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Abstract  15 

While natural flood management (NFM) is becoming more widely used, there remains a lack 16 

of empirical evidence regarding its effectiveness. The primary uncertainties arise from two 17 

key aspects: first, the determination of NFM effectiveness is constrained by the relatively 18 

small catchment scales studied to date; second, the combination of multiple NFM 19 

interventions within a catchment may lead to flood peak synchronisation. In this study, both 20 

instream and terrestrial NFM interventions were modelled using a spatially distributed 21 

hydrological model, Spatially Distributed TOPMODEL (SD-TOPMODEL). To demonstrate 22 

how the scale and type of interventions interact to influence flood peaks, we integrated 23 

various NFM interventions and land cover changes, including woodland planting, soil 24 

aeration, floodplain restoration, and hedgerow planting. In comparison to previous versions 25 

of SD-TOPMODEL, we improved simulation efficiency to enable grid-based modelling of up 26 

to a 200-year return period flood event for an 81.4 km² catchment with 5 m resolution. 27 

Following extensive parameter calibration and validation, the model demonstrated stability 28 

and provided a reliable fit for flood peaks, achieving a Nash-Sutcliffe Efficiency coefficient 29 

of up to 0.93 between modelled and observed discharge. The results highlighted the 30 

effectiveness of NFM interventions in reducing flood peaks at the scale studied, particularly 31 

during single-peaked storm events and under dry pre-event catchment conditions. Moreover, 32 
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the combined use of multiple interventions was more effective and resilient than single 33 

interventions, with flood peak reductions ranging from 4.2% to 16.0% in the study 34 

catchment. 35 

 36 

Keywords: nature-based solutions, flooding, flood peak reduction, peak delay, hydrological 37 

modelling, sensitivity tests, parameterize, event characteristic 38 
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1. INTRODUCTION 40 

Natural flood management (NFM) is a flood mitigation strategy which aims to work with 41 

natural processes to restore and enhance catchment hydrological functions which limit flood 42 

risk and impact (Dadson et al. 2017; Cooper et al. 2021). In particular, NFM seeks to reduce 43 

and delay flood peaks by optimising the natural water retention function of the catchment and 44 

to mitigate the potential hazards of flood peaks (Lane 2017; Kay et al. 2019; Black et al. 45 

2021; Ellis et al. 2021; Kumar et al. 2021; Lashford et al. 2022). For example, altering the 46 

physical properties of soil that influence water movement and storage, such as porosity and 47 

permeability, can enhance subsoil water storage capacity and encourage infiltration to delay 48 

flood peak time and/or reduce peak discharge during a storm event. Soil properties might be 49 

altered directly through aeration and other soil management interventions or indirectly by 50 

implementing afforestation, reducing grazing intensity or delivering other ecological 51 

restoration practices (Grayson et al. 2010; Wahren et al. 2012; Palmer and Smith 2013; 52 

Marshall et al. 2014; Dixon et al. 2016; Gao et al. 2016; Alaoui et al. 2018; Gunnell et al. 53 

2019; Wilkinson et al. 2019; Bond et al. 2022; Monger et al., 2024).  54 

 55 

Evidence has shown that interventions such as those described above can potentially reduce 56 

and slow overland flow by locally increasing soil saturated hydraulic conductivity, the depth 57 

of soil water table and surface roughness. For example, results of experimental studies at the 58 

hillslope scale have shown that replacing grazed grassland with broadleaf woodland on 59 

hillslopes significantly increases saturated hydraulic conductivity and provides the soil with 60 

increased capacity to store rainfall by reducing soil compaction and bulk density and 61 

increasing depths of soil water table (Marshall et al. 2009; Archer et al. 2013; Murphy et al. 62 

2020), thus achieving a reduction in overland flows (Marshall et al. 2014; Bond et al. 2022). 63 

Modelling studies by Gao et al. (2016) and Goudarzi et al. (2021) highlighted that upland 64 

peat restoration, including both revegetation and gully blocking interventions, are effective in 65 

increasing static and kinematic storage of rainfall in the implementation area to reduce and 66 

delay flood peaks, and such evidence has been supported in a field experimental study 67 

(Shuttleworth et al. 2019). Critically, the reduction of overland flow velocities by increasing 68 

surface roughness can yield reduced discharge peaks (Holden et al. 2008; Roni et al. 2015; 69 

Bond et al. 2020; Bond et al. 2022). Soil aeration, which is the process of mechanically 70 

piercing the soil to enhance porosity, has also been shown to be effective in enhancing 71 



4 

 
 

infiltration to reduce overland flow by increasing topsoil saturated hydraulic conductivity 72 

(Franklin et al., 2007; Alaoui et al. 2018; Wallace and Chappell, 2019).  73 

 74 

While a few NFM studies have been based on field experimental data these have been at the 75 

plot or small catchment scale (Kay et al. 2019; Kumar et al. 2021; Zhu et al. 2024). The 76 

majority of studies of NFM effectiveness have been conducted using modelling and have 77 

focused on a specific NFM intervention. Most information from modelling studies is limited 78 

by the lack of understanding of the upscaling impacts from the local scales of intervention 79 

implementation to catchment-scale, and the modelling approaches vary in accuracy and 80 

complexity (Kumar et al. 2021; Hill et al. 2023). From previous modelling studies of 81 

multiple NFM interventions, conflicting conclusions have been obtained for different 82 

modelling approaches, resolution, and catchment scale. For example, in a study of the 98 km2 83 

Lymington River catchment in southern England, the simplified spatially distributed 84 

OVERFLOW model (20m resolution) showed up to a 20% peak reduction by increasing 85 

mature floodplain forest to 20-35% of the area, with greater effects from additional 86 

reforestation and sub-catchment desynchronisation (Dixon et al. 2016). Metcalfe et al. (2018) 87 

used the semi-distributed Dynamic TOPMODEL with NFM interventions which enhanced 88 

hillslope storage lumped in several hydrological response units (HRUs) for a 223 km2 89 

catchment, reducing peak flow by a median of 5.8% and a maximum of 17.3% during one 90 

storm. The same model was coupled with the floodplain hydrodynamic model, JFlow (2 m 91 

resolution) to assess land management and peatland restoration interventions, including a 92 

runoff attenuation feature (RAF) in a 15 km² catchment, showing a 4% ± 2% flow reduction 93 

(Hankin et al. 2019). Dynamic TOPMODEL coupled with HEC-RAS 2D (5 m resolution) 94 

showed up to 25% surface flow reduction from a combination of afforestation and in-channel 95 

barriers in an 18 km² catchment (Ferguson and Fenner 2020). The Generalized Multistep 96 

Dynamic TOPMODEL (2 m resolution) was employed to model peatland restoration 97 

scenarios in a 25 km2 catchment, showing a high likelihood of > 5% peak discharge reduction 98 

(Goudarzi et al., 2024). Although these modelling results all demonstrate effective flood 99 

mitigation by NFM, the differences in implementation of interventions in each catchment, 100 

such as intervention types, locations and area, and the differences in the complexity, spatial 101 

resolution and modelling scale of each model make it difficult to compare NFM benefits 102 

under the same criteria.  103 

 104 
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Using modelling to understand the impacts of types, location and size of interventions, and 105 

the combination of interventions, is important for NFM research (Bond et al. 2022; Hill et al. 106 

2023; Kingsbury‐Smith et al. 2023; Peskett et al. 2023; Monger et al. 2024). Modelling could 107 

be used to support investment decisions, especially via the assessment of NFM from an 108 

integrated catchment perspective with single and mixed types of interventions. The number 109 

of UK NFM studies that have investigated multiple interventions and achieved valid flood 110 

mitigation results (10 articles) is less than those that have only investigated a single 111 

intervention (24 articles) (Zhu et al. 2024). Implementation of single or a combination of 112 

interventions can be effective at larger catchment scales than the evidenced 20 km2 limit 113 

proposed by Dadson et al. (2017) and increases the resilience of NFM by combining it with 114 

other forms of flood management interventions (e.g. leaky dams and runoff attenuation 115 

features) (Black et al. 2021). All NFM interventions have the potential to influence the 116 

synchronisation of flood peaks across tributaries in the catchment (Thomas and Nisbet, 2007; 117 

Pattison et al., 2014). During large storms, multiple interventions yielded less peak reduction 118 

and no peak timing impacts compared to a single intervention due to the increased likelihood 119 

of peak synchronisation (Dadson et al. 2017; Kingsbury‐Smith et al. 2023; Metcalfe et al. 120 

2018). However, empirical evidence addressing positive or negative effects of the type of 121 

combined interventions, location, and area on NFM effectiveness at a large catchment scale 122 

remains very scarce.  123 

 124 

Ideally, a modelling study for NFM effectiveness requires a model with sufficient spatial 125 

resolution to simulate all land and soil management interventions yet which is simplified 126 

enough to efficiently simulate storms with different characteristics at larger catchment scales. 127 

The Spatially Distributed TOPMODEL (SD-TOPMODEL) used in this study meets these 128 

requirements (Gao et al., 2015). SD-TOPMODEL has been used to demonstrate flood peak 129 

reductions varied across catchments for different types NFM interventions. Peatland 130 

revegetation scenarios tested (20 m resolution) in an 84 km2 upland catchment with peatland 131 

headwaters showed a 4 – 15% reduction in flood peaks (Gao et al. 2017). Hillslope grassland 132 

management scenarios achieved up to 42% reduction in overland flow peaks in a 133 

predominantly grassland-covered upland catchment (21 km2), where afforestation 134 

intervention was most effective (Bond et al. 2022).  Woodland planting scenarios 135 

demonstrated up to 15.3% reduction in flood peaks in a 2.62 km2 steep upland catchment 136 

predominantly covered by unimproved grassland and semi-natural woodland (Monger et al. 137 
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2024). Kingsbury‐Smith et al. (2023) used the model in a 38 km2 predominantly rural upland 138 

catchment for several single intervention scenarios, such as woodland and hedgerow planting, 139 

riparian buffer strips, and soil aeration, and a combination of all these interventions. SD-140 

TOPMODEL has been validated to effectively simulate rainfall-runoff processes in steep 141 

upland catchments with land and soil management measures (Gao et al. 2018; Bond et al. 142 

2022), and the resolution has been improved from 20 m to 5 m to enable representation of a 143 

wider variety of NFM interventions (Bond et al. 2022; Kingsbury-Smith et al. 2023). 144 

However, further testing of different combinations of NFM interventions, storm 145 

characteristics and catchment antecedent conditions by using SD-TOPMODEL at larger 146 

catchment scales is still required, as SD-TOPMODEL has not been applied to catchment 147 

scales > 50 km2 at a fine resolution of 5 m.  148 

 149 

Although no significant correlation between rainfall intensity and NFM effectiveness was 150 

identified in both our review and previous modelling studies, the response of different NFM 151 

intervention types to varying rainfall intensities remains variable (Gao et al. 2018; Ferreira et 152 

al. 2020; Kingsbury‐Smith et al. 2023; Zhu et al. 2024). Notably, there is a research gap 153 

regarding the potential impacts of different rainfall event characteristics, such as single- 154 

versus multi-peaked events, in addition to rainfall intensity (Hankin et al. 2020). 155 

Furthermore, catchment antecedent conditions may influence NFM effectiveness (Wallace 156 

and Chappell, 2019; Bond et al. 2020). The influence of these factors on NFM effectiveness 157 

have been investigated in this modelling study. 158 

 159 

To investigate and validate whether SD-TOPMODEL can accurately represent and model 160 

soil infiltration rates, soil storage capacities and surface roughness in the catchment as a 161 

result of NFM implementation, three main NFM interventions in the catchment were selected 162 

for this study. They are afforestation (woodland planting), soil aeration and hedgerow 163 

planting. In this study, SD-TOPMODEL is used to simulate these NFM interventions 164 

impacting soil hydrological functions and surface roughness during high-flow events at a 165 

catchment scale. The aim is to calibrate and validate the model with parameter choices 166 

supported by evidence from previous empirical studies and improve model performance to 167 

gain a full understanding of NFM effectiveness. The land cover and NFM scenarios were 168 

applied to compare different combinations of NFM interventions and how they interacted 169 

with seven observed storms with different characteristics at a catchment scale.  170 
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 171 

2. DATA AND METHODS  172 

2.1 Study Site 173 

The Upper Aire catchment is a 370.8 km2 upland catchment in northern England (Figure 1). 174 

Following extensive flooding in 2015, which exceeded a 200-year return period at the 175 

Armley gauging station (located in the city of Leeds, Figure 1b), multiple NFM interventions 176 

(woodland planting, hedgerow planting and soil aeration) have been implemented to slow 177 

runoff response to rainfall and increase surface and subsurface water storage in off-channel 178 

areas across the catchment (Figure 1c) (Leeds City Council, 2024; Upper Aire Project, 2024). 179 

The Upper Aire Catchment to Gargrave (~81.4 km2) was chosen as the study site, as it 180 

encompasses a significant proportion of these interventions which also have well-documented 181 

records about their locations and nature (Yorkshire Wildlife Trust, 2022). The catchment also 182 

benefits from reliable river gauging data at Gargrave. The Gargrave station is located on the 183 

main channel of the River Aire and its catchment area is dominated by a rural hilly landscape 184 

with a maximum elevation difference of 467 m.  185 

 186 
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Figure 1 Study site: (a) location of study catchment in the UK; (b) Aire and Calder 187 

catchment; (c) study area upstream of Gargrave gauging station including land cover data 188 

from the UK 2015 landcover map, and locations of NFM interventions. 189 

 190 

The catchment is dominated by improved grassland (49.7%), followed by calcareous 191 

grassland (18.7%), acid grassland (12.1%) and heather grassland (10.4%), bog (3.7%), 192 

broadleaf woodland (1.9%) and coniferous woodland (1.0%) (CEH, 2015). Soils are mainly 193 

fine or coarse loamy, slowly permeable loamy and clayey, very shallow loamy, or well 194 

drained silty soils over limestone (NATMAP, 2016), resulting in high spatial variability in 195 

soil depth. The underlying geology is dominated by carboniferous limestone, along with 196 

sandstone, mudstone, and shale (NATMAP, 2016). The area experiences a mean of 220 days 197 

of rain, with 1510 mm of mean precipitation annually (Upper Aire Project, 2024).  198 

 199 

2.2 Spatially distributed rainfall-runoff model: SD-TOPMODEL 200 

To investigate the influence of land cover changes and NFM interventions on flood response 201 

at the catchment scale, SD-TOPMODEL was used (Gao et al. 2015). SD-TOPMODEL is a 202 

(a) 

(b) 

(c) 
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spatially distributed version of the original lumped or semi-distributed TOPMODEL (Beven 203 

and Kirkby 1979). Gao et al. (2015) developed the model by downscaling the original 204 

TOPMODEL equations from the catchment scale to grid cell equations. It has the advantage 205 

of allowing each grid cell to be saturated at different times based on the local wetness by 206 

using precipitation, slope, and soil water depth in each cell. The overland flow module uses 207 

the multiple-direction flow theory of Quinn et al. (2006) with a dynamic velocity parameter 208 

related to surface roughness to conduct overland flow directions and rates in each grid cell. 209 

This facilitates the representation of hydrological variability across the land surface and 210 

shallow subsurface conditions by adjusting parameters within each grid cell. This high-211 

resolution capability enables the inclusion of spatially specific NFM interventions. The model 212 

is also well suited to simulate extreme rainfall events in catchments with steep topography 213 

and shallow soils (Gao et al. 2015; Gao et al. 2016; Bond et al. 2022; Kingsbury-Smith et al. 214 

2023; Monger et al. 2024), thus, is ideal for use in the Upper Aire catchment for the NFM 215 

effectiveness study. 216 

 217 

SD-TOPMODEL can deliver three catchment outlet outputs at each timestep: overland flow, 218 

shallow subsurface flow, and the total of overland and subsurface flow outputs. Three key 219 

parameters are employed in SD-TOPMODEL to represent the catchment physical properties: 220 

overland flow velocity, Kv equals 1/n where n is the surface roughness, soil hydraulic 221 

conductivity Ks, and soil active water storage depth m (Gao et al., 2015). To increase the 222 

efficiency of SD-TOPMODEL for simulating extreme rainfall events, the model is written in 223 

C++ language and was batch run on the ARC High-Performance Computer (HPC) platform 224 

at the University of Leeds.  225 

 226 

2.2.1 Data Sources 227 

An Ordnance Survey 5 m digital terrain model (DTM) was used for the Upper Aire 228 

catchment (Ordnance Survey, 2022). The 2015 England Land Cover Map (CEH, 2015) and 229 

the National Soil Map (NATMAP) were provided as vector datasets at the same resolution (5 230 

m) to represent land cover, vegetation, and soil types. The resolution used was the highest 231 

possible as determined by data availability and limitations of model run time (maximum 48 232 

hrs of HPC platform runtime).  233 

 234 
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For rainfall data, 15-min measured precipitation (mm) from the Malham Tarn station (Figure 235 

1) from January 2012 to January 2022was used (Environment Agency, 2022). 15-minute 236 

observed river flow (m3/s) was obtained from the Gargrave and Armley gauge over the same 237 

period (Environment Agency, 2022). Within the ten-year dataset, storm events were selected 238 

using the POT method in Extreme Value Analysis (EVA) (Leadbetter, 1991), identifying 239 

high-flow events, and including multiple occurrences within a year. The Python package 240 

'pyextremes' (https://georgebv.github.io/pyextremes/) was utilized as a selection tool for this 241 

analysis, while return periods were calculated at the Armley station. 15 discrete flood events 242 

were initially identified, each exceeding the discharge threshold (40 m3/s) and having a time 243 

interval of more than seven days since the preceding rainfall event. We selected seven of 244 

these flood events that occurred in different months with varying rainfall intensities, 245 

durations, and return periods for observations at the Armley gauging station (which was used 246 

due to its urban fluvial flood risk location), which covered very common, common, 247 

uncommon, and rare flood events in the catchment (Table 1). Every event was initialised with 248 

a base flow derived from discharge data, which served as the overland flow input into the 249 

model. A 5-hour warmup runtime was required for each grid cell to reach water balance 250 

within the catchment. To represent base flows under different antecedent conditions, the 251 

warm-up period incorporated either 0 mm per timestep (for dry conditions) or 0.2 mm per 252 

timestep (for wet conditions).  Dry and wet antecedent conditions were defined from soil 253 

moisture reports (COSMOS-UK, 2020) and the Hydrological Summary for the UK (CEH, 254 

2012-2020). This helped to categorise and understand the differences in flood mitigation 255 

effectiveness of different NFM intervention types for flood events with different antecedent 256 

characteristics.  257 

 258 

2.2.2 Model 0 and calibration 259 

To establish a Model 0 (baseline model to start calibration) with optimal and spatially 260 

uniform parameter settings for the catchment, model calibration was conducted for each of 261 

the seven observed storm events. Each model run had a 5-hour spin up before the rainfall 262 

event and finished after discharge observations returned to base flow levels, with a timestep 263 

of 15min and a cell size of 5 m * 5 m. To enhance efficiency by reducing the number of 264 

calibration runs and computing time, parameter spaces were selected based on prior 265 

experience with SD-TOPMODEL testing and calibration, as outlined in Table 1a (Gao et al., 266 

2015; Gao et al., 2016; Kingsbury-Smith et al., 2023). For calibration, 150 simulations were 267 
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conducted for each event, totalling 1050 simulations across seven events, using varying 268 

parameters with the intervals specified in Table 1. In previous studies which have applied 269 

SD-TOPMODEL, the Nash-Sutcliffe efficiency coefficient (NSE) was used as a criterion for 270 

evaluating and selecting the best performing model (Bond et al. 2022; Gao et al. 2017; 271 

Kingsbury-Smith et al. 2023; Monger et al. 2024). The best simulation and parameter setting 272 

for Model 0 were determined for each event based on the highest NSE value and minimal 273 

differences in flood peak discharge and timing compared to observations (Table 1b). 274 

Following this, despite some discrepancies in the best-fit parameters for Events 2, 6 and 7, 275 

the parameters can be constrained to the following ranges: m (0.006-0.01); Ks (100-200); Kv 276 

(25-30). A generic parameter setting that can be used to represent the entire catchment was 277 

derived through 100 Monte Carlo tests run for each of the seven events using the narrowed 278 

range. The model was considered credible when NSE values exceeded 0.5 (Moriasi et al. 279 

2007). However, NSE has been shown to be potentially insensitive to low and peak flows in 280 

assessing model errors (Althoff and Rodrigues, 2021), thus, the absolute peak error and peak 281 

error percentage were also considered. This generic parameter setting serves as Model 0 282 

which does not account for the spatial distribution of land cover or variations between event 283 

years resulting from NFM implementation and land cover changes. Model 0, with uniform 284 

parameters, achieved NSE values exceeding 0.6 for all events, with peak discharge errors 285 

limited to no more than 32% of observed values. The best-fit model during baseline 286 

calibration attained an NSE of 0.92, aligning with the performance reported in previous 287 

studies (Bond et al. 2022; Gao et al. 2017; Kingsbury-Smith et al. 2023; Monger et al. 2024). 288 

Once the parameter setting was determined, all subsequent model runs used this set of 289 

baseline parameter values. 290 

  291 
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Table 1 Calibration parameters and results: a) parameters spaces used for narrow ranges 292 

for calibration; b) calibration results of Model 0 for seven observed storm events (the date is 293 

when the storm started) 294 

Parameter Lower limit Upper limit Intervals Model 0 

Kv (-) 20 40 5 30 

m (m) 0.002 0.018 0.004 0.009 

Ks (m/h) 100 600 50 100 

 295 

 Event 1 

(12 Dec 

2015) 

Event 2 

(3 Jan 

2012) 

Event 3 

(25 Dec 

2015) 

Event 4 

(8 Feb 

2020) 

Event 5 

(10 Oct 

2019) 

Event 6 

(16 Mar 

2019) 

Event 7 

(15 Feb 

2020) 

Return Period in 

Armley Station 

(~years)  

50 10 > 200 100 1 20 20 

Storm duration (h) 16 

(single-

peaked) 

60  

(multi-

peaked) 

34 

(multi-

peaked) 

50 

(single-

peaked) 

25  

(multi-

peaked) 

18 

(single-

peaked) 

23  

(multi-

peaked) 

Total rainfall (mm) 22.4 64.0 89.6 70.2 37.0 44.6 49.2 

Rainfall intensity 

(mm/h) 

1.400 1.067 2.635 1.404 1.480 2.478 2.319 

Maximum rainfall 

intensity (mm/h) 

6.4 4.2 5.6 7.6 5.6 4.2 5.2 

Simulation duration (h) 45 (Wet) 90.5 (Dry) 65 (Wet) 55 (Dry) 41.25 (Dry) 35 (Dry) 37.5 (Wet) 

Kv (-) 25 35 25 25 30 25 40 

m (m) 0.006 0.006 0.006 0.01 0.01 0.014 0.01 

Ks (m/h) 200 400 200 200 100 200 200 

NSE of best fit  0.93 0.80 0.87 0.84 0.83 0.96 0.86 

  296 
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2.2.3 Data for determining parameter values 297 

The model was applied for different NFM interventions. This study attempts to calibrate three 298 

parameters of SD-TOPMODEL to larger catchment scales and more complex combinations 299 

of existing NFM interventions. There are two formats to input parameters in SD-300 

TOPMODEL used in this study: (1) a parameter file which displays baseline values of each 301 

parameter conducted by Model 0 calibration (see section 2.2.2); (2) a spatially distributed 302 

map for all three parameters based on land cover and NFM interventions to apply upon the 303 

baseline values.  304 

 305 

To represent the spatially distributed parameters, each parameter was individually spatially 306 

distributed on the base map to assign the parameter to each grid cell at the same resolution as 307 

the elevation data and the entire model. During the model run, the values within each grid cell 308 

of each parameter distribution map were calculated as multipliers on the baseline values (as 309 

the improved grassland land cover, due to its dominance in the catchment) (Bond et al., 2022; 310 

Kingsbury-Smith et al., 2023; Monger et al., 2024). The calibration ranges for these values 311 

were determined with reference to previous empirical studies (Table 2). The upper and lower 312 

limits specified by the measured ratios allow the model to be more realistic, but also 313 

constrained by the physical meaning of them.  314 

 315 
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Table 2 Parameter multipliers used for land cover types and existing NFM interventions in the catchment and the ratio of them compared with 316 

improved grassland with references (from previous field measurements and experimental results), and the proportional area of land cover types 317 

in 2015 and 2020, as well as the proportional area of implemented NFM interventions. 318 

Class name Modelled parameter ranges 

(multipliers) 

Ratio of land cover type compared with improved grassland from 

literature 

Percentage of 

area (2015, 

25m raster) 

Percentage of 

area (2020, 25m 

raster)** m (m) Ks (m/h) Kv M Ks Kv 

Broadleaf 

woodland 

0.0135 – 

0.018 

(1.5 – 2) 

200 – 

1000 

(2 – 10) 

12 – 22.5 

(0.4 - 

0.75*) 

1.5 - 2 (Archer et 

al., 2013) 

 

1.8 (Murphy et al. 2020) 

2.4 (Marshall et al. 2009) 

12 (Gonzalez‐Sosa et al. 

2010) 

11 - 20 (Monger et al. 

2022a) 

 

1.3 (Monger et al., 

2022b) 

2.4 (Manning’s n 

values, Chow，

1959) 

 

2.09% 1.87% 

Coniferous 

woodland 

0.0135 – 

0.018 

(1.5 – 2) 

150 - 500 

(1.5 – 5) 

12 – 22.5 

(0.4 - 

0.75*) 

1.2 – 5.6 (Archer et al. 

2013) 

2.1 (Gonzalez‐Sosa et al. 

2010) 

3.9 (Kingsbury‐Smith et 

al. 2023) 

≤38 (Chandler et al. 2018) 

0.71% 1.04% 
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Arable and 

horticulture 

0.009 (1) 50 (0.5) 22.5 (0.75) The same as 

Baseline 

(NATMAP) 

0.5 (Holden et al. 2019) 

 

The same as 

Heather 

0.34% 0.11% 

Improved 

grassland 

(baseline) 

0.009 (1) 100 (1) 30 (1) Baseline 58.78% 48.71% 

Calcareous 

grassland 

0.009 (1) 200 - 500  

(2 – 5) 

15 - 24  

(0.5 - 0.8) 

The same as 

baseline 

(NATMAP) 

 

4.6 (Gonzalez‐Sosa et al. 

2010) 

≤4.9 (Kingsbury‐Smith et 

al. 2023) 

≤10 (Monger et al. 2022b) 

Significantly greater 

(Bond et al. 2021) 

1.4 (Monger et al., 

2022b) 

1.2 – 2.8 (Bond et 

al., 2020) 

1.4 – 4 

(Manning’s n 

values, Chow，

1959) 

12.07% 18.66% 

Acid grassland 0.009 (1) 200 - 500  

(2 – 5) 

15 - 24  

(0.5 - 0.8) 

17.54% 12.11% 

Heather 0.009 (1) 100 (1) 22.5 (0.75) The same as 

baseline 

(NATMAP) 

The same as baseline 0.75 (Manning’s n 

values, Chow，

1959) 

0.32% 0.00% 

Heather 

grassland 

0.009 (1) 100 (1) 22.5 (0.75) 7.73% 10.41% 

Bog 0.009 (1) 350 (3.5) 15 (0.5) The same as 

baseline 

(NATMAP) 

3.3 – 4.2 (Holden et al. 

2007) 

 

1.9 – 2.3 (Holden 

et al., 2008) 

 

3.53% 3.66% 
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Inland rock 0.0045 

(0.5) 

100 (1) 22.5 (0.75) 0.5 (NATMAP) 

 

The same as baseline 

(Medici et al. 2019) 

1.3 (Manning’s n 

values, Chow，

1959) 

0.74% 0.66% 

Freshwater 0.0009 

(0.01) 

500 (5) 0.3 (0.01) - - - 0.96% 0.89% 

Urban  0.0009 

(0.01) 

1 (0.01) 150 (5) - 

 

- 

 

Set as the highest 

value 

0.03% 0.07% 

Suburban 0.71% 0.86% 

NFM 

interventions 

Parameter multipliers  Ratio of NFM interventions compared with improved grassland with references Percentage of 

area 

 

 

m (m) Ks (m/h) Kv M Ks Kv 

Hedgerow 0.009 

(1) 

200 – 1000 

(2 – 10*) 

15 (0.5) The same as baseline 2 (Kingsbury‐Smith et al. 

2023) 

2 – 6 (Holden et al. 2019) 

22.5 – 27.7 (Wallace et al. 

2021) 

1.6 – 2.3 (Manning’s n 

values, Chow，1959) 

1.30% 

 

Woodland (new 

planted) 

1.5 - 2 150 – 250 

(1.5 - 2.5) 

12 – 22.5 

(0.4 - 0.75) 

The same as woodland 

land cover 

1.2 (45-yr-old woodland, 

(Archer et al. 2013)) 

2.3 (18-month-old 

saplings, (Mawdsley et al. 

2017)) 

The same as woodland 

land cover 

0.61% 
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2.4 (7-yr-old broadleaf 

woodland, (Marshall et al. 

2009)) 

Soil aeration 0.009 – 

0.0135 

(1 - 1.5) 

100 – 500 

(1 – 5) 

30 (1) 1 – 1.5 (Willis and Klaar, 

2021; Kingsbury-Smith et 

al., 2023) 

2.5 – 3 (Chehaibi et al. 

2010) 

1 – 15 (Wallace and 

Chappell 2019) 

The same as baseline 6.40% 

*Bold numbers are the ranges for parameter sensitivity tests. 319 

**The classification of subgroups in woodlands and grasslands in CEH Land Cover Map partially changed from 2015 to 2020. Confusion and 320 

misclassification within grassland classes will also occur (CEH, 2020) 321 
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2.2.4 Calibration for land cover, NFM interventions and model validation 322 

This section describes the process of incorporating land cover and NFM interventions into the 323 

hydrological model through the spatial distribution of parameter multipliers, which were 324 

calibrated using an observed event (Event 1) based on the Model 0. Land cover (based on 325 

CEH land cover map 2015) included broadleaf woodland, coniferous woodland, calcareous 326 

grassland, and acid grassland, and NFM scenarios consisted of three implemented 327 

interventions in the research catchment: hedgerow planting, woodland planting, and soil 328 

aeration. Spatially distributed multipliers of each parameter (Table 2) were applied to Model 329 

0 (uniform parameters) to represent these scenarios.  330 

 331 

The multipliers summarised in Table 2 showed high variability in woodland and grassland 332 

land cover types. The range of parameter choices were informed by the results of the previous 333 

empirical studies while also considering the baseline values for the study catchment and the 334 

limit of parameter settings in the model. Event 1 from 2015 was used for parameter testing, as 335 

the shape of hydrograph for this event is characterized by concentrated rainfall and a single 336 

flood peak and is particularly relevant for parameter testing since the model's land cover map 337 

also corresponds to 2015, making it the most representative event. Sensitivity tests using 338 

Event 1 were conducted within the valid parameter test ranges detailed in Table 2. For land 339 

cover types, the aim was to identify the most accurate set of parameter multipliers for each 340 

type, while for NFM interventions, it was to identify the most sensitive parameter set.  341 

 342 

Sensitivity tests were conducted using fixed intervals where parameters were selected and 343 

paired within the multiplier test range for five sets of tests (Table 2): (1) in land cover tests, 344 

Ks values were tested at intervals of 2, which paired with Kv values by intervals of 0.1 and 345 

0.15 for woodlands, with m tested at values of 1 and 1.5; (2) in grassland scenarios, Ks was 346 

tested by intervals of 1 and Kv at intervals of 0.1; (3) in NFM scenarios, Ks values were 347 

tested at intervals of 2 to represent hedgerow planting; (4) for woodland planting, Ks was 348 

tested at intervals of 0.5 and Kv at intervals of 0.1 and 0.15, while m was tested at values 349 

between 1 and 1.5; (5) soil aeration scenarios involved testing m at intervals of 0.25 and Ks at 350 

intervals of 1. The land cover tests identified parameter multipliers that optimised model 351 

accuracy for each grassland and woodland type by assessing the correlation with NSE values. 352 

After calibrating the multipliers for the 2015 land cover map to achieve the best NSE values 353 

for Event 1 (closest to 1), all calibrated values were integrated into the land cover model. For 354 
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the NFM intervention tests, calibration prioritised maximum flood peak reduction with 355 

minimal NSE decrease to ensure intervention effectiveness and maintain the rainfall-runoff 356 

relationship established in Model 0, thereby preserving model reliability. Optimal multipliers 357 

were applied to represent single and combined NFM scenarios, calibrated to achieve 358 

maximum flood mitigation without compromising model accuracy. Final parameter settings 359 

are shown in Table 3. Pearson correlation analysis, conducted in SPSS after confirming the 360 

normal distribution of the dataset, was used to assess the relationship between NSE and 361 

parameter values in land cover tests, and between peak reductions and parameter values in 362 

NFM intervention tests. Correlation strength was evaluated using Cohen’s guidelines (r > 0.5 363 

= notable effect) (Cohen, 1988). Correlation analysis was employed to assess the model's 364 

sensitivity to the parameters and to explore the pattern of SD-TOPMODEL's response to 365 

parameter multiplication for adding spatially distributed land cover and NFM interventions to 366 

the spatially uniform Model 0. This analysis identified parameter sensitivity patterns, reduced 367 

model uncertainty, and prevented multiple parameter choices from yielding similar model 368 

performance.  369 

 370 

Table 3 Final parameter multiplier settings after sensitivity testing 371 

Land cover class Parameter multipliers 

m Kv Ks 

Broadleaf woodland 1.5 0.75 8 

Coniferous woodland 1.5 0.75 4 

Improved grassland (baseline) 1 1 1 

Calcareous grassland 1 0.8 3 

Acid grassland 1 0.8 3 

NFM interventions 
   

Hedgerow 1 0.5 10 

Woodland (new planted) 1.5 0.6 2.5 

Soil aeration 1.5 1 4 

  372 
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For model validation, discharge results after land cover was applied to the spatially uniform 373 

Model 0 were compared with observed flow rates from the Gargrave gauging station for the 374 

seven events used for calibration and three additional events (two with wet conditions and 375 

one with a dry condition) from the 15 discrete flood events identified above. Validation 376 

involved calculating NSE values (Table 4) and assessing the fit of flood peak discharge and 377 

arrival times. Following validation, NFM scenarios were applied to the land cover model, and 378 

flood peak reduction effectiveness was assessed by comparing results with the land cover 379 

model. A radar plot quantified the area and flood mitigation effects of each scenario using 380 

quantile comparisons. Results were grouped by event characteristics (single/multi-peaked and 381 

dry/wet catchment conditions) and scenario characteristics (single/multiple interventions) to 382 

evaluate their impacts on flood mitigation effectiveness.  383 

 384 
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Table 4 NSE values and peak fits between model outputs and observations for the seven storm events used in model calibration and three 385 

additional events used for model validation (SD = standard deviation) 386 

Scenarios Event 1 Event 2 Event 3 Event 4  Event 5 Event 6 Event 7 Mean SD 

Validation 1 

(31 Dec 

2012, wet) 

Validation 2 

(02 Jan 

2015, dry) 

Validation 3 

(14 Oct 

2017, wet) 

NSE (Model 0) 0.92 0.86 0.90 0.63 0.73 0.60 0.78 0.78 0.13 0.64 0.96 0.95 

NSE (Land 

cover model) 
0.93 0.77 0.82 0.68 0.66 0.59 0.70 0.74 0.12 0.61 0.97 0.91 

Percentage of 

peak 

differences* of 

Model 0 (%) 

9% -4 % 12% 24% 5% 32% 10 % 13% 12% -14% -5% -7% 

Peak time 

difference of 

Model 0 (h) 

0.25 -0.25 1 -0.25 -0.75 -2.25 -0.5 -0.39 1.00 -1 -0.5 -0.25 

Percentage of 

peak 

differences* of 

land cover 

model (%) 

-2% -5% -8% 15% 5% 26 % 2% 5% 12% -21% -8% -10% 

Peak time 

difference of 
0.25 0 1.25 0 -3 -3 -0.5 -0.71 1.65 -1 -0.5 -0.25 
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land cover 

model (h) 

Overland flow 

peak arrival 

time different 

of land cover 

model (h)  

0.25 0.25 1.25 0 -0.5 -2 -0.25 -0.14 0.99 -0.5 -0.25 -0.25 

*Peak discharge here is the sum of subsurface and overland flow. Percentages are the differences between the modelling peaks compared to the observed peaks 387 

as a percentage of observed peaks.  388 

 389 
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3. RESULTS  390 

3.1 Sensitivity tests  391 

3.1.1 Correlation analysis for model calibration – land cover and NFM interventions 392 

The sensitivity of different land cover types to the three parameters’ multipliers varied, and a 393 

significant correlation existed between Ks, Kv and model performance. As shown in Figure 3 394 

(a), surface roughness Kv was significantly positively correlated with NSE values (r = 0.918, 395 

p < 0.001) as the NSE values increased with the increasing Kv values, but not with soil 396 

hydraulic conductivity Ks (r = 0.303, p = 0.195). NSE values increased until Ks multiplier 397 

reached 6 after which they were no longer affected by Ks. This indicates that for woodland 398 

land cover types, including broadleaf woodland and coniferous woodland, the model fit 399 

improved with a marginal increase in surface roughness. Thus, the best fit of the model (the 400 

maximum NSE values) for woodland land cover types was achieved when Kv decreased by 401 

0.75 times and Ks increased by 8 times (as highlighted in Figure 2a). Multiplier values of 1.5 402 

or 2 for soil active water storage depth m did not affect the correlation patterns between Ks, 403 

Kv and model fit. Choosing the multiplier of 1.5 reduced the impact of model performance 404 

caused by parameter changes, while a multiplier of 2 increased the standard deviation of NSE 405 

results in general. 406 

  407 
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Figure 2 The model parameter multipliers: surface roughness Kv and soil hydraulic 408 

conductivity Ks, plotted with NSE difference from Model 0: (a) woodland, (b) grassland. Note 409 

the differences in axes limits between figures. 410 

 411 

As highlighted in Figure 2 (b) for grassland land cover types (calcareous grassland and acid 412 

grassland), Ks (r = -0.650, p < 0.01) was more strongly correlated to NSE values than Kv to 413 

NSE (r = 0.625, p = 0.01). The correlation between Ks and NSE tended to arc and had a 414 

relative peak when Ks multiplier was 3. The relationship between Kv and NSE values were 415 

consistent with the above results of woodland tests, i.e., increases in surface roughness led to 416 

better model fit. Thus, model fit of grassland land cover types were significantly correlated 417 

with both Kv and Ks. The best model fit was achieved when Ks increased to 3 times that of 418 

Model 0 and Kv increased marginally from Model 0. Similar to the woodland results, m had 419 

no significant correlation to the model fit of grassland scenarios. Overall, the parameter 420 

multipliers for woodland and grassland scenarios were chosen using the highest NSE values 421 

achieved in the sensitivity tests.  422 

 423 

For the NFM interventions, the same sensitivity tests were used to find the most effective 424 

combination of parameter multipliers to represent three NFM interventions. All NFM 425 

scenarios were applied upon the land cover, and their test results were compared with the 426 

Model 0 results. As shown in Figure 3, none of these parameter tests caused a significant 427 

(a) (b) 
Ks = 8, Kv = 0.75 

Ks = 3, Kv = 0.8 
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decrease in the NSE values from Model 0, indicating that the test did not affect model 428 

performance. Thus, correlation analysis for NFM scenarios was focused on comparing the 429 

effects on flood peaks. 430 

 431 

Figure 3 The model parameters: surface roughness Kv and soil hydraulic conductivity Ks 432 

plotted with NSE difference and peak discharge difference from Model 0: (a) woodland 433 

planting, (b) soil aeration. Note the differences in axes limits between figures.  434 

 435 

Among the three NFM interventions, there was no significant pattern among Ks, NSE values, 436 

peak discharge differences and peak arrival time differences for hedgerow planting. The 437 

greatest flood peak reduction occurred when Ks reached 10 times the baseline value, 438 

suggesting this as the most effective multiplier for hedgerows. For woodland planting, test 439 

results were first compared between m multiplier of 1.5 and 2. While the multiplier of 2 440 

reduced mean flood peak discharge by 0.58 m3/s and delayed mean peak arrival time by 0.02 441 

h, it increased variability as the standard deviation increased. To maintain consistency with 442 

the land cover tests described above, the multiplier was chosen as 1.5 to represent newly 443 

planted woodlands. Kv in woodland planting was strongly correlated with peak discharge 444 

reduction (r = 0.900, p < 0.001), which indicates that the increase in surface roughness 445 

significantly reduced peak discharge, while Ks changes had no significant impacts on peak 446 

reductions (r = -0.119, p = 0.712). When the multiplier of Ks was taken as 2.5, using a Kv 447 

multiplier of 0.5, 0.6 and 0.7 all increased the NSE values, with the multiplier of 0.6 resulting 448 

Ks = 2.5, Kv = 0.6 m = 1.5, Ks = 4 
(a) (b) 
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in the greatest reduction in peak discharge. For woodland planting, changes in Kv and Ks had 449 

no significant impact on peak arrival delay. For soil aeration, all parameter pairs increased the 450 

NSE value. The most effective flood reduction test results were chosen (Figure 3b). An 451 

increase in m significantly reduced peak discharge (r = -0.619, p = 0.014), and an increase in 452 

Ks slightly reduced peaks (r = -0.646, p < 0.01) (Figure 3b). Finally, a parameter pair that 453 

maximized flood reduction and maximized the NSE value was chosen for soil aeration. Final 454 

parameter multipliers for land cover and NFM interventions are shown in Table 3. 455 

 456 

3.1.2 Sensitivity of peak changes – land cover and NFM interventions 457 

For peak discharge reduction and arrival time delay in land cover tests, Kv was significantly 458 

correlated with peak discharge reduction for woodland (r = 0.959, p < 0.001) and grassland 459 

land cover types (r = 0.750, p < 0.001), but not with peak arrival time. Ks and m showed no 460 

correlation with peak changes. This indicates that surface roughness increases via woodland 461 

and grassland land cover significantly reduced peak discharge. For Event 1, woodland land 462 

cover attenuated mean peak discharge by 1.35% (SD = 0.84%) and delayed arrival by 0.3 h 463 

(SD = 0.1 h). Grassland land cover reduced mean peak discharge by 3.6% (SD = 1.6%) but 464 

had no peak delay (0 h; SD = 0.17 h). Therefore, woodland was more effective at delaying 465 

peaks, while grassland had a greater effect on peak discharge reduction.  466 

 467 

Parameter test results for all three NFM interventions (section 3.1.1) revealed sensitivity in 468 

reducing peak discharge compared to the Model 0 results for Event 1. Woodland planting and 469 

soil aeration decreased flood peaks by a mean value of 0.731 m3/s (1.15%) and 0.883 m3/s 470 

(1.40%) respectively, showing greater sensitivity than hedgerows. However, none of the three 471 

NFM interventions had a significant impact on flood peak delay. 472 

 473 

3.2 Model performance: robustness and accuracy 474 

To calibrate and validate the model, NSE values and peak fit results were evaluated for the 475 

baseline and land cover models (Table 4). While NSE values for some events in the land 476 

cover model were lower than in Model 0 with spatially uniform parameters, this did not 477 

indicate that land cover reduced model accuracy. Since the study focuses on flood peaks, the 478 

accuracy of peak fits was deemed more important. Hydrographs for Event 1 (Figure 4a) 479 

showed that the land cover model increased low flows at the start of the event and reduced 480 

peak flows, providing a better fit than Model 0. 481 
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 482 

Peak fits were assessed by comparing maximum flood peaks and arrival times to observations 483 

for Model 0 and the land cover model, respectively (Table 4). The land cover model had a 484 

better fit for peak discharge but not for arrival times. When comparing the total runoff and 485 

overland flow time series data in the model results, there was a difference in peak arrival 486 

times as illustrated in Figure 4. These biases were from 0 to 2.5 h in several events. It is likely 487 

the bias may be due to model characteristics and does not represent an error in the model 488 

results. Moreover, it was verified that the difference between the peak arrival times of 489 

overland flow time series in the land cover model and observations were negligibly small and 490 

did not affect subsequent NFM scenario results (Table 4). This is the reason why only 491 

overland flow discharge data were used for the analysis of the NFM scenario results.  492 

  493 
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 494 

(a) 
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 495 

Figure 4 Hydrographs comparing observations, Model 0, land cover model and NFM 496 

scenarios for Event 1 (16-h storm event on 11/12/2015, 45 hr simulation duration without 497 

showing the first 5 h of precondition preparation) with inset showing close-up details of flood 498 

peaks; (a) total runoff, (b) overland flow discharge. 499 

 500 

3.3 NFM scenarios 501 

After obtaining all parameter expressions as shown in Table 3 through sensitivity testing, all 502 

land cover and NFM scenarios were put into the model and run for all seven storm events. 503 

There was variability in the effectiveness of the different NFM interventions for each storm 504 

event and the impact of the different events by NFM scenarios. The details of overland flow 505 

results for NFM scenarios were compared to overland flow results for the land cover model 506 

as detailed below. 507 

 508 

3.3.1 Impacts of single intervention scenarios  509 

(b) 
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The soil aeration intervention was implemented across the largest proportion of the study 510 

catchment (6.40%), which is much higher than the area of the other two interventions: 511 

woodland planting (0.61%) and hedgerow planting (1.30%) (Figure 1). The axes of the radar 512 

plot (Figure 5) represent the quartiles of peak discharge reduction and area proportion.  513 

Notably, Event 4 showed the highest flood peak reduction percentage compared to other 514 

events (Figure 5a). The overland flow peak reduction effect of the single intervention 515 

scenarios varied. Discharge reduction by soil aeration was largely proportional to the increase 516 

in area of implementation. The results showed that the discharge reductions achieved by soil 517 

aeration interventions were consistently above the 50th quantile for peak reduction in Figure 518 

5b. Woodland planting represented the smallest area yet achieved effective flood peak 519 

reduction in all events. This contrasts with the results for hedgerow planting. Although 520 

hedgerow planting increased Ks ten-fold and doubled the Kv of baseline values, neither 521 

resulted in a significant reduction in flood peaks, with a maximum reduction of only 1.3% 522 

across all seven events (Table 5).  523 

 524 
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Figure 5 Radar plot of overland flow peak reductions for single and combined NFM 525 

intervention applications among seven storm events (the axis labels are in percentage and 526 

axes were divided into quartiles); (b) excluded Event 4 from (a). 527 

 528 

Consistent with the results of the previous parameter sensitivity tests of NFM scenarios for 529 

Event 1 (Figure 3), soil aeration was more sensitive in reducing peaks than woodland 530 

planting, but both had a greater effect than hedgerow planting (Figure 5). This was reflected 531 

in the mean values of overland flood peak reductions calculated for seven events in Table 5. 532 

While the standard deviations of peak reductions across the seven events were relatively 533 

similar, hedgerows led to slightly higher peak flow variability compared to the other two 534 

interventions. The high standard deviation values indicated that the characteristics of the 535 

events may have contributed to the increased heterogeneity in the results of NFM scenarios. 536 

To better interpret the validity of different NFM scenarios, the results were analysed by 537 

grouping according to event characteristics: the shape of hydrographs (single or multi-538 

peaked), the wet or dry preconditions of the catchment and their combinations (Figure 6). The 539 

(a) 

(b) 
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grouped results showed that the same NFM interventions were less effective in reducing 540 

overland flow peaks in multi-peaked flood events compared to single-peaked events. The 541 

peak reduction driven by NFM interventions in dry conditions was approximately twice as 542 

effective as in wet conditions. NFM interventions can therefore have greater effectiveness 543 

under certain conditions, such as dry antecedence in soil during a single-peaked flood event.  544 

 545 
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Figure 6 Overland flow peak reduction (%) grouped by characteristics of flood events. (a) & 546 

(c) single intervention, (b) & (d) multiple interventions.547 
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Table 5 Percentage reduction in overland flow peak discharge across seven storm events for NFM scenarios, and proportion of catchment area 548 

for each scenario (SD = standard deviation, SEM = standard error of mean) 549 

 Overland flow peak reduction (%) Overland flow peak delay (h) 
Area 

(%) 

NFM Scenarios 
Event 1 

(wet) 

Event 2 

(dry) 

Event 3 

(wet) 

Event 4 

(dry) 

Event 5 

(dry) 

Event 6 

(dry) 

Event 7 

(wet) 
Mean SD SEM Mean SD SEM  

Soil aeration only 4.43 4.02 5.17 15.00 4.04 3.79 5.82 6.04 3.72 1.41 0.11 0.23 0.09 6.40 

Woodland only 1.23 0.66 1.18 11.79 1.33 1.05 2.34 2.80 3.70 1.40 0.11 0.18 0.07 0.61 

Hedgerow only 0.31 0.14 0.23 11.62 -0.09 -0.12 0.49 1.80 4.02 1.52 0.00 0.19 0.07 1.30 

Hedgerow & 

Woodland 
1.39 1.02 1.75 12.61 0.15 0.55 2.03 2.79 4.06 1.53 0.07 0.11 0.04 1.91 

Hedgerow & Soil 

Aeration 
4.75 4.39 5.04 15.87 4.81 4.02 6.20 6.44 3.90 1.47 0.04 0.16 0.06 7.70 

Woodland & Soil 

Aeration 
5.90 4.24 5.76 15.83 5.68 5.16 6.62 7.03 3.65 1.38 0.14 0.12 0.05 7.01 

Hedgerow & 

Woodland & Soil 

Aeration 

6.17 4.20 6.21 15.99 6.36 5.04 7.91 7.41 3.66 1.38 0.18 0.17 0.07 8.31 

Mean 3.45 2.67 3.62 14.10 3.19 2.78 4.49       4.75 

SD 2.24 1.80 2.29 1.86 2.48 2.06 2.61       3.08 

SEM 0.85 0.68 0.86 0.70 0.94 0.78 0.99       1.16 

550 
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3.3.2 Impacts of combinations of scenarios 551 

Results from the single NFM intervention scenarios were combined into pairs or with all 552 

three and tested for seven storm events. The overland flow peak reductions varied among 553 

different combinations of NFM interventions (Table 5). Comparing the mean of reductions 554 

shows that the flood mitigation effectiveness of the combined intervention scenarios is not 555 

simply equivalent to the sum of the effects of single intervention scenarios, where different 556 

combinations may have enhanced or reduced effects on the flood mitigation.  For example, 557 

the mean overland flow reductions for the hedgerow & woodland planting combination and 558 

for the single woodland planting intervention were almost identical. However, for the 559 

hedgerow & soil aeration intervention combined, the mean discharge reduction increased by 560 

0.4% compared to the single soil aeration intervention. These increases by combining 561 

hedgerow planting with another intervention are all less than the mean discharge reduction of 562 

1.8% that can result from the hedgerow planting intervention alone. The standard deviations 563 

in Table 5 are all between 3.5 – 4%, which is relatively high compared to the mean indicating 564 

that the impact of the interventions vary widely between events. 565 

 566 

Although there is a clear flood mitigation effect in each combination, not all events have a 567 

stronger peak reduction by combining NFM interventions. Figure 5 shows that the 568 

effectiveness of overland flow peak reduction varies among events. For example, the 569 

hedgerow & woodland combination (red line) achieved an overland flow peak reduction 570 

effect comparable to the proportion of area implemented for all events except Event 5. This 571 

differed from the results for the woodland only scenario, where the inclusion of the hedgerow 572 

intervention significantly increased peak mitigation in Event 4 but had the opposite effect in 573 

Event 5. The soil aeration intervention was the most effective of the single interventions 574 

despite being applied to the smallest proportion of the catchment and had positive interaction 575 

effects when woodland or hedgerow planting were combined with it among all seven events. 576 

The combination of woodland and soil aeration had a more effective overland flood peak 577 

reduction effect than the combination of hedgerow and soil aeration in five events. The 578 

combination of three interventions resulted in the maximum peak reduction, except in Event 579 

2 where the effect was slightly lower than that of hedgerow & soil aeration and woodland & 580 

soil aeration combinations and in Event 6 where the effect was slightly lower than that of the 581 

woodland & soil aeration combination. Thus, even though the addition of woodland planting 582 

and soil aeration interventions to the combinations were effective in peak reduction, there 583 
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were still differences in response to different storm events. Comparing Figure 6 (a) and (b) 584 

for event groups, the increase in the median under all four groups shows that multiple 585 

interventions enhanced the overland flow peak reduction effect overall. A similar finding is 586 

shown in Figure 6 (c) and (d), where multiple interventions were effective at enhancing NFM 587 

performance under unfavourable conditions, such as multi-peaked events and wet soil 588 

conditions. Thus, the weakening of NFM effectiveness due to multi-peaked flooding and wet 589 

conditions were less pronounced under multiple interventions compared to a single 590 

intervention. 591 

 592 

In scenario tests, overland flow peaks were delayed in arrival by up to 0.5 h. Several 593 

scenarios had overland flow peaks that were advanced by one timestep (0.25 h) in some 594 

events. Hedgerow & woodland, woodland & soil aeration and all three interventions 595 

scenarios resulted in no advance in overland flood peak arrival time among the events. 596 

Overall, the mean delay for each scenario across the seven events ranged between 0 and 0.18 597 

h. The mean delays for soil aeration and woodland planting were the same but woodland 598 

planting had a smaller standard deviation suggesting less individual variation among events. 599 

The hedgerow planting scenario had no effective peak delay compared to the other scenarios. 600 

The mean delays for various combinations of scenarios generally followed the pattern of the 601 

overland flow peak reductions: adding soil aeration and woodland planting on any 602 

interventions increased the delay slightly, while the combination of three interventions 603 

resulted in the greatest delay.  604 

 605 

4. DISCUSSION  606 

This study used SD-TOPMODEL to investigate the impacts of different land cover types and 607 

NFM interventions at an 81.4 km2 catchment. These effects include impacts on model 608 

accuracy and performance, flood peak reduction and arrival time delays, and impacts on the 609 

interaction of subsurface and overland flows. In general, it was found that SD-TOPMODEL 610 

can efficiently and accurately simulate different types of NFM interventions at this catchment 611 

scale, validated against multiple storm events, while allowing high resolution (5 m) spatial 612 

distribution. The modelling results indicated that multiple interventions were not always the 613 

most effective. Event characteristics and antecedent conditions played a significant role in 614 

determining the level of flood mitigation. 615 

 616 
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4.1 Evaluating model parameters and model performance 617 

In the parameter calibration and validation of the model, the evaluating criteria are dynamic, 618 

including model fit metrics (e.g., NSE values) and flood peak reduction, which are adapted 619 

based on the objectives of each calibration scenario. Multi-objective optimization has been 620 

justified to improve compromised solutions and enhance the hydrological consistency of 621 

parameter settings (Dung et al., 2011; Wöhling et al. 2013; Shafii and Tolson, 2015; Althoff 622 

and Rodrigues, 2021). A multi-objective calibration approach is needed for the accuracy of 623 

the simulation as indicated by the NSE values and the effectiveness against flood mitigation 624 

in this study, which depend on the purpose of the test (Efstratiadis and Koutsoyiannis, 2010). 625 

For example, during the calibration of parameters for land cover types, results indicated that 626 

increasing surface roughness was the most effective factor in reducing peak discharge, but the 627 

multipliers with least amount of change within the range were chosen. This is because the 628 

best model accuracy (NSE values closer to 1) was achieved when the roughness parameter 629 

was increased by the least amount. The land cover model aims to determine the best fit to the 630 

actual land cover distribution by comparing to observations, thus, NSE values were more 631 

critical criteria for the land cover model. On the contrary, in the NFM scenarios, while the 632 

NSE values were used as criteria for model stability, the determination of the parameter 633 

values depended on the best flood peak reduction that could be achieved with similar NSE 634 

values. This dual-objective approach aligns with the methods used in recent studies that 635 

emphasize balancing model stability with functional performance (e.g., flood peak reduction) 636 

(Shafii and Tolson, 2015; Althoff and Rodrigues, 2021). Future research could build on this 637 

strategy by exploring how different catchment characteristics influence the trade-off between 638 

stability and effectiveness, potentially leading to the development of adaptive calibration 639 

frameworks tailored to specific hydrological contexts. 640 

 641 

4.2 Impacts of land cover type and NFM interventions on flood peak reduction and timing 642 

Results from this study suggest that NFM interventions achieve maximum effectiveness 643 

during single-peaked storms, particularly under dry antecedence. In previous modelling 644 

studies of NFM on flood peak reduction, it has been shown that the reductions vary between 645 

events, and that this is mainly related to event characteristics (Gao et al. 2016; Gao et al. 646 

2018; Ferreira et al. 2020), particularly pre-event soil moisture (Wahren et al. 2012). Some 647 

studies also considered seasonal rainfall, which could be adjusted by model parameters 648 

(Gabriels et al. 2022). The seven events used in this study occurred in winter months from 649 
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October to March and were grouped based on event characteristics and catchment antecedent 650 

conditions allowing them to be compared by their impact on overland flow peak reduction 651 

(Figure 6).  652 

 653 

Overland flow peak reductions delivered by NFM scenarios were not significantly different 654 

for high or low rainfall intensity events when rainfall was concentrated. The most prominent 655 

of these was Event 4, which resulted in a greater peak reduction than the other events in each 656 

of the single intervention scenarios. This may be because Event 4 was a rapid flow event that 657 

occurred under dry antecedent conditions and had a much higher flood peak discharge than 658 

the other events. Overall, the results suggest that greater overland flow peak reduction occurs 659 

under dry antecedence compared to wet antecedence (Figure 6), which aligns with findings 660 

from other monitoring and modelling studies on land cover and land use (Bond et al., 2020; 661 

Breuer et al., 2009; Wallace and Chappell, 2019). However, the sample size of events in this 662 

study is small and further testing for rainfall varieties is needed in the future.  663 

 664 

The overland flow peak reduction obtained in this study for the three combined NFM 665 

interventions was in the range of 4.20% - 15.99%. We found modelling the effects of upland 666 

interventions on downstream runoff at a larger catchment scale (81.4 km2) did not yield 667 

significantly different results to other local scale modelling studies (Bond et al., 2022; 668 

Hankin et al. 2019; Kingsbury‐Smith et al. 2023; Monger et al., 2024). No significant 669 

correlation was observed between the peak reduction and rainfall intensity, consistent with 670 

findings from the data synthesis by Zhu et al. (2024). The study with the closest results to 671 

ours also employed SD-TOPMODEL though at a lower resolution (20 m) and concluded that 672 

upland land management scenarios covering most of the catchment (84 km²) resulted in 3.9% 673 

to 15% flood reduction with various rainfall intensities (Gao et al. 2017).  In contrast, our 674 

study used a higher resolution and covered all realistically existing land cover types, which is 675 

closer to the reality.  676 

 677 

The closest catchment used for a published NFM simulation to that of the Upper Aire was for 678 

Bishopdale in northern England, a study which utilised SD-TOPMODEL and yielded flood 679 

peak reductions up to 11% (Kingsbury‐Smith et al. 2023). Their study concluded that the 680 

scenario combining all types of NFM interventions across a large percentage of the 38 km² 681 

catchment achieved the smallest peak reduction for a 100-year rainfall event and suggested 682 



39 

 
 

that such an effect may be caused by increased synchronisation between small tributaries. 683 

This is contrary to the findings of our study in our larger catchment (81.4 km2), which 684 

showed that a combination of existing interventions (covering 8.31% of the catchment) 685 

produced greater reductions in peak flow than any single intervention, including soil aeration 686 

(6.40% of the catchment), the largest and most effective individual intervention. The larger 687 

catchment scale of our study offers greater potential for a strategic distribution of multiple 688 

NFM interventions leading to desynchronisation of peak flows and achieving solid peak 689 

reductions with a lower percentage of intervention areas. However, the differences in NFM 690 

modelling results between catchments and scenarios highlight the importance of modelling 691 

potential responses on a case-by-case basis for each individual catchment (Zhu et al., 2024). 692 

This is essential for the effective planning and implementation of a portfolio of catchment 693 

based NFM interventions both within the UK and internationally. Additionally, we tested 694 

observed rainfall events ranging from 1-year to over 200-year return periods, and calibrated 695 

and validated the model using observed data, enhancing the model’s credibility and realism. 696 

Another study conducted in Swindale in northern England used the Dynamic TOPMODEL 697 

combined with a 2D hydraulic model to find flow reductions of 2 – 6% by NFM (Hankin et 698 

al. 2019). This suggests that even though the study is for a combination of NFM interventions 699 

and excludes differences in catchment size and rainfall intensity, the area and location of the 700 

interventions, the characteristic or precondition of the catchment, and the model used, as well 701 

as its resolution and parameter choices, all have an impact on the simulation results.  702 

 703 

We also found that the flood reduction from different NFM combinations is not directly 704 

proportional to the sum of the areas where interventions were implemented. The hydrological 705 

response of NFM interventions is primarily attributed to the attenuation of the main flood 706 

wave traveling through the intervention area (Dixon et al. 2016). When upscaling the study 707 

area, the peak flow reduction effects from different sub-catchments did not simply 708 

accumulate at the whole catchment scale (Pattison and Lane, 2012). As a result, potential 709 

synchronisation between sub-catchments means that the NFM effect on peak discharge does 710 

not increase in direct proportion to the area and number of interventions implemented. These 711 

subtle differences in peak discharge make it challenging to isolate model uncertainty. 712 

 713 

4.3 Implications for SD-TOPMODEL and NFM 714 
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There was a bias in the flood peaks in the three outputs of the model (total runoff, subsurface 715 

flow, overland flow), which is dictated by model characteristics. A lag time exists between 716 

the peak of total runoff and the peak of overland flow (Figure 4). The arithmetic mechanism 717 

of the model is to prioritise subsurface runoff and to start generating saturation-excess 718 

overland flow when the soil is saturated, and these flows are calculated separately in each 719 

grid and each timestep (Gao et al. 2015), which allows the model to fully represent the 720 

rainfall-runoff process within the topsoil. This procedure allows the model to output the 721 

amount of runoff from the subsurface and surface at each timestep and each grid. Thus, the 722 

model produces total runoff and overland flow rising and falling limbs at different times, and 723 

their delay lengths also vary between events (Figure 4).  724 

 725 

The scenarios in this study significantly reduced total runoff compared to the spatially 726 

uniform Model 0, while overland flow decreased, and subsurface flow increased. Similarly, 727 

Monger et al. (2024) found that woodland scenarios critically affected the interactions of 728 

subsurface and overland flows in SD-TOPMODEL results and reduced total runoff. 729 

Increasing the woodland cover improved soil permeability, which increased subsurface flow 730 

and reduced its conversion to overland flow (Monger et al. 2022a; Monger et al. 2022b; 731 

Monger et al. 2024). Grasslands were found to have higher surface roughness and lower soil 732 

permeability than woodlands (Bond et al. 2020; Monger et al. 2022b), which may influence 733 

overland flow more than subsurface flow in SD-TOPMODEL (Bond et al. 2022). When land 734 

cover and NFM scenarios were applied, the subsurface flow increased at the beginning of 735 

storm events, which delayed the time before the onset saturated-excess overland flow. This is 736 

because all simulated scenarios increase soil hydraulic conductivity and surface roughness in 737 

general. Higher infiltration rates and longer infiltration times allow more water to be stored in 738 

shallow soils. Moreover, the land cover and NFM scenarios increase the efficiency of the soil 739 

saturation process while increasing the active area of subsurface runoff in the catchment. 740 

Therefore, overland flow peaks are reduced by these scenarios. The simulation results of SD-741 

TOPMODEL efficiently and accurately demonstrate the effectiveness of NFM. 742 

 743 

5. CONCLUSIONS 744 

Our study demonstrates a successful application of SD-TOPMODEL in a catchment (81.4 745 

km²) at a 5 m resolution, achieving a strong fit to observed data, with NSE values reaching up 746 

to 0.93 and minimal peak flow errors. In the modelling of land cover types in the study 747 
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catchment, woodland was found to be more effective in delaying peaks, whereas grassland 748 

was more effective in reducing peak discharge. Among the existing NFM interventions, soil 749 

aeration emerged as the most effective individual measure, achieving greater peak discharge 750 

reduction results than woodland planting and hedgerow planting. However, the effectiveness 751 

of NFM interventions was influenced by flood and rainfall characteristics, as well as pre-752 

event catchment conditions (wet or dry). Notably, greater flood peak reductions were 753 

observed during single-peaked events and in dry pre-event conditions. Furthermore, multiple 754 

interventions proved more effective and resilient than single interventions in attenuating 755 

floods at the catchment scale we examined. The results also revealed that the area and 756 

number of interventions were not decisive in flood mitigation. This finding presents an 757 

opportunity to strategically plan multiple NFM interventions at the catchment scale, enabling 758 

a trade-off between intervention area and cost-effectiveness. Therefore, we recommend that 759 

high-resolution, spatially distributed modelling of more catchments be undertaken to 760 

investigate the impact of catchment characteristics on the effectiveness of NFM. This would 761 

support the optimisation of spatial planning and enhance the integration of NFM with other 762 

flood risk management measures during the planning stage.  763 
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