Ai

− ∏
i∈[d]

Pr
(
Ai
)∣∣∣∣∣∣6

1−
∏
i∈[d]

Pr
(
Ai
)ϕ+ max{∆1,∆2},(2.4)

where ϕ= ϕ(A,D), ∆1 = ∆1(A,D), and ∆2 = ∆2(A,D).

Although the proof of Theorem 2.1 is elementary (see Section 3), it gives a very useful and convenient tool to prove
extremal independence property (1.1) stated below.

Corollary 2.2. Let d= d(n) ∈N, X(n) = (X1, . . . ,Xd)
T ∈Rd, and A is defined in (1.3). If for every fixed x ∈R, there

is a graph D = D(n,x) such that

ϕ(A,D) = o(1), ∆1(A,D) = o(1), ∆2(A,D) = o(1),(2.5)

then, (1.1) holds.

Corollary 2.2 can be applied to extremal problems arising in a variety of random models including but not limited to
the following:

• random discrete time vector processes,
• random graphs and hypergraphs,
• random fields on lattices.

To illustrate this, we find new sufficient conditions for Gaussian random vectors to satisfy the extremal independence
property (1.1) generalising previously known conditions; see Theorem 4.1. We also extend Bollobás result [8] on the limit
distribution of the maximum degree of binomial random graph Gn,p to the hypergraph setting; see Section 5.1. Our result
on the distribution of maximum extension counts implies the law of large numbers by Spencer [42] and optimizes the
denominator for clique extensions; see Sections 5.2–5.4. Corollary 2.2 simplifies the arguments of [40] for the maximum
number of h-neighbours and extends it to unbounded h; see Section 5.3.

There are also a few other straightforward applications of our new bounds that we decided to cover separately in the
future paper(s): 1) distribution of the max number of common neighbours in random regular graphs; 2) distinguishing
binomial random graphs by first order logics [4]; 3) extensions of the results [30, 38] on random fields.

Recent results [35, 43, 48] derive more accurate estimates for Pr
(⋂

i∈[d]Ai

)
using truncated cumulant series and

investigating clusters of dependent random variables. It will be interesting to obtain similar extensions of Theorem 2.1
relying on bounds for clusters of strongly dependent random variables.

2.1. Related results

By the union bound, it is easy to see that

∆1(A,D)6∆′1(A,D) :=
∑
i∈[d]

∑
j∈[i−1]∩Di

Pr (Ai ∩Aj) ,

∆2(A,D)6∆′2(A,D) :=
∑
i∈[d]

∑
j∈[i−1]∩Di

Pr (Ai) Pr (Aj) .
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The declustering assumption ∆′1(A,D) = o(1) is typical in the study of extremal characteristics of random systems. It
guarantees that the clusters of exceedances Ai are negligible. The assumption ∆′2(A,D) = o(1) is easy to verify. For
example, if all probabilities Pr(Ai) are of the same order n−1, then this assumption is equivalent to the graph D to be
sparse, which usually happens in applications. In addition, ∆′2(A,D) can be bounded above by ∆′1(A,D) = o(1) if the
events are monotone. The most innovative part of Corollary 2.2 is the remaining assumption ϕ(A,D) = o(1), which is
often easier to check and less restrictive than other mixing assumptions known in the literature. The detailed comparisons
are given below.

First, we consider a stationary sequence of random variables. If its distant terms are ‘weakly dependent’, then we can
construct the graph D by connecting vertices that are close to each other. Then, omitting some details, the following
corresponds to Leadbetter’s mixing condition D:∣∣∣∣∣Pr

( ⋂
i∈I∪J

Ai

)
−Pr

(⋂
i∈I

Ai

)
Pr

(⋂
i∈J

Ai

)∣∣∣∣∣= o(1)(2.6)

for all disjoint I, J ⊂ [d] with no edges from D between them, see [28, Eq. (1.2)]. Although, (2.6) looks similar to our
assumption ϕ(A,D) = o(1), none of them not imply the other. One advantage of our assumption in comparison with
(2.6) is that one only needs to check the mixing condition for considerably fewer pairs of sets I and J , namely for
I = [i− 1] \Di and J = {i} for all i ∈ [d]. The same conclusion remains valid for the extensions of Leadbetter’s mixing
condition D for non-stationary sequences and random fields on Z2

+, see, Hüsler [21, Theorem 1.1] and Pereira, Ferreira
[38, Proposition 3.2], respectively. In fact, our framework is much more flexible since one can arbitrarily choose the graph
D, without relying on the distances between indices.

Second, we consider the case when ϕ(A,D) = 0. For this case, under some additional requirement, Dubickas [11,
Theorem 1] proved the following bound:

Pr

⋂
i∈[d]

Ai

> ∏
i∈[d]

Pr
(
Ai
)
−∆2(A,D).(2.7)

Thus, in this case, (2.7) gives the lower bound for Pr
(⋂

i∈[d]Ai

)
similar to Theorem 2.1. In the binomial subset setting

and under condition ∆′1(A,D) = o(1), the matching upper bound for Pr
(
∩i∈[d]Ai

)
can be derived from Janson’s in-

equality [25]. Our graph-dependent model is also related to the notions of lopsided (negative) dependency graph [13] and
ε-near-positive dependency graph [33]. Those are models with one-sided mixing conditions sufficient for the lower and
upper bounds respectively.

Next, we compare Corollary 2.2 with the results by Galambos [16, 17]. To our knowledge, he was the first to represent
the weak and strong dependences among (Ai)i∈[d] by a graph. Galambos established the extremal independence property
(1.1) using the so-called graph-sieve method; see, for example, [18] for detailed overview. In particular, Galambos’ mixing
assumptions require that, for a fixed graph D,

∑
S

∣∣∣∣∣Pr

(⋂
i∈S

Ai

)
−
∏
i∈S

Pr (Ai)

∣∣∣∣∣= o(1),(2.8)

where the sum in (2.8) is over all S ⊆ [d] with no edges of D. Assumption (2.8) is very restrictive for many applications
since such set S can be large. For example, in some of the applications that we consider in Section 5, the graph D is
empty so the results in [16, 17] is of little use, since assumption (2.8) is equivalent to the extremal independence property
(1.1) that we wish to establish.

To illustrate the advantage of our approach with respect to the methods of moments, we briefly consider the following
example. Let Ai, where i ∈ [d] and d=

(
n
h

)
, to be the event that the number of common neighbors of the corresponding

h-subsets of vertices in Gn,p is greater than an + bnx (for some appropriately chosen an, bn). In Section 5.3, we show
that this system of events obey the asymptotic independence property (1.2) despite the fact that the second moment of
Z =

∑
i∈[d] 1(Ai) approaches infinity when p is a sufficiently large constant (depending on h). In fact, one can get around

this difficulty and modify the random variables so the second moment converges to the desired limit by conditioning on
a certain event En that holds with probability 1− o(1). However, it does not help a lot even for the third moment, and
it is not evident that the convergence of the higher moments can be established directly by a careful choice of random
variables.

The aforementioned difficulty in applying the method of moments was also pointed out by Arratia, Goldstein and
Gordon in [2]. Based on the Stein-Chen method they discovered that the computation of two moments is sufficient for
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Poisson approximation under a certain mixing condition for weakly dependent random variables. For the rest of this
section, we compare [2, Theorem 3] with our Theorem 2.1 as these results have very similar setups.

Arratia et al. [2] introduced another mixing coefficient different from our ϕ:

ϕ̃ :=
∑
i∈[d]

Pr (Ai)

d∑
k=0

∣∣Pr
(
Zi = k

∣∣ Ai)−Pr
(
Zi = k

)∣∣ ,
where Zi =

∑
j /∈Di

1(Ai). Their result [2, Theorem 3] states that

(2.9)

∣∣∣∣∣∣Pr

⋂
i∈[d]

Ai

− ∏
i∈[d]

Pr
(
Ai
)∣∣∣∣∣∣6 2ϕ̃+ 4∆′′1 + 4∆′′2 + 4

∑
i∈[d]

(
Pr (Ai)

)2
,

where

∆′′1 =
∑
i∈[d]

∑
j∈Di

Pr (Ai ∩Aj)>∆′1, ∆′′2 =
∑
i∈[d]

∑
j∈Di

Pr (Ai) Pr (Aj)>∆′2.

To compare ϕ̃ with our mixing coefficient ϕ, we observe that

(2.10) ϕ̃>
∑
i∈[d]

Pr (Ai) ·

∣∣∣∣∣∣Pr

 ⋃
j /∈Di

Aj

∣∣∣∣∣∣ Ai
−Pr

 ⋃
j /∈Di

Aj

∣∣∣∣∣∣ ,
In the typical case when

∑
i∈[d] Pr (Ai) = Θ(1),

∑
i∈[d](Pr (Ai))

2 = o(1) (and up to ordering of vertices in D) the RHS

of (2.10) has the same order of magnitude (or even bigger) as
(

1−
∏
i∈[d] Pr

(
Ai
))
ϕ. Thus, our bound is at least as

efficient as (2.9) for such applications. Moreover, the lower bound (2.10) on ϕ̃ could be far from being sharp, i.e. the
actual value of the mixing coefficient ϕ̃ could be much bigger. Furthermore, Theorem 2.1 surpasses [2, Theorem 3] in
several important instances listed below.

(1) Slowly decreasing
∑
i∈[n]

(
Pr (Ai)

)2. Clearly, Theorem 2.1 does not have this error term. Thus, our results par-
tially answer the question formulated by Arratia et al. [2] about the extremal independence property (1.1) in case
when Poisson approximation is not good enough.

(2) Slowly growing
∑
i∈[n] Pr (Ai). The term

(
1−

∏
i∈[d] Pr

(
Ai
))
ϕ has additional advantage for upper tail esti-

mates where
∏
i∈[d] Pr

(
Ai
)
→ 1.

(3) Inhomogenous random graphs. For example, consider the random graph model with vertex set [n] and inde-
pendent adjacencies, where all adjacencies happen with probability p excluding adjacencies incident to one spe-
cial vertex. The edges incident to this vertex appear with a slightly higher probability p′ = an+bnx

n = p + (1 −

o(1))
√

2p(1−p) lnn
n , where an, bn and constant x ∈R are appropriately chosen. Defining Ai as the event that vertex

i in the considered random graph has degree more than an + bnx, our inequality gives the upper bound O(n−1/2)
in (2.4) while [2, Theorem 3] gives a useless bound O(1).

(4) Applications to Gaussian vectors. The assumptions of Theorem 2.1 can be verified directly using the Berman
inequality; Section 4. Combining (2.9) and the Berman inequality directly gives a bound which is 2d−D times
bigger, where D = maxi∈D |Di|. Note that 2d−D can be very large if D is sparse.

2.2. Bridging sequences

Here, we state two helpful lemmas in applying Theorem 2.1 to study the extremal characteristics of random combinatorial
structures. It will be convenient to work with non-scaled random variables {Xi}. Everywhere in this section, we assume
the following:

• X(n) = (X1, . . . ,Xd)
T ∈Rd is a sequence of random vectors, where d= d(n) ∈N;

• F is a continuous cdf on R and X is the set of all x ∈R such that 0<F (x)< 1;
• there exist an and bn such that

∏d
i=1 Pr (Xi 6 an + bnx)→ F (x) for any x ∈ X ;

• for all i ∈ [d], denote Ai :=Ai(x) = {Xi > an + bnx}.

The first lemma shows that ϕ(A,D)→ 0 as n→∞ provided that, for all i ∈ [d] and j ∈ [i − 1] \Di, the random
variables Xj are approximated by some random variables X(i)

j , which are independent of Xi. We will use this lemma to
derive the distribution of the maximum codegrees in random hypergraphs.



6

Lemma 2.3. Let x ∈ X . Let sets Di ⊆ [d] \ {i} and random variables X(i)
j be such that, for all j ∈ [i− 1] \Di, X

(i)
j is

independent of Xi and, for any fixed ε > 0,

(2.11) Pr
(

max
j∈[i−1]\Di

∣∣∣Xj −X(i)
j

∣∣∣> εbn

)
= o(1) Pr

(
Ai
)
,

uniformly over i ∈ [d]. Then ϕ(A,D)→ 0.

The second lemma allows us to transfer the asymptotic distribution of the maximum component of X(n) to any
random vector Y (n) ∈Rd that ‘approximates’ X(n). Using this lemma, we will derive the distribution of the maximum
clique-extension count in random graphs from the results on the maximum degree.

Lemma 2.4. Let Y (n) ∈Rd be a sequence of random vectors. Assume that, for any x ∈ X ,

(i) Pr
(
maxi∈[d]Xi 6 an + bnx

)
→ F (x);

(ii) for any fixed ε > 0,

Pr(|Xi − Yi|> εbn) = o(1) Pr(Xi > an + bnx),

uniformly over all i ∈ [d].

Then Pr
(
maxi∈[d] Yi 6 an + bnx

)
→ F (x) for all x ∈ X .

The proofs of Lemma 2.3 and Lemma 2.4 require some standard technical calculations, which we include in appendix
for completeness; see Sections A.1 and A.2.

3. Probability of non-occurrence of events

In this section, we give new lower and upper bounds that allow to make a classification of dependencies between events
flexible and that do not require the implication from pairwise to mutual independence. Our bounds are follow-up to the
inequalities of Arratia, Goldstein, Gordon [2] and give a certain improvement for applications in various settings (see
Section 2.1). However, the proofs are elementary and inspired by the proof of LLL. Note that our lower bound given in
Section 3.2 is a strict generalisation of Dubickas’ inequality [11].

3.1. Upper bound

Here and in the next section, we use the notations ∆1(A,D) and ∆2(A,D) that are defined in (2.2) and (2.3) respectively.

Lemma 3.1. Let ϕ> 0. If events (Ai)i∈[d] with non-zero probabilities and sets (Di ⊂ [d] \ {i})i∈[d] satisfy

(3.1) Pr

 ⋃
j∈[i−1]\Di

Aj

∣∣∣∣∣∣ Ai
−Pr

 ⋃
j∈[i−1]\Di

Aj

6 ϕ,
for all i ∈ [d], then

Pr

⋂
i∈[d]

Ai

6 ∏
i∈[d]

Pr
(
Ai
)

+ϕ

1−
∏
i∈[d]

Pr
(
Ai
)+ ∆1(A,D).(3.2)

Proof. Let us prove that, for every s ∈ [d],

Pr

⋂
i∈[s]

Ai

6 (1−ϕ)
∏
i∈[s]

Pr
(
Ai
)

+ϕ+
∑
i∈[s]

Pr

Ai ∩ ⋃
j∈[i−1]∩Di

Aj

 ∏
k∈[s]\[i]

Pr
(
Ak
)

(3.3)

by induction on s. The required bound (3.2) is exactly (3.3) when s= d.

For s= 1, (3.3) follows from ϕ> 0. Assume that (3.3) holds for some s ∈ [d− 1]. Let

(3.4) B :=
⋃

j∈[s]\Ds+1

Aj , C :=
⋃

j∈[s]∩Ds+1

Aj .
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Note that

(3.5) 1−Pr

As+1

∣∣∣∣∣∣
⋂
i∈[s]

Ai

= Pr
(
As+1

∣∣ B ∩C)> Pr
(
As+1

∣∣ B) (1−Pr
(
C
∣∣ As+1 ∩B

)
).

By (3.1), we have Pr
(
B
∣∣ As+1

)
> Pr

(
B
)
−ϕ. Therefore,

Pr
(
As+1

∣∣ B)=
Pr
(
B
∣∣ As+1

)
Pr(B)

Pr(As+1)>

(
1− ϕ

Pr
(
B
))Pr(As+1).

We also find that

Pr
(
C
∣∣ As+1 ∩B

)
=

Pr
(
C ∩B

∣∣ As+1

)
Pr
(
B
∣∣ As+1

) 6
Pr (C | As+1)

Pr
(
B
)
−ϕ

.

Using the above two bounds in (3.5), we derive that

Pr

As+1

∣∣∣∣∣∣
⋂
i∈[s]

Ai

6 1−

(
1− ϕ

Pr
(
B
))Pr(As+1) +

Pr (As+1 ∩C)

Pr
(
B
) .

Then, since Pr
(
B
)
> Pr

(⋂
i∈[s]Ai

)
, we get

Pr

 ⋂
i∈[s+1]

Ai

6 Pr

⋂
i∈[s]

Ai

Pr
(
As+1

)
+ϕPr(As+1) + Pr(As+1 ∩C).

By (3.3), we have

Pr

 ⋂
i∈[s+1]

Ai

6 (1−ϕ)
∏

i∈[s+1]

Pr
(
Ai
)

+ϕ

+
∑

i∈[s+1]

Pr

Ai ∩ ⋃
j∈[i−1]∩Di

Aj

 ∏
k∈[s+1]\[i]

Pr
(
Ak
)
.

This completes the proof.

3.2. Lower bound

Lemma 3.2 (Generalised Dubickas’ inequality). Let ϕ > 0. If events (Ai)i∈[d] with non-zero probabilities and sets
Di ⊂ [d] \ {i} satisfy

(3.6) Pr

 ⋃
j∈[i−1]\Di

Aj

−Pr

 ⋃
j∈[i−1]\Di

Aj

∣∣∣∣∣∣ Ai
6 ϕ,

for all i ∈ [d], then

Pr

⋂
i∈[d]

Ai

> ∏
i∈[d]

Pr
(
Ai
)
−ϕ

1−
∏
i∈[d]

Pr
(
Ai
)−∆2(A,D).(3.7)

Proof. Let us prove that, for every s ∈ [d],

(3.8) Pr

⋂
i∈[s]

Ai

> (1 +ϕ)
∏
i∈[s]

Pr
(
Ai
)
−ϕ−

∑
i∈[s]

Pr (Ai) Pr

 ⋃
j∈[i−1]∩Di

Aj

 ∏
k∈[s]\[i]

Pr
(
Ak
)
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by induction on s. The required bound (3.7) is exactly (3.8) when s= d.
For s= 1, (3.8) is straightforward since ϕ> 0. Assume that (3.8) holds for s ∈ [d− 1]. Consider the events B and C

defined in (3.4). Then

Pr

As+1

∣∣∣∣∣∣
⋂
i∈[s]

Ai

= 1−
Pr
(
As+1 ∩B ∩C

)
Pr
(
B ∩C

) > 1−
Pr
(
B
∣∣ As+1

)
Pr
(
B ∩C

) Pr (As+1) .

From (3.6), we have Pr(B|As+1)6 Pr(B) +ϕ. Therefore,

Pr

As+1

∣∣∣∣∣∣
⋂
i∈[s]

Ai

> 1−
Pr
(
B
)

+ϕ

Pr
(
B ∩C

) Pr (As+1) .(3.9)

Moreover,

Pr
(
B
)

= Pr
(
B ∩C

)
+ Pr

(
B ∩C

)
6 Pr

⋂
i∈[s]

Ai

+ Pr (C) .(3.10)

Combining (3.8), (3.9) and (3.10), we get

Pr

 ⋂
i∈[s+1]

Ai

> Pr

⋂
i∈[s]

Ai

Pr
(
As+1

)
−ϕPr(As+1)−Pr

 ⋃
j∈[s]∩Ds+1

Aj

Pr(As+1)

> (1 +ϕ)
∏

i∈[s+1]

Pr
(
Ai
)
−ϕ−

∑
i∈[s+1]

Pr (Ai) Pr

 ⋃
j∈[i−1]∩Di

Aj

 ∏
k∈[s+1]\[i]

Pr
(
Ak
)
.

This completes the proof.

Remark 3.3. As mentioned in Section 2.1, the special case of (3.7) with ϕ= 0 proves Dubickas’ inequality (2.7). Note
also that our condition

Pr

 ⋃
j∈[i−1]\Di

Aj

6 Pr

 ⋃
j∈[i−1]\Di

Aj

∣∣∣∣∣∣ Ai
 ,

is weaker than the Dubickas’ requirement on the connection between pairwise and mutual independencies.

4. Applications in Gaussian systems

In this section we assume that X(n) is a Gaussian vector for all n ∈N. Our main purpose is to provide conditions under
which this system satisfies the assumptions of Theorem 2.1.

Assume first that under some linear normalisation, X(n) is the first n random variables of a given sequence {Xn}n>1.
In i.i.d. case, it is well-known that the distribution function of the maximum of this sequence under a specific linear
normalisation tends to a standard Gumbel law, that is, for all x ∈R,

(4.1) Pr

(
max
i∈[n]

Xi 6 an + bnx

)
→ e−e

−x

for some non-random sequences {an} with an > 0, n ∈N, and {bn}. But does the relation (4.1) hold if {Xn}n>1 are not
independent or/and identically distributed? Berman [5] showed that (4.1) remains true for stationary Gaussian sequence
{Xn}n>1 under the following remarkable condition

(4.2) r(n) logn→ 0,

where r(n) is a covariance function of {Xn}n>1. It turns out, that the Berman condition (4.2) is necessary and sufficient
in some sense for Gaussian stationary sequence {Xn}n>1 to satisfy (4.1) with the same normalising sequences {an} and
{bn} as in i.i.d. case. Indeed, Mittal and Ylvisaker [34] discovered that if r(n) logn→ γ, then the probability in (4.1)
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converges to a convolution of the standard Gumbel and some Gaussian distribution, thus the property (1.1) does not hold
in this case.

Next, Hüsler [20] found the conditions under which the relation (1.1) is fulfilled for non-stationary Gaussian sequence
{Xn}n>1. One of the conditions imposed by Hüsler was the modified Berman condition

sup
|i−j|>n

ρ(i, j) logn→ 0,

where ρ(i, j) is a correlation function of the sequence {Xn}n>1. The property (1.1) for non-stationary Gaussian random
fields on Z2

+ with mean zero and unit variance was treated in [10] and [37]. In [24], for stationary Gaussian random
field on Zk , the property (1.1) was proved under some multivariate modification of the Berman condition (4.2). It is
interesting that violation of this Berman condition for stationary Gaussian random field in at least one direction in Zk
entails violation of (1.1), see [23].

Let us now switch to our most general case when the i-th component of X(n) depends on n. Assume that d= d(n)

and
∏d
i=1 Pr (Xi 6 an + bnx)→ F (x) > 0 for any fixed x ∈ R. For every n ∈ N and i, j ∈ [d], set rij = rij(n) =

cov(Xi,Xj)√
VarXiVarXj

. Denote ui = ui(n) = an+bnx−E[Xi]√
VarXi

and umin(n) = mini∈[d] ui.

Theorem 4.1. Assume that for every x ∈R, there is a graph D = D(n,x) such that the Gaussian system X(n) satisfies
the following conditions.

(G1) lim infn umin(n)> 1.
(G2) maxi∈[d] maxj∈[i−1]\Di

|rij | logd→ 0.

(G3)
∑
i∈[d]

∑
j∈[i−1]∩Di

exp
(
− u2

i+u
2
j

2(1+|rij |)

)
→ 0.

(G4) lim supnmaxi 6=j |rij |< ρ for some fixed ρ ∈ (0,1).

Then Pr
(
maxi∈[d]Xi 6 an + bnx

)
→ F (x).

We prove Theorem 4.1 later in this section, but, first, we compare it with the previously known results.

Theorem 4.1 implies the results of [5], [24] and [37] mentioned above. Indeed, the Berman-type condition (G2) is
more general than the corresponding conditions in these works. The condition (G4) is fulfilled for stationary sequence in
[5] and stationary field in [24] and is assumed in [37]. At last, the specific choice of the sets {Di} (all of them should
have the same form and size) with application of the Berman-type condition guarantees the fulfillment of (G3). It is also
straightforward to derive [20, Theorem 4.1] from our Theorem 4.1 if umin = Ω(

√
logd).

Next, we compare the conditions (G1)–(G4) with the conditions in the above mentioned result of Hüsler [20].

• In contrast to [20], we do not require that umin(n) tends to the endpoint of the limit distribution function F (which
is infinity for the Gumbel distribution) but only need the weaker condition (G1).

• (G2) is a Berman-type condition whose analogue was also used by Hüsler. Next, it is easy to see that the condition
(G3) follows from a more convenient assumption

exp
(
− (umin(n))2

1 + ρ

)∑
i∈[d]

|[i− 1]∩Di| → 0.

This condition (together with (G2)) is more flexible than the conditions being imposed on Gaussian sequences and
fields in the literature. The sets of indices {Di} may not be intervals in the one-dimensional case, in contrast to
[5], [20], and may be neither parallelepipeds nor spheres in the multi-dimensional case, in contrast to the choice of
corresponding sets in [37] and [24] respectively. Moreover, the form of |Di| can strongly depend on i.

• Finally, (G4) was also assumed by Hüsler.

4.1. Proof of Theorem 4.1

Set X̃i = Xi−E[Xi]√
VarXi

. Let us check that the conditions of Corollary 2.2 hold for

Ai =

{
Xi − an
bn

> x

}
= {X̃i > ui}, i ∈ [d].
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This will immediately give the statement of Theorem 4.1.

First, recall the well-known relation for standard normal η (see, for example, [39, Proposition 2.4.1])

(4.3)
1√
2πx

e−x
2/2(1− x−2)6 Pr (η > x)6

1√
2πx

e−x
2/2, x > 0.

Here and in what follows, C denotes a positive constant whose value is large enough (it may be different in different
places — we use the same notation to avoid introducing many letters or indices). Using the upper bound from (4.3), we
observe that

(4.4) Pr (Ai) Pr (Aj)6C
1

uiuj
exp

(
−
u2i + u2j

2

)
6C exp

(
−

u2i + u2j
2(1 + |rij |)

)
.

Therefore, (G3) implies that the assumption ∆′2(A,D) = o(1) and hence the assumption ∆2(A,D) = o(1) are fulfilled.

Now, we have the following trivial bound for the sum in ∆′1(A,D)∑
i∈[d]

∑
j∈[i−1]∩Di

Pr (Ai ∩Aj)6
∑
i∈[d]

∑
j∈[i−1]∩Di

(
Pr (Ai) Pr (Aj) + d(i, j)

)
,

where

d(i, j) =
∣∣∣Pr
(
X̃i 6 ui, X̃j 6 uj

)
−Pr

(
X̃i 6 ui

)
Pr
(
X̃j 6 uj

)∣∣∣ .
The latter follows from the relation

(4.5) |Pr (A∩B)−Pr (A) Pr (B) |= |Pr
(
A∩B

)
−Pr

(
A
)

Pr
(
B
)
|.

Direct application of the famous Berman inequality (cf. Theorem 4.2.1 [29]) gives us

(4.6) d(i, j)6C
|rij |

1− r2ij
exp

(
−

u2i + u2j
2(1 + |rij |)

)
.

Therefore, we easily obtain by (G4), (4.4) and (4.6)

∑
i∈[d]

∑
j∈[i−1]∩Di

(
Pr (Ai) Pr (Aj) + d(i, j)

)
6 C

∑
i∈[d]

∑
j∈[i−1]∩Di

exp

(
−

u2i + u2j
2(1 + |rij |)

)
,

and the right-hand side vanishes by (G3). Thus, we verified the assumption ∆′1(A,D) = o(1) and hence the assumption
∆1(A,D) = o(1); it remains to justify ϕ(A,D) = o(1).

By definition (2.1) and using (4.5) again, we have

ϕ(A,D) = max
i∈[d]

1

Pr (Ai)

∣∣∣Pr
(
∪j∈[i−1]\Di

Aj ∩Ai
)
−Pr

(
∪j∈[i−1]\Di

Aj
)

Pr (Ai)
∣∣∣

= max
i∈[d]

1

Pr (Ai)

∣∣∣Pr
(
∩j∈[i−1]\Di

Aj ∩Ai
)
−Pr

(
∩j∈[i−1]\Di

Aj
)

Pr
(
Ai
) ∣∣∣

Applying the Berman inequality again, we get∣∣∣∣∣∣Pr

 ⋂
j∈[i−1]\Di

Aj ∩Ai

−Pr

 ⋂
j∈[i−1]\Di

Aj

Pr
(
Ai
)∣∣∣∣∣∣6C

∑
j∈[i−1]\Di

|rij |
1− r2ij

exp

(
−

u2i + u2j
2(1 + |rij |)

)
.

Thus, by (G1), (G2), (G4) and (4.3), we obtain

ϕ(A,D) 6 Cmax
i∈[d]

 u3i
u2i − 1

eu
2
i /2

∑
j∈[i−1]\Di

|rij |
1− r2ij

exp

(
−

u2i + u2j
2(1 + |rij |)

)
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6 Cmax
i∈[d]

uieu2
i /2

∑
j∈[i−1]\Di

|rij | exp

(
−(1− |rij |)

u2i + u2j
2

)
= Cmax

i∈[d]

ui ∑
j∈[i−1]\Di

|rij | exp

(
−
u2j
2

+ |rij |
u2i + u2j

2

) .(4.7)

First let us assume that ui/
√

logd > 2
√

2 + δ for some δ > 0, then exp(−u2i /4) = o(d−2). Therefore,∑
j∈[i−1]

exp
(
−

u2i + u2j
2(1 + |rij |)

)
6

∑
j∈[i−1]

exp
(
− u2i

4

)
= o(d−1),

and the sum in the left-hand side does not affect the asymptotic of the double sum in (G3). Let us change the graph D so
that Di = [d] and derive that∣∣∣Pr

(
∪j∈[i−1]\Di

Aj ∩Ai
)
−Pr

(
∪j∈[i−1]\Di

Aj
)

Pr (Ai)
∣∣∣= 0.

Now let us instead assume that ui/
√

logd6 2
√

2 + o(1). If uj/
√

logd> 3(1+4ρ)
1−ρ for j ∈ [i− 1]\Di, then

exp

(
−
u2j
2

+ |rij |
u2i + u2j

2

)
= o

(
1

d logd

)
.

Therefore, we may assume that

(4.8) max
j∈[i−1]\Di

uj 6
3(1 + 4ρ)

1− ρ
√

logd.

Hence, by (G2),

|rij |
u2i + u2j

2
= o(1)

uniformly over i ∈ [d] and j ∈ [i− 1]\Di. Using the latter, (G1), (G2), (4.3), and (4.8), we derive for the right-hand side
of (4.7)

max
i∈[d]

∑
j∈[i−1]\Di

ui|rij | exp
(
−
u2j
2

+ |rij |
u2i + u2j

2

)
= max

i∈[d]

∑
j∈[i−1]\Di

ui|rij | exp
(
−
u2j
2

+ o(1)
)

6Cmax
i∈[d]

∑
j∈[i−1]\Di

uiuj |rij |Pr (Aj)6Cmax
i∈[d]

(
max

j∈[i−1]\Di

|rij | logd
∑

j∈[i−1]\Di

Pr (Aj)
)
→ 0,

where the last relation holds since∑
j∈[d]

Pr (Aj)6−
∑
j∈[d]

log(1−Pr (Aj))→− logF (x)<∞.

The result follows. �

5. Applications in random graphs

Let us recall that Gn,p is a random graph on the vertex set [n] = {1, . . . , n} distributed as

Pr(Gn,p =G) = pe(G)(1− p)(
n
2)−e(G),

where e(G) is the number of edges of a graph G with the vertex set [n] (i.e., every pair of distinct vertices of [n] is
adjacent with probability p independently of all the others).

In [8], Bollobás proved that, for p = const, the maximum degree ∆ of Gn,p after appropriate rescaling converges
to Gumbel distribution. More formally, there exist sequences an and bn (the exact values are known) such that ∆−an

bn
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converges in distribution to a standard Gumbel random variable. Ivchenko proved [22] that the same holds for p such
that p(1− p)� logn

n . In other words, for the rescaled degree sequence of Gn,p, the extremal independence property (1.1)
holds. This is not unexpected since the dependence of degrees of two vertices of the random graph is ‘focused’ in the only
edge between these vertices. In Section 5.1, we show that Theorem 2.1 implies the same result for the maximum degree
of binomial random hypergraph that can not be obtained by the approach of Bollobás and Ivchenko directly.

The results of Bollobás and Ivchenko can be viewed as a particular case of the following problem suggested by Spencer
in [42]. Let G be a graph, and H be its subgraph on h vertices. Define d(H,G) = |E(G)|−|E(H)|

|V (G)|−|V (H)| (here, as usual, V (G)

and E(G) are the set of vertices and the set of edges of G respectively). Let the pair (H,G) be strictly balanced and
grounded i.e.,

• for every S such that H ( S (G, we have d(H,S)< d(H,G), and
• there is an edge between V (H) and V (G) \ V (H) in G.

For brevity, we denote by [n]h and
(
[n]
h

)
the set of all h-tuples of distinct vertices from [n] and the set of all h-subsets

of [n], respectively. For an h-tuple x = (x1, . . . , xh) ∈ [n]h, denote by Xx, the number of (H,G)-extensions of x in Gn,p
(i.e., the number of copies of (V (G),E(G) \E(H)) in Gn,p in which each vertex vj , j ∈ [h], of H maps onto xj ). For
example, the degree of a vertex u equals Xu when h= 1 and G=K2 (as usual, we denote by Kr a complete graph on
r vertices and call it an r-clique). Spencer raised the question about the deviation of Xx from its expectation and proved
that

(5.1)
maxx∈[n]h |Xx − µ|

µ

Pr→ 0

whenever µ := E
[
X(1,...,h)

]
= Θ

(
n|V (G)|−|V (H)|p|E(G)|−|E(H)|)� logn. In Section 5.2, we show that Theorem 2.1

results in a tight lower bound of a possible denominator in the law of large numbers (5.1) for a slightly more narrow range
of p and some specific strictly balanced and grounded (H,G). More precisely, for h = 1 and G being a clique (its size
may depend on n), we prove that maxu∈[n]Xu after appropriate rescaling converges to Gumbel distribution. Moreover,
as we discuss in Sections 5.3 and 5.4, these techniques can be applied for h > 1 as well.

5.1. Maximum degree and codegree in hypergraphs

Let Hn,k,p be the k-uniform binomial random hypergraph with the vertex set [n]. Recall that every k-set from
(
[n]
k

)
appears as an edge in Hn,k,p with probability p independently. For a set S ⊆ [n] with |S|< k let XS be the codegree of
S in Hn,k,p (i.e., the number of edges of Hn,k,p containing S). In particular, Xi is the degree of a vertex i. Note that

(5.2) XS ∼Bin

((
n− |S|
k− |S|

)
, p

)
.

In this section, using Theorem 2.1, we show that, under some assumptions on the parameters k and p (in terms of n),
the asymptotic distribution of maxSXS is the same as if the variables XS were independent. For independent random
variables, the asymptotic distribution is given by the following lemma.

Lemma 5.1. Let d= d(n) ∈N, N =N(n) ∈N, and p= p(n) ∈ (0,1) satisfy

Np(1− p)� log3 d� 1.

If ξ1, . . . , ξd are Bin(N,p) independent random variables, then
[
maxi∈[d] ξi − an

]
/bn converges in distribution to a

standard Gumbel random variable with an and bn defined by

(5.3)

an = an(d,N,p) := pN +
√

2Np(1− p) logd

(
1− log logd

4 logd
− log(2

√
π)

2 logd

)
,

bn = bn(d,N,p) :=

√
Np(1− p)

2 logd
.

Proof. For p bounded away from 0 and 1 we refer to [36, Theorem 3]. For p→ 0, p� log3 d
N , we find by [22, Lemmas 4

and 5] that

(5.4) dPr(ξ1 > an + bnx)→ e−x.
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Since d→∞,

Pr

(
max
i∈[d]

ξi 6 an + bnx

)
=
(

Pr(ξ1 6 an + bnx)
)d

=

(
1− e−x + o(1)

d

)d
→ e−e

−x

.

Finally, if log3 d
N � 1− p= o(1), then (5.4) can be obtained similarly by applying de Moivre–Laplace theorem (see, e.g.,

[7, Theorem 1.6]).

Remark 5.2. In fact, Lemma 5.1 can be extended to the rangeNp(1−p)� logd. This would involve a more complicated
expression for an, while bn remains the same, see [22, Lemma 5]. However, such a generalisation is not needed for the
applications we consider.

In the next theorem, we show that, under certain assumptions, the maximum degree in the random hypergraph Hn,k,p
converges to the Gumbel distribution.

Theorem 5.3. Assume p= p(n) ∈ (0,1) and k = k(n) ∈ {2, . . . , n} are such that

(5.5)
(
n− 1

k− 1

)
p(1− p)� log3 n, k� n/ log2 n.

Then
[
maxi∈[n]Xi − an

]
/bn converges in distribution to a standard Gumbel random variable, where an = an

(
n,
(
n−1
k−1
)
, p
)

and bn = bn

(
n,
(
n−1
k−1
)
, p
)

are defined in (5.3).

Proof. Take any x ∈R. For all i ∈ [n], let Ai := {Xi > an + xbn}. Let d := n and N :=
(
n−1
k−1
)
. By Lemma 5.1, we find

that

(5.6)
∏
i∈[n]

Pr(Ai)→ e−e
−x

.

For i ∈ [d], let Di = ∅. Then ∆1(A,D) = ∆2(A,D) = 0. By Corollary 2.2, we only need to show that ϕ(A,D) = o(1).
We employ Lemma 2.3 to verify it. Note that F (x) := e−e

−x

is the cdf of the standard Gumbel distribution. In particular,
F is continuous and 0 < F (x) < 1 for all x ∈ R. To apply Lemma 2.3, it remains to construct random variables X(i)

j .

For j ∈ [d] \ i, define X(i)
j := E [Xj | Hi], where Hi is the set of edges of Hn,k,p that does not contain the vertex i.

Clearly, X(i)
j is independent of Xi because the random set Hi is independent of Xi. Recalling that Xi,j := X{i,j} ∼

Bin
((
n−2
k−2
)
, p
)

is the number of edges of Hn,k,p containing both i and j, we get

(5.7) Xj −X(i)
j =Xi,j −E [Xi,j | Hi] =Xi,j −E [Xi,j ] .

Next, we estimate the probability that |Xi,j−E [Xi,j ] |> εbn. Here, without loss of the generality, we may assume that

p 6 1
2 . Otherwise, we can consider the random variable

(
n−2
k−2
)
−Xi,j ∼ Bin

((
n−2
k−2
)
,1− p

)
and repeat the arguments.

By the assumptions, we get that bn =

√
(n−1
k−1)p(1−p)

2 logn
satisfies

bn� logn and
b2n

E [Xi,j ]
=

(
n−1
k−1
)
(1− p)

2
(
n−2
k−2
)

logn
� logn.

Applying the Chernoff bound (see, for example, [26, Theorem 2.1]), we find that, for any fixed ε > 0,

(5.8) Pr (|Xi,j −E [Xi,j ] |> εbn)6 2 exp

(
− (εbn)2

2E [Xi,j ] + εbn

)
= e−ω(logn).

Combining (5.7), (5.8) and applying the union bound for all j ∈ [i− 1], we get that

Pr
(

max
j∈[i−1]

∣∣∣Xj −X(i)
j

∣∣∣> εbn

)
6 ne−ω(logn) = e−ω(logn).

From (5.6), we find that Pr(Xi > an + bnx) = Ω(n−1)� e−ω(logn) uniformly over all i ∈ [n]. Thus, we get the desired
X

(i)
j satisfying all conditions of Lemma 2.3. This completes the proof.
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Remark 5.4. The binomial random graph Gn,p is a special case ofHn,k,p for k = 2. In the particular case, Theorem 5.6
gives the asymptotic distribution of the maximum degree of Gn,p. This result was obtained for the first time by Bollobás [8]
and Ivchenko [22] using the method of moments. For every i ∈ [n], they consider the Bernoulli random variable ηi that
equals 1 if and only if its degree is bigger than an + bnx. Letting η = η1 + . . .+ ηn, they easily get that E [η]→ e−x as
n→∞. Thus, it is sufficient to prove that η converges in distribution to a Poisson random variable as n→∞. For k = 2,
one can derive that E

[(
η
r

)]
→ e−xr/r! for any fixed r ∈ N. However, when k > 2 the dependencies are stronger so the

computation of factorial moments becomes much more technically involved. In contrast, our method does not require any
computations aside from the single application of the Chernoff bound in (5.8) for all k.

Remark 5.5. Another advantage of our approach is that it gives an estimate of the rate of convergence to the Gumbel
distribution. A careful investigation of the proofs of Theorem 2.1, Lemma 2.3, and Theorem 5.3 shows that∣∣∣∣Pr

(
max
i∈[n]

Xi 6 an + xbn

)
−
∏
i∈[n]

Pr (Xi 6 an + xbn)

∣∣∣∣
=O

√ log3 n(
n−1
k−1
)
p(1− p)

+

√
k log2 n

n

 .

That is, the rate of convergence is governed by the rate of decrease of ε, for which Pr
(

maxj∈[i−1]

∣∣∣Xj −X(i)
j

∣∣∣> εbn

)
remains very small. In addition, for an and bn defined by (5.3), the convergence rate of

∏
i∈[n] Pr (Xi 6 an + xbn) to the

Gumbel distribution is O
(

log logn
logn

)
. However, this convergence rate can be improved by using a more precise expression

for the scaling parameter an.

Our approach applied to codegrees XS in the random hypergraph Hn,k,p leads to the following result.

Theorem 5.6. Assume p= p(n) ∈ (0,1), s= s(n) ∈ [n− 1], and k = k(n) ∈ [n] \ [s] are such that(
n− s
k− s

)
p(1− p)� s3 log3 n, (k− s)s2� (n− s)/ log2 n.

Then
[
max

S∈([n]
s )XS − an

]
/bn converges in distribution to a standard Gumbel random variable, where an =

an

((
n
s

)
,
(
n−s
k−s
)
, p
)

and bn = bn

((
n
s

)
,
(
n−s
k−s
)
, p
)

are defined in (5.3).

Proof. Theorem 5.6 is proved in exactly the same way as Theorem 5.3. Take any x ∈ R. For all S ∈
(
[n]
s

)
, let AS :=

{XS > an +xbn}. Let d :=
(
n
s

)
and N :=

(
n−s
k−s
)
. Since

(
n
s

)
6 ns, the assumptions imply Np(1− p)� log3 d. Recalling

that XS ∼Bin (N,p) and using Lemma 5.1, we find that∏
S∈([n]

s )

Pr(AS)→ e−e
−x

.

Again, we can take DS = ∅ for all S ∈
(
[n]
s

)
. Thus, we only need to show that ϕ(A,D) = o(1). The key fact needed to

apply Lemma 2.3 is that, for any fixed ε > 0,

Pr

(∣∣XU∪S −E [XU∪S ]
∣∣6 εbn for all distinct U,S ∈

(
[n]

s

))
> 1− e−ω(logd).

Similarly to (5.8), this is a straightforward application of the Chernoff bound.

5.2. Maximum clique-extension counts

Let k > 3 be an integer. In this section, we find the asymptotic distribution of the maximum number of k-clique extensions
in the random graph Gn,p. For i ∈ [n], let Xi be the number of k-cliques containing vertex i. Below, we show that
Theorem 2.1 implies the asymptotic distribution of the maximum value of Xi over i ∈ [n].
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Let

akn :=
(pn)k−2p(

k−1
2 )

(k− 1)!

[
pn+ (k− 1)

√
2np(1− p) logn

(
1− log logn

4 logn
− log(2

√
π)

2 logn

)]
,

bkn :=
1

(k− 2)!
(pn)k−2p(

k−1
2 )

√
np(1− p)

2 logn
.

Theorem 5.7. Let p= p(n) ∈ (0,1), k = k(n) ∈ {3, . . . , n} be such that

(5.9) log3 n= o(np(1− p)), log2 n= o

(
np(

k−1
2 )+1(1− p)
k3

)
.

Then
[
maxi∈[n]Xi − akn

]
/bkn converges in distribution to a standard Gumbel random variable.

Proof. Let di be the degree of the vertex i, and Yi = E [Xi | di] =
(
di
k−1
)
p(

k−1
2 ). Note that

max
i∈[n]

Yi =

(
maxi∈[n] di
k− 1

)
p(

k−1
2 ).

Let x ∈R. By Theorem 5.3, we have

Pr

(
max
i∈[n]

Yi 6

(
an + bnx

k− 1

)
p(

k−1
2 )
)

= Pr

(
max
i∈[n]

di 6 an + bnx

)
→ e−e

−x

,

where an = an(n,n− 1, p) and bn = bn(n,n− 1, p) are defined in (5.3). Computing directly, we get(
an + bnx

k− 1

)
p(

k−1
2 ) = akn + bknx(1 + o(1)),

implying that

(5.10) Pr

(
max
i∈[n]

Yi 6 a
k
n + bknx

)
→ e−e

−x

.

Set X̃i =
Xi−akn
bkn

, Ỹi =
Yi−akn
bkn

. It remains to show that

Pr
(∣∣∣X̃i − Ỹi

∣∣∣> ε
)

= o
(
Pr
(
Yi > akn + xbkn

))
= o

(
1

n

)
,(5.11)

and apply Lemma 2.4.
The de Moivre–Laplace theorem and the relation

∫∞
x
e−t

2/2dt = 1
xe
−x2/2(1 + o(1)) (see, e.g., [6, Relation (1’)])

imply

Pr
(
|di − np|>

√
2np(1− p) logn

)
=

1 + o(1)

n
√
π logn

.

Therefore,

Pr
(∣∣∣X̃i − Ỹi

∣∣∣> ε
)

= Pr
(
|Xi − Yi|> εbkn

)
=

∑
|j−np|6

√
2np(1−p) logn

Pr

(∣∣∣∣Xi −
(

j

k− 1

)
p(

k−1
2 )
∣∣∣∣> εbkn, di = j

)
+ o

(
1

n

)
.

It remains to bound from above Pr
(
Xi −

(
j

k−1
)
p(

k−1
2 ) > εbkn

∣∣∣ di = j
)

and Pr
(
Xi −

(
j

k−1
)
p(

k−1
2 ) <−εbkn

∣∣∣ di = j
)

.
For the lower tail, we apply Janson’s inequality [26, Theorem 2.14] that does not work, in general, for upper tails. How-
ever, a weaker bound [26, Proposition 2.44] can be applied for that. To apply the bounds, we need to compute the number
of (k − 1)-cliques that are not edge-disjoint with a given (k − 1)-clique in Kj (which is denoted by ∆ below) and the
expected number of pairs of non-edge-disjoint (k− 1)-cliques in Gj,p (which is denoted by ∆ below).
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For j ∈ N such that |j − np| 6
√

2np(1− p) logn, denote the number of (k − 1)-subsets of [j] having at least 2
common element with [k− 1] by ∆. Clearly,

∆ =

(
j

k− 1

)
−
(
j − k+ 1

k− 1

)
− (k− 1)

(
j − k+ 1

k− 2

)
=

(
k− 1

2

)
jk−3

(k− 3)!
(1 + o(1)).

Moreover, let ∆ be the expected number of pairs of (not necessarily distinct) k-cliques with non-empty edge intersections:

∆ =

(
j

k− 1

) k−1∑
`=2

(
k− 1

`

)(
j − k+ 1

k− 1− `

)
p(k−1)(k−2)−(`

2) =

j2k−4

(k− 1)!(k− 3)!

(
k− 1

2

)
p(k−1)(k−2)−1(1 + o(1)).

By (5.9) and [26, Proposition 2.44], uniformly over all j ∈N such that |j − np|6
√

2np(1− p) logn, we have

(5.12) Pr

(
Xi −

(
j

k− 1

)
p(

k−1
2 ) > εbkn

∣∣∣∣di = j

)
6

(∆ + 1) exp

[
−

ε2
[
bkn
]2

4(∆ + 1)(E [Xi|di = j] + εbkn/3)

]
=

exp

[
−ε

2p(
k−1
2 )np(1− p)

4(k− 2)2 logn
(1 + o(1))

]
= o

(
1

n

)
.

Moreover, by (5.9) and Janson’s inequality [26, Theorem 2.14], uniformly over all j ∈ N such that |j − np| 6√
2np(1− p) logn,

(5.13)

Pr

(
Xi −

(
j

k− 1

)
p(

k−1
2 ) <−εbkn

∣∣∣∣ di = j

)
6 exp

[
−
ε2
[
bkn
]2

2∆

]
=

exp

[
− ε2np2(1− p)

2(k− 2)2 logn
(1− o(1))

]
= o

(
1

n

)
.

Finally, combining (5.12) and (5.13), we get∑
|j−np|6

√
2np(1−p) logn

Pr

(∣∣∣∣Xi −
(

j

k− 1

)
p(

k−1
2 )
∣∣∣∣> εbkn, di = j

)
= o

(
1

n

)
.

5.3. Maximum number of h-neighbours

The particular case of the following result for constant h was proved in [40]. Let us show that it is a more or less direct
corollary of Theorem 2.1.

For h ∈ N and x ∈
(
[n]
h

)
, denote the number of common neighbours of vertices in x in Gn,p by Xx. Set ah,n :=

an(
(
n
h

)
, n, ph), bh,n := bn(

(
n
h

)
, n, ph), where an and bn are defined in (5.3).

Theorem 5.8. Let h= h(n) = o(logn/ log logn) and p= p(n) ∈ (0,1) be such that

(5.14)
ph

h3
� log3 n

n
, 1− p�

√
log logn

logn
.

Then
[
max

x∈([n]
h )Xx − ah,n

]
/bh,n converges in distribution to a standard Gumbel random variable.

Proof. For any x ∈
(
[n]
h

)
, Xx follows Bin

(
n− h,ph

)
. Then, by Lemma 5.1,

(5.15)
∏

x∈([n]
h )

Pr (Xx 6 ah,n + bh,nx)→ e−e
−x

.
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Let us label the set
(
[n]
h

)
by positive integers 1,2, . . . ,

(
n
h

)
. Set d =

(
n
h

)
and fix x ∈ R. For i ∈ [d], set Ai = {Xi >

ah,n + bh,nx}, Di = [d] \D∗i , where D∗i is the set of h-subsets of [n] that do not intersect with the i-th set (the i-th set is
simply denoted by i in what follows).

Let us first verify that ϕ(A,D) = o(1). Let i ∈ [d]. We denote by Hi the set of edges of Gn,p that do not contain
vertices of i. For any j ∈ [i− 1] \Di, let Xj,i be the number of vertices in i adjacent to all vertices in j in Gn,p (notice
that i and j are disjoint). Since Xj,i is independent of Hi, we get Xj −E [Xj | Hi] =Xj,i−E [Xj,i] . Set X̃i =

Xi−ah,n

bh,n
,

X̃
(i)
j = E

[
X̃j

∣∣∣ Hi

]
. Since Xj,i ∼ Bin

(
h,ph

)
, we get by (5.14) and the Chernoff bound (see, e.g., [26, Theorem 2.1])

that, for every ε > 0,

(5.16)

Pr
(∣∣∣X̃j − X̃(i)

j

∣∣∣> ε
)

= Pr
(∣∣Xj,i − hph

∣∣> εbh,n
)
6 2 exp

[
− (εbh,n)2

2(hph + εbh,n/3)

]
=

exp

[
−3εbh,n

2
(1 + o(1))

]
6 exp

−3ε

2

√
nph(1− p)

2h logn
(1 + o(1))

= o

(
1

n2h

)
.

By (5.15), we get Pr
(
X̃i > x

)
=
(
n
h

)−1
e−x(1 + o(1)). Therefore, by the union bound,

Pr

(
max

j∈[i−1]\Di

∣∣∣X̃j − X̃(i)
j

∣∣∣> ε

)
6

(
n

h

)
Pr
(∣∣∣X̃j − X̃(i)

j

∣∣∣> ε
)

=

o

(
1(
n
h

))= o(1) Pr
(
X̃i > x

)
.

Lemma 2.3 implies ϕ(A,D) = o(1).

By Corollary 2.2, it remains to verify the conditions ∆1(A,D) = o(1) and ∆2(A,D) = o(1). Unfortunately, these
conditions do not hold. Nevertheless, the events (Ai)i∈[d] can be modified slightly to make the desired relations hold.
Define

E =

h−1⋂
`=1

⋂
u∈([n]

` )

{
Xu 6 np

` +
√

2`np`(1− p`) logn

}
.

For i ∈ [d], let Ãi =Ai ∩E and Ã = (Ãi)i∈[d].

The following lemma is proven in [40] for constant h; for h= o(logn/ log logn) the same proof works.

Lemma 5.9 ([40]). The following relations hold

1. Pr (E) = 1− o(1),

2. for every x ∈R, Pr
(
Ãi

)
= (1− o(1)) Pr (Ai) uniformly over all i ∈ [d],

3.
∑
i∈[d]

∑
j∈[i−1]∩Di

Pr
(
Ãi ∩ Ãj

)
= o (1).

By Lemma 5.9 and since ϕ(A,D) = o(1), uniformly over all i ∈ [d],∣∣∣∣∣∣Pr

 ⋃
j∈[i−1]\Di

Ãj

∣∣∣∣∣∣ Ãi
−Pr

 ⋃
j∈[i−1]\Di

Ãj

∣∣∣∣∣∣
6

∣∣∣∣∣∣Pr

 ⋃
j∈[i−1]\Di

Ãj

∣∣∣∣∣∣ Ai
 Pr(Ai)

Pr(Ãi)
−Pr

 ⋃
j∈[i−1]\Di

Aj

∣∣∣∣∣∣+ Pr(E)

6

∣∣∣∣∣∣Pr

 ⋃
j∈[i−1]\Di

Aj

∣∣∣∣∣∣ Ai
 Pr(Ai)

Pr(Ãi)
−Pr

 ⋃
j∈[i−1]\Di

Aj

∣∣∣∣∣∣+ Pr(Ai ∩E)

Pr(Ãi)
+ Pr(E)
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6

∣∣∣∣∣∣Pr

 ⋃
j∈[i−1]\Di

Aj

∣∣∣∣∣∣ Ai
 (1 + o(1))−Pr

 ⋃
j∈[i−1]\Di

Aj

∣∣∣∣∣∣+ Pr(Ai)

Pr(Ãi)
− 1 + Pr(E) = o(1).

Therefore, ϕ(Ã,D) = o(1) as well.

Notice that the third statement of Lemma 5.9 is exactly ∆′1(Ã,D) = o(1) (see the definitions of ∆′1 and ∆′2 in
Section 2.1). It remains to prove that ∆′2(Ã,D) = o(1). But this is straightforward:

∆′2(Ã,D) =
∑
i∈[d]

∑
j∈[i−1]∩Di

Pr(Ãi) Pr(Ãj)6
∑
i∈[d]

∑
j∈[i−1]∩Di

Pr(Ai) Pr(Aj)6

(
n

h

)−1
e−2x(1 + o(1)) max

i∈[d]
|Di|=

(
n
h

)
−
(
n−h
h

)(
n
h

) e−2x(1 + o(1)) = o(1).

By Theorem 2.1, we get that (1.2) holds for Ã. The first two statements of Lemma 5.9 imply that (1.2) also holds for A.
Indeed, Pr(E) = 1− o(1) implies that

Pr
(
∩i∈[d]Ai

)
= Pr

(
∩i∈[d]Ãi

)
−Pr

(
E \

(
∩i∈[d]Ai

))
= Pr

(
∩i∈[d]Ãi

)
+ o(1);

and Pr(Ãi) = (1− o(1)) Pr(Ai) implies

∏
i∈[d]

Pr
(
Ãi

)
=
∏
i∈[d]

[1−Pr(Ai)(1 + o(1))] =

(
1− e−x + o(1)

d

)d
→ e−e

−x

.

5.4. Further results in maximum extensions counts

As we discussed in the beginning of Section 5, the above results are in the framework of extensions counting. Given a
strictly balanced grounded pair (H,G) with |V (H)|= h, we are interested in the asymptotic behaviour of maxx∈[n]h Xx.
Recall that, in [42], Spencer proved the law of large numbers (5.1). In recent paper [41], Šileikis and Warnke studied the
validity of this law when µ= Θ(logn).

In Section 5.2, we found an optimal denominator in the the law of large numbers for h = 1, G = Kk and p satisfy-
ing (5.9) (i.e. far from the threshold value):

maxi∈[n]Xi − µ
µ(k− 1)

√
2(1− p) logn/(pn)

Pr→ 1.

Notice that the result holds for the numerator maxi∈[n] |Xi − µ| = max{maxi∈[n]Xi − µ,µ − mini∈[n]Xi} as well.
Indeed, let di be the degree of the vertex i. Theorem 5.3 implies the asymptotic distribution of the minimum degree of
Gn,p since it equals in distribution to n−maxi∈[n] di[Gn,1−p]. Thus,

Pr

(
min
i∈[n]

E [Xi|di]> ãkn − bknx
)
→ e−e

−x

where ãkn = 1
(k−1)! (pn)k−2p(

k−1
2 )n − akn. To get the distribution of the minimum degree, it remains to reformulate

Lemma 2.4 for the events Ai := {Xi < ãkn − bknx} and probabilities Pr(minXi > ãkn − bknx), Pr(minYi > ãkn − bknx)
(clearly, the same proof works) and follow absolutely the same steps as in the proof of Theorem 5.7.

Our method works not only in the case h= 1. In Section 5.3, we have found the asymptotic distribution of Xx when
h> 2 and G contains a unique vertex outside H which is adjacent to all vertices in H . Our arguments should work even
in the case when H,G are both cliques of arbitrary size. Indeed, the result for cliques G such that |V (G)| − |V (H)|> 2
can be obtained from Theorem 5.8 using Lemma 2.4 in the same way as we obtain Theorem 5.7 from Theorem 5.3 in
Section 5.2.
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Appendix A: Bridging sequences: proofs.

A.1. Proof of Lemma 2.3

Find δ > 0 such that 0< F (x− δ)6 F (x+ δ)< 1. Let ε ∈ (0, δ/2). We may assume that n is so large that Pr(Ai)6
Pr(Ai(x − 2ε)) < 1 for all i ∈ [d] (otherwise,

∏d
i=1 Pr(Ai(x− 2ε)) can not approach F (x − 2ε)). For i ∈ [d] and

j ∈ [i− 1] \Di, consider the events Aεi :=Ai(x+ 2ε) and Uεji := {X(i)
j > an + (x+ ε)bn}. Then, from (2.11), we get

that uniformly over all i ∈ [d]

Pr

 ⋃
j∈[i−1]\Di

(
Uεji \Aj

)= o(1) Pr(Ai) and Pr

 ⋃
j∈[i−1]\Di

(
Aεj \Uεji

)= o(1) Pr(Ai).

The events Uεji and Ai are independent since X(i)
j is independent of Xi. Therefore,

Pr

 ⋃
j∈[i−1]\Di

Aj

∣∣∣∣∣∣ Ai
 > Pr

 ⋃
j∈[i−1]\Di

Uεji

∣∣∣∣∣∣ Ai
− o(1)

= Pr

 ⋃
j∈[i−1]\Di

Uεji

− o(1)> Pr

 ⋃
j∈[i−1]\Di

Aεj

− o(1).

By the union bound, we get that

Pr

 ⋃
j∈[i−1]\Di

Aj

−Pr

 ⋃
j∈[i−1]\Di

Aj

∣∣∣∣∣∣ Ai
6 Pr

 ⋃
j∈[i−1]\Di

Aj

−Pr

 ⋃
j∈[i−1]\Di

Aεj

+ o(1)

6
∑

j∈[i−1]\Di

Pr

Aj \ ⋃
s∈[i−1]\Di

Aεs

+ o(1)6
∑

j∈[i−1]\Di

Pr(Aj \Aεj) + o(1).

Using the inequality
∑
i∈[d] ti 6−1 +

∏
i∈[d](1 + ti), where ti :=

Pr(Ai)−Pr(Aε
i )

1−Pr(Ai)
> 0, and recalling that F (x)> 0, we

estimate ∑
i∈[d]

Pr(Ai \Aεi )6
∑
i∈[d]

Pr(Ai)−Pr(Aεi )

1−Pr (Ai)
6−1 +

∏
i∈[d]

1−Pr(Aεi )

1−Pr(Ai)
→ F (x+ 2ε)

F (x)
− 1.

Recalling that F is continuous at x and that the above holds for any ε ∈ (0, δ/2), we conclude that

Pr

 ⋃
j∈[i−1]\Di

Aj

−Pr

 ⋃
j∈[i−1]\Di

Aj

∣∣∣∣∣∣ Ai
6 o(1).

The lower bound

Pr

 ⋃
j∈[i−1]\Di

Aj

−Pr

 ⋃
j∈[i−1]\Di

Aj

∣∣∣∣∣∣ Ai
> o(1)

is obtained similarly by using the events A−εj :=Ai(x− 2ε), U−εji := {X(i)
j > an + (x− ε)bn} and the relations

Pr

 ⋃
j∈[i−1]\Di

(
Aj \U−εji

)= o(1) Pr(Ai), Pr

 ⋃
j∈[i−1]\Di

(
U−εji \A

−ε
j

)= o(1) Pr(Ai),

that hold uniformly over all i ∈ [d]. This completes the proof of Lemma 2.3.
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A.2. Proof of Lemma 2.4

Find δ > 0 such that 0< F (x− δ)6 F (x+ δ)< 1. Let ε ∈ (0, δ). Let Aεi :=Ai(x+ ε), Bi := {Yi > an + bnx}. From
assumption (i), we get

1−Pr
( ⋃
i∈[d]

Aεi

)
→ F (x+ ε).

Also by the third assumption from the list of preliminary assumptions at the beginning of Subsection 2.2, we obtain∏
i∈[d]

(1−Pr(Aεi ))→ F (x+ ε).

Therefore, we conclude

(A.1) 1−Pr
( ⋃
i∈[d]

Aεi

)
∼
∏
i∈[d]

(1−Pr(Aεi ))→ F (x+ ε).

Since F (x+ ε)> F (x− ε)> 0, we get

(A.2)
∑
i∈[d]

Pr(Aεi )6−
∑
i∈[d]

log (1−Pr(Aεi )) =O(1).

From (ii), we find that Pr(Aεi \Bi) = o(1) Pr(Aεi ). Then the relations

Pr
( ⋃
i∈[d]

Aεi

)
−Pr

( ⋃
i∈[d]

Bi

)
6 Pr

( ⋃
i∈[d]

Aεi \
⋃
i∈[d]

Bi

)
6
∑
i∈[d]

Pr
(
Aεi \

⋃
j∈[d]

Bj

)
6
∑
i∈[d]

Pr
(
Aεi \Bi

)
imply

Pr
( ⋃
i∈[d]

Bi

)
> Pr

( ⋃
i∈[d]

Aεi

)
− o(1)

∑
i∈[d]

Pr(Aεi ) = 1− F (x+ ε)− o(1).

The last equality follows from (A.1) and (A.2). Recalling that F is continuous and that the above holds for any ε ∈ (0, δ),
we conclude that 1− Pr

(⋃
i∈[d]Bi

)
6 F (x) + o(1). The lower bound 1− Pr

(⋃
i∈[d]Bi

)
> F (x)− o(1) is obtained

similarly, using the events A−εi = Ai(x− ε) and the relations Pr(Bi \A−εi ) = o(1) Pr(A−εi ) that follow directly from
(ii).


	Introduction
	Sufficient conditions for extremal independence
	Related results
	Bridging sequences

	Probability of non-occurrence of events
	Upper bound
	Lower bound

	Applications in Gaussian systems
	Proof of Theorem 4.1

	Applications in random graphs
	Maximum degree and codegree in hypergraphs
	Maximum clique-extension counts
	Maximum number of h-neighbours
	Further results in maximum extensions counts

	Acknowledgements
	References
	Bridging sequences: proofs.
	Proof of Lemma 2.3
	Proof of Lemma 2.4


