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ABSTRACT
While natural flood management (NFM) is becoming more widely used, there remains a lack of empirical evidence regarding 
its effectiveness. The primary uncertainties arise from two key aspects: first, the determination of NFM effectiveness is con-
strained by the relatively small catchment scales studied to date; second, the combination of multiple NFM interventions within 
a catchment may lead to flood peak synchronisation. In this study, both instream and terrestrial NFM interventions were mod-
elled using a spatially distributed hydrological model, Spatially Distributed TOPMODEL (SD- TOPMODEL). To demonstrate how 
the scale and type of interventions interact to influence flood peaks, we integrated various NFM interventions and land cover 
changes, including woodland planting, soil aeration, floodplain restoration, and hedgerow planting. In comparison to previous 
versions of SD- TOPMODEL, we improved simulation efficiency to enable grid- based modelling of up to a 200- year return pe-
riod flood event for an 81.4 km2 catchment with 5 m resolution. Following extensive parameter calibration and validation, the 
model demonstrated stability and provided a reliable fit for flood peaks, achieving a Nash- Sutcliffe Efficiency coefficient of up 
to 0.93 between modelled and observed discharge. The results highlighted the effectiveness of NFM interventions in reducing 
flood peaks at the scale studied, particularly during single- peaked storm events and under dry pre- event catchment conditions. 
Moreover, the combined use of multiple interventions was more effective and resilient than single interventions, with flood peak 
reductions ranging from 4.2% to 16.0% in the study catchment.

1   |   Introduction

Natural flood management (NFM) is a flood mitigation strategy 
which aims to work with natural processes to restore and en-
hance catchment hydrological functions which limit flood risk 
and impact (Dadson et al. 2017; Cooper et al. 2021). In particu-
lar, NFM seeks to reduce and delay flood peaks by optimising 
the natural water retention function of the catchment and to 
mitigate the potential hazards of flood peaks (Lane 2017; Kay 

et al. 2019; Black et al. 2021; Ellis et al. 2021; Kumar et al. 2021; 
Lashford et al. 2022). For example, altering the physical proper-
ties of soil that influence water movement and storage, such as 
porosity and permeability, can enhance subsoil water storage ca-
pacity and encourage infiltration to delay flood peak time and/
or reduce peak discharge during a storm event. Soil properties 
might be altered directly through aeration and other soil man-
agement interventions or indirectly by implementing afforesta-
tion, reducing grazing intensity, or delivering other ecological 
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restoration practices (Grayson et  al.  2010; Wahren et  al.  2012; 
Palmer and Smith 2013; Marshall et al. 2014; Dixon et al. 2016; 
Gao et al. 2016; Alaoui et al. 2018; Gunnell et al. 2019; Wilkinson 
et al. 2019; Bond et al. 2022; Monger et al. 2024).

Evidence has shown that interventions such as those described 
above can potentially reduce and slow overland flow by locally 
increasing soil saturated hydraulic conductivity, the depth of the 
soil water table, and surface roughness. For example, results of 
experimental studies at the hillslope scale have shown that re-
placing grazed grassland with broadleaf woodland on hillslopes 
significantly increases saturated hydraulic conductivity and 
provides the soil with increased capacity to store rainfall by re-
ducing soil compaction and bulk density and increasing depths 
of the soil water table (Marshall et al. 2009; Archer et al. 2013; 
Murphy et  al.  2020), thus achieving a reduction in overland 
flows (Marshall et al. 2014; Bond et al. 2022). Modelling stud-
ies by Gao et al.  (2016) and Goudarzi et al.  (2021) highlighted 
that upland peat restoration, including both revegetation and 
gully blocking interventions, is effective in increasing static and 
kinematic storage of rainfall in the implementation area to re-
duce and delay flood peaks, and such evidence has been sup-
ported in a field experimental study (Shuttleworth et al. 2019). 
Critically, the reduction of overland flow velocities by increasing 
surface roughness can yield reduced discharge peaks (Holden 
et al. 2008; Roni et al. 2015; Bond et al. 2020, 2022). Soil aera-
tion, which is the process of mechanically piercing the soil to 
enhance porosity, has also been shown to be effective in enhanc-
ing infiltration to reduce overland flow by increasing topsoil 
saturated hydraulic conductivity (Franklin et  al.  2007; Alaoui 
et al. 2018; Wallace and Chappell 2019).

While a few NFM studies have been based on field experimental 
data, these have been at the plot or small catchment scale (Kay 
et al. 2019; Kumar et al. 2021; Zhu et al. 2024). The majority of 
studies of NFM effectiveness have been conducted using mod-
elling and have focused on a specific NFM intervention. Most 
information from modelling studies is limited by the lack of un-
derstanding of the upscaling impacts from the local scales of in-
tervention implementation to catchment scale, and the modelling 
approaches vary in accuracy and complexity (Kumar et al. 2021; 
Hill et  al.  2023). From previous modelling studies of multiple 
NFM interventions, conflicting conclusions have been obtained 
for different modelling approaches, resolution, and catchment 
scale. For example, in a study of the 98 km2 Lymington River 
catchment in southern England, the simplified spatially distrib-
uted OVERFLOW model (20 m resolution) showed up to a 20% 
peak reduction by increasing mature floodplain forest to 20%–
35% of the area, with greater effects from additional reforesta-
tion and sub- catchment desynchronisation (Dixon et al. 2016). 
Metcalfe et  al.  (2018) used the semi- distributed Dynamic 
TOPMODEL with NFM interventions which enhanced hillslope 
storage lumped in several hydrological response units (HRUs) 
for a 223 km2 catchment, reducing peak flow by a median of 
5.8% and a maximum of 17.3% during one storm. The same 
model was coupled with the floodplain hydrodynamic model, 
JFlow (2 m resolution) to assess land management and peatland 
restoration interventions, including a runoff attenuation feature 
(RAF) in a 15 km2 catchment, showing a 4% ± 2% flow reduc-
tion (Hankin et al. 2019). Dynamic TOPMODEL coupled with 
HEC- RAS 2D (5 m resolution) showed up to 25% surface flow 

reduction from a combination of afforestation and in- channel 
barriers in an 18 km2 catchment (Ferguson and Fenner 2020). 
The Generalised Multistep Dynamic TOPMODEL (2 m resolu-
tion) was employed to model peatland restoration scenarios in a 
25 km2 catchment, showing a high likelihood of > 5% peak dis-
charge reduction (Goudarzi et al. 2024). Although these model-
ling results all demonstrate effective flood mitigation by NFM, 
the differences in the implementation of interventions in each 
catchment, such as intervention types, locations and area, and 
the differences in the complexity, spatial resolution and model-
ling scale of each model make it difficult to compare NFM bene-
fits under the same criteria.

Using modelling to understand the impacts of types, location, 
and size of interventions, and the combination of interven-
tions, is important for NFM research (Bond et  al.  2022; Hill 
et  al.  2023; Kingsbury- Smith et  al.  2023; Peskett et  al.  2023; 
Monger et al. 2024). Modelling could be used to support invest-
ment decisions, especially via the assessment of NFM from an 
integrated catchment perspective with single and mixed types 
of interventions. The number of UK NFM studies that have 
investigated multiple interventions and achieved valid flood 
mitigation results (10 articles) is less than those that have only 
investigated a single intervention (24 articles) (Zhu et al. 2024). 
Implementation of single or a combination of interventions 
can be effective at larger catchment scales than the evidenced 
20 km2 limit proposed by Dadson et al. (2017) and increases the 
resilience of NFM by combining it with other forms of flood 
management interventions (e.g., leaky dams and runoff atten-
uation features) (Black et al. 2021). All NFM interventions have 
the potential to influence the synchronisation of flood peaks 
across tributaries in the catchment (Thomas and Nisbet 2007; 
Pattison et al. 2014). During large storms, multiple interventions 
yielded less peak reduction and no peak timing impacts com-
pared to a single intervention due to the increased likelihood 
of peak synchronisation (Dadson et al. 2017; Kingsbury- Smith 
et al. 2023; Metcalfe et al. 2018). However, empirical evidence 
addressing positive or negative effects of the type of combined 
interventions, location, and area on NFM effectiveness at a large 
catchment scale remains very scarce.

Ideally, a modelling study for NFM effectiveness requires a 
model with sufficient spatial resolution to simulate all land 
and soil management interventions yet which is simplified 
enough to efficiently simulate storms with different charac-
teristics at larger catchment scales. The Spatially Distributed 
TOPMODEL (SD- TOPMODEL) used in this study meets these 
requirements (Gao et al. 2015). SD- TOPMODEL has been used 
to demonstrate flood peak reductions varied across catchments 
for different types of NFM interventions. Peatland revegetation 
scenarios tested (20 m resolution) in an 84 km2 upland catch-
ment with peatland headwaters showed a 4%–15% reduction 
in flood peaks (Gao et  al.  2017). Hillslope grassland manage-
ment scenarios achieved up to 42% reduction in overland flow 
peaks in a predominantly grassland- covered upland catchment 
(21 km2), where afforestation intervention was most effective 
(Bond et al. 2022). Woodland planting scenarios demonstrated 
up to 15.3% reduction in flood peaks in a 2.62 km2 steep upland 
catchment predominantly covered by unimproved grassland 
and semi- natural woodland (Monger et  al.  2024). Kingsbury- 
Smith et al.  (2023) used the model in a 38 km2 predominantly 
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rural upland catchment for several single intervention scenar-
ios, such as woodland and hedgerow planting, riparian buffer 
strips, soil aeration, and a combination of all these interven-
tions. SD- TOPMODEL has been validated to effectively simu-
late rainfall- runoff processes in steep upland catchments with 
land and soil management measures (Gao et  al.  2018; Bond 
et al.  2022), and the resolution has been improved from 20 to 
5 m to enable representation of a wider variety of NFM interven-
tions (Bond et al. 2022; Kingsbury- Smith et al. 2023). However, 
further testing of different combinations of NFM interventions, 
storm characteristics, and catchment antecedent conditions 
by using SD- TOPMODEL at larger catchment scales is still re-
quired, as SD- TOPMODEL has not been applied to catchment 
scales > 50 km2 at a fine resolution of 5 m.

Although no significant correlation between rainfall intensity 
and NFM effectiveness was identified in both our review and 
previous modelling studies, the response of different NFM in-
tervention types to varying rainfall intensities remains vari-
able (Gao et  al.  2018; Ferreira et  al.  2020; Kingsbury- Smith 
et al. 2023; Zhu et al. 2024). Notably, there is a research gap re-
garding the potential impacts of different rainfall event charac-
teristics, such as single-  versus multi- peaked events, in addition 
to rainfall intensity (Hankin et al. 2020). Furthermore, catch-
ment antecedent conditions may influence NFM effectiveness 
(Wallace and Chappell 2019; Bond et al. 2020). The influence of 
these factors on NFM effectiveness has been investigated in this 
modelling study.

To investigate and validate whether SD- TOPMODEL can ac-
curately represent and model soil infiltration rates, soil storage 
capacities, and surface roughness in the catchment as a result 
of NFM implementation, three main NFM interventions in the 
catchment were selected for this study. They are afforestation 
(woodland planting), soil aeration, and hedgerow planting. 
In this study, SD- TOPMODEL is used to simulate these NFM 
interventions impacting soil hydrological functions and sur-
face roughness during high- flow events at a catchment scale. 
The aim is to calibrate and validate the model with parameter 
choices supported by evidence from previous empirical studies 
and improve model performance to gain a full understanding of 
NFM effectiveness. The land cover and NFM scenarios were ap-
plied to compare different combinations of NFM interventions 
and how they interacted with seven observed storms with dif-
ferent characteristics at a catchment scale.

2   |   Data and Methods

2.1   |   Study Site

The Upper Aire catchment is a 370.8 km2 upland catchment in 
northern England (Figure  1). Following extensive flooding in 
2015, which exceeded a 200- year return period at the Armley 
gauging station (located in the city of Leeds, Figure 1b), multiple 
NFM interventions (woodland planting, hedgerow planting and 
soil aeration) have been implemented to slow runoff response 
to rainfall and increase surface and subsurface water storage 
in off- channel areas across the catchment (Figure  1c) (Leeds 
City Council  2024; Upper Aire Project  2024). The Upper Aire 
Catchment to Gargrave (~81.4 km2) was chosen as the study site, 

as it encompasses a significant proportion of these interventions, 
which also have well- documented records about their locations 
and nature (Yorkshire Wildlife Trust, 2022). The catchment 
also benefits from reliable river gauging data at Gargrave. The 
Gargrave station is located on the main channel of the River 
Aire, and its catchment area is dominated by a rural hilly land-
scape with a maximum elevation difference of 467 m.

The catchment is dominated by improved grassland (49.7%), fol-
lowed by calcareous grassland (18.7%), acid grassland (12.1%) 
and heather grassland (10.4%), bog (3.7%), broadleaf wood-
land (1.9%) and coniferous woodland (1.0%) (CEH 2015). Soils 
are mainly fine or coarse loamy, slowly permeable loamy and 
clayey, very shallow loamy, or well- drained silty soils over lime-
stone (NATMAP  2016), resulting in high spatial variability in 
soil depth. The underlying geology is dominated by carbon-
iferous limestone, along with sandstone, mudstone, and shale 
(NATMAP  2016). The area experiences a mean of 220 days of 
rain, with 1510 mm of mean precipitation annually (Upper Aire 
Project 2024).

2.2   |   Spatially Distributed Rainfall- Runoff Model: 
SD- TOPMODEL

To investigate the influence of land cover changes and NFM 
interventions on flood response at the catchment scale, SD- 
TOPMODEL was used (Gao et  al.  2015). SD- TOPMODEL 
is a spatially distributed version of the original lumped or 
semi- distributed TOPMODEL (Beven and Kirkby  1979). Gao 
et al.  (2015) developed the model by downscaling the original 
TOPMODEL equations from the catchment scale to grid cell 
equations. It has the advantage of allowing each grid cell to be 
saturated at different times based on the local wetness by using 
precipitation, slope, and soil water depth in each cell. The over-
land flow module uses the multiple- direction flow theory of 
Quinn et al. (2006) with a dynamic velocity parameter related 
to surface roughness to conduct overland flow directions and 
rates in each grid cell. This facilitates the representation of hy-
drological variability across the land surface and shallow sub-
surface conditions by adjusting parameters within each grid 
cell. This high- resolution capability enables the inclusion of 
spatially specific NFM interventions. The model is also well 
suited to simulate extreme rainfall events in catchments with 
steep topography and shallow soils (Gao et al. 2015, 2016; Bond 
et  al.  2022; Kingsbury- Smith et  al.  2023; Monger et  al.  2024); 
thus, it is ideal for use in the Upper Aire catchment for the NFM 
effectiveness study.

SD- TOPMODEL can deliver three catchment outlet outputs 
at each timestep: overland flow, shallow subsurface flow, and 
the total of overland and subsurface flow outputs. Three key 
parameters are employed in SD- TOPMODEL to represent 
the catchment physical properties: overland flow velocity, Kv 
equals 1/n where n is the surface roughness, soil hydraulic 
conductivity Ks, and soil active water storage depth m (Gao 
et  al.  2015). To increase the efficiency of SD- TOPMODEL 
for simulating extreme rainfall events, the model is writ-
ten in C++ language and was batch run on the ARC High- 
Performance Computer (HPC) platform at the University 
of Leeds.
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2.2.1   |   Data Sources

An Ordnance Survey 5 m digital terrain model (DTM) was used 
for the Upper Aire catchment (Ordnance Survey 2022). The 2015 
England Land Cover Map (CEH 2015) and the National Soil Map 
(NATMAP) were provided as vector datasets at the same resolu-
tion (5 m) to represent land cover, vegetation, and soil types. The 
resolution used was the highest possible as determined by data 
availability and limitations of model run time (maximum 48 h of 
HPC platform runtime).

For rainfall data, 15- min measured precipitation (mm) from 
the Malham Tarn station (Figure  1) from January 2012 to 
January 2022was used (Environment Agency, 2022). 15- min 
observed river flow (m3/s) was obtained from the Gargrave and 
Armley gauge over the same period (Environment Agency, 
2022). Within the 10- year dataset, storm events were selected 
using the POT method in Extreme Value Analysis (EVA) 
(Leadbetter  1991), identifying high- flow events, and includ-
ing multiple occurrences within a year. The Python package 
‘pyextremes’ (https:// georg ebv. github. io/ pyext remes/  ) was 
utilised as a selection tool for this analysis, while return pe-
riods were calculated at the Armley station. 15 discrete flood 
events were initially identified, each exceeding the discharge 
threshold (40 m3/s) and having a time interval of more than 

7 days since the preceding rainfall event. We selected seven 
of these flood events that occurred in different months with 
varying rainfall intensities, durations, and return periods for 
observations at the Armley gauging station (which was used 
due to its urban fluvial flood risk location), which covered 
very common, common, uncommon, and rare flood events 
in the catchment (Table  1). Every event was initialised with 
a base flow derived from discharge data, which served as the 
overland flow input into the model. A 5- h warmup runtime 
was required for each grid cell to reach water balance within 
the catchment. To represent base flows under different an-
tecedent conditions, the warm- up period incorporated either 
0 mm per timestep (for dry conditions) or 0.2 mm per timestep 
(for wet conditions). Dry and wet antecedent conditions were 
defined from soil moisture reports (COSMOS- UK  2020) and 
the Hydrological Summary for the UK (CEH 2012–2020). This 
helped to categorise and understand the differences in flood 
mitigation effectiveness of different NFM intervention types 
for flood events with different antecedent characteristics.

2.2.2   |   Model 0 and Calibration

To establish a Model 0 (baseline model to start calibration) 
with optimal and spatially uniform parameter settings for the 

FIGURE 1    |    Study site: (a) location of study catchment in the UK; (b) Aire and Calder catchment; (c) study area upstream of Gargrave gauging 
station including land cover data from the UK 2015 landcover map, and locations of NFM interventions.
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catchment, model calibration was conducted for each of the 
seven observed storm events. Each model run had a 5- h spin up 
before the rainfall event and finished after discharge observa-
tions returned to base flow levels, with a timestep of 15 min and 
a cell size of 5 × 5 m. To enhance efficiency by reducing the num-
ber of calibration runs and computing time, parameter spaces 
were selected based on prior experience with SD- TOPMODEL 
testing and calibration, as outlined in Table 1a (Gao et al. 2015, 
2016; Kingsbury- Smith et al. 2023). For calibration, 150 simu-
lations were conducted for each event, totalling 1050 simula-
tions across seven events, using varying parameters with the 
intervals specified in Table  1. In previous studies which have 
applied SD- TOPMODEL, the Nash- Sutcliffe efficiency coeffi-
cient (NSE) was used as a criterion for evaluating and selecting 
the best performing model (Bond et  al.  2022; Gao et  al.  2017; 
Kingsbury- Smith et al. 2023; Monger et al. 2024). The best sim-
ulation and parameter setting for Model 0 were determined for 
each event based on the highest NSE value and minimal differ-
ences in flood peak discharge and timing compared to obser-
vations (Table  1b). Following this, despite some discrepancies 
in the best- fit parameters for Events 2, 6, and 7, the parameters 
can be constrained to the following ranges: m (0.006–0.01); Ks 
(100–200); Kv (25–30). A generic parameter setting that can be 
used to represent the entire catchment was derived through 
100 Monte Carlo tests run for each of the seven events using the 
narrowed range. The model was considered credible when NSE 
values exceeded 0.5 (Moriasi et  al.  2007). However, NSE has 
been shown to be potentially insensitive to low and peak flows 
in assessing model errors (Althoff and Rodrigues  2021), thus, 
the absolute peak error and peak error percentage were also 
considered. This generic parameter setting serves as Model 0 
which does not account for the spatial distribution of land cover 
or variations between event years resulting from NFM imple-
mentation and land cover changes. Model 0, with uniform pa-
rameters, achieved NSE values exceeding 0.6 for all events, with 
peak discharge errors limited to no more than 32% of observed 
values. The best- fit model during baseline calibration attained 
an NSE of 0.92, aligning with the performance reported in pre-
vious studies (Bond et al. 2022; Gao et al. 2017; Kingsbury- Smith 
et al. 2023; Monger et al. 2024). Once the parameter setting was 
determined, all subsequent model runs used this set of baseline 
parameter values.

2.2.3   |   Data for Determining Parameter Values

The model was applied for different NFM interventions. This 
study attempts to calibrate three parameters of SD- TOPMODEL 
to larger catchment scales and more complex combinations of 
existing NFM interventions. There are two formats to input pa-
rameters in SD- TOPMODEL used in this study: (1) a parameter 
file which displays baseline values of each parameter conducted 
by Model 0 calibration (see section 2.2.2); (2) a spatially distrib-
uted map for all three parameters based on land cover and NFM 
interventions to apply to the baseline values.

To represent the spatially distributed parameters, each parame-
ter was individually spatially distributed on the base map to as-
sign the parameter to each grid cell at the same resolution as the 

elevation data and the entire model. During the model run, the 
values within each grid cell of each parameter distribution map 
were calculated as multipliers on the baseline values (as the im-
proved grassland land cover, due to its dominance in the catch-
ment) (Bond et al. 2022; Kingsbury- Smith et al. 2023; Monger 
et al. 2024). The calibration ranges for these values were deter-
mined with reference to previous empirical studies (Table  2). 
The upper and lower limits specified by the measured ratios 
allow the model to be more realistic, but are also constrained by 
the physical meaning of them.

2.2.4   |   Calibration for Land Cover, NFM Interventions 
and Model Validation

This section describes the process of incorporating land cover 
and NFM interventions into the hydrological model through the 
spatial distribution of parameter multipliers, which were cali-
brated using an observed event (Event 1) based on Model 0. Land 
cover (based on CEH land cover map 2015) included broadleaf 
woodland, coniferous woodland, calcareous grassland, and acid 
grassland, and NFM scenarios consisted of three implemented 
interventions in the research catchment: hedgerow planting, 
woodland planting, and soil aeration. Spatially distributed mul-
tipliers of each parameter (Table 2) were applied to Model 0 (uni-
form parameters) to represent these scenarios.

The multipliers summarised in Table  2 showed high variabil-
ity in woodland and grassland land cover types. The range of 
parameter choices was informed by the results of the previous 
empirical studies while also considering the baseline values 
for the study catchment and the limit of parameter settings in 
the model. Event 1 from 2015 was used for parameter testing, 
as the shape of the hydrograph for this event is characterised 
by concentrated rainfall and a single flood peak and is particu-
larly relevant for parameter testing since the model's land cover 
map also corresponds to 2015, making it the most representative 
event. Sensitivity tests using Event 1 were conducted within the 
valid parameter test ranges detailed in Table 2. For land cover 
types, the aim was to identify the most accurate set of parameter 
multipliers for each type, while for NFM interventions, it was to 
identify the most sensitive parameter set.

Sensitivity tests were conducted using fixed intervals where 
parameters were selected and paired within the multiplier test 
range for five sets of tests (Table 2): (1) in land cover tests, Ks val-
ues were tested at intervals of 2, which paired with Kv values at 
intervals of 0.1 and 0.15 for woodlands, with m tested at values 
of 1 and 1.5; (2) in grassland scenarios, Ks was tested at intervals 
of 1 and Kv at intervals of 0.1; (3) in NFM scenarios, Ks values 
were tested at intervals of 2 to represent hedgerow planting; (4) 
for woodland planting, Ks was tested at intervals of 0.5 and Kv at 
intervals of 0.1 and 0.15, while m was tested at values between 1 
and 1.5; (5) soil aeration scenarios involved testing m at intervals 
of 0.25 and Ks at intervals of 1. The land cover tests identified 
parameter multipliers that optimised model accuracy for each 
grassland and woodland type by assessing the correlation with 
NSE values. After calibrating the multipliers for the 2015 land 
cover map to achieve the best NSE values for Event 1 (closest 
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to 1), all calibrated values were integrated into the land cover 
model. For the NFM intervention tests, calibration prioritised 
maximum flood peak reduction with minimal NSE decrease 
to ensure intervention effectiveness and maintain the rainfall–
runoff relationship established in Model 0, thereby preserving 
model reliability. Optimal multipliers were applied to represent 
single and combined NFM scenarios, calibrated to achieve max-
imum flood mitigation without compromising model accuracy. 
Final parameter settings are shown in Table 3. Pearson correla-
tion analysis, conducted in SPSS after confirming the normal 
distribution of the dataset, was used to assess the relationship 
between NSE and parameter values in land cover tests, and 
between peak reductions and parameter values in NFM inter-
vention tests. Correlation strength was evaluated using Cohen's 
guidelines (r > 0.5 = notable effect) (Cohen  1988). Correlation 
analysis was employed to assess the model's sensitivity to the 
parameters and to explore the pattern of SD- TOPMODEL's re-
sponse to parameter multiplication for adding spatially distrib-
uted land cover and NFM interventions to the spatially uniform 
Model 0. This analysis identified parameter sensitivity patterns, 
reduced model uncertainty, and prevented multiple parameter 
choices from yielding similar model performance.

For model validation, discharge results after land cover was 
applied to the spatially uniform Model 0 were compared with 
observed flow rates from the Gargrave gauging station for the 
seven events used for calibration and three additional events 
(two with wet conditions and one with a dry condition) from the 
15 discrete flood events identified above. Validation involved 
calculating NSE values (Table 4) and assessing the fit of flood 
peak discharge and arrival times. Following validation, NFM 
scenarios were applied to the land cover model, and flood peak 
reduction effectiveness was assessed by comparing results with 
the land cover model. A radar plot quantified the area and flood 
mitigation effects of each scenario using quantile comparisons. 
Results were grouped by event characteristics (single/multi- 
peaked and dry/wet catchment conditions) and scenario charac-
teristics (single/multiple interventions) to evaluate their impacts 
on flood mitigation effectiveness.

3   |   Results

3.1   |   Sensitivity Tests

3.1.1   |   Correlation Analysis for Model 
Calibration—Land Cover and NFM Interventions

The sensitivity of different land cover types to the three pa-
rameters' multipliers varied, and a significant correlation ex-
isted between Ks, Kv and model performance. As shown in 
Figure  3a, surface roughness Kv was significantly positively 
correlated with NSE values (r = 0.918, p < 0.001) as the NSE 
values increased with the increasing Kv values, but not with 
soil hydraulic conductivity Ks (r = 0.303, p = 0.195). NSE val-
ues increased until Ks multiplier reached 6 after which they 
were no longer affected by Ks. This indicates that for wood-
land land cover types, including broadleaf woodland and co-
niferous woodland, the model fit improved with a marginal 
increase in surface roughness. Thus, the best fit of the model 
(the maximum NSE values) for woodland land cover types was 
achieved when Kv decreased by 0.75 times and Ks increased 
by 8 times (as highlighted in Figure 2a). Multiplier values of 
1.5 or 2 for soil active water storage depth m did not affect the 
correlation patterns between Ks, Kv and model fit. Choosing 
the multiplier of 1.5 reduced the impact of model performance 
caused by parameter changes, while a multiplier of 2 increased 
the standard deviation of NSE results in general.

As highlighted in Figure 2b for grassland land cover types (cal-
careous grassland and acid grassland), Ks (r = −0.650, p < 0.01) 
was more strongly correlated to NSE values than Kv to NSE 
(r = 0.625, p = 0.01). The correlation between Ks and NSE tended 
to arc and had a relative peak when the Ks multiplier was 3. The 
relationship between Kv and NSE values was consistent with 
the above results of woodland tests, that is, increases in surface 
roughness led to better model fit. Thus, the model fit of grass-
land land cover types was significantly correlated with both Kv 
and Ks. The best model fit was achieved when Ks increased to 3 
times that of Model 0 and Kv increased marginally from Model 0. 
Similar to the woodland results, m had no significant correlation 
to the model fit of grassland scenarios. Overall, the parameter 
multipliers for woodland and grassland scenarios were chosen 
using the highest NSE values achieved in the sensitivity tests.

For the NFM interventions, the same sensitivity tests were used 
to find the most effective combination of parameter multipliers 
to represent three NFM interventions. All NFM scenarios were 
applied to the land cover, and their test results were compared 
with the Model 0 results. As shown in Figure 3, none of these 
parameter tests caused a significant decrease in the NSE values 
from Model 0, indicating that the test did not affect model per-
formance. Thus, correlation analysis for NFM scenarios was fo-
cused on comparing the effects on flood peaks.

Among the three NFM interventions, there was no significant 
pattern among Ks, NSE values, peak discharge differences, and 
peak arrival time differences for hedgerow planting. The great-
est flood peak reduction occurred when Ks reached 10 times the 
baseline value, suggesting this as the most effective multiplier 
for hedgerows. For woodland planting, test results were first 

TABLE 3    |    Final parameter multiplier settings after sensitivity 
testing.

Land cover class

Parameter multipliers

m Kv Ks

Broadleaf woodland 1.5 0.75 8

Coniferous woodland 1.5 0.75 4

Improved grassland (baseline) 1 1 1

Calcareous grassland 1 0.8 3

Acid grassland 1 0.8 3

NFM interventions

Hedgerow 1 0.5 10

Woodland (new planted) 1.5 0.6 2.5

Soil aeration 1.5 1 4
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compared between m multiplier of 1.5 and 2. While the multi-
plier of 2 reduced mean flood peak discharge by 0.58 m3/s and 
delayed mean peak arrival time by 0.02 h, it increased variabil-
ity as the standard deviation increased. To maintain consis-
tency with the land cover tests described above, the multiplier 
was chosen as 1.5 to represent newly planted woodlands. Kv 
in woodland planting was strongly correlated with peak dis-
charge reduction (r = 0.900, p < 0.001), which indicates that the 

increase in surface roughness significantly reduced peak dis-
charge, while Ks changes had no significant impacts on peak 
reductions (r = −0.119, p = 0.712). When the multiplier of Ks 
was taken as 2.5, using a Kv multiplier of 0.5, 0.6, and 0.7 all 
increased the NSE values, with the multiplier of 0.6 resulting in 
the greatest reduction in peak discharge. For woodland plant-
ing, changes in Kv and Ks had no significant impact on peak 
arrival delay. For soil aeration, all parameter pairs increased the 

FIGURE 2    |    The model parameter multipliers: Surface roughness Kv and soil hydraulic conductivity Ks, plotted with NSE difference from Model 
0: (a) woodland, (b) grassland. Note the differences in axis limits between figures.

FIGURE 3    |    The model parameters: Surface roughness Kv and soil hydraulic conductivity Ks plotted with NSE difference and peak discharge dif-
ference from Model 0: (a) woodland planting, (b) soil aeration. Note the differences in axes limits between figures.
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FIGURE 4    |     Legend on next page.
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NSE value. The most effective flood reduction test results were 
chosen (Figure 3b). An increase in m significantly reduced peak 
discharge (r = −0.619, p = 0.014), and an increase in Ks slightly 
reduced peaks (r = −0.646, p < 0.01) (Figure  3b). Finally, a pa-
rameter pair that maximised flood reduction and maximised 
the NSE value was chosen for soil aeration. Final parameter 
multipliers for land cover and NFM interventions are shown in 
Table 3.

3.1.2   |   Sensitivity of Peak Changes—Land Cover 
and NFM Interventions

For peak discharge reduction and arrival time delay in land 
cover tests, Kv was significantly correlated with peak discharge 
reduction for woodland (r = 0.959, p < 0.001) and grassland land 
cover types (r = 0.750, p < 0.001), but not with peak arrival time. 
Ks and m showed no correlation with peak changes. This in-
dicates that surface roughness increases via woodland and 
grassland land cover significantly reduced peak discharge. For 
Event 1, woodland land cover attenuated mean peak discharge 
by 1.35% (SD = 0.84%) and delayed arrival by 0.3 h (SD = 0.1 h). 
Grassland land cover reduced mean peak discharge by 3.6% 
(SD = 1.6%) but had no peak delay (0 h; SD = 0.17 h). Therefore, 
woodland was more effective at delaying peaks, while grassland 
had a greater effect on peak discharge reduction.

Parameter test results for all three NFM interventions (sec-
tion 3.1.1) revealed sensitivity in reducing peak discharge com-
pared to the Model 0 results for Event 1. Woodland planting and 
soil aeration decreased flood peaks by a mean value of 0.731 m3/s 
(1.15%) and 0.883 m3/s (1.40%) respectively, showing greater sen-
sitivity than hedgerows. However, none of the three NFM inter-
ventions had a significant impact on flood peak delay.

3.2   |   Model Performance: Robustness 
and Accuracy

To calibrate and validate the model, NSE values and peak fit results 
were evaluated for the baseline and land cover models (Table 4). 
While NSE values for some events in the land cover model were 
lower than in Model 0 with spatially uniform parameters, this did 
not indicate that land cover reduced model accuracy. Since the 
study focuses on flood peaks, the accuracy of peak fits was deemed 
more important. Hydrographs for Event 1 (Figure 4a) showed that 
the land cover model increased low flows at the start of the event 
and reduced peak flows, providing a better fit than Model 0.

Peak fits were assessed by comparing maximum flood peaks 
and arrival times to observations for Model 0 and the land cover 
model, respectively (Table 4). The land cover model had a better 
fit for peak discharge but not for arrival times. When comparing 
the total runoff and overland flow time series data in the model 
results, there was a difference in peak arrival times, as illustrated 

in Figure 4. These biases were from 0 to 2.5 h in several events. It 
is likely that the bias may be due to model characteristics and does 
not represent an error in the model results. Moreover, it was veri-
fied that the difference between the peak arrival times of overland 
flow time series in the land cover model and observations was neg-
ligibly small (Table 4) and did not affect subsequent NFM scenario 
results. This is the reason why only overland flow discharge data 
were used for the analysis of the NFM scenario results.

3.3   |   NFM Scenarios

After obtaining all parameter expressions as shown in Table 3 
through sensitivity testing, all land cover and NFM scenarios 
were put into the model and run for all seven storm events. 
There was variability in the effectiveness of the different NFM 
interventions for each storm event and the impact of the differ-
ent events on NFM scenarios. The details of overland flow re-
sults for NFM scenarios were compared to overland flow results 
for the land cover model as detailed below.

3.3.1   |   Impacts of Single Intervention Scenarios

The soil aeration intervention was implemented across the larg-
est proportion of the study catchment (6.40%), which is much 
higher than the area of the other two interventions: woodland 
planting (0.61%) and hedgerow planting (1.30%) (Figure  1). 
The axes of the radar plot (Figure 5) represent the quartiles of 
peak discharge reduction and area proportion. Notably, Event 4 
showed the highest flood peak reduction percentage compared 
to other events (Figure 5a). The overland flow peak reduction ef-
fect of the single intervention scenarios varied. Discharge reduc-
tion by soil aeration was largely proportional to the increase in 
area of implementation. The results showed that the discharge 
reductions achieved by soil aeration interventions were consis-
tently above the 50th quantile for peak reduction in Figure 5b. 
Woodland planting represented the smallest area yet achieved 
effective flood peak reduction in all events. This contrasts with 
the results for hedgerow planting. Although hedgerow plant-
ing increased Ks tenfold and doubled the Kv of baseline val-
ues, neither resulted in a significant reduction in flood peaks, 
with a maximum reduction of only 1.3% across all seven events 
(Table 5).

Consistent with the results of the previous parameter sensitiv-
ity tests of NFM scenarios for Event 1 (Figure 3), soil aeration 
was more sensitive in reducing peaks than woodland planting, 
but both had a greater effect than hedgerow planting (Figure 5). 
This was reflected in the mean values of overland flood peak re-
ductions calculated for seven events in Table 5. While the stan-
dard deviations of peak reductions across the seven events were 
relatively similar, hedgerows led to slightly higher peak flow 
variability compared to the other two interventions. The high 
standard deviation values indicated that the characteristics of 

FIGURE 4    |    Hydrographs comparing observations, Model 0, land cover model, and NFM scenarios for Event 1 (16- h storm event on 11/12/2015, 
45 h simulation duration without showing the first 5 h of precondition preparation) with inset showing close- up details of flood peaks; (a) total runoff, 
(b) overland flow discharge.

 10991085, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.70122 by U

niversity O
f L

eeds T
he B

rotherton L
ibrary, W

iley O
nline L

ibrary on [30/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



14 of 21 Hydrological Processes, 2025

the events may have contributed to the increased heterogeneity 
in the results of NFM scenarios. To better interpret the validity 
of different NFM scenarios, the results were analysed by group-
ing according to event characteristics: the shape of hydrographs 
(single or multi- peaked), the wet or dry preconditions of the 
catchment and their combinations (Figure 6). The grouped re-
sults showed that the same NFM interventions were less effective 
in reducing overland flow peaks in multi- peaked flood events 
compared to single- peaked events. The peak reduction driven by 
NFM interventions in dry conditions was approximately twice 
as effective as in wet conditions. NFM interventions can there-
fore have greater effectiveness under certain conditions, such as 
dry antecedence in soil during a single- peaked flood event.

3.3.2   |   Impacts of Combinations of Scenarios

Results from the single NFM intervention scenarios were com-
bined into pairs or with all three and tested for seven storm 
events. The overland flow peak reductions varied among differ-
ent combinations of NFM interventions (Table  5). Comparing 
the mean of reductions shows that the flood mitigation effec-
tiveness of the combined intervention scenarios is not simply 

equivalent to the sum of the effects of single intervention sce-
narios, where different combinations may have enhanced or 
reduced effects on the flood mitigation. For example, the mean 
overland flow reductions for the hedgerow & woodland planting 
combination and for the single woodland planting intervention 
were almost identical. However, for the hedgerow & soil aeration 
intervention combined, the mean discharge reduction increased 
by 0.4% compared to the single soil aeration intervention. These 
increases by combining hedgerow planting with another inter-
vention are all less than the mean discharge reduction of 1.8% 
that can result from the hedgerow planting intervention alone. 
The standard deviations in Table 5 are all between 3.5% and 4%, 
which are relatively high compared to the mean, indicating that 
the impact of the interventions varies widely between events.

Although there is a clear flood mitigation effect in each combi-
nation, not all events have a stronger peak reduction by combin-
ing NFM interventions. Figure 5 shows that the effectiveness of 
overland flow peak reduction varies among events. For example, 
the hedgerow & woodland combination (red line) achieved an 
overland flow peak reduction effect comparable to the propor-
tion of area implemented for all events except Event 5. This dif-
fered from the results for the woodland only scenario, where the 

FIGURE 5    |    Radar plot of overland flow peak reductions for single and combined NFM intervention applications among seven storm events (the 
axis labels are in percentage and axes were divided into quartiles); (b) excluded Event 4 from (a).
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inclusion of the hedgerow intervention significantly increased 
peak mitigation in Event 4 but had the opposite effect in Event 
5. The soil aeration intervention was the most effective of the 
single interventions despite being applied to the smallest pro-
portion of the catchment and had positive interaction effects 
when woodland or hedgerow planting were combined with it 
among all seven events. The combination of woodland and soil 

aeration had a more effective overland flood peak reduction ef-
fect than the combination of hedgerow and soil aeration in five 
events. The combination of three interventions resulted in the 
maximum peak reduction, except in Event 2 where the effect 
was slightly lower than that of hedgerow & soil aeration and 
woodland & soil aeration combinations and in Event 6 where 
the effect was slightly lower than that of the woodland & soil 

FIGURE 6    |    Overland flow peak reduction (%) grouped by characteristics of flood events. (a) and (c) single intervention, (b) and (d) multiple 
interventions.
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aeration combination. Thus, even though the addition of wood-
land planting and soil aeration interventions to the combina-
tions was effective in peak reduction, there were still differences 
in response to different storm events. Comparing Figure  6 (a) 
and (b) for event groups, the increase in the median under all 
four groups shows that multiple interventions enhanced the 
overland flow peak reduction effect overall. A similar finding is 
shown in Figure 6 (c) and (d), where multiple interventions were 
effective at enhancing NFM performance under unfavourable 
conditions, such as multi- peaked events and wet soil conditions. 
Thus, the weakening of NFM effectiveness due to multi- peaked 
flooding and wet conditions was less pronounced under multi-
ple interventions compared to a single intervention.

In scenario tests, overland flow peaks were delayed in arrival by 
up to 0.5 h. Several scenarios had overland flow peaks that were 
advanced by one timestep (0.25 h) in some events. Hedgerow & 
woodland, woodland & soil aeration, and all three interventions 
scenarios resulted in no advance in overland flood peak arrival 
time among the events. Overall, the mean delay for each sce-
nario across the seven events ranged between 0 and 0.18 h. The 
mean delays for soil aeration and woodland planting were the 
same, but woodland planting had a smaller standard deviation, 
suggesting less individual variation among events. The hedge-
row planting scenario had no effective peak delay compared to 
the other scenarios. The mean delays for various combinations 
of scenarios generally followed the pattern of the overland flow 
peak reductions: adding soil aeration and woodland planting to 
any interventions increased the delay slightly, while the combi-
nation of three interventions resulted in the greatest delay.

4   |   Discussion

This study used SD- TOPMODEL to investigate the impacts of 
different land cover types and NFM interventions at an 81.4 km2 
catchment. These effects include impacts on model accuracy 
and performance, flood peak reduction and arrival time delays, 
and impacts on the interaction of subsurface and overland flows. 
In general, it was found that SD- TOPMODEL can efficiently and 
accurately simulate different types of NFM interventions at 
this catchment scale, validated against multiple storm events, 
while allowing high resolution (5 m) spatial distribution. The 
modelling results indicated that multiple interventions were not 
always the most effective. Event characteristics and antecedent 
conditions played a significant role in determining the level of 
flood mitigation.

4.1   |   Evaluating Model Parameters and Model 
Performance

In the parameter calibration and validation of the model, the 
evaluating criteria are dynamic, including model fit metrics 
(e.g., NSE values) and flood peak reduction, which are adapted 
based on the objectives of each calibration scenario. Multi- 
objective optimization has been justified to improve compro-
mised solutions and enhance the hydrological consistency of 
parameter settings (Dung et al. 2011; Wöhling et al. 2013; Shafii 
and Tolson 2015; Althoff and Rodrigues 2021). A multi- objective 
calibration approach is needed for the accuracy of the simulation 

as indicated by the NSE values and the effectiveness against 
flood mitigation in this study, which depend on the purpose 
of the test (Efstratiadis and Koutsoyiannis 2010). For example, 
during the calibration of parameters for land cover types, re-
sults indicated that increasing surface roughness was the most 
effective factor in reducing peak discharge, but the multipliers 
with the least amount of change within the range were chosen. 
This is because the best model accuracy (NSE values closer to 
1) was achieved when the roughness parameter was increased 
by the least amount. The land cover model aims to determine 
the best fit to the actual land cover distribution by comparing 
to observations; thus, NSE values were more critical criteria for 
the land cover model. On the contrary, in the NFM scenarios, 
while the NSE values were used as criteria for model stability, 
the determination of the parameter values depended on the best 
flood peak reduction that could be achieved with similar NSE 
values. This dual- objective approach aligns with the methods 
used in recent studies that emphasise balancing model stability 
with functional performance (e.g., flood peak reduction) (Shafii 
and Tolson 2015; Althoff and Rodrigues 2021). Future research 
could build on this strategy by exploring how different catch-
ment characteristics influence the trade- off between stability 
and effectiveness, potentially leading to the development of 
adaptive calibration frameworks tailored to specific hydrologi-
cal contexts.

4.2   |   Impacts of Land Cover Type and NFM 
Interventions on Flood Peak Reduction and Timing

Results from this study suggest that NFM interventions achieve 
maximum effectiveness during single- peaked storms, particu-
larly under dry antecedence. In previous modelling studies of 
NFM on flood peak reduction, it has been shown that the reduc-
tions vary between events, and that this is mainly related to event 
characteristics (Gao et al. 2016, 2018; Ferreira et al. 2020), partic-
ularly pre- event soil moisture (Wahren et al. 2012). Some stud-
ies also considered seasonal rainfall, which could be adjusted by 
model parameters (Gabriels et al. 2022). The seven events used 
in this study occurred in winter months from October to March 
and were grouped based on event characteristics and catchment 
antecedent conditions, allowing them to be compared by their 
impact on overland flow peak reduction (Figure 6).

Overland flow peak reductions delivered by NFM scenarios 
were not significantly different for high or low rainfall intensity 
events when rainfall was concentrated. The most prominent of 
these was Event 4, which resulted in a greater peak reduction 
than the other events in each of the single intervention scenar-
ios. This may be because Event 4 was a rapid flow event that 
occurred under dry antecedent conditions and had a much 
higher flood peak discharge than the other events. Overall, the 
results suggest that greater overland flow peak reduction occurs 
under dry antecedence compared to wet antecedence (Figure 6), 
which aligns with findings from other monitoring and model-
ling studies on land cover and land use (Bond et al. 2020; Breuer 
et al. 2009; Wallace and Chappell 2019). However, the sample 
size of events in this study is small, and further testing for rain-
fall varieties is needed in the future.
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The overland flow peak reduction obtained in this study for the 
three combined NFM interventions was in the range of 4.20%–
15.99%. We found modelling the effects of upland interventions 
on downstream runoff at a larger catchment scale (81.4 km2) did 
not yield significantly different results to other local scale mod-
elling studies (Bond et al. 2022; Hankin et al. 2019; Kingsbury- 
Smith et al. 2023; Monger et al. 2024). No significant correlation 
was observed between the peak reduction and rainfall inten-
sity, consistent with findings from the data synthesis by Zhu 
et al. (2024). The study with the closest results to ours also em-
ployed SD- TOPMODEL though at a lower resolution (20 m) and 
concluded that upland land management scenarios covering 
most of the catchment (84 km2) resulted in 3.9% to 15% flood 
reduction with various rainfall intensities (Gao et al. 2017). In 
contrast, our study used a higher resolution and covered all real-
istically existing land cover types, which is closer to the reality.

The closest catchment used for a published NFM simulation to 
that of the Upper Aire was for Bishopdale in northern England, 
a study which utilised SD- TOPMODEL and yielded flood peak 
reductions of up to 11% (Kingsbury- Smith et  al.  2023). Their 
study concluded that the scenario combining all types of NFM 
interventions across a large percentage of the 38 km2 catchment 
achieved the smallest peak reduction for a 100- year rainfall event 
and suggested that such an effect may be caused by increased 
synchronisation between small tributaries. This is contrary to the 
findings of our study in our larger catchment (81.4 km2), which 
showed that a combination of existing interventions (covering 
8.31% of the catchment) produced greater reductions in peak flow 
than any single intervention, including soil aeration (6.40% of the 
catchment), the largest and most effective individual intervention. 
The larger catchment scale of our study offers greater potential 
for a strategic distribution of multiple NFM interventions leading 
to desynchronisation of peak flows and achieving solid peak re-
ductions with a lower percentage of intervention areas. However, 
the differences in NFM modelling results between catchments 
and scenarios highlight the importance of modelling potential 
responses on a case- by- case basis for each individual catchment 
(Zhu et al. 2024). This is essential for the effective planning and 
implementation of a portfolio of catchment- based NFM interven-
tions both within the UK and internationally. Additionally, we 
tested observed rainfall events ranging from 1- year to over 200- 
year return periods and calibrated and validated the model using 
observed data, enhancing the model's credibility and realism. 
Another study conducted in Swindale in northern England used 
the Dynamic TOPMODEL combined with a 2D hydraulic model 
to find flow reductions of 2%–6% by NFM (Hankin et al. 2019). 
This suggests that even though the study is for a combination of 
NFM interventions and excludes differences in catchment size 
and rainfall intensity, the area and location of the interventions, 
the characteristic or precondition of the catchment, and the 
model used, as well as its resolution and parameter choices, all 
have an impact on the simulation results.

We also found that the flood reduction from different NFM 
combinations is not directly proportional to the sum of the 
areas where interventions were implemented. The hydrological 
response of NFM interventions is primarily attributed to the 
attenuation of the main flood wave travelling through the inter-
vention area (Dixon et al. 2016). When upscaling the study area, 
the peak flow reduction effects from different sub- catchments 

did not simply accumulate at the whole catchment scale (Pattison 
and Lane 2012). As a result, potential synchronisation between 
sub- catchments means that the NFM effect on peak discharge 
does not increase in direct proportion to the area and number 
of interventions implemented. These subtle differences in peak 
discharge make it challenging to isolate model uncertainty.

4.3   |   Implications for SD- TOPMODEL and NFM

There was a bias in the flood peaks in the three outputs of the 
model (total runoff, subsurface flow, overland flow), which is 
dictated by model characteristics. A lag time exists between the 
peak of total runoff and the peak of overland flow (Figure 4). The 
arithmetic mechanism of the model is to prioritise subsurface 
runoff and to start generating saturation- excess overland flow 
when the soil is saturated, and these flows are calculated sep-
arately in each grid and each timestep (Gao et al. 2015), which 
allows the model to fully represent the rainfall- runoff process 
within the topsoil. This procedure allows the model to output 
the amount of runoff from the subsurface and surface at each 
timestep and each grid. Thus, the model produces total runoff 
and overland flow rising and falling limbs at different times, and 
their delay lengths also vary between events (Figure 4).

The scenarios in this study significantly reduced total run-
off compared to the spatially uniform Model 0, while over-
land flow decreased and subsurface flow increased. Similarly, 
Monger et  al.  (2024) found that woodland scenarios critically 
affected the interactions of subsurface and overland flows in 
SD- TOPMODEL results and reduced total runoff. Increasing the 
woodland cover improved soil permeability, which increased 
subsurface flow and reduced its conversion to overland flow 
(Monger et al. 2022a, 2022b; Monger et al. 2024). Grasslands were 
found to have higher surface roughness and lower soil permea-
bility than woodlands (Bond et al. 2020; Monger et al. 2022b), 
which may influence overland flow more than subsurface flow 
in SD- TOPMODEL (Bond et  al.  2022). When land cover and 
NFM scenarios were applied, the subsurface flow increased at 
the beginning of storm events, which delayed the time before the 
onset of saturated- excess overland flow. This is because all sim-
ulated scenarios increase soil hydraulic conductivity and sur-
face roughness in general. Higher infiltration rates and longer 
infiltration times allow more water to be stored in shallow soils. 
Moreover, the land cover and NFM scenarios increase the effi-
ciency of the soil saturation process while increasing the active 
area of subsurface runoff in the catchment. Therefore, overland 
flow peaks are reduced by these scenarios. The simulation re-
sults of SD- TOPMODEL efficiently and accurately demonstrate 
the effectiveness of NFM.

5   |   Conclusions

Our study demonstrates a successful application of SD- 
TOPMODEL in a catchment (81.4 km2) at a 5 m resolution, 
achieving a strong fit to observed data, with NSE values reach-
ing up to 0.93 and minimal peak flow errors. In the modelling 
of land cover types in the study catchment, woodland was found 
to be more effective in delaying peaks, whereas grassland was 
more effective in reducing peak discharge. Among the existing 
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NFM interventions, soil aeration emerged as the most effective 
individual measure, achieving greater peak discharge reduc-
tion results than woodland planting and hedgerow planting. 
However, the effectiveness of NFM interventions was influ-
enced by flood and rainfall characteristics, as well as pre- event 
catchment conditions (wet or dry). Notably, greater flood peak 
reductions were observed during single- peaked events and in 
dry pre- event conditions. Furthermore, multiple interventions 
proved more effective and resilient than single interventions 
in attenuating floods at the catchment scale we examined. The 
results also revealed that the area and number of interventions 
were not decisive in flood mitigation. This finding presents an 
opportunity to strategically plan multiple NFM interventions 
at the catchment scale, enabling a trade- off between interven-
tion area and cost- effectiveness. Therefore, we recommend that 
high- resolution, spatially distributed modelling of more catch-
ments be undertaken to investigate the impact of catchment 
characteristics on the effectiveness of NFM. This would support 
the optimisation of spatial planning and enhance the integration 
of NFM with other flood risk management measures during the 
planning stage.
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