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Abstract 
Objectives: Question answering (QA) systems have the potential to improve the quality of clinical care by providing health professionals 
with the latest and most relevant evidence. However, QA systems have not been widely adopted. This systematic review aims to characterize 
current medical QA systems, assess their suitability for healthcare, and identify areas of improvement.
Materials and methods: We searched PubMed, IEEE Xplore, ACM Digital Library, ACL Anthology, and forward and backward citations on 
February 7, 2023. We included peer-reviewed journal and conference papers describing the design and evaluation of biomedical QA systems. 
Two reviewers screened titles, abstracts, and full-text articles. We conducted a narrative synthesis and risk of bias assessment for each study. 
We assessed the utility of biomedical QA systems.
Results: We included 79 studies and identified themes, including question realism, answer reliability, answer utility, clinical specialism, 
systems, usability, and evaluation methods. Clinicians’ questions used to train and evaluate QA systems were restricted to certain sources, 
types and complexity levels. No system communicated confidence levels in the answers or sources. Many studies suffered from high risks of 
bias and applicability concerns. Only 8 studies completely satisfied any criterion for clinical utility, and only 7 reported user evaluations. Most 
systems were built with limited input from clinicians.
Discussion: While machine learning methods have led to increased accuracy, most studies imperfectly reflected real-world healthcare 
information needs. Key research priorities include developing more realistic healthcare QA datasets and considering the reliability of answer 
sources, rather than merely focusing on accuracy.
Key words: clinical decision support; question answering; evidence-based medicine; natural language processing; artificial intelligence. 

Background and significance
Despite a plethora of available evidence, health professionals 
find answers to only half of their questions, due to time con-
straints.1–3 This has motivated the development of online 
resources to answer clinicians’ questions based on the latest 
evidence. While scientifically rigorous information resources 
such as UpToDate, Cochrane, and PubMed exist, Google 
search remains the most popular resource used in practice.4

General-purpose search engines like Google offer ease-of-use, 
but rank results according to criteria that differ from 
evidence-based medicine principles of rigor, comprehensive-
ness, and reliability.4

To address these issues, there is burgeoning research into 
biomedical question answering (QA) systems.5–13 These 
could rival the accessibility and speed of Google or “curbside 
consultations” with colleagues, while providing answers 
based on reliable, up-to-date evidence. Moreover, Google is 
free to access, while services such as UpToDate charge for 

access and require manual updates. On the other hand, biomed-
ical QA systems could be updated automatically. More recently, 
rapid advances in language modeling (particularly large lan-
guage models [LLMs] such as GPT,14 and Galactica15) could 
allow healthcare professionals to request and receive natural 
language guidance summarizing evidence directly.

Many papers (eg, Refs. 5, 6, 8, 10, 16, 17) have described 
the development and evaluation of biomedical QA systems. 
However, the majority have not seen use in practice. We 
explored this problem previously,18 and argue that key rea-
sons for non-uptake include answers which are not useful in 
real-life clinical practice (eg, yes/no, factoids, or answers not 
applicable to the locality or setting); systems that do not jus-
tify answers, communicate uncertainties, or resolve 
contradictions.5,6,10,16,17 Some existing papers have surveyed 
the literature on biomedical QA (eg, Refs. 19, 20) and found 
that few systems explain the reasoning for the returned 
answers, use all available domain knowledge, generate 
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answers that reflect conflicting sources and are able to answer 
non-English questions.

Our contributions are to comprehensively characterize 
existing systems and their limitations, with the hope of identi-
fying key issues whose resolution would allow for QA sys-
tems to be used in practice. We focus on complete QA 
systems as opposed to subcomponents.

Methods
We conducted a systematic review and narrative synthesis of 
biomedical QA research, focusing on studies describing the 
development and evaluation of such systems. The protocol 
for this review is registered in PROSPERO (PROSPERO 
registration ID: CRD42021266053) and the Open Science 
Framework (OSF registration DOI: 10.17605/OSF.IO/ 
4AM8D).

Studies were eligible if they were: (1) published in peer- 
reviewed conference proceedings and journals, (2) in English 
language, (3) described complete QA systems (ie, papers 
describing only subcomponent methods were excluded), eval-
uated the QA system (either based on a dataset of questions 
and answers, or a user study), (5) focused on biomedical QA 
for healthcare professionals. We excluded studies: (1) of QA 
systems for consumers/patients and (2) using modalities other 
than text, for example, vision. We searched PubMed, IEEE 
Xplore, ACM Digital Library, ACL Anthology, and forward 
and backward citations on February 7, 2023, using the fol-
lowing search strategy adapted for each database’s syntax: 

(“question answering” OR “question-answering”) AND 
(clinic�OR medic�OR biomedic�OR health�)

Deduplicated titles and abstracts were double screened by G. 
K. (all) and D.F. and L.Q.A. (50% each). Disagreements 
were resolved via discussion, adjudicated by IJM. The same 
process was followed for full texts.

We used a structured data collection form which we 
refined after piloting (Appendix SA). We conducted a narra-
tive synthesis following the steps recommended by Popay 
et al.21 Specifically, we conducted an initial synthesis by cre-
ating textual descriptions of each study and tabulating data 
on methods, datasets, evaluation methods, and findings, and 
creating conceptual maps. We assessed the robustness of find-
ings via a risk of bias assessment, and by evaluating QA sys-
tems’ suitability for real-world use.

We evaluated the suitability of QA systems for use in prac-
tice, via criteria we developed previously and introduced in 
our position paper.18 This paper described how problems 
with transparency, trustworthiness, and provenance of health 
information contribute to the non-adoption of QA systems in 
real-world use. We proposed the following markers of high- 
quality QA systems. (1) Answers should come from reliable 
sources; (2) systems should provide guidance where possible; 
(3) answers should be relevant to the clinician’s setting; (4) 
sufficient rationale should accompany the answers; (5) con-
flicting evidence should be resolved appropriately; and (6) 
systems should consider and communicate uncertainties. We 
rated each system as completely, partially, or not meeting 
these criteria. We provide more detail regarding the applica-
tion of these criteria in Appendix SB. Quality assessments 
were done in duplicate by G.K. (all papers), and L.Q. and D. 

F. (half of all papers each). Final assessments were decided 
through discussion and adjudicated by I.J.M.

In the absence of a directly relevant bias tool, we adapted 
PROBAST for use with QA studies.22 PROBAST evaluates 
study design, conduct, or analysis which can lead to biases in 
clinical predictive modeling studies. QA systems are like pre-
dictive models, but rather than predicting a diagnosis (based 
on some clinical criteria), they predict the best answer for a 
given question.

We adapted PROBAST to consider the quality of studies’ 
(1) questions (analogous to population in the original PRO-
BAST), (2) input features (eg, bag-of-words, neural embed-
dings, etc., analogous to predictors), and (3) answers 
(analogous to outcomes). For each criterion, we assessed 
whether design problems led to risk of bias. We then assessed 
the studies for applicability concerns (ie, relevance of ques-
tions, models, and answers to general clinical practice). Risks 
of bias and applicability concerns were rated as high, low, or 
unclear for each paper. We provide the modified PROBAST 
in the Supplementary Materials; this may be useful to other 
researchers assessing QA systems. Other AI-focused tools (eg, 
APPRAISE-AI23) are rapidly becoming available; they cover 
similar aspects of bias to PROBAST.

We report our review according to the PRISMA24 and 
SwiM guidance.25 We provide raw data in the Supplementary 
Materials and present the final narrative synthesis below.

Results
The flow of studies, and reasons for inclusion/exclusion are 
shown in Figure 1. We included 79 of 7506 records identified 
in the searches in the final synthesis. Characteristics of 
included studies are described in Table 1 and Figure 2.

Risk of bias, applicability, and utility
We summarize the risks of bias in Figure 3; individual study 
assessments are in the Supplementary Materials. 85% of sys-
tems had a high risk of bias overall; primarily driven by prob-
lems in the questions used to develop and evaluate the 
systems. Many studies used unrealistically simple questions 
or covered too few information needs for a general biomedi-
cal QA system. Most questions were hypothetical, and not 
generated by health professionals.

Most systems were at low risk of bias for defining and 
extracting machine learning (ML) features (eg, deciding on 
predictive features without reference to the reference 
answers). Most studies did not provide clear descriptions of 
answer data or evaluation methodology (eg, details about the 
source of answers) which led to unclear risk of bias assess-
ments for most papers’ answers. Additionally, no answer was 
relevant to the biomedical QA domain. This led to high 
applicability concerns for most papers.

We present utility scores in Figure 4. Few systems com-
pletely met any criterion. Two systems26,27 provided ration-
ales (ie, justifications and sources) for their answers; 5 
systems were judged to use reliable sources11,28–31; one sys-
tem resolved conflicting information26 and one system com-
municated uncertainties.26 Very few systems provided 
contextually relevant answers (ie, locality-specific informa-
tion, or specialty), while most systems provided clinical guid-
ance at least partially (rather than basic science or less 
actionable information).
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Computational methods
Most QA systems used a knowledge base (ie, database of 
answers) that was created using documents from PubMed or 
other medical information sources (see Figure 5 for a typical 
example, from Alzubi et al32). Documents were either stored 
in structured form (knowledge graphs [KGs] or RDF triples) 
or as unstructured texts.

For a given user query, the system would retrieve the most 
relevant answer(s) from the knowledge base. KG-based (1 
study), neural (24 studies) and modular systems (39 studies) 
were evaluated in the included studies (see Figure 2 and 
Appendix SC). KG-based systems accept natural language 
questions and convert them to KG-specific queries (eg, 
Cypher queries33) Modular systems comprise several distinct 
components (eg, question analysis, document retrieval, 

answer generation) designed separately and combined to 
form a QA system. Neural systems can be modular or 
monolithic.

All studies made use of datasets of questions with known 
answers. These datasets were used to train ML models (eg, 
document retrieval and answer extraction) and evaluate sys-
tem performance. The topic focus of these datasets dictates 
the area(s) for which the QA can be successfully used; the 
quality of these datasets impacts both the accuracy of trained 
models and the reliability of the evaluations.

With regards to neural systems, 9 studies32,34–40 incorpo-
rated pretrained LLMs (eg, BERT,41 BioBERT,42 and GPT43) 
in their QA pipelines for text span extraction, sentence 
reranking and integrating sentiment information. These mod-
els were used to find potential answer text spans given 
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Figure 1. PRISMA flow diagram.
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Table 1. Characteristics of included studies.

Study Model/method Evaluation question sources Evaluation answer sources

Demner-Fushman et al (2006a)31 Semantic type classifier (UMLS, 
MeSH) 

PICO classifier 
Rule-based system 
Machine learning system 

Physicians PubMed

Demner-Fushman et al (2006b)53 Semantic-type classifier (UMLS) 
Clustering 

Authors PubMed

Lee et al (2006)56 Question classification 
Query term generation 
TF-IDF 
Document retrieval 
Lexico-syntactic patterns 

Physicians PubMed 
World Wide Web 

Weiming et al (2007)54 Semantic-type classifier (UMLS) 
Semantic relation extraction 
BM25 
TF-IDF 
Boolean search 

Unclear Medical documents

Demner-Fushman et al (2007)11 Semantic-type classifier (UMLS, 
MeSH) 

PICO classifier 
Rule-based system 
Machine learning system 

Physicians PubMed

Sondhi et al (2007)69 Semantic-type classifier (UMLS, 
ICD-9) 

Document ranking 
Clustering 

Physicians PubMed

Yu et al (2007) a47 User study of different systems Physicians in practice World Wide Web 
Online dictionaries 
PubMed  

Yu et al (2007) b17 Naïve Bayes 
Lexico-syntactic patterns 
TF-IDF 
Information retrieval 

Physicians in practice World Wide Web 
PubMed 

Makar et al (2008)50 Bayesian classifier 
Part of speech tagger 
Text extractor 
Summarizer 

Physicians in practice Wikipedia 
Google 

Cao et al (2009)60 BM25 
Term frequency 
Unique term frequency 
Longest common subsequence 

Physicians MEDLINE 
eMedicine documents 
Clinical guidelines PubMed Central 
Wikipedia 

Gobeil et al (2009)68 MeSH descriptors 
Information retrieval 
Information extraction 

Authors PubMed

Pasche et al (2009a)81 Logical rules 
Information retrieval 

Authors PubMed

Pasche et al (2009b)55 Logical rules 
Information retrieval 

Authors PubMed

Xu et al (2009)71 Semantic-type classifier (UMLS) 
Question-type classifier 
Keyword extractor 
Passage retrieval 
Answer extraction 

Unclear Unclear

Olvera-Lobo et al (2010)70 START: open-domain QA system 
MedQA: restricted-domain QA 

system 

Health website START: Wikipedia  
Merriam-Webster Dictionary  
American Medical Association I 
MDB 
Yahoo  
Webopedia.com 
MedQA: MEDLINE 
Dictionary of Cancer Terms 
Wikipedia 
Google 
Dorland’s Illustrated Medical 

Dictionary 
Medline Plus 
Technical and Popular Medical Terms 
National Immunization Program 

Glossary 

(continued) 
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Table 1. (continued) 

Study Model/method Evaluation question sources Evaluation answer sources

Tutos et al (2010)28 User study on different systems Physicians PubMed 
World Wide Web 
Brainboost 

Cairns et al (2011)12 UMLS 
Rule-based algorithms 
Support vector machine 

Physicians in practice Medical wiki curated by approved 
physicians and doctoral-degreed bio-
medical students

Cao et al (2011)5 Semantic-type classifier (UMLS) 
Related questions extraction 
Information retrieval 
Information extraction 
Summarization 

Unclear Medical documents

Cruchet et al (2012)72 Semantic-type classifier (UMLS) 
Medical-term classifier 
Keyword-based retrieval 

Physicians in practice HONcode certified sites, for example, 
WebMD, Everyday Health, Drugs. 
com, and Healthline

Doucette et al (2012)48 Inference rules 
Semantic reasoner 

Synthetic patient data Synthetic patient data

Ni et al (2012)29 PICO classifier 
Rules-based system 
Template/pattern matching 
Information retrieval 
Machine learning system 
Answer candidate scoring 

Medical health website Medical health website

Ben Abacha and Zweigenbaum 
(2015)6

Semantic Web 
SPARQL 
Semantic graphs 
UMLS concepts 
UMLS semantic type 
Support vector machines 
Conditional random fields 
Rule-based methods 

Physicians PubMed

Gobeill et al (2015)82 Gene Ontology concepts 
Lazy pattern matching 
KNN 
BM25 
Information retrieval 

Authors PubMed

Hristovski et al (2015)57 Semantic relation extraction 
(UMLS) 

Semantic relation retrieval 

Authors PubMed

Li et al (2015)49 Word2Vec 
Markov random field 

Expert panel PubMed

Tsatsaronis et al (2015)52 Comparison of different systems 
on the BioASQ dataset

Expert panel PubMed

Vong et al (2015)30 PICO classifier 
Clustering 

Authors PubMed

Goodwin et al (2016)8 Knowledge graph 
Conditional random fields 
Bayesian inference 

Unclear Electronic health records 
PubMed 

Yang et al (2016)93 Logistic Regression Expert panel PubMed
Brokos et al (2016)103 TF-IDF 

Word mover’s distance 
Expert panel PubMed

Krithara et al (2016)94 Comparison of different systems 
on the BioASQ dataset

Expert panel PubMed

Sarrouti and El Alaoui (2017) a102 UMLS concepts 
BM25 

Expert panel PubMed

Sarrouti and El Alaoui (2017) b95 UMLS concepts 
BM25 

Expert panel PubMed

Jin et al (2017)113 Bag of words 
Term frequency 
Collection frequency 
Sequential dependence models 
Divergence from randomness 

models 
Multimodal strategies 

Expert panel PubMed

Neves et al (2017)108 Question processing (regular 
expressions, semantic types, 
named entities, keywords)  

Document/passage retrieval  
Answer extraction  

Expert panel PubMed

(continued) 
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Table 1. (continued) 

Study Model/method Evaluation question sources Evaluation answer sources

Wiese et al (2017a)109 RNN 
Domain adaptation 

Expert panel PubMed

Wiese et al (2017b)110 RNN 
Domain adaptation 

Expert panel PubMed

Nentidis et al (2017)96 Comparison of different systems 
on the BioASQ dataset

Expert panel PubMed

Du et al (2018)62 GloVe 
LSTM 
Self-attention 

Expert panel PubMed

Eckert et al (2018)98 Semantic role labelling Expert panel PubMed
Papagiannopoulou et al (2016)97 Binary relevance models 

Linear SVMs 
Labeled LDA variant 
Prior LDA  
Fast XML 
HOMER-BR 
Multilabel ensemble 

Expert panel PubMed

Dimitriadis et al (2019)73 Word2Vec 
WordNet 
Custom textual features 
Logistic regression 
Support vector machine 
XGBoost 

Expert panel PubMed

Du et al (2019)63 GloVe 
LSTM 
Self-attention 
Cross-attention 

Expert panel PubMed

Jin Q et al (2019)101 BioBERT Titles of papers PubMed
Ozyurt et al (2019)37 GloVe 

BERT 
Inverse document frequency 
Relaxed word mover’s distance 

Expert panel PubMed

Jin ZX et al (2019)61 TF-IDF 
Noun extraction 
Part of speech tagger 
Semantic-type classifier (UMLS) 
Query expansion (MeSH) 
Markov random field 
Divergence from randomness 
Model ensemble 

Expert panel PubMed

Wasim et al (2019)65 Rules-based system 
Semantic-type classifier (UMLS) 
Logistic regression 

Expert panel PubMed

Oita et al (2020)90 Dynamic memory networks 
Bidirectional attention flow 
Transfer learning 
Biomedical named entity 

recognition 
Corroboration of semantic 

evidence 

Expert panel PubMed

Du et al (2020)35 BERT 
BiLSTM 
Self-attention 

Expert panel PubMed

Yan et al (2020)112 Binary classification 
RNNs 
Semi-supervised learning 
Recursive autoencoders 

Expert panel PubMed

Kaddari et al (2020)58 Survey of existing models Expert panel PubMed
Nishida et al (2020)111 BERT 

Domain adaptation 
Multitask learning 

Expert panel 
Crowdworkers 

PubMed 
Wikipedia 

Omar et al (2020)46 Convolutional neural networks 
Attention 
Gated convolutions 
Gated attention 

PubMed PubMed

Ozyurt et al (2020a)34 GloVe 
BERT 
Inverse document frequency 
Relaxed word mover’s distance 

Expert panel PubMed

(continued) 
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Table 1. (continued) 

Study Model/method Evaluation question sources Evaluation answer sources

Ozyurt et al (2020b)104 ELECTRA Expert panel PubMed
Sarrouti et al (2020)16 Lexico-syntactic patterns 

Support vector machine 
Semantic-type classifier (UMLS) 
TF-IDF 
Semantic similarity-based retrieval 
BM25 
Sentiment analysis 

Expert panel PubMed

Shin et al (2020)99 BioMegatron Expert panel PubMed
Wang et al (2020)107 Event extraction 

SciBERT 
Authors PubMed

Alzubi et al (2021)32 TF-IDF 
BERT 

Authors PubMed

Du et al (2021)76 QANet 
BERT 
GloVe 
Model weighting 

Expert panel PubMed

Nishida et al (2021)100 BERT 
fastText 

Expert panel 
Crowdworkers 

PubMed 
Wikipedia 

Peng et al (2021)39 BERT 
BiLSTM 
Bagging 

Expert panel PubMed

Pergola et al (2021)92 BERT 
Masking strategies 

Epidemiologists 
Medical doctors Medical students 
Expert panel 

PubMed 
World Health Organization’s  

Covid-19 Database 
Preprint servers 

Wu et al (2021)27 BERT 
Numerical encodings 

Expert panel 
PubMed 

PubMed

Xu et al (2021)36 BERT 
Syntactic and lexical features 
Feature fusion 
Transformer 

Expert panel PubMed

Bai et al (2022) a79 Dual encoder 
BioBERT 

Expert panel PubMed

Bai et al (2022) b74 Knowledge distillation 
Adversarial learning 
BioBERT 

Expert panel PubMed

Du et al (2022)78 QANet 
BERT 
GloVe 
Model weighting 

Expert panel PubMed

Kia et al (2022)84 Convolution neural network 
Attention 

Authors PubMed

Naseem et al (2022)75 ALBERT Expert panel PubMed
Pappas et al (2022)105 ALBERT-XL Expert panel PubMed
Raza et al (2022)83 BM25 

MPNet 
Expert panel PubMed

Rakotoson et al (2022)26 BERT 
RoBERTa 
T5 
Boolean classifier 

Expert panel 
PubMed 

PubMed

Wang et al (2022)106 Event extraction 
SciBERT 
Domain adaptation 

Authors PubMed

Weinzierl et al (2022)77 BERT 
BM25 
Question generation 
Question entailment recognition 

Expert panel PubMed

Yoon et al (2022)80 BERT 
Sequence tagging 
BiLSTM-CRF 

Expert panel PubMed

Zhang et al (2022)38 BERT 
BM25 

Expert panel PubMed

Zhu et al (2022)40 BERT 
RoBERTa 
T5 
XGBoost 

PubMed PubMed

Raza et al (2022)85 BM25 
MPNet 

Expert panel PubMed
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Figure 2. Number of papers with each category of domain, method, question, answer source, and answer type. The distinction was made between a 
major category and all the others, as one main category tended to dominate several smaller others. Table 1 contains more detail on the specifics of each 
paper.

Figure 3. Number of papers achieving each risk of bias and applicability concern classification. Risk of bias refers to the risk of a divergence between the 
stated problem the paper tries to solve and the execution for reasons such as an unrealistic dataset or failing to split data for training and evaluation. 
Applicability refers to how applicable the system is to the review.

Figure 4. Number of papers achieving each satisfaction classification for each criterion.
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questions and passages. Four studies27,35,36,39 found fine- 
tuning pretrained LLMs on biomedical data led to improve-
ments in performance compared with only using only a 
general-domain LLM. No experiments were conducted on 
LLMs that were trained only on biomedical data.

Few studies used common datasets for training or evalua-
tion. However, several of the included studies arose from the 
BioASQ 5b44 and 6b45 shared tasks, which aimed to answer 
4 types of questions (yes/no, factoids, list, and summary ques-
tions) and had 2 phases: information retrieval and exact 
answer production. Three studies arising from Bio-
ASQ53,54,65 evaluated QA systems with a neural component, 
while 5 studies52–54,57,65 evaluated QA systems that relied 
only on rule-based or classical ML components (eg, support 
vector machines). The neural components encoded questions 
and passages with a recurrent neural network (RNN) that 
were then used to create intermediate representations before 
answers were generated with additional layers. Comparing 
results across the BioASQ studies suggests generally that QA 
systems employing ML components outperformed those that 
relied solely on rule-based components (see Figure 6 and 
Appendix SC).

Two papers included a numerical component in their QA 
pipelines. For example, one paper27 used numerical results 
(eg, odds ratios from clinical trial reports) to generate 
answers either to answer statistical questions (ie, “Do preop-
erative statins reduce atrial fibrillation after coronary artery 
bypass grafting?”). One study27 generated BERT-style 
embeddings using both textual and numerical encodings, 
leading to improved performance compared with using text 
alone.

Topic areas
Fifty-three studies5,8,11,16,17,26–31,34,35–40,46–80 described QA 
systems covering a wide breadth of biomedical topics (Fig-
ure 2). These systems typically sourced answers from the 
unfiltered medical literature (eg, PubMed, covering both clin-
ical practice guidelines and primary studies, including labora-
tory science and epidemiology). Eight studies examined 
specific specialties: one study focused on bacteriotherapy,81

2 focused on genetics/genomics,71,82 and 5 on Covid- 
19.32,77,83–85 The genomics and Covid-19 systems were 
designed for specialists, while the bacteriotherapy system 
generated rules for managing antibiotic prescribing via a QA 
interface.

Question datasets
Studies used several sources to generate question datasets (see  
Figure 2 and Appendix SD). We group these into questions 
collected from health professionals (either collected in the 
course of work or elicited as generate hypothetical questions; 
14 studies), those generated by topic experts (13 studies), 
people without direct healthcare experience (eg, crowd-
workers; 3 studies), and automatically/algorithmically 
derived (scraped from health websites, or generated from 
abstract titles; 2 studies). In 9 papers, questions were written 
by study authors.

Only 517,47,50,60,80 studies used genuine questions posed 
by clinicians during consultations. Two studies11,28 used 
either simple or simplified questions. Examples of simple 
questions include “How to beat recurrent UTIs?”28 and 
“What is the best treatment for analgesic rebound head-
aches?”11 Questions the BioASQ challenge questions52 were 
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Query processing
Document
retrieval

Knowledge
BaseTF-IDF

vectorizer

Document
processing

Cosine
similarity

Answer
extraction

Fine-tuned
BERT for QA
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Cosine
similarity

Query

Documents
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Answer

Figure 5. Typical QA architecture as used by Alzubi et al.32
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created by an expert panel. BioASQ questions were restricted 
to yes/no, factoid and summary-type questions, and tended to 
have a highly technical focus. For example, the question 
“Which is the most common disease attributed to malfunc-
tion or absence of primary cilia?” could be answered with a 
factoid: “autosomal recessive polycystic kidney disease.” 
Alternatively, it could be answered with a summary (see 
Appendix SE for example). One study included definition 
questions created by the authors,70 while another32 included 
author-created factoid-style questions about a particular 
topic. Two studies28,29 utilized questions derived from health 
websites: one included questions generated by physicians28

and one29 used questions that were of unclear provenance.
While biomedical question sources enabled training of 

models, general domain QA datasets created using crowd-
workers (eg, SQuAD86,87) were used to pretrain QA models 
in 3 studies.35,62,63 These pretrained models were then fine- 
tuned on biomedical QA datasets (eg, BioASQ52) Pretraining 
QA models on general crowdworker-created datasets prior to 
fine-tuning on biomedical datasets led to overall improve-
ments in model performance in all 3 studies that explored 
this approach. In other words, pretraining on general-domain 
data led to an improvement in performance compared with 
training only on biomedical data.

Reliability of answer sources
The answer sources used by the studies are summarized in  
Figure 2 and Appendix SG. Two studies11,30 found ranking 
biomedical articles by strength of evidence (based on publica-
tion types, source journals and study design) improved accu-
racy (eg, precision at 10 documents, mean average precision, 
mean reciprocal rank). None of the other studies accounted 
for differences in answer reliability within datasets (ie, infor-
mation from major guidelines was treated equally to a letter 
to the editor).

Several studies included answers derived from health web-
sites such as Trip Answers,29 WebMD,70 HON-certified web-
sites,72 clinical guidelines and eMedicine documents (OSF 
registration DOI: 10.17605/OSF.IO/4AM8D). These answers 
were created by qualified physicians and underwent a review 
process. On the other hand, 3 studies47,56,70 explored systems 
that provided only term definitions from medical diction-
aries. One study derived answers entirely from general 
domain sources,28 while another generated answers from a 

combination of medical and general sources. In the case of 
the latter, only the medical sources had a rigorous validation 
process.70 Two QA systems29,72 only derived the answers 
from health websites containing information that was vetted 
by the administrators. One study found that restricting the 
QA document collection based on trustworthiness increased 
the relevance of answers.72

Detail of answers
Systems we reviewed varied in terms of what they produced 
as an “answer” (Figure 2 and Appendix SH). Answers con-
sisting of only of one word (ie, cloze-style QA), factoids (a 
word or phrase, eg, aspirin 3g), list of factoids, or definitions 
were absolute in nature and therefore did not contain guid-
ance (Appendix SH). On the other hand, contextual texts (eg, 
ideal answers52 and document summaries16) that accompa-
nied absolute answers (eg, factoids) may have contained guid-
ance. Similarly, biomedical articles accompanying answers 
consisting of medical concepts may have also included guid-
ance, along with the sentences accompanying yes/no/unclear 
answers (see Appendix SH).

Several systems used a clustered approach to display 
answers. These systems grouped several candidate answers 
either by keyword or topics, eg, articles/sentences about heart 
conditions as one cluster. Clustered answers returned by the 
systems in 6 studies5,30,53,54,60,69 may contain guidance as 
the clusters are based around sentences, extracts of docu-
ments, or conclusions of abstracts. Other types of answers 
included abstracts and single/multiple sentences, documents/ 
webpages, and URL-based answers (Appendix SH).

Evaluation
Most studies (188) considered the accuracy of answers pro-
vided (see Table 2). Some assessed the degree to which the 
words in the answer match the reference, that is accuracy, 
precision, recall, F1 with respect to words (eg, ROUGE) or 
correct entire answers (eg, yes/no or factoids), numbers of 
answers/questions, exact matches. While ROUGE88 or 
BLEU89 may quantify the degree of similarity between candi-
date answers and the reference sentence, they are unable to 
account for, for example, negation or re-phrasings. Other 
systems were retrieval-based and so evaluated using the posi-
tion of the correct answers in the returned list (ie, reciprocal 
rank, MAP, normalized discounted cumulative gain). Of the 

Figure 6. Results of the BioASQ 5b and 6b challenges for factoid-type answers.
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models that assessed accuracy/correctness, 31 used internal 
cross-validation, while 17 were evaluated on an independent 
dataset. Only 7 studies evaluated their design, system usabil-
ity, or the relevance of the answer to the question as assessed 
by users. The most popular answer source was PubMed; 
most systems used a single source of answers.

Presentation and usability
Only 13 studies evaluated 7 systems that provided a user 
interface for user queries. These systems were 
MedQA,17,28,47,70,114 Omed,48 the system introduced in,50

EAGLi,55,81,82 AskHERMES,5,30,60 CQA-1.0,30 and Clin-
iCluster.30 User interfaces are essential for assessing the per-
formance of the systems with genuine users.

The only usability study30 assessed the effectiveness of a 
system that clustered answers to drug questions by I (inter-
vention) and C (comparator) elements. The answers were 
tagged with P-O (patient-outcome) and I/C (intervention/ 
comparator) elements (see Appendix SI for details). The par-
ticipants agreed that the clustering of the answers helped 
them find answers more effectively, while more of the older 
participants found the P-O and I/C useful for finding relevant 
documents. Additionally, possessing prior knowledge about a 
given subject assisted with additional learning.

The ease of use of QA and IR systems was assessed in 3 
studies.5,48,17 The systems evaluated included Google,5,17,48

MedQA,17,48 Onelook,17,48 PubMed,17,48 UpToDate,5 and 
AskHermes.5 Both Doucette et al48 and Yu et al17 rated 
Google as being the easiest to use, followed by MedQA, One-
look, and PubMed. On the other hand, Cao et al5 rated Goo-
gle, UpToDate, and AskHermes equally in terms of ease of 
use.

None of the included systems presented any information 
about the certainty of answers; although nearly all systems 
used quantitative answer scoring to select the chosen answer. 

One study60 evaluated 2 approaches to presenting answers 
on the AskHermes system:5 passage-based (collection of sev-
eral sentences) and sentence-based. The study found that 
passage-based approaches produced more relevant answers 
as rated by clinicians.

Discussion
We systematically reviewed studies of the development and 
evaluation of biomedical QA systems, focusing on their mer-
its and drawbacks, evaluation and analysis, and the overall 
state of biomedical QA. Most of the included studies had 
high overall risks of bias and applicability concerns. Few of 
the papers satisfied any utility criterion.18

Several studies highlight obstacles that should be overcome 
and measures that should be taken before deploying biomedi-
cal QA systems. For example, one general-domain QA user 
study115 found that users tended to prefer conventional 
search engines as they “felt less cognitive load” and “were 
more effective with it” than when they queried QA systems.

We note that commercial search engines are likely to bene-
fit from comparatively vast development resources, and a 
focus on user experience. By contrast, the academic research 
we found tended to focus on the underlying computational 
methodology/models, with little attention to the user inter-
face or experience—aspects which are likely highly influential 
in how QA systems are used.

Law et al116 found that presenting users with causal claims 
and scatterplots could lead users to accept unfounded claims. 
Nonetheless, warning users that “correlation is not 
causation” led to more cautious treatment of reasonable 
claims. Additionally, Schuff et al118 and Yang et al117

explored metrics for assessing the quality of the explanations: 
answer location score (LOCA) and the Fact-Removal score 
(FARM), F1 score, and exact matches.

Table 2. Grouping of papers according to accuracy metric.

Metric Metric type Papers Number of papers

Accuracy Accuracy/correctness [16, 35, 36, 38–40, 46, 48, 50, 57, 58, 63, 
65, 69, 73–75, 90, 92, 94–96, 98, 103– 
106, 109, 113]

29

Precision Accuracy/correctness [6, 11, 12, 16, 26, 29, 34, 40, 52, 54, 55, 
57, 58, 65, 79, 80, 93–98, 103, 104, 
107, 110–112]

28

Recall Accuracy/correctness [16, 26, 40, 52, 54, 58, 65, 70, 79–82, 93– 
96, 98, 103, 104, 107, 110–112]

24

Reciprocal rank Accuracy/correctness [6, 8, 12, 12, 16, 34, 35–39, 58, 62, 63, 65, 
70, 71, 73, 74, 79, 94–96, 98, 100–107, 
109]

32

F1 Accuracy/correctness [16, 26, 29, 40, 52, 58, 62, 63, 65, 76, 78, 
80, 83–85, 90, 93, 95, 96, 98, 100–105, 
107–109, 111–113]

32

ROUGE Accuracy/correctness [16, 26, 31, 52, 90, 95, 96, 98, 100, 103] 10
Time taken to find answer Usability [5, 17, 26, 28, 47, 50 6
Likert score Usability 5, 17, 28, 30, 47, 56, 60 7
Action frequency Usability 17] 1
MAP Accuracy/correctness [52, 55, 61, 71, 91, 93, 99, 100, 104] 9
Numbers of queries/answers Accuracy/correctness [69–71, 100, 111] 5
Exact matches Accuracy/correctness [26, 32, 76, 78, 83–85, 107–109 10
Normalized discounted cumula-

tive gain 
Accuracy/correctness 77, 97] 2

AUC ROC Accuracy/correctness 12 1
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More recently, there has been rapid development in LLMs, 
such as GPT,14 PaLM,119 and Med-PaLM,120 which are the 
current state of the art in natural language processing. There 
were 9 studies included that used LLMs, but they were used 
for text span extraction, sentence reranking and integrating 
sentiment information. A nascent application of LLMs is 
direct summarization of one or more sources. While LLMs 
can produce fluent answers to any given question,121 they are 
vulnerable to “hallucinating” plausible but fabricated infor-
mation.122–124 This may be especially risky in healthcare due 
to the potentially life-threatening ramifications. One solution 
might be retrieval-augmented methods (where LLMS only 
use documents of known provenance). LLMs should be rigor-
ously assessed before deployment in biomedical QA pipe-
lines. This would ensure that the references provided by 
LLMs are genuine and that information is faithfully 
reproduced.

Barriers to adoption have been studied in detail in related 
technologies (eg, Clinical Decision Support Systems [CDSS]). 
Greenhalgh et al125,126 introduced the NASSS framework to 
characterize the complex reasons why technologies succeed 
(or fail) in practice; finding that aspects such as the depend-
ability of the underlying technology and organizations’ readi-
ness to adopt the new systems are critical. Similarly, Cimino 
and colleagues127 found that design issues (eg, time taken to 
answer each question, or the number of times a given link is 
clicked) were critical. We would argue that future QA 
research should take a broader view of evaluation if QA is to 
move from an academic computer science challenge to real- 
world benefit.

To our knowledge, this is the first systematic review of QA 
systems in healthcare. While other (non-systematic) reviews 
provide an overview of the biomedical QA field,19,20 we have 
evaluated existing systems and datasets for their utility in 
clinical practice. Furthermore, the inclusion of quantitative 
evaluations allowed for comparisons between different sys-
tem types. Examination of questions, information sources, 
and answer types has allowed identification of factors that 
affect adherence to the criteria defined in.18

Most of the included studies were method papers describ-
ing systems that were built by computer scientists with lim-
ited input from clinicians. These systems were designed to 
perform well on benchmark datasets, such as BioASQ. While 
the studies were rigorous in their evaluation, they did con-
sider how the systems could be used in practice. Future work 
should focus on translating biomedical QA research into 
practice.

One weakness is that we did not include purely qualitative 
evaluations. This might be a worthwhile SR to do in the 
future. We limited our search to published systems; therefore, 
this review would not have included any deployed systems 
which were not published; or systems described only in the 
“gray” literature (eg, pre-prints, PhD theses, etc.). We also 
did not search all the CDSS literature for pipelines incorpo-
rating QA systems. Deployment of such systems might not be 
described in the literature, as health providers may not have 
provided the results. Although we would expect most rele-
vant papers to be published in English, there may have been 
pertinent non-English language papers that were missed.

Implications for research
Studies to date have too often used datasets of factoids/multi-
ple choice questions, which do not resemble real-life queries. 

There is a need for high-quality datasets derived from real 
clinical queries, and actionable high-quality clinical guidance.

Future research should move beyond maximizing accuracy 
of a model alone, and include aspects of transparency, answer 
certainty, and information provenance (is the reliability and 
source of answers understood by users?). These aspects will 
only become more important with the advent of LLMs, 
which tend to generate highly plausible and fluent answers, 
but are not always correct.

Implications for practice
The performance of QA systems on biomedical tasks has 
increased over time, but the QA datasets were either unrepre-
sentative of real-world information needs or were unrealisti-
cally simple. We recommend that practitioners exercise 
caution with any QA system which advertises accuracy only. 
Instead, systems should produce verifiable answers of known 
provenance, which make use of high-quality clinical guide-
lines and research.

Conclusions
In this review, we reviewed the literature on QA systems for 
health professionals. Most studies assessed the accuracy of 
the systems on various datasets; only 13 evaluated the usabil-
ity of the systems. Few studies explored practical usage of the 
systems, opting to compare them using QA benchmarks 
instead. Although none of the included studies described sys-
tems that completely satisfied our utility criteria, they dis-
cussed several characteristics that could be appropriate for 
future systems. These included, limiting the document collec-
tion to reliable sources, providing more verbose answers, 
clustering answers according to themes/categories and 
employing methodologies for numerical reasoning. Most of 
the papers used QA datasets which either were unrepresenta-
tive of real-world information needs, or were unrealistically 
simple (eg, factoids, yes/no). Thus, more realistic and com-
plex datasets should be developed.
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