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a b s t r a c t 

In multivariate time series analysis, spectral coherence traditionally measures linear de- 

pendencies between time series across different frequencies but often fails to capture 

nonlinear dependencies. In contrast, quantile coherence detects these nonlinear relation- 

ships across various quantile levels using trigonometric quantile regression. A new semi- 

parametric technique for estimating quantile coherence is introduced, combining the para- 

metric spectrum of a vector autoregressive (VAR) model with nonparametric smoothing 

across quantiles. For each quantile level, the quantile autocovariance function (QACF) is 

obtained by applying the Fourier inverse transform to quantile periodograms. The multi- 

variate Durbin-Levinson algorithm is then used to estimate the VAR parameters, which are 

subsequently applied to derive the quantile coherence estimate. A nonparametric smoother 

is applied across quantiles to enhance the initial estimate. Numerical results demonstrate 

that this method outperforms traditional nonparametric approaches. Moreover, clustering 

bivariate time series based on quantile coherence shows advantages over using ordinary 

VAR coherence. For instance, when applied to financial stocks, quantile coherence identi- 

fies clusters with a more informative structure, providing insights into diversified invest- 

ment portfolios, which could help investors make better decisions. 

© 2024 The Authors. Published by Elsevier B.V. on behalf of EcoSta Econometrics and 

Statistics. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

For univariate time series, motivated by the least-squares interpretation of the ordinary periodogram (OP), Li (2012) pro- 

posed the quantile periodogram (QPER) based on trigonometric quantile regression. The QPER, like the ordinary peri- 

odogram, has an asymptotic exponential distribution where the mean function, known as the quantile spectrum, is a scaled 

version of the ordinary spectrum of the level-crossing process. In Li (2012) the QPER is shown to be resistant to nonlinear 
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data distortion in the sense that any nonlinear memoryless transformation only affects the scaling constant in the asymptotic 

distribution in the given quantile. Wise et al. (1977) shows that OP is not resistant to such nonlinear data transformations 

as the power spectrum is distorted. 

The QPER can be extended to multivariate time series, and in particular, the quantile coherence quantifies the nonlinear 

dependency across time series by defining coherence as a function of quantile levels as well as frequencies. The quantile co- 

herence has an advantage over its ordinary coherence counterpart as its asymptotic distribution relies on the level-crossing 

cross-spectrum, which, like QPER, is resistant to nonlinear data distortion due to the robustness of quantile regression ( Li, 

2013 ). Even though quantile coherence is a more effective tool, how to estimate it remains an interesting question. 

Periodogram smoothing is the first that comes to mind. In time series analysis, many methods exist to smooth peri- 

odograms for univariate time series. For instance, Shumway and Stoffer (2017) presented several nonparametric periodogram 

smoothing approaches that can be used across frequencies, such as moving-average smoothing. The optimally smoothed 

spline (OSS) estimator by Wahba (1980) selects the smoothing parameter by minimizing the expected integrated mean 

square error. Some other common spectral estimations are based on the likelihood. For instance, Capon (1983) used a high- 

resolution estimation method, known as the maximum-likelihood method (MLM). MLM filters the time series to produce the 

minimum-variance unbiased estimator of the spectrum. For bivariate time series data, Pawitan and O’Sullivan (1994) esti- 

mated the spectrum by means of the penalized Whittle likelihood. In terms of parametric estimators, Burg (1975) presented 

the maximum entropy type of estimators, which in the univariate case results in the autoregressive (AR) spectral approxima- 

tion. Dette et al. (2015) demonstrated that a window smoother of the quantile periodogram may consistently estimate the 

quantile spectrum across frequencies. Chen et al. (2021) employed a semi-parametric estimation of the quantile spectrum by 

using the approximation capability of the AR model. A nonparametric smoother is proposed to smooth both quantile levels 

and AR coefficients in the partial autocorrelation function (PACF) domain. Baruník and Kley (2019) introduced a nonparamet- 

ric quantile coherency estimator based on the level-crossing process; in addition, to achieve consistency of the estimator, 

they proposed smoothing the proposed copula cross-periodogram across frequencies based on the results for the univariate 

case, initially introduced by Kley et al. (2016) (Proposition 3.4). 

An alternative technique is introduced for estimating quantile coherence, employing a semi-parametric approach that 

integrates the parametric spectrum of a vector autoregressive (VAR) model with nonparametric smoothing across quantile 

levels. The estimator relies on the assumption that the true quantile coherence, viewed as a bivariate function of frequencies 

and quantiles, demonstrates smoothness across quantile levels. 

A key distinction between the presented approach and the method introduced by Baruník and Kley (2019) lies in the 

nature of the estimated quantile coherence. The estimator considers both frequencies and quantile levels as bivariate in- 

puts, covering a range of quantile values within the interval (0,1) rather than a single fixed level. In contrast, the estimator 

introduced by Baruník and Kley (2019) applies kernel smoothing across frequencies, necessitating careful selection of both 

a bandwidth parameter and kernel type to ensure consistency. In contrast, the semi-parametric approach utilizes the VAR 

representation of the quantile spectra at each quantile level. The order of the VAR can be determined using an automatic 

selection method such as AIC, which simplifies the process compared to optimal bandwidth selection. 

The concept of employing a parametric autoregressive (AR) model for spectrum estimation has been advocated by re- 

searchers such as Akaike (1969) ; Parzen (1983) ; Newton and Pagano (1981) . Additionally, the maximum entropy framework 

has been used to characterize autoregressive spectral densities as models for the spectral density of a stationary time se- 

ries ( Burg, 1975; Choi, 1993; Parzen, 1982 ). In the univariate case, the spectral density function of a stationary process can 

be approximated by the spectral density function of an autoregressive (AR) process Shumway and Stoffer (2017) (Property 

4.7, see Appendix C.6 for more details). This property also holds for other time series representations, such as the mov- 

ing average (MA) process or the autoregressive moving average (ARMA) process. For multivariate time series, Wiener and 

Masani (1957) (Theorem 7.13) demonstrates that a given non-negative Hermitian matrix-valued function can be factorized 

into the product of two functions defined over the complex plane. Wiener and Masani (1958) (Section 2) introduces the 

vector autoregressive (VAR) as a means of determining the matrix coefficients of the generating functions in the factoriza- 

tion representation. Offering a theoretical justification, such as consistency, is challenging due to the lack of a closed-form 

solution and uniform error bounds for the quantile regression coefficients. Although we have not thoroughly analyzed the 

theoretical properties of our proposed estimator, empirical studies suggest that it performs well in practical applications. 

We recognize that further theoretical exploration is an important direction for future research. 

The proposed parametric approach for estimating quantile coherence follows a three-step process. First, the quantile 

autocovariance function (QACF) is derived from the quantile periodograms at fixed quantile levels. Next, the vector autore- 

gressive (VAR) parameters are computed based on the QACF using the Durbin-Levinson algorithm, with the order of the VAR 

approximation for all quantile levels automatically selected via the AIC criterion ( Akaike, 1974 ). This is followed by obtain- 

ing the initial quantile coherence estimate using the VAR models. A nonparametric smoother is then applied to refine this 

initial estimate across quantile levels for each frequency. Assuming that the degree of smoothness across quantiles remains 

relatively stable across frequencies, a cross-validation criterion is introduced to select a common tuning parameter for all 

frequencies. Empirical performance of the estimation method is evaluated through a simulation study. 

Spectral features, including spectral coherence, have been used as input for many applications in time series classifi- 

cation and clustering ( Euán et al., 2019; Chen et al., 2021 ). Maadooliat et al. (2018) applied their proposed spectral den- 

sity estimation methods for brain signal clustering. Euán et al. (2019) developed a coherence-based hierarchical clustering 

method with application to brain connectivity. The quantile frequency analysis (QFA) (see, e.g., Li, 2020; 2021 ) uses a two- 
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dimensional function of the quantile spectral estimate by varying the quantile level as well as the trigonometric frequency 

parameter. The QFA method has been used in two ways in classification. The first method treats quantile periodograms as 

images that can be directly fed into a deep-learning image classifier like convolutional neural networks (CNN). The second 

method employs dimension-reduction techniques and feeds the resulting features into a general-purpose classifier such as 

the support vector machine ( Hastie et al., 2017 ). Chen et al. (2021) used the former approach to classify earthquake waves. 

Li (2020) used the latter approach to classify real-world ultrasound signals for nondestructive evaluation of the structural 

integrity of aircraft panels. 

Financial time series clustering was examined by Bishnoi and Ravishanar (2018) using a quantile periodogram approach 

with stock price data from various sectors. In the realm of risk analysis, Baruník and Nevrla (2022) introduced the concept 

of quantile spectral beta (QSB) to represent risk, leveraging the quantile cross-spectral densities proposed by Baruník and 

Kley (2019) to capture tail and spectral risks at a specific quantile level. 

The application section explores clustering of 52 stocks based on their quantile coherence with the S&P 500 (SPX) index 

across specific quantile regions. For each stock, daily log returns are paired with corresponding S&P 500 closing prices to 

form a 2D vector time series, from which quantile coherence is computed. This quantile coherence, which accounts for 

both frequencies and quantile levels, serves as input for hierarchical clustering. To assess the clusters formed using quantile 

coherence, they are compared to clusters generated through the standard coherence method. Additionally, the clusters are 

evaluated against those derived from the time-domain approach, which employs the beta coefficient in the Capital Asset 

Pricing Model (CAPM). Results indicate that quantile coherence provides supplementary, valuable insights and generally 

yields more meaningful clusters. 

The remainder of the paper is organized as follows: Section 2 introduces the concept of quantile coherence and the 

proposed estimation procedure. Section 3 presents the simulation study, while Section 4 details the application to financial 

time series clustering. Conclusions and a discussion are provided in Section 5 . 

2. Methodology 

This section begins with an introduction to the quantile spectrum, quantile periodogram, and quantile coherence in 

Section 2.1 . Section 2.2 discusses the VAR spectral model and its estimation. The VAR representation of the estimated quan- 

tile spectral matrix is covered in Section 2.3 . Finally, Section 2.4 presents the proposed smoothing procedure for the VAR 

spectrum. 

2.1. Quantile spectrum and quantile coherence 

Assume Yt, j ( j = 1 , . . . , k ) are k jointly stationary random processes. Let Fj (u ) denote the CDF of Yt, j , which is a con- 

tinuous function with the derivative Ḟj (u ) > 0 . Let λ j,α denote the α quantile of Yt, j for α ∈ (0 , 1) . Finally, let γτ, j, j′ (α) := 

P { (Yt+ τ, j − λ j,α )(Yt, j′ − λ j′ ,α ) < 0 } denote the lag- τ level-crossing rate of Yt, j and Yt, j′ . Then, according to Li (2012, 2013) , the 

quantile cross-spectrum is defined as 

s j, j′ (ω, α) = η j,αη j′ ,α f j, j′ (ω, α) , 

where 

f j, j′ (ω, α) =
∞ ∑ 

τ= −∞ 

{
1 −

1 

2 α(1 − α) 
γτ, j, j′ (α)

}
exp (i 2 πωτ ) , i =

√ 

−1 , 

is called the level-crossing spectrum, and the scaling constants are defined as η j,α :=
√ 

α(1 − α) /Ḟj (λ j,α ) and η j′ ,α := √ 

α(1 − α) /Ḟj′ (λ j′ ,α ) . 

Given the observations Yt, j (t = 1 , . . . , n ) and quantile level α ∈ (0 , 1) , consider the following quantile regression problem: 

̂ βn, j (ω, α) := argλ j,α∈ R ,β j ∈ R2 min
n ∑ 

t=1 

ρα(Yt, j − λ j − x⊤ 
t (ω)β j ) , (1) 

where ρα(u ) := u (α − I (u < 0)) and xt (ω) := [cos (2 πωt) , sin (2 πωt)]⊤ for ω ∈ (0 , 1 / 2) . 

Let ̂ βn, j (ω, α) := [̂ An, j (ω, α) , ̂ Bn, j (ω, α)]⊤ denote the quantile regression solution given by Eq. (1) . Then, the quantile 

cross-periodogram between Yt, j and Yt, j′ is defined as 

q j, j′ ,n (ω, α) = nz j (ω , α) z∗
j′ (ω , α) , j, j′ = 1 , . . . , k, (2) 

where z j (ω, α) := 1 
2 

√ 
n {̂ An, j (ω, α) − î Bn, j (ω, α) } and ∗ denotes the complex conjugate transpose. Notice that when j = j′ in 

Eq. (2) , it becomes the quantile periodogram of the first kind as in Li (2012) . In addition, with α = 0 . 5 it is the Laplace 

periodogram by Li (2008) as a special case. It’s important to note that the ordinary periodogram matrix, like the quantile 

periodogram matrix ( Q (ωl , αm ) ), can be obtained by substituting the quantile regression cost function with the least squares 

cost function and limiting ω to the Fourier frequencies. 

3
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Li (2013) provided the asymptotic properties of the quantile cross-spectrum for the multivariate time series problem. 

A connection between the quantile periodogram/cross-periodogram and the quantile spectra/cross-spectra was established 

in Li (2013) (Theorem 11.3), which states that under suitable conditions, the quantile periodogram matrix Qn (ω, α) := 

[ q j, j′ ;n (ω, α)] is asymptotically distributed as ζζ∗, where ζ ∼ Nc (0 , S (ω, α)) , with S (ω, α) := [ s j, j′ (ω, α)] . 

The (squared) quantile coherence between Yt, j and Yt, j′ is defined as 

c j, j′ (ω, α) =
| s j, j′ (ω, α) |2 

s j, j (ω , α) s j′ , j′ (ω , α) 
. (3) 

It takes values between 0 and 1. 

2.2. VAR Spectral Model 

The VAR spectral model of order p takes the form 

SVAR (ω) = U−1 
p (ω) Vp 

(
U−1 

p (ω)
)∗

, (4) 

where 

Up (ω) = I −
p ∑ 

r=1 

�r e
−i 2 π rω . 

The model in (4) , is the spectral matrix of the VAR process { Yt } and Vp denotes the corresponding residual covariance 

matrix. { Yt } satisfies ( Priestley, 1981 ) 
Yt + �1 Yt−1 + . . . + �p Yt−p = ǫt , (5) 

where Yt is a k -dimensional vector and �1 , . . . , �p are k × k matrices, and ǫt is a multivariate zero mean white noise pro- 

cess. Each of the components of the vector ǫt is a univariate white noise process, uncorrelated with each other at different 

time points but possibly cross-correlated at common time points. 

Assuming stationarity on the VAR model, we can obtain the multivariate Yule-Walker equations by multiplying both sides 

of Eq. (5) by Y⊤ 
t−h 

and taking expectations. Denote the covariance matrix for Yt of nonzero lag h by Ŵ(h ) , this gives, 

Ŵ(h ) + �1 Ŵ(h − 1) + . . . + �p Ŵ(h − p) = 0 , 

In matrix form, this can be written as 

−[Ŵ(1) ,Ŵ(2) , . . . ,Ŵ(p)] = [ �1 , �2 , . . . , �p ]˜ Ŵ, (6) 

where 

˜ Ŵ =

⎡ 

⎢ ⎢ ⎣ 

Ŵ(0) Ŵ(1) . . . Ŵ(p − 1) 
Ŵ(1)⊤ Ŵ(0) . . . Ŵ(p − 2) 

. . . 
. . . 

. . . 
. . . 

Ŵ(p − 1)⊤ Ŵ(p − 2)⊤ . . . Ŵ(0) 

⎤ 

⎥ ⎥ ⎦ 
. 

The Yule-Walker equations in (6) must be solved for �r , r = 1 , . . . , p. A brute-force approach requires the inversion of kp ×
kp matrices. The multivariate version of the Durbin-Levinson algorithm (see Appendix A.1 ) can be used to speed up the 

computation. From the VAR spectral model of order p in (4) , the ordinary VAR coherence can be computed by, 

c j, j′ (ω) =
| s j, j′ (ω) |2 

s j, j (ω ) s j′ , j′ (ω ) 
. 

2.3. VAR estimator of quantile coherence 

The ordinary periodogram matrix In (ω) for any frequency ω ∈ [0 , 1) is defined by 

In (ω) = J (ω ) J∗(ω ) , 

where J (ω) = n−1 / 2 ∑ n 
t=1 

(
Yt − Y 

)
e−i 2 πωt . It is easy to show that 

In (ω) =
∑ 

| h | <n 

̂ Ŵ(h ) e−ih 2 πω , (7) 

where ̂  Ŵ(h ) = n−1 ∑ n −h 
t=1 (Yt+ h − Y )(Yt − Y )⊤ , h ≥ 0 , and ̂  Ŵ(h ) = ̂ Ŵ⊤ (−h ) , h < 0 . By the 2 n -point inverse discrete Fourier trans- 

form, the sample autocovariance function (ACF) ̂ Ŵ(h ) can be recovered from the periodogram, as follows, 

̂ Ŵ(h ) = (2 n )−1 
2 n −1 ∑ 

l=0 

In (ωl ) e
ih 2 πωl , (8) 

4
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where ωl = l/ 2 n . (See the Appendix A.2 for the mathematical proof). This relationship motivates the presented VAR spectral 

estimator. 

To estimate the quantile coherence, the approach utilizes a parametric Vector Autoregressive (VAR) spectrum of order 

p to approximate the quantile spectral matrix S (ω, αm ) for a given set of equally spaced quantile levels αm , m = 1 , . . . , nq 
within the interval (0 , 1) . The raw extended quantile periodogram matrix Qn (ωl , αm ) is derived from the time series, where 

ωl = l 
2 n , representing the quantile counterpart of the ordinary periodogram matrix as defined in Equation (7) . Fourier 

frequencies are computed over the first half and extended symmetrically. By applying the 2 n -point inverse Fourier transform 

to Q (ωl , αm ) , the Quantile Autocovariance Function (QACF) is obtained, following a similar approach to that described in 

Equation (8) . The QACF is then computed as follows: 

̂ Ŵh (αm ) = (2 n )−1 
2 n −1 ∑ 

l=0 

Qn (ωl , αm ) e
i 2 πωl h , h = 0 , 1 , . . . , n − 1 . (9) 

We use the multivariate Durbin-Levinson algorithm to solve the multivariate Yule-Walker equations in (6) formed by 
̂ Ŵh (αm ) in Eq. (9) for each fixed αm . This algorithm produces the VAR coefficients ̂ �1 (αm ) , . . . , ̂ �p (αm ) and the residual 

covariance matrix ̂  Vp (αm ) (see Appendix A.1 ). The quantile VAR spectrum of order p can be expressed as 

̂ SQVAR (ω, αm ) = ̂ U−1 
p (ω, αm ) ̂ Vp (αm )

(̂ U−1 
p (ω, αm )

)∗
, (10) 

where, 

̂ Up (ω, αm ) = I −
p ∑ 

r=1 

̂ �r (αm ) e
−i 2 π rω . 

We propose to choose the order of the VAR model by minimizing the Akaike information criterion (AIC) ( Akaike, 1974 ), 

i.e., 

̂ p = arg minp∈{ 0 , 1 ,... ,pmax } 

{
1 

nq 

nq ∑ 

m =1 

n log |̂ Vp (αm ) | + 2 k2 p

}
, 

where n is the length of the time series, k is the number of time series ( Lütkepohl, 2005 ). Some other order selection 

criterion includes the Bayesian information criterion (BIC) by Schwarz (1978) and the corrected AIC (AIC c ) by Hurvich and 

Tsai (1989) . 

Let the j, j′ -th entry of ̂ S (ω, αm ) in (10) be denoted by ̂ s j, j′ (ω, αm ) . Then, the preliminary parametric estimate of the 

quantile coherence ̂  c j, j′ (ω, αm ) in ( 1 ) is defined as 

̂ c j, j′ (ω, αm ) =
|̂  s j, j′ (ω, αm ) |2 

̂ s j, j (ω, αm )̂  s j′ , j′ (ω, αm ) 
. (11) 

2.4. Smoothing spline procedure 

Based on the assumption that true quantile coherence displays smoothness across quantiles, an improvement is pro- 

posed for the parametric estimator of quantile coherence in Eq. (11) . This approach involves smoothing the estimates across 

quantile levels using smoothing splines at each frequency, with a shared tuning parameter. 

Let the preliminary parametric quantile coherence estimate in (11) be evaluated at nq quantile levels { αm }m =1 ,... ,nq . For 

each frequency ωl , a one-dimensional sequence {̂  c j, j′ (ωl , αm ) : m = 1 , . . . , nq } is obtained, which is then smoothed using 

smoothing splines. A straightforward method applies a standard smoothing spline procedure, such as the smooth.spline 

function in , independently to each of these sequences, with smoothing parameters selected by the standard leave-one- 

out cross-validation technique. However, two potential issues arise with this method. First, using different smoothing pa- 

rameters for different frequencies may introduce undesirable discontinuities across frequencies. Additionally, the standard 

leave-one-out cross-validation criterion can be ineffective in addressing positive correlations ( Altman, 1990; Wang, 1998 ), as 

observed in the preliminary coherence estimate across quantile levels. To mitigate these issues, a smoothing procedure is 

proposed that employs a common λ for all frequencies, allowing the final quantile coherence estimate to be expressed as 

˜ c (ωl , ·) := arg minc(ωl , ·) 

{ 
nq ∑ 

m =1 

[̂  c (ωl , αm ) − c(ωl , αm )]
2 + λ

∫ 1 

0 

[
∂2 c(ωl , α) 

∂α2 

]2 

dα

} 

, l = 1 , . . . , n f . (12) 

To select the common smoothing parameter λ, a special K-fold cross-validation procedure is proposed. At each frequency 

ωl , the sequence {̂  c j, j′ (ωl , αm ) : m = 1 , . . . , nq } is randomly split into K (approximately) equal-size groups. For each κ = 

1 , . . . , K, one of the groups is reserved for testing, while the remaining K − 1 groups are used for training. Unlike a typical 

K-fold cross-validation procedure, the mean value of the coherence estimates in the training set, denoted as c pred ,κ (ωl ) , 

5
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Fig. 1. The true quantile coherence of the 4 considered models with n = 500 for both VAR and VARMA models (top), Mixture 1, and Mixture 2 (bottom). 

is utilized to predict the mean value of the coherence estimates in the testing set, denoted as c test ,κ (ωl ) . The smoothing 

parameter λ is chosen as the minimizer of the following CV criterion: 

CV (λ) =
K ∑ 

κ=1 

{ 
n f ∑ 

l=1 

[c pred ,κ (ωl ) − c test ,κ (ωl )]
2 

} 

. (13) 

The proposed CV criterion in (13) uses mean value prediction to address the correlation of the sequences across quantile 

levels. The standard K-fold cross-validation criterion predicts individual values in the test set. Due to the positive correlation 

of the residuals, the resulting tuning parameter tends to be very small for all frequencies, leading to minimal smoothing. 

It is important to clarify that employing a common λ does not completely eliminate the discontinuity issue. However, it 

helps mitigate the problem by reducing the statistical variability that arises from using different λ values. 

3. Simulation Study 

In this section, the results of a simulation study are presented, comparing the proposed method with several alternatives 

in estimating the quantile coherence of simulated time series. Additionally, the results of clustering bivariate time series 

based on both quantile coherence and ordinary coherence are discussed. 

3.1. Simulation setup 

The models considered in this simulation setting are 

1. VAR(2) model: Zt = A1 Zt−1 + A2 Zt−2 + Wt , Wt ∼ N (0 ,�) , 

A1 =
[
1 . 5 −0 . 6 
0 . 3 0 . 2 

]
A2 =

[
−0 . 5 0 . 3 
0 . 7 −0 . 2 

]
� =

[
4 1 
1 2 

]
. 

2. VARMA(2,1) model: Zt = A1 Zt−1 + A2 Zt−2 + Wt − B1 Wt−1 , Wt ∼ N (0 ,�) 

A1 =
[
0 . 816 −0 . 623 

−1 . 116 1 . 074 

]
A2 =

[
−0 . 643 0 . 592 
0 . 615 −0 . 133 

]
, 

B1 =
[

0 −1 . 248 
−0 . 801 0 

]
� =

[
4 2 
2 5 

]
. 
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3. Mixture model highly coherent at lower quantiles: the vector time series, Zt = (Zt, 1 , Zt, 2 )
⊤ is a nonlinear mixture of three 

components given by 

ξ1 := W1 (Ut, 1 ) Ut, 2 + (1 − W1 (Ut, 1 )) Ut, 1 , 

and , 

Zt, 1 := W2 (ξ1 ) Ut, 3 + (1 − W2 (ξ1 )) ξ1 , 

where Ut, 1 , Ut, 2 , and Ut, 3 are AR processes of mean zero and variance 1, satisfying 

Ut, 1 = 0 . 8 Ut−1 , 1 + wt, 1 , 

Ut, 2 = −0 . 7 Ut−1 , 2 + wt, 2 , 

and , 

Ut, 3 = 0 . 55 Ut−1 , 1 − 0 . 81 Ut−2 , 3 + wt, 3 , 

where wt, 1 , wt, 2 , and wt, 3 are mutually independent Gaussian white noise. The mixing functions W1 (x ) and W2 (x ) are 

defined as follows 

W1 (x ) =
{
0 . 1 if x < −0 . 8 
0 . 8 if x > 0 . 8 

, 

and , 

W2 (x ) =
{
0 . 5 if x < −0 . 4 
0 if x > 0 . 4 

, 

where W1 (x ) is linear between −0 . 8 and 0.8; W2 (x ) is linear between −0 . 4 and 0.4. The first component Ut, 1 has a 

lowpass spectrum, Ut, 2 has a highpass spectrum, and Ut, 3 has a bandpass spectrum with a bandwidth of an AR(2) model 

with frequency at 0.20. The second component Zt, 2 of the vector time series Zt , is a delayed copy of Zt, 1 by 10 time units. 

4. Mixture model highly coherent at higher quantiles: the vector time series Zt = (Zt, 1 , Zt, 2 )
⊤ is a nonlinear mixture of 

three components designed in a similar way as the previous mixture model. To obtain highly coherent higher quantiles, 

we just use another weighting function, W2 (x ) , which is defined as 

W2 (x ) =
{

0 if x < −0 . 4 
0 . 5 if x > 0 . 4 

, 

where W2 (x ) is linear between −0 . 4 and 0.4. 

In the simulation study, two lengths of n = 500 and n = 1000 are considered for the VAR, VARMA, and nonlinear mix- 

tures models. For each model and length, the average of 50 0 0 raw quantile periodogram matrices is treated as the quan- 

tile spectral matrix, from which the true quantile coherence is derived. Figure 1 illustrates the true quantile coherence 

C (ω, α) :=
[
c(ωl , αm )

]
, l = 1 , . . . , n f , m = 1 , . . . , nq for the VAR and VARMA models (top) and the mixture models (bottom) 

with n = 500 . The quantile coherence is computed at 93 quantile levels, specifically 0 . 04 , 0 . 05 , . . . , 0 . 96 . Extreme quantiles 

are excluded due to the potential for inappropriate behavior of the estimators. 

3.2. Alternative Methods 

In this study, the proposed estimation method for quantile coherence is compared to three alternative methods. 

(a) The nonparametric estimator proposed by Baruník and Kley (2019) : quantile coherency is computed by utilizing the 

matrix of smoothed rank-based copula periodograms (CCR-periodograms) across frequencies for each fixed quantile 

level. The implementation of this estimator is available in the R package quantspec with the function smoothedPG 

( Kley, 2016 ). Specifically, when smoothing across frequencies, Baruník and Kley (2019) employs a kernel of order p, 

with the optimal bandwidth obtained approximately as bn ≈ n−1 / (2 p+1) . In the current implementations, the default 

Epanechnikov kernel, which is a kernel of order p = 2 with an optimal bandwidth of approximately bn ≈ n−1 / 5 , is 

used. Three key distinctions between this approach and the method proposed in this study are noteworthy. First, the 

estimator by Baruník and Kley (2019) fixes the quantile level, while the proposed estimator considers the quantile 

level as a continuous variable within the interval (0 , 1) . Second, the rank-based copula periodograms are utilized by 

Baruník and Kley (2019) , whereas the proposed estimator is based on quantile periodograms obtained from trigono- 

metric quantile regression. Lastly, the estimator by Baruník and Kley (2019) requires the selection of both kernel type 

and bandwidth for smoothing across frequencies and does not smooth across quantiles. 

(b) The 1D smoothing spline method: we smooth the raw quantile periodogram matrix using smoothing splines, first 

across frequencies for each fixed quantile level, and then across quantile levels for each fixed frequency; the quantile 

coherence is computed based on the resulting smoothed quantile periodogram matrix. 
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Table 1 

This table presents the average root mean squared error (RMSE) of the quantile coherence estimates obtained from 200 simulation runs. The minimum 

value in each row for each of the five estimation methods is highlighted in bold. The standard error is also provided in parentheses. 

Model n Semi-Param Parametric BK(2019) S.spline 2D Kernel 

VAR(2) 500 0.069 (0.010) 0.089 (0.008) 0.114 (0.004) 0.451 (0.017) 0.451 (0.017) 

VAR(2) 1000 0.054 (0.006) 0.066 (0.006) 0.104 (0.003) 0.459 (0.014) 0.460 (0.014) 

VARMA(2,1) 500 0.079 (0.011) 0.089 (0.010) 0.121 (0.009) 0.389 (0.069) 0.384 (0.058) 

VARMA(2,1) 1000 0.059 (0.009) 0.065 (0.008) 0.118 (0.006) 0.383 (0.048) 0.380 (0.046) 

Mixture 1 500 0.077 (0.010) 0.088 (0.009) 0.145 (0.013) 0.445 (0.077) 0.455 (0.062) 

Mixture 1 1000 0.057 (0.007) 0.064 (0.006) 0.146 (0.010) 0.454 (0.067) 0.464 (0.046) 

Mixture 2 500 0.065 (0.010) 0.067 (0.011) 0.078 (0.007) 0.490 (0.138) 0.531 (0.078) 

Mixture 2 1000 0.045 (0.010) 0.047 (0.009) 0.075 (0.006) 0.466 (0.115) 0.490 (0.072) 

(c) The 2D kernel smoothing method: we apply 2D smoothing to the raw quantile periodograms as bivariate functions of 

frequency and quantile level and compute the quantile coherence from the resulting smoothed quantile periodogram 

matrix. 

In addition, we also demonstrate the effectiveness of the smoothing across quantiles by comparing the final estimates in 

(12) which will be labeled as semi-parametric, with the preliminary estimates in (11) which will be labeled as parametric. 

We use the following root mean squared error (RMSE) between the estimated quantile coherence and the true quantile 

coherence to measure the performance of an estimator: 

DRMSE { C ,˜ C } =

√ 

1 

n f nq 

n f ∑ 

l=1 

nq ∑ 

m =1 

[ c(ωl , αm ) −˜ c (ωl , αm )]2 . 

The performance assessment of different cases is presented in Table 1 , where the average root mean squared error 

(RMSE) is calculated based on 200 simulation runs. The estimation methods are labeled as follows: Semi-Param: Parametric 

estimator with smoothing across quantiles in (12) . The smoothing parameter is selected using a five-fold cross-validation 

procedure, as described in Section 2.4 . Parametric: VAR estimator of quantile coherence without smoothing in (11) . BK 

(2019): Nonparametric estimator proposed by Baruník and Kley (2019) . S.spline: 1D smoothing spline. 2D Kernel: 2D ker- 

nel smoothing. From the results in Table 1 , it is evident that the proposed semi-parametric estimator, which incorporates 

smoothing across quantiles, consistently outperforms all other methods. The additional smoothing significantly improves the 

estimation of quantile coherence overall. Moreover, even without smoothing, the parametric estimator itself demonstrates 

superior performance compared to its competitors. Notably, it produces better simulation results than the nonparametric 

estimator proposed by Baruník and Kley (2019) . Furthermore, we observe a decreasing trend in both the RMSE and standard 

error as the sample size ( n ) increases. This suggests that the accuracy of the estimators improves with larger sample sizes. 

3.3. Clustering simulation 

In this section, the problem of clustering bivariate (k = 2) time series based on the similarities of their quantile coherence 

is considered. A cluster is defined as a collection of bivariate time series that exhibit similar quantile coherence. The study 

does not extend to multivariate time series with dimensions greater than two (k > 2) . Further research is needed to address 

both the estimation and clustering of higher-dimensional time series. 

This method is compared with an alternative that employs the ordinary coherence derived from the VAR model of the 

bivariate time series. To derive the ordinary coherence, a VAR model is first fitted to a bivariate time series, and then the 

spectral matrix is computed using the parameters from the fitted VAR model. The ordinary coherence is defined by the VAR 

spectral matrix in a manner similar to (4) . Through the simulation study, the potential benefit of quantile coherence for this 

problem is demonstrated compared to ordinary coherence. 

The clustering simulation begins by considering the four models described in Section 3.1 as the true clusters. Two hun- 

dred bivariate time series are simulated from each of the four models, and their quantile coherence and ordinary coherence 

are computed. Both the quantile coherence and the ordinary coherence serve as dissimilarity measures for a hierarchical 

clustering procedure. 

For each time series, a feature vector is created by collecting the quantile coherence c1 , 2 (ωl , αm ) for l = 1 , . . . , n f and 

m = 1 , . . . , nq . The dissimilarity measure for a pair of time series is defined as the Euclidean distance between the corre- 

sponding quantile-coherence-based feature vectors. A similar method is employed to define the dissimilarity measure based 

on ordinary coherence. 

Computing the dissimilarity measure for all pairs allows for the establishment of a pairwise distance matrix, which is 

used as input for hierarchical clustering. The optimal number of clusters is chosen based on the so-called “elbow rule” ( Yuan 

and Yang, 2019 ), which utilizes the total within-cluster sum of squares (WSS) as a function of the number of clusters. 

From the right panel of Figure 2 , it can be clearly stated that the optimal number of clusters for the quantile coherence 

equals 4. In contrast, the left panel of Figure 2 indicates that the optimal number of clusters for the ordinary coherence 
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Fig. 2. The total within-cluster sum of squares (WSS) as a function of the number of clusters. Based on the ordinary coherence (left), based on the quantile 

coherence (right). 

Fig. 3. The true ordinary coherence of the 2 mixture models (models 3 and 4), with n = 500 . 

lies between 3 and 4. In an initial exploratory exercise, it is assumed that the number of clusters identified by the quantile 

coherence, 4, is identical to the number of clusters formed from the ordinary coherence in order to evaluate the findings in 

terms of the allocation of members in each cluster. 

Although the optimal number of clusters is the same in this case, the allocation results differ substantially. The ordinary 

coherence assigns the first cluster to the 200 bivariate series acquired by model 1, and similarly assigns the second cluster 

to model 2. Finally, the remaining 400 bivariate series generated by the mixture models are allocated to the third (196 

members) and fourth (204 members) clusters. The third cluster predominantly contains simulated bivariate time series 

obtained from model 3, with only one case from model 4, while the fourth cluster primarily includes members obtained 

from model 4, along with a few cases from model 3. 

In a second exercise, three clusters were chosen as the optimal number based on the ordinary coherence. The new results 

indicate that, as in the previous example, the first two clusters maintain the assignment of the bivariate series generated 

from models 1 and 2, respectively. The difference now lies in the third cluster, which contains the 400 bivariate series 

obtained from the mixture models 3 and 4. By utilizing three clusters, the ordinary coherence is unable to differentiate 

between the two mixture models. 

In neither of the above cases, whether selecting 3 or 4 clusters, does the ordinary coherence correctly assign the mixture 

models 3 and 4. In contrast, the quantile coherence enables the placement of each of the 200 bivariate time series in a 

specific cluster, achieving a perfect separation of the four simulation models. 

To provide further detail, the true ordinary coherence for models 3 and 4, which correspond to the mixture models, is 

simulated. For each model, the average of 50 0 0 raw VAR periodogram matrices is treated as the VAR spectral matrix, from 

which the true ordinary coherence is derived. In both cases, these models exhibit a peak of coherence around frequency 

0 . 20 , as shown in Figure 3 . By comparing the results of Figure 3 with those of Figure 1 , it can be observed that the difference 

lies in the fact that model 3 presents a peak of coherence at frequency 0 . 20 , but this occurs at low and intermediate quantile 

levels. In contrast, model 4, although it presents the peak at the same frequency, is found at intermediate and high quantile 

levels. Compared to the ordinary coherence, the quantile coherence offers more accurate clustering, as it contains additional 

information about quantile levels that can be utilized to appropriately assign bivariate series, particularly with mixture 

models. 
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Table 2 

Stock assignment in hierarchical clustering based on specific quantile regions. 

Quantiles Clusters Stock Members 

Lower Cluster 1 ADBE ADI AFL AIG ALL AON APD C CSCO DIS DOV EMN 

IBM JPM LOW MMC MMM MSFT SBUX WFC 

Cluster 2 AAPL ABT ADM AEE AEP AES AMGN AMZN BSX CL CMCSA CVX F 

GD KMB KO M MCD PEP PFP PG T TGT TM WEN WMT XOM 

Cluster 3 CPB ENB GIS MO NEM 

Middle Cluster 1 ADBE ADI AFL AIG ALL AON APD C CSCO CVX DIS 

DOV EMN IBM JPM MMC MMM MSFT SBUX WFC XOM 

Cluster 2 AAPL ABT ADM AES AMGN AMZN BSX CL CMCSA 

F GD KMB KO LOW M MCD PEP PFP PG T TGT TM WMT 

Cluster 3 AEE AEP CPB ENB GIS MO NEM WEN 

Upper Cluster 1 ADBE ADI AFL AIG APD C CMCSA CSCO DIS DOV EMN 

IBM JPM MMC MMM MSFT WFC 

Cluster 2 AAPL ABT ADM AES ALL AMGN AMZN AON BSX CL CVX 

F GD KO LOW M MCD PEP PFP PG SBUX T TGT TM WMT XOM 

Cluster 3 AEE AEP CPB ENB GIS KMB MO NEM WEN 

Finally, in terms of computational complexity, the most demanding aspect lies in computing the quantile periodogram 

matrix at each quantile level, as this involves solving the quantile regression problem for each quantile. The quantile peri- 

odogram matrix is obtained using the function qdft from the qfa package in . Regarding computational time, all exper- 

iments and simulations were conducted on a MacBook Pro with a 2.3 GHz 8-Core Intel Core i9 processor. A total of 200 

bivariate time series were simulated across four models, as described in Section 3.3 . For instance, simulating 200 bivariate 

time series for Model 3 and computing their quantile coherence takes approximately 3.35 hours. 

4. Financial time series clustering 

In this section, the goal is to explore the advantages of clustering the time series of stock prices based on their quantile 

coherence with a benchmark. The objective of this experiment is to determine whether meaningful clusters can be identified 

among these stocks by considering their co-variability with respect to the benchmark across different quantile regions. A 

selection of 52 stocks from the S&P 500 (SPX) was made to evaluate the estimation method for quantile coherence and its 

effectiveness for clustering purposes. 

The 52 selected stocks represent different market sectors, including Health Care, Technology, Materials, Consumer Sta- 

ples, Industrials, Consumer Discretionary, Commodities, Entertainment, Energy, Agricultural Products, Communications Ser- 

vices, Utilities, and Restaurants. Furthermore, the study period spans from 2010 to 2019, a timeframe that is free of large 

oscillations such as the “Great Recession” and the COVID-19 pandemic. 

In this experiment, the time series data consists of the daily log returns of the closing prices of specific companies within 

the SPX index. Each individual series is represented by a feature vector that incorporates the quantile coherence between 

the series and the SPX index. This quantile coherence is evaluated at Fourier frequencies ranging from 0 to 1/2. Additionally, 

the feature vector includes quantile regions, which are subsets of the range from 0.04 to 0.90, totaling 90 quantile levels. 

To quantify the dissimilarity between these series, a dissimilarity matrix is constructed, based on the pairwise Euclidean 

distances calculated from the feature vectors derived from quantile coherence. 

The proposed approach provides a notable advantage in accurately capturing the combined behavior of log returns with 

the SPX index. This emphasizes the significance of integrating information about the quantile-dependence characteristics of 

the data, which holds valuable insights for risk analysis and portfolio construction. In practice, portfolio managers commonly 

prioritize a fixed quantile level, usually below 10% , as it offers a simplified implementation compared to using a range of 

quantiles. Specifically, the analysis focuses on three quantile regions: the lower quantile region (quantiles from 4% to 10% ), 

the middle quantile region (quantiles ranging from 40% to 55% ), and the upper quantile region (quantiles from 70% to 96% ). 

The results of the cluster assignments obtained from the hierarchical clustering procedure are presented in Table 2 , while 

the corresponding dendrograms can be found in Appendix A.3 . 

As mentioned in Section 3.3 , the optimal number of clusters is determined from the dendrogram using the “elbow rule”

( Yuan and Yang, 2019 ). The within-cluster sum of squares (WSS) is depicted in Figure 4 , with the top panel representing 

lower quantiles, the center panel representing middle quantiles, and the bottom panel representing upper quantiles. In all 

cases, the optimal number of clusters is found to be 3. 

To provide a concise summary of the information contained within each of the three clusters in each quantile region, 

the centroids of each cluster are calculated by averaging their members. The centroids of the three clusters for each specific 

quantile region are visualized in Figure 5 . The top panel displays the formation of three clusters based on upper quantiles, 

the center panel illustrates clusters formed using middle quantiles, and the bottom panel showcases the corresponding 

clusters formed based on lower quantiles. 
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Fig. 4. The total within-cluster sum of squares (WSS) as a function of the number of clusters. (Top) clusters formed using quantile coherence for lower 

quantile levels. (center) clusters based on quantile coherence for middle quantile levels. (Bottom) clusters based on quantile coherence for upper quantile 

levels. 

It is observed that the overall cluster formation follows a consistent pattern in terms of the distribution of quantile 

coherence across quantile regions. In particular, Cluster 1 is composed of stocks exhibiting the highest quantile coherence 

with the SPX. Cluster 2 comprises stocks with intermediate quantile coherence with the SPX, while Cluster 3 consists of 

stocks with the lowest quantile coherence with the SPX. It is worth noting that for the clusters formed based on the middle 

quantile regions, the level of quantile coherence is considerably lower compared to the other quantile regions across all 

clusters. 

Cluster 1, depicted in the left column of Figure 5 , exhibited high quantile coherence with the SPX index at low fre- 

quencies. Interestingly, this cluster also demonstrated significant quantile coherence in the mid-range and high-frequency 

regions. Notably, among the three clusters, only Cluster 1 displayed such a level of quantile coherence in the middle and 

high-frequency regions. Further analysis revealed that Cluster 1, based on both lower and upper quantile regions, exhibited 

the highest level of quantile coherence compared to the middle quantile levels. These findings evidence the importance of 

quantile dependence in the data. 

Cluster 2, illustrated in the center column of Figure 5 , consisted of stocks that exhibited a moderate level of quantile 

coherence with the SPX index in the lower frequency regions within both the lower and upper quantile regions. The quantile 

coherence in Cluster 2 was stronger than that observed in Cluster 3 but not as high as in Cluster 1. Cluster 2 also contained 

the largest number of stocks among all quantile regions. Similar to Cluster 3, it lacked significant quantile coherence in 

other frequency ranges; however, the level of quantile coherence in Cluster 2 was notably higher than in Cluster 3. 

Finally, in Cluster 3, displayed in the right column of Figure 5 , stocks in this cluster showed a low level of quantile coher- 

ence with the SPX index around low-frequency regions in both the lower and upper quantile regions. However, the quantile 
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Fig. 5. The quantile coherence spectra for the centroids in each of the 3 clusters with the SPX index. For upper quantiles (first row). For middle quantiles 

(second row). For lower quantiles (third row). 

Table 3 

Summary statistics for the beta values obtained for each of the three clusters obtained through quantile coherence. 

Quantiles Clusters Min Max Mean Sd 

Lower Cluster 1 0.8563 1.5826 1.1079 0.1907 

Cluster 2 0.4821 1.2146 0.8070 0.2368 

Cluster 3 0.4360 0.7903 0.5489 0.1421 

Middle Cluster 1 0.8563 1.5826 1.1420 0.1890 

Cluster 2 0.5070 1.2146 0.8247 0.2392 

Cluster 3 0.4360 0.8427 0.5779 0.1535 

Upper Cluster 1 0.8563 1.5826 1.1410 0.1873 

Cluster 2 0.5194 1.2146 0.8524 0.2179 

Cluster 3 0.4360 0.8427 0.5700 0.1455 

coherence observed in Cluster 3 was not as strong as that seen in Clusters 1 and 2. Additionally, no significant quantile 

coherence activity was observed in other frequency regions. Notably, Cluster 3, based on middle quantiles, demonstrated a 

very low level of quantile coherence across all frequency regions. 

4.1. Capital Asset Pricing Model (CAPM) 

The beta coefficient in the Capital Asset Pricing Model (CAPM), a time domain approach, is a standard method of quan- 

tifying the systematic risk of equities in the financial industry ( Sharpe, 1964; Lintner, 1965; Mossin, 1966 ). The CAPM 

methodology distinguishes the stocks that are more sensitive to market movements and those that are less sensitive to 

such changes. Given that no shocks or other factors caused substantial volatility throughout the period studied, the beta 

coefficients do not have large values. Stocks with betas above 1 will tend to move with more momentum than the S&P; 

Stocks with betas less than 1 with less momentum. 

The application of the quantile coherence approach reveals clusters that display a certain level of connection with the 

beta distribution. However, due to their coherence-quantile relationship, the quantile coherence method offers additional 

insights into their associations with the SPX. As evident from Table 3 , we can observe two distinct groups of clusters in 

terms of the beta distribution across all quantile regions. The first group is Cluster 1 which clearly shows the presence 

mostly of stocks with high betas (higher than 1). The second group is the one formed with Clusters 2 and 3 which represent 

stocks with betas on average less than 1. Clusters 2 and 3 are difficult to distinguish from the beta distribution since their 

beta-value distributions overlap. Using the quantile coherence, these two clusters are distinguished based on their activity 

connected with specific quantile areas (See Figure 5 ). 
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Fig. 6. Dendrogram for the hierarchical clustering of 52 stocks in SPX based on the ordinary coherence with the index. 

Fig. 7. The total within-cluster sum of Squares (WSS) as a function of the number of clusters. 

Table 4 

Stock assignment in hierarchical clustering based on ordinary coherence. 

Clusters Stock Members 

Cluster 1 APD C DIS DOV EMN JPM MMM MSFT 

Cluster 2 AAPL ABT ADBE ADI ADM AEE AEP AES AFL AIG ALL AMGN 

AMZN AON BSX CMCSA CSCO CVX ENB F GD IBM KO LOW 

M MCD MMC PEP PFP SBUX T TGT TM WFC WMT XOM 

Cluster 3 CL CPB GIS KMB MO NEM PG WEN 

4.2. Comparison with ordinary VAR coherence 

For comparison, the hierarchical clustering procedure is repeated using the ordinary VAR coherence. The resulting den- 

drogram is shown in Figure 6 . To select the optimal number of clusters in this case, similar to the quantile coherence 

scenario, the elbow plot is presented in Figure 7 . From Figure 7 , it is evident that determining an optimal number of clus- 

ters is challenging because no clear turning point can be identified. With the sole purpose of making a fair comparison 

between the quantile coherence and the ordinary coherence in clustering, the same number of clusters is used for the 

ordinary coherence. 

The analysis of the ordinary coherence reveals distinct behaviors within the three clusters, as depicted by the centroids 

in Figure 8 . Cluster 1 exhibits high coherence, Cluster 2 demonstrates moderate coherence, and Cluster 3 displays very low 

coherence. The stock assignment based on ordinary coherence can be found in Table 4 . 

The main differences com pared to quantile coherence can be observed in Cluster 2, which contains the largest number 

of stocks. Cluster 1, characterized by quantile coherence, is a more compact cluster that enables a clear distinction between 

high and moderate quantile coherence, particularly at higher and lower quantile regions. In contrast, when considering 

ordinary coherence, many stocks initially assigned to Cluster 1 by quantile coherence now belong to Cluster 2. 
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Fig. 8. The ordinary coherence spectra for the centroids in each of the 3 clusters with SPX. 

Fig. 9. quantile coherence with SPX for the stock CVX. Top left panel lower quantiles. Top right panel upper quantiles. Bottom panel middle quantiles. 

By examining the centroid of Cluster 2 using quantile coherence, specifically at higher quantile regions (refer to Figure 5 ), 

it becomes apparent that these stocks are expected to exhibit substantial coherence around the zero frequency region, sim- 

ilar to Cluster 1. Additionally, there is observable activity in the middle and higher frequency regions. However, the level of 

quantile coherence in the zero-frequency zone is not as pronounced as that of Cluster 1. 

Finally, two examples have been chosen to illustrate the enhanced characteristics of hierarchical clustering when utilizing 

quantile coherence at specific quantile regions. Additionally, an example is included that compares quantile coherence and 

ordinary coherence during clustering. In Figure 9 , an analysis of the quantile coherence for the stock “CVX” in relation to the 

SPX is provided, focusing on different quantile regions. The top panel displays the quantile coherence at lower and upper 

quantile levels, while the bottom panel represents the coherence at the middle quantile level. 

When clustering “CVX” based on both upper and lower quantile levels, it is assigned to cluster 2, which corresponds 

to a cluster exhibiting a moderate or middle level of quantile coherence. However, when clustering is performed using the 
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Fig. 10. Left panel: quantile coherence with SPX for the stock ENB. Right panel: ordinary coherence with SPX for the stock ENB. 

middle quantile levels, “CVX” is assigned to cluster 1. According to the general behavior, stocks in cluster 1 are expected to 

demonstrate the highest level of quantile coherence, particularly around the zero frequency region. However, in the case of 

“CVX”, it is observed that at the middle quantile levels, it does not exhibit a sufficiently high level of quantile coherence to 

be assigned to cluster 1. 

Figure 10 illustrates the comparison between quantile coherence (left panel) and ordinary coherence (right panel) for 

the stock “ENB” in relation to SPX. It is evident that “ENB” exhibits generally low values of quantile coherence across all 

quantile levels. Consequently, when considering each of the three quantile regions, “ENB” is assigned to Cluster 3, which is 

characterized by a low level of quantile coherence. However, when examining the ordinary coherence, “ENB” demonstrates 

a moderate level of coherence. As a result, it is assigned to Cluster 2 based on the ordinary coherence criterion as it does 

not consider the quantile information. 

5. Discussion 

A new semi-parametric method has been developed for estimating the quantile coherence derived from trigonometric 

quantile regression. The proposed method employs the parametric form of the VAR approximation in conjunction with 

a nonparametric smoothing technique. The parametric VAR spectrum estimates the multivariate quantile spectral matrix 

at each quantile. The VAR model is obtained by solving the multivariate Yule-Walker equations formed by the quantile 

autocovariance function, which is defined as the inverse Fourier transform of quantile periodograms. The AIC criterion, which 

balances goodness of fit and model complexity, is used to determine the VAR order. The resulting preliminary estimate of the 

quantile coherence is further smoothed across quantiles by smoothing splines, where the smoothing parameter is selected 

jointly across frequencies. For selecting the tuning parameter, a K-fold cross-validation technique is employed to address 

the correlation found in the estimated quantile coherence across quantiles. 

Similar to the quantile periodogram maps previously described in the literature ( Li, 2012; 2020 ), the 2D representation 

of the quantile coherence provides more information than the ordinary coherence and can be used as images to analyze 

multivariate time series data. 

The results of an application of quantile coherence to financial time series have also been presented. In this application, 

the daily closing prices of 52 stocks are grouped by their behavior against the SPX index as measured by the quantile 

coherence. The three clusters are distinguished largely by the coherence patterns in the low-frequency region at high and/or 

low quantiles. A better cluster formation is obtained by focusing on specific quantile regions, and the quantile-dependent 

nature enhances cluster formation. 
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Appendix A 

A1. Multivariate Durbin-Levinson Algorithm and the standard partial autocorrelation function 

Whittle (1963) proposed the multivariate version of the Durbin-Levinson recursions, which solve the Yule-Walker equa- 

tions in (6) with a total of 2 p inversions of k × k matrices. (see also proposition 11.4.1 Brockwell and Davis, 1991 ). 

Degerine (1990) proposed a way of defining the partial autocorrelation function for multivariate stationary time series 

through the canonical analysis of the forward and backward innovations. It is proved that there is a one-to-one correspon- 

dence between the resulting PACF and the autocovariance function. 

Based on Whittle (1963) and the canonical approach defined by Degerine (1990) , the following algorithm is employed to 

compute the VAR parameters recursively. Given a sequences of covariance matrices Ŵ(0) ,Ŵ(1) , . . . Ŵ(p) , 

0. Compute V0 = ˜ V0 = Ŵ(0) and 
0 = Ŵ(1) . 

1. For r = 1 , . . . , p, compute the PACF �r = V−1 / 2 
r−1 
r−1 ̃

 V−1 / 2 
r−1 . 

2. Compute 

�r,r = V1 / 2 
r−1 �r ̃

 V2 
r−1 

˜ �r,r = ˜ V1 / 2 
r−1 �

⊤ 
r V

1 / 2 
r−1 . 

3. For p ≥ 2 , compute 

�r,r′ = �r −1 ,r′ − �r,r ̃
 �r −1 ,r −r′ , r

′ = 1 , . . . r − 1 

˜ �r,r′ = ˜ �r −1 ,r′ − ˜ �r,r �r −1 ,r −r′ , r
′ = 1 , . . . r − 1 . 

4. Compute 

Vr = V1 / 2 
r−1 [ I − �r �

⊤ 
r ] V

1 / 2 ⊤ 
r−1 

˜ Vr = ˜ V1 / 2 
r−1 [ I − �⊤ 

r �r ]˜ V1 / 2 ⊤ 
r−1 

	r = Ŵ(r + 1) − �r, 1 Ŵ(r) − . . . − �r,r Ŵ(1) . 

For the VAR model to be stable, the singular values of the PACF (�r ) must be less than 1 in magnitude. Morf et al. 

(1978) proposed the orthogonalization procedure based on a Gramm-Schmidt process to compute the PACF and the resulting 

Durbin-Levinson recursion. 

A2. Proof of Equation (8) 

By the 2 n -point inverse discrete Fourier transform, the estimated autocovariance function ̂  Ŵ(h ) : | h | < n can be recovered 

from Eq. (7) , as follows: 

Multiplying both sides of Eq. (7) by ei 2 π lk/ 2 n and summing over l : 0 ≤ l ≤ 2 n − 1 , 

(2 n )−1 
2 n −1 ∑ 

l=0 

In (ωl ) e
i 2 π lk/ 2 n = (2 n )−1 

2 n −1 ∑ 

l=0 

∑ 

| h | <n 

̂ Ŵ(h ) e−i 2 π lk/ 2 n ei 2 π lh/ 2 n 

= (2 n )−1 
∑ 

| h | <n 

̂ Ŵ(h )

[ 
2 n −1 ∑ 

l=0 

ei 2 π (h −k ) l/ 2 n 

] 

, 

with h = k, 

= ̂ Ŵ(h ) , h = 0 , 1 , ..., n − 1 . 

16



C.F. Jiménez-Varón, Y. Sun and T.-H. Li Econometrics and Statistics xxx (xxxx) xxx

ARTICLE IN PRESS
JID: ECOSTA [m3Gsc;December 3, 2024;12:29]

A3. Hierarchical clustering based on specific quantile regions 

Fig. A1. Dendrogram for the hierarchical clustering of 52 stocks in SPX based on the quantile coherence of their daily log returns with the index SPX. The 

top panel displays clusters formed using quantile coherence for lower quantile levels. The center panel depicts clusters based on quantile coherence for 

middle quantile levels. The bottom panel represents clusters based on quantile coherence for upper quantile levels. 
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