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ABSTRACT

Visualization and assessment of copula structures are crucial for accurately understanding andmodeling the
dependencies in multivariate data analysis. In this article, we introduce an innovative method that employs
functional boxplots and rank-based testing procedures to evaluate copula symmetries. This approach is
specifically designed to assess key characteristics such as reflection symmetry, radial symmetry, and joint
symmetry. We first construct test functions for each specific property and then investigate the asymptotic
properties of their empirical estimators. We demonstrate that the functional boxplot of these sample test
functions serves as an informative visualization tool of a given copula structure, effectively measuring the
departure from zero of the test function. Furthermore, we introduce a nonparametric testing procedure to
assess the significance of deviations from symmetry, ensuring the accuracy and reliability of our visualiza-
tion method. Through extensive simulation studies involving various copula models, we demonstrate the
effectiveness of our testing approach. Finally, we apply our visualization and testing techniques to three real-
world datasets: a nutritional habits survey with five variables, stock price data for the five top companies in
theNASDAQ-100 stock index, and twomajor stock indices, theUS S&P500 andGermanDAX. Supplementary
materials for this article are available online.
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1. Introduction

Copula models have gained significant prominence in the field
of statistics and data analysis due to their flexibility in mod-
eling intricate dependence structures among random variables
(Nelsen 2006; Joe 2014; Patton 2012). They have become indis-
pensable tools for capturing and understanding various types of
dependencies, such as tail dependence, asymmetry, and nonlin-
earity (Genest and Favre 2007; Cherubini, Luciano, and Vecchi-
ato 2004). By decoupling the marginal distributions from the
dependence structure, copula models offer a powerful frame-
work for accurately characterizing complex multivariate rela-
tionships (Cherubini, Luciano, and Vecchiato 2004; Joe 2014).
In addition to their theoretical significance, copula models have
found extensive real-world applications in finance, insurance,
and environmental sciences. In finance, for instance, copula
models facilitate portfolio optimization, risk management, and
pricing of complex financial derivatives by accurately modeling
dependencies between financial assets (Cherubini, Luciano, and
Vecchiato 2004; Patton 2012).

According to the representation theorem provided by Sklar
(1959), every multivariate cumulative distribution function, F,
of a continuous random vector X = (X1, . . . ,Xd)

⊤ on R
d, can

be written as

F(x1, . . . , xd) = P(X1 ≤ x1, . . . ,Xd ≤ xd)

= C{F1(x1), . . . , Fd(xd)}, (1)
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where Fl(xl) = P(Xl ≤ xl), xl ∈ R, are the continuous marginal
distributions, l = 1, . . . , d, and C : [0, 1]d → [0, 1] is the
unique copula that characterizes the dependence structure of the
random vector X and can be obtained from

C(u1, . . . , ud) = P(U1 ≤ u1, . . . ,Ud ≤ ud)

= F{F−1
1 (u1), . . . , F

−1
d (ud)}, (2)

where F−1
l (ul) = inf{x|Fl(x) ≥ ul}, ul ∈ [0, 1], is the quantile

function of Fl and U = (U1, . . . ,Ud)
⊤ with Ul = Fl(Xl).

From (2), the copula function C serves as a cumulative distri-
bution function for the random vectorU, residing within the d-
dimensional unit hypercube and characterized by its marginal
distributions. In practical applications, the representation pro-
vided in (1) enables the modeling of the dependence structure,
given the knowledge of the marginal distributions. This can be
achieved by selecting an appropriate parametric copula model
from a wide range of options available in the literature (see e.g.,
Nelsen 2006; Joe 2014).

Choosing an appropriate copula model is a challenging task
when quantifying dependence. In various practical applications,
such as actuarial science, finance, and survival analysis (Nelsen
2006; Patton 2006; Aas et al. 2009), the common approach has
been to rely on expert knowledge or choose a copula model
based on mathematical convenience rather than its suitability
for the specific data application. However, this approach can
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introduce limitations and biases in the analysis (Mikosch 2006;
Nelsen 2006; Aas et al. 2009; Joe 2014).

Several existing approaches in the literature for copula model
selection are based on goodness-of-fit tests for copulas (Genest
and Favre 2007; Genest, Rémillard, and Beaudoin 2009; Berg
2009). These methods typically treat the univariate marginal
distribution as an infinite-dimensional nuisance parameter and
replace the observations with maximally invariant statistics,
such as ranks.

Understanding the properties and structure of copulas is
crucial for capturing and interpreting the relationships between
random variables. Various methods have been proposed in the
literature to specify and test copula structures. Jaworski (2010)
introduced a test for the associativity structure of copulas based
on the asymptotic distribution of the pointwise copula estimator.
However, this test only assesses associativity at a specific point
rather than for the entire copula process, as discussed in Bücher,
Dette, and Volgushev (2012). Bücher, Dette, and Volgushev
(2012) derived Cramér-von Mises and Kolmogorov-Smirnov
type test statistics for evaluating the characteristics of associativ-
ity. Additionally, they developed test statistics for Archimedean
copulas (Bücher, Dette, and Volgushev 2012). Bücher, Dette,
and Volgushev (2011) proposed a test for extreme value depen-
dence based on the minimum weighted L2-distance of extreme-
value copulas. The bivariate symmetry test for copulas, based on
Cramér-vonMises and Kolmogorov-Smirnov functionals of the
rank-based empirical copula process, was introduced by Gen-
est, Nešlehová, and Quessy (2012) and Genest and Nešlehová
(2014).

Li and Genton (2013) proposed a nonparametric method for
identifying copula symmetries using the asymptotic distribu-
tion of the empirical copula process. Quessy (2016) developed
a statistical framework based on quadratic functionals to test
the identity of copulas from a multivariate distribution. More
recently, Jaser and Min (2021) proposed simpler nonparametric
tests for the symmetry and radial symmetry of bivariate copu-
las. Their approach involves creating two bivariate samples by
manipulating the underlying copula while preserving its depen-
dence structure. The test statistics are based on the difference
between the empirical Kendall’s tau of both samples.

In this article, we present a new approach for visualizing
and testing the structure of copula models, specifically focusing
on the dependence properties such as symmetry, radial sym-
metry, and joint symmetry as defined in Nelsen (1993). Our
approach complements existing goodness-of-fit tests for copula
model selection. To visualize these copula structures, we employ
the functional boxplot introduced by Sun and Genton (2011)
as a visual tool to quantify the deviations from a given cop-
ula structure by measuring the departure from zero of sample
test functions. We demonstrate that these visualizations offer
insights into the extent to which specific copula structures are
adhered to.

Additionally, we introduce a nonparametric testing proce-
dure to assess the significance of deviations from symmetry. This
testing procedure is motivated by the techniques proposed by
Huang and Sun (2019) and Huang, Sun, and Genton (2023),
which use a functional data framework to visualize and assess
spatio-temporal covariance properties in both univariate and
multivariate cases.We evaluate the effectiveness of our proposed

testing approach through extensive simulation studies involving
various copula models.

The article is structured as follows. In Section 2, we outline
the copula symmetries of interest, including reflection sym-
metry, radial symmetry, and joint symmetry. We also provide
details on the visualization and nonparametric testing proce-
dures for each of these copula structures. Section 3 presents the
simulation results regarding the size and power of our proposed
nonparametric test. In Section 4, we apply our methods to
three real-world datasets: a nutritional habits survey with five
variables, stock price data for the five top companies in the
NASDAQ-100 stock index, and two major stock indices, the US
S&P500 and German DAX. Finally, the article concludes with a
discussion in Section 5.

2. Methodology

In Section 2.1, we introduce copula symmetries. Section 2.2 cov-
ers the construction of test functions and provides asymptotic
results for proper estimators. We present the visualization of
test functions with functional boxplots in Section 2.3. Lastly,
in Section 2.4, we describe a rank-based testing procedure for
copula symmetries.

2.1. Copula Symmetries

Our discussion centers on the symmetry of bivariate copulas.
Unlike the case of univariate functions, the concept of symmetry
is not uniquely defined in a multivariate setting. Therefore, dif-
ferent notions of symmetry have been investigated in the context
of copulas. Here we focus on the ones presented in Nelsen
(1993).

Definition 1. A copula C is said to be symmetric if

C(u, v) − C(v, u) = 0,∀(u, v) ∈ [0, 1]2. (3)

Based on (3), one should notice that for any symmetric copula
C, its distribution is symmetric with respect to the diagonal
connecting the origin and the point (1, 1). Thus, the symmetry
in Definition 1 is called reflection symmetry in some literature
and we will employ this term to refer to this particular form of
symmetry in the subsequent discussions.

Definition 2. A copula C is said to be radially symmetric if

C(u, v)−C(1−u, 1− v)+1−u− v = 0,∀(u, v) ∈ [0, 1]2. (4)

Equivalently, one can state the radial symmetry property as
C(u, v) − C∗(u, v) = 0 for all (u, v) ∈ [0, 1]2, where C∗ stands
for the survival copula associated with C; that is, for all (u, v) ∈
[0, 1]2, C∗(u, v) = C(1 − u, 1 − v) − 1 + u + v. As pointed
out by Nelsen (1993), there exist copulas that are reflection
symmetric but not radially symmetric and, conversely, copulas
that are radially symmetric but not reflection symmetric.

Definition 3. A copula C is said to be jointly symmetric if it
satisfies

C(u, v) + C(u, 1 − v) − u = 0 and

C(u, v) + C(1 − u, v) − v = 0,∀(u, v) ∈ [0, 1]2.
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One can easily show that joint symmetry implies radial sym-
metry. However, there is no implication between reflection sym-
metry and joint symmetry. The Figure 1 of Li and Genton
(2013) provides the interrelations among the three types of
symmetry.

2.2. Test Functions

We propose to assess and visualize the three types of copula
symmetries by the construction of test functions. First, we focus
on the construction of test functions specifically for reflection
symmetry (S). For any fixed v ∈ [0, 1], define the reflection

symmetry test functions f
S

v : [0, 1] → [−1, 1] by

f
S

v (t) = C(t, v) − C(v, t)

for all t ∈ [0, 1]. If C is reflection symmetric, we have f
S

v = 0;

otherwise, the values of f
S

v vary with respect to t. For all m ∈
N, any set {v1, . . . , vm,w1, . . . ,wm} ⊆ [0, 1], we introduce 2m
reflection symmetry test functions f

S

v1
, . . . , f

S

vm
and g

S

w1
, . . . , g

S

wm
,

where gwi = −fwi . This way, we create more test functions to
better measure the departure from zero.

In practice, we need corresponding estimators f̂
S

v1
, . . . , f̂

S

vm

and ĝ
S

w1
, . . . , ĝ

S

wm
of the test functions f

S

v1
, . . . , f

S

vm
and

g
S

w1
, . . . , g

S

wm
. Intuitively, the estimators can be obtained through

a linear combination of the corresponding empirical copulas.
To provide a clearer definition of these estimators, we briefly
summarize the important asymptotic results of the two-
dimensional empirical copula process (see, e.g., Deheuvels
1979; Stute 1984; Tsukahara 2005). Additional recent results
on convergence rate can be found in Genest and Segers (2010),
Segers (2012), Swanepoel and Allison (2013), and the references
therein.

Let C be a two-dimensional copula and U = (U1,U2)
⊤ be a

random vector that is C-distributed. If one has direct access to a
random sample U1, . . . ,Un of size n, then the copula C can be
estimated by the empirical copula process defined by

Ĉn(u, v) =
1

n

n∑

i=1

1
{
Ui1 ≤ u,Ui2 ≤ v

}
,∀(u, v) ∈ [0, 1]2,

where 1(·) denotes the indicator function. As a well-known
result, we have that for all (u, v) ∈ [0, 1]2,

Cn(u, v) :=
√
n

{
Ĉn(u, v) − C(u, v)

}

d−→ C(u, v) in ℓ∞([0, 1]2), n → ∞, (5)

where ℓ∞([0, 1]2) denotes the space of all the bounded functions
over the compact set [0, 1]2 and C is a two-dimensional pinned
C-Brownian sheet, that is, it is a zero-mean Gaussian random
field with the covariance function given by

cov{C(u, v),C(x, y)} = C(u ∧ x, v ∧ y) − C(u, v)C(x, y),

∀u, v, x, y ∈ [0, 1]

where for all a, b ∈ R, a ∧ b = min{a, b} (Genest, Nešle-
hová, and Quessy 2012). However, it is often the case that the
n observations we have are generated from a random vector
X = (X1,X2)

⊤ that is not necessarily uniformly distributed

over the interval [0, 1]. The representation theorem (Sklar 1959)
states that it can be expressed as the composition of a copula C
and marginals of X. In this case, from every Xi in the random
sample, one can estimate a U i by the pseudo-observation Û i =
(Ûi1, Ûi2)

⊤, where for all s ∈ {1, 2},

Ûis =
1

n

n∑

r=1

1
{
Xrs ≤ Xis

}
.

With all of these Û i’s, one can estimate C by

D̂n(u, v) =
1

n

n∑

i=1

1
{
Ûi1 ≤ u, Ûi2 ≤ v

}
,∀(u, v) ∈ [0, 1]2.

It has been shown that when C is regular (see Definition 1 in
Genest, Nešlehová, and Quessy (2012) for example), or loosely
speaking, when C is differentiable with continuous partials, we
have

D̂n(u, v) :=
√
n
{
D̂n(u, v) − C(u, v)

}

d−→ C(u, v) − Ċ1(u, v)C(u, 1)

−Ċ2(u, v)C(1, v) in ℓ∞([0, 1]2), n → ∞, (6)

where Ċ1 and Ċ2 denote the partial derivatives of the copula
C with respect to its first and second variables, respectively.
In the sequel, if not otherwise stated, we always impose the
regularity assumption on the underlying copula C. To sum up,

the estimator of the reflection symmetry test function f̂
S

v can be
defined by either

f̂
S

v (t) = Ĉn(t, v) − Ĉn(v, t),∀t ∈ [0, 1],

or

f̂
S

v (t) = D̂n(t, v) − D̂n(v, t),∀t ∈ [0, 1],

depending on the type of the dataset we have, and we simply set

ĝ
S

v(t) = −̂f
S

v (t).

Proposition 1. Given any fixed v ∈ [0, 1], the estimator f̂
S

v (t)
satisfies that for all t ∈ [0, 1],

√
n

{
f̂
S

v (t) − f
S

v (t)
}

d−→
{
E

S

v(t) if f̂
S

v (t) = Ĉn(t, v) − Ĉn(v, t)

Ê
S

v(t) if f̂
S

v (t) = D̂n(t, v) − D̂n(v, t)

in ℓ∞([0, 1]) as n → ∞, where E
S

v and Ê
S

v are two zero-mean
Gaussian random fields.

The proof of this Proposition can be found in the supplementary
material in Section S3.

Similarly, we can construct radial symmetry (R) test func-

tions, denoted as f̂
R

v (t) and ĝ
R

v (t), based on Definition 2 to esti-

mate f
R

v (t) and g
R

v (t), as described in Table 1. The convergence
of these estimators is presented in Proposition 2.

Proposition 2. Given any fixed v ∈ [0, 1], the estimator f̂
R

v (t)
satisfies that for all t ∈ [0, 1],
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Table 1. Definitions of the estimators of the test functions for different types of
symmetry.

Type Access Test functions

S

(U1 ,U2) f̂
S

v (t) = Ĉn(t, v) − Ĉn(v, t), ĝ
S

v(t) = −̂f
S

v (t)

(X1 , X2) f̂
S

v (t) = D̂n(t, v) − D̂n(v, t)̂g
S

v(t) = −̂f
S

v (t)

R

(U1 ,U2) f̂
R

v (t) = Ĉn(t, v) − Ĉn(1 − t, 1 − v) + 1 − t − v, ĝ
R

v(t) = −̂f
R

v (t)

(X1 , X2) f̂
R

v (t) = D̂n(t, v) − D̂n(1 − t, 1 − v) + 1 − t − v, ĝ
R

v(t) = −̂f
R

v (t)

J

(U1 ,U2)

f̂
J,1

v (t) = Ĉn(t, v) + Ĉn(t, 1 − v) − t, ĝ
J,1

v (t) = −̂f
J,1

v (t)

f̂
J,2

v (t) = Ĉn(t, v) + Ĉn(1 − t, v) − v, ĝ
J,2

v (t) = −̂f
J,2

v (t)

(X1 , X2)

f̂
J,1

v (t) = D̂n(t, v) + D̂n(t, 1 − v) − t, ĝ
J,1

v (t) = −̂f
J,1

v (t)

f̂
J,2

v (t) = D̂n(t, v) + D̂n(t, 1 − v) − t, ĝ
J,2

v (t) = −̂f
J,2

v (t)

√
n

{
f̂
R

v (t) − f
R

v (t)
}

d−→
{
E

R

v (t) if f̂
R

v (t) = Ĉn(t, v) − Ĉn(1 − t, 1 − v) + 1 − t − v

Ê
R

v (t) if f̂
R

v (t) = D̂n(t, v) − D̂n(1 − t, 1 − v) + 1 − t − v

in ℓ∞([0, 1]) as n → ∞, where E
R

v and Ê
R

v are two zero-mean
Gaussian random fields.

The proof of this Proposition can be found in the supplementary
material in Section S4.

As for the test functions for joint symmetry (J), one should
investigate the two properties in Definition 3 separately. Hence,
for any given v ∈ [0, 1], we construct four population joint

symmetry test functions: f
J,1

v , f
J,2

v , g
J,1

v , g
J,2

v : [0, 1] → [−1, 1] that
are given by

f
J,1

v (t) = C(t, v) + C(t, 1 − v) − t and g
J,1

v (t) = −f
J,1

v (t)

as well as

f
J,2

v (t) = C(1 − t, v) + C(t, 1 − v) − v and g
J,2

v (t) = −f
J,2

v (t)

for all t ∈ [0, 1]. As the cases of other symmetries, they can be
estimated by the test functions involving empirical copulas (see
Table 1 for their definitions), whose relevant asymptotic results
are presented in Proposition 3.

Proposition 3. Given v ∈ [0, 1], the estimator f̂
J,1

v (t) satisfies that
for all t ∈ [0, 1],

√
n

{
f̂
J,1

v (t) − f
J,1

v (t)
}

d−→
{
E

J,1

v (t) if f̂
J,1

v (t) = Ĉn(t, v) + Ĉn(t, 1 − v) − t

Ê
J,1

v (t) if f̂
J,1

v (t) = D̂n(t, v) + D̂n(t, 1 − v) − t

in ℓ∞([0, 1]) as n → ∞, where E
J,1

v and Ê
J,1

v are two centered
Gaussian random fields.

Similarly, given v ∈ [0, 1], the estimator f̂
J,2

v (t) satisfies that
for all t ∈ [0, 1],

√
n

{
f̂
J,2

v (t) − f
J,2

v (t)
}

d−→
{
E

J,2

v (t) if f̂
J,2

v (t) = Ĉn(t, v) + Ĉn(1 − v, t) − v

Ê
J,2

v (t) if f̂
J,2

v (t) = D̂n(t, v) + D̂n(1 − v, t) − v

in ℓ∞([0, 1]) as n → ∞, where E
J,2

v and Ê
J,2

v are two zero-mean
Gaussian random fields.

The proof of this Proposition can be found in the supplementary
material in Section S5.

2.3. Visualization

The visualization of test functions can be achieved using func-
tional boxplots (Sun and Genton 2011). The functional boxplot
is an effective and concise method for visualizing and summa-
rizing functional data. Constructing a functional boxplot starts
with data ordering. Since each observation is a real function,
functional boxplots order the functional data using a notion of
data depth, such as band depth or modified band depth. The
whiskers of the functional boxplot extend to the most extreme
observations outside the central region, providing additional
insights into the distributional characteristics of the functional
data. In the R programming language, the fda package offers
the fbplot function, which allows users to create functional
boxplots conveniently. To construct the functional boxplot of

f̂
S

v1
, . . . , f̂

S

vm
, ĝ

S

w1
, . . . , ĝ

S

wm
, we need to discretize the interval [0, 1]

into an evenly spaced range of p points for some p ∈ N and then

evaluate the test functions f̂
S

v1
, . . . , f̂

S

vm
, ĝ

S

w1
, . . . , ĝ

S

wm
over them.

We denote the range of p points by {0 ≤ t1 ≤ · · · ≤ tp ≤ 1}.
According to Proposition 1, for every j ∈ {1, . . . ,m}, the joint
distribution of the random vector

(̂
f
S

vj
(t1) − f

S

vj
(t1), . . . , f̂

S

vj
(tp) −

f
S

vj
(tp)

)⊤
is close to a multivariate normal distribution with

mean zero when the sample size n is sufficiently large, and

so is the joint distribution of the random vector
(
ĝ
S

wj
(t1) −

g
S

wj
(t1), . . . , ĝ

S

wj
(tp) − g

S

wj
(tp)

)⊤
. Thus, the functional boxplot

should be fairly centered around zero (even though its shape
should not be expected as a horizontal band since the variance at
each point tk, k ∈ {1, . . . , p}, can vary based on the underlying
copula C). If the underlying copula C is reflection symmetric,

it implies the equalities f
S

v1
≡ · · · ≡ f

S

vm
≡ g

S

w1
≡ · · · ≡

g
S

wm
≡ 0. Otherwise, the functional boxplot should be of an

irregular shape that is visually deviated from zero. In the special
case when vi ≈ wi for a great proportion of i ∈ {1, . . . , n}, the
functional boxplotmay form an irregular envelope that is almost
symmetric with respect to zero.

To assess radial symmetry, we analyze the functional boxplots

of f̂
R

v1
, . . . , f̂

R

vm
, ĝ

R

w1
, . . . , ĝ

R

wm
. According to Proposition 2, the

functional boxplots should be fairly centered around zero
if and only if the underlying copula C is indeed radial
symmetric. For joint symmetry, two types of test functions
are defined, resulting in two functional boxplots per copula.
Proposition 3 states that both functional boxplots should
be centered around zero if the underlying copula is jointly
symmetric.

To stress the interpretation, we demonstrate the functional
boxplots based on various copulas models in Figure 1. In the
plots, the central region is colored green if a specific copula
model satisfies the corresponding type of symmetry. On the
other hand, if the copula model does not meet the symmetry
condition, the central region is colored red. The gradation of
the colors used in the plots manifests the density of functional
data: the darker the colors are, the more functional curves are
located in that place. The corresponding structure(s) of each
copula is flagged by the abbreviation(s) in bold: S (reflection
symmetry), R (radial symmetry), J (joint symmetry) and
AS (asymmetry) in the title of their respective functional
boxplots.
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Figure 1. Functional boxplots for the visualization of copula symmetries. The parameter(s) of each copula is chosen to make its Kendall’s tau equal/close to 0.5. Especially,
theMarshall-Olkin copula takes the parameters (0.55, 0.85), and the Tawn copula, regardless of its types, takes the parameters (4.28, 0.60). The corresponding test functions
are constructed with n = 1000,m = 250 and p = 100, and the values of vj ,wj for all j ∈ {1, . . . ,m} are randomly chosen from the unit interval [0, 1].
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2.4. Rank-based Hypothesis Testing Procedure

In Section 2.3, we explored the visualization of copula structures
present in a given sample or dataset. We discussed the relevant
asymptotic results and demonstrated how functional boxplots of
selected test functions can provide intuitive indications of vari-
ous symmetries. To thoroughly investigate and quantify these
symmetries, we introduce a one-sample ranked-based hypoth-
esis testing procedure. This procedure is a modification of the
methods proposed by Huang and Sun (2019) and Huang, Sun,
and Genton (2023) for testing the separability and symmetry of
univariate and multivariate covariance functions. Our adapted
approach allows us to assess the presence of symmetries in cop-
ula structures in a robust and statistically rigorousmanner. Both
of these methods can be considered as adaptations of the two-
sample rank-based test proposed by López-Pintado and Romo
(2009). The original test is designed to determine whether two
sets of functional data are derived from the same distribution.
In a similar manner, we modify this test to examine reflection
symmetry as the initial step. By making specific adjustments,
such as selecting appropriate estimators for the test functions
and simulated distribution, the procedure can be extended to
test for radial and joint symmetry.

Suppose that we have the observations U i’s or the pseudo-
observations Û i’s for i = 1, . . . , n. As expected, for v ∈ [0, 1] the
nullH0 and the alternativeHa are

• H0 : f
S

v (t) = 0 ∀t ∈ [0, 1];
• Ha: ∃t ∈ [0, 1], s.t. f Sv (t) �= 0.

The details of the procedure are demonstrated as follows:

Step 1: Estimate the values of the reflection symmetry test func-

tions f̂
S

v1
, . . . , f̂

S

vm
, ĝ

S

w1
, . . . , ĝ

S

wm
over the evenly spaced

points {0 ≤ t1,≤ · · · ≤, tp ≤ 1} as in Table 1 by
U i’s, or Û i’s, where for any j ∈ {1, . . . ,m}, vj and wj are
randomly generated from the unit interval [0, 1].

Step 2: Simulate from a reflection symmetric copula to obtain a

set of n observations,V
H0

i , i ∈ {1, . . . , n}. Further details
on how to simulate the observations V

H0

i are described
in Section 2.4.1.

Step 3: Estimate the values of the reflection symmetry test func-

tions f̂
H0
v1

, . . . , f̂
H0
vm0

, ĝ
H0
w1

, . . . , ĝ
H0
wm0

over the evenly spaced

points {0 ≤ t1 ≤ · · · ≤ tp ≤ 1} as in Table 1 by VH0
i ’s,

where for any j0 ∈ {1, . . . ,m0}, vj0 and wj0 are randomly
generated from the unit interval [0, 1].

Step 4: Combine the values of f̂
S

v1
, . . . , f̂

S

vm
, ĝ

S

w1
, . . . , ĝ

S

wm
with

those of f̂
H0
v1

, . . . , f̂
H0
vm0

, ĝ
H0
w1

, . . . , ĝ
H0
wm0

to form a dis-

cretized functional dataset of size 2(m + m0). Compute
theirmodified band depths (see, e.g., López-Pintado and
Romo 2009; Sun, Genton, and Nychka 2012).

Step 5: Rank the 2(m + m0) test functions according to their
depth values. In case of any ties, we assign distinct
ordinal numbers at random to the test functions that
compare equal in terms of the depth values. Suppose that

f̂
S

v1
, . . . , f̂

S

vm
, ĝ

S

w1
, . . . , ĝ

S

wm
are associated with the ranks

r1, . . . , r2m0 . Define the test statisticW =
∑2m0

i=1 ri.

The null hypothesis H0 is rejected when W is signif-

icantly small because it means that the test functions f̂
S

v1
,

. . . , f̂
S

vm
, ĝ

S

w1
, . . . , ĝ

S

wm
are more deviated from zero. The defini-

tion of the test statisticW here takes the essence of theWilcoxon,
or equivalently Mann-Whitney, test statistic. Hence, one can
also deem the proposed hypothesis testing as a modification
of the two-sample Wilcoxon rank-sum test for one functional
dataset. The null distribution ofW is estimated by Nb bootstrap
samples of size n. More specifically, we generate Nb samples
from the reflection symmetric copula in Step 2. For the bth
sample, b ∈ {1, . . . ,Nb}, we regard it as a set of U i’s and follow
the above procedure to calculate the corresponding test statistic
Wb. Eventually, the null distribution of W is approximated by
all of these test statistics:W1, . . . ,WNb

. For the details on how to
carry out such a one-sample bootstrappingmethod in hypothesis
testing, we refer to Section 16.4 in Efron and Tibshirani (1993).

Some features of the procedure are worth further dis-
cussion. First, the number of observations simulated from
a reflection symmetric copula needs to be the same as the
original sample size n. Otherwise, even if the test functions

f̂
S

v1
, . . . , f̂

S

vm
, ĝ

S

w1
, . . . , ĝ

S

wm
came from a reflection symmetric

copula, they would still be more centered/deviated with respect
to zero, thereby having greater depth values, compared to

f̂
H0
v1

, . . . , f̂
H0
vm0

, ĝ
H0
w1

, . . . , ĝ
H0
wm0

. This is because larger or smaller

sample sizes make empirical copulas better or worse approxi-
mations of the underlying true copulas.

Second, the values of p, m, and m0 in Steps 1 and 3 are
hyperparameters that one can tune at will. Nonetheless, it is
observed that setting p = 100 is sufficient, while m and m0

have better to be large to guarantee the ideal empirical size and
power of the test. Particularly, we notice that having m and m0

greater than n yields better performances. Once bothm andm0

satisfy this property, their values tend to have little effect on its
performance.

Third, the most notable difference between our procedure
and those used in López-Pintado and Romo (2009), Huang and
Sun (2019) and Huang, Sun, and Genton (2023) lies in the
absence of a reference dataset. The ideas in their approaches
originate with the hypothesis testing procedure designed by Liu
and Singh (1993) that performs the detection of (dis)similarity
in two multivariate distributions using quality index. Particu-
larly, they introduced the treatment with a reference dataset to
identify the change in population locations. In the context of
functional data, it describes the scenario when the two samples
of functional curves appear to form two separated bands, each
of which comprises only curves from one group, as shown in
Figure S1 in the supplementary material in Section S1.

If the reflection symmetry property is not satisfied, it is
important to consider various scenarios when using these test
functions to capture deviations from symmetry. In some cases,
it may be challenging to quantify the departure from zero. For
example, the test functions may exhibit two distinct bands,
indicating a significant departure from zero for a substantial
portion of the variable t. This is similar to the tests proposed by
Liu and Singh (1993) and López-Pintado and Romo (2009) and
illustrated in Figure S1 in the supplement. To address this situ-

ation, we introduce the testing functions ĝ
S

w1
, . . . , ĝ

S

wm
which are



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 7

rough reflections of the test functions f̂
S

v1
, . . . , f̂

S

vm
with respect to

zero.
As one may see later, we actually generate the observations

V
H0
i , i ∈ {1, . . . , n} from a mixture (M) of empirical copulas in

Step 2 under the assumption thatM is close to a truly reflection
symmetric copula. Then, if we had to simulate a reference
dataset, the empirical copula of the reference dataset might

be more symmetric than that of the observations V
H0
i , i ∈

{1, . . . , n} when the sample size n is not sufficiently large.
This could lead to a not-so-small test statistic in the approach
of Huang and Sun (2019) or Huang, Sun, and Genton (2023) as
the test functions constructed from the reference dataset might
tend to be slightly more centered around zero. Certainly, the
absence of a reference dataset also saves memory storage.

2.4.1. Simulation underH0

Lastly, it is important to address the choice of the reflection
symmetric copula in Step 2 and explain how to simulate from it.
In order tomaintain the nonparametric nature of the procedure,
it is crucial to avoid selecting any parametric copula. In lieu, we
propose to construct the estimated reflection symmetric copula
ĈS given, for all (u, v), by either

ĈS(u, v) =
1

2

(
Ĉn(u, v) + Ĉn(v, u)

)

or

ĈS(u, v) =
1

2

(
D̂n(u, v) + D̂n(v, u)

)
,

depending on the types of dataset we have.

Proposition 4. Given any bivariate copula C, the copula C̃
defined, for all (u, v) ∈ [0, 1]2, by

C̃(u, v) =
1

2

(
C(u, v) + C(v, u)

)

is a reflection symmetric copula.

We prove this result in the supplementarymaterial in Section S6.
As a mixture of two empirical copulas, one should have

no difficulty simulating from ĈS. Note that ĈS is not really a
copula itself, but it serves as an appropriate estimation of the
reflection symmetric copula C̃ (Rüschendorf 1976). Apart from
the intuition suggested by Proposition 4, in the supplementary
material in Section S2, the Figure S2 provides a visual assurance
for the simulation method.

By closely following the aforementioned procedure andmak-
ing appropriate adjustments, one can conduct tests for radial and
joint symmetries. Specifically, in Step 2, a copula that exhibits
radial or joint symmetry needs to be constructed. Table 2 pro-
vides a summary of the proposed estimated copulas for this
purpose, and the following Propositions provide justification for
these choices. To ensure clarity in our notation, we denote the
survival copula of any copula C as C∗. Proofs of the Proposi-
tions 5 and 6 can be found in the supplementary material in
Sections S7 and S8, respectively.

Proposition 5. Given any bivariate copula C, the copula C̃
defined, for all (u, v) ∈ [0, 1]2, by

C̃(u, v) =
1

2

(
C(u, v) + C∗(u, v)

)

is a radially symmetric copula.

Proposition 6. Given any copula C, the copula C̃ defined, for all
(u, v) ∈ [0, 1]2, by

C̃(u, v) =
1

4

(
C(u, v)+u−C(u, 1−v)+v−C(1−u, v)+C∗(u, v)

)

is a jointly symmetric copula.

3. Simulation Study

We performed simulations to evaluate the effectiveness of our
testing procedures for the three copula structures described in
Section 2.1. In each simulation,we estimated 1200 test functions,
and the tests were conducted at a nominal level of 5%. We used
Nb = 1000 bootstrap samples for our analysis. To assess the
performance of our approach for testing reflection symmetry,
we compared it to the tests proposed by Genest, Nešlehová, and
Quessy (2012) and Li and Genton (2013). The results, including
the sizes and powers of the test for reflection symmetry, are
summarized in Table 3. To evaluate the power of our tests, we
introduce asymmetry to the copula models using Khoudraji’s
device (Khoudraji 1995). Specifically, we used an asymmetric
version of a copula C(u, v), defined for (u, v) ∈ [0, 1]2, given
by:

Kδ(u, v) = uδC(u1−δ , v),

where δ ∈ (0, 1). Previous studies (Genest, Nešlehová, and
Quessy 2012) have shown that Khoudraji’s device introduces
minimal asymmetry when Kendall’s τ ≤ 0.5. The maximum
level of asymmetry is typically observed around δ = 0.5. The R
codes for implementing the visualization and hypotheses testing
procedures are available at Visualization-and-Assessment-of–
Copula-Symmetry.

Our results indicate that under small and moderate τ , the
sizes converge to the nominal value as the sample size increases,
but with larger τ , the sizes are somewhat below the nomi-
nal level. The powers of the tests increase as the sample size
increases. When comparing our results to Table 3 in Genest,
Nešlehová, andQuessy (2012), their approach generally achieves
better powers for a small sample size of n = 250. In contrast,
our approach demonstrates significantly improved powers as the
sample size increases. This is expected as our rank-based test
relies on the asymptotic distribution of the test functions and
the empirical copula process.

When comparing our simulation results to Table 1 in Li
and Genton (2013), we find that our results align with most of
the reported powers and sizes. However, our approach achieves
considerably higher powers even at smaller sample sizes, partic-
ularly for intermediate values of τ where the maximum asym-
metry is expected.

For the tests of radial and joint symmetry, we selected five
commonly used copulas. The sizes and powers of both testing
procedures are presented inTable 4. To evaluate the performance
of our approach in testing radial symmetry, we compared it to
the methods proposed by Li and Genton (2013) and Genest
and Nešlehová (2014). Additionally, we compared our approach
for testing joint symmetry to the methods reported by Li and
Genton (2013).
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Table 2. Definitions of estimated copulas constructed to test different types of symmetry. Ĉ∗
n and D̂∗

n denote the estimator for the survival copulas associated with the
underlying copula.

Type Access Simulated distribution

S

(U1 ,U2) ĈS(u, v) = 1
2

(
Ĉn(u, v) + Ĉn(v, u)

)

(X1 , X2) ĈS(u, v) = 1
2

(
D̂n(u, v) + D̂n(v, u)

)

R

(U1 ,U2) ĈR(u, v) = 1
2

(
Ĉn(u, v) + Ĉ∗

n (u, v)
)

(X1 , X2) ĈR(u, v) = 1
2

(
D̂n(u, v) + D̂∗

n(u, v)
)

J

(U1 ,U2) ĈJ(u, v) = 1
4

(
Ĉn(u, v) + u − Ĉn(u, 1 − v) + v − Ĉn(1 − u, v) + Ĉ∗

n (u, v)
)

(X1 , X2) ĈJ(u, v) = 1
4

(
D̂n(u, v) + u − D̂n(u, 1 − v) + v − D̂n(1 − u, v) + D̂∗

n(u, v)
)

Table 3. Empirical sizes and powers of the test of symmetry in the setting as Genest, Nešlehová, and Quessy (2012) and Li and Genton (2013).

Clayton Gaussian Gumbel
n n n

δ τ 100 250 500 1000 100 250 500 1000 100 250 500 1000

0
1/4 SIZE 0.044 0.048 0.059 0.062 0.053 0.052 0.046 0.066 0.050 0.063 0.059 0.063
1/2 0.021 0.043 0.051 0.053 0.031 0.039 0.048 0.064 0.038 0.044 0.055 0.053
3/4 0.007 0.002 0.007 0.007 0.001 0.002 0.003 0.004 0.007 0.008 0.009 0.019

0 0∗ 0.045 0.060 0.059 0.060

1/4
0.5 POWER 0.121 0.297 0.547 0.796 0.089 0.267 0.552 0.850 0.119 0.312 0.609 0.903
0.7 0.374 0.814 0.981 0.999 0.336 0.860 0.995 1.000 0.365 0.886 0.994 1.000
0.9 0.675 0.977 0.996 1.000 0.740 0.987 0.998 1.000 0.728 0.990 1.000 1.000

1/2
0.5 0.149 0.358 0.630 0.872 0.187 0.511 0.826 0.990 0.264 0.690 0.929 0.998
0.7 0.483 0.926 0.998 1.000 0.664 0.986 1.000 1.000 0.736 0.992 1.000 1.000
0.9 0.908 1.000 1.000 1.000 0.951 1.000 1.000 1.000 0.940 1.000 1.000 1.000

3/4
0.5 0.087 0.210 0.334 0.557 0.178 0.450 0.743 0.959 0.301 0.656 0.930 0.995
0.7 0.254 0.629 0.897 0.996 0.500 0.929 0.999 1.000 0.605 0.957 0.998 1.000
0.9 0.662 0.984 1.000 1.000 0.761 0.999 1.000 1.000 0.768 0.985 1.000 1.000

NOTE: The sizes for the independent copula are δ = τ = 0.

Table 4. Sizes and powers of the test of radial and joint symmetry in the setting as Li and Genton (2013) and Genest and Nešlehová (2014).

Radial Joint

τ n = 100 250 500 1000 n = 100 250 500 1000

� 0 SIZE 0.060 0.073 0.065 0.060 SIZE 0.030 0.029 0.024 0.048

Frank
1/4 0.054 0.060 0.059 0.054 POWER 0.685 0.963 0.997 1.000
1/2 0.050 0.064 0.058 0.059 0.968 1.000 1.000 1.000
3/4 0.016 0.041 0.037 0.046 0.975 0.999 1.000 1.000

Gaussian
1/4 0.062 0.060 0.047 0.059 0.725 0.984 1.000 1.000
1/2 0.041 0.041 0.054 0.054 0.976 0.999 1.000 1.000
3/4 0.009 0.022 0.014 0.031 0.973 1.000 1.000 1.000

Clayton
1/4

R
E
W
O
P

0.228 0.491 0.830 0.985 0.706 0.957 0.999 1.000
1/2 0.516 0.833 0.985 1.000 0.966 0.999 1.000 1.000
3/4 0.291 0.512 0.912 0.996 0.976 1.000 1.000 1.000

Gumbel
1/4 0.110 0.333 0.510 0.695 0.696 0.974 0.998 1.000
1/2 0.166 0.486 0.723 0.909 0.974 1.000 1.000 1.000
3/4 0.042 0.322 0.580 0.815 0.978 0.999 1.000 1.000

NOTE: One bootstrap sample is used to estimate the distribution of the test statisticW under the null.

The sizes of both tests closely align with the nominal level of
5% for values of τ equal to 1/4 and 1/2. However, for larger val-
ues of τ , the sizes are achieved at larger sample sizes. Specifically,
in the case of the radial symmetry test, our results are consistent
with those presented in Table 2 of Li and Genton (2013), and
once again our testing approach achieves the nominal levels at
smaller sample sizes.

In comparison to the results presented in Table 1 of Genest
andNešlehová (2014) for the Frank andGaussian copulamodels
they considered, our approach achieves sizes that are closer to
the nominal level. Although their performance improves for
larger sample sizes, our approach outperforms them even in
scenarios with larger sample sizes.

Regarding the joint symmetry copula structure, our achieved
powers are significantly higher compared to the powers obtained
for the radial symmetry property, and similar results are pre-
sented in Table 2 of Li and Genton (2013).

4. Data Applications

To illustrate the procedures herein, we apply our visualization
and hypothesis testing methodology to three real-world
datasets. The nutritional habits survey data are in Section 4.1,
stock price data for the five top companies in the NASDAQ-100
stock index are in Section 4.2, and two major stock indices, the
US S&P500 and German DAX data, are in Section 4.3.
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4.1. Nutritional Habits Survey Data

The dataset used here comes from a survey conducted by the
U.S. Department of Agriculture in 1985. The survey aimed
to investigate the dietary habits of 737 women aged between
25 and 50 years. Specifically, the survey collected daily intake
measurements of five variables: calcium (mg), iron (mg), protein
(g), vitamin A (mg), and vitamin C (mg).

In previous analyses, Genest, Nešlehová, and Quessy (2012)
employed a Cramér-von Mises statistic to evaluate the bivariate
reflection symmetry of the pairwise copulas. Similarly, Li and
Genton (2013) used a nonparametric method based on the
asymptotic distribution of the empirical copula process to assess
reflection symmetry for this dataset. In our study, we conducted
a test using our rank-basedmethod and obtained corresponding
p-values, which are presented in the top-right corner of each
subplot in Figure 2.

The pattern of p-values obtained in our study exhibits sim-
ilarities to the findings reported by Genest, Nešlehová, and
Quessy (2012) and Li andGenton (2013), leading to similar con-
clusions for some pairs. However, there are notable differences.
Unlike Genest, Nešlehová, and Quessy (2012), our test does not
reject the reflection symmetry copula at a 5% significance level
for the pairs (iron, vitamin A), (iron, vitamin C), and (protein,
vitamin A). Conversely, we do reject the reflection symmetry
copula for the pair (protein, vitamin C).

When comparing our results to those of Li and Genton
(2013), we find much closer agreement. The only difference in
conclusions arises for the two pairs: (protein, vitamin C), where
we reject the reflection symmetry copula, and (iron, vitamin
A), where we do not reject it. Notably, the pair (iron, vitamin
A) differs from the conclusions of both Genest, Nešlehová,
and Quessy (2012) and Li and Genton (2013). Based on our
findings, we can make specific recommendations for appro-
priate copula models depending on the symmetry properties
observed in the data. For pairs that exhibit reflection symmetry,
such as calcium/vitamin C and iron/vitamin C, the Gumbel
copula could be a suitable model. For pairs that present both
reflection symmetry and radial symmetry, like iron/protein,
iron/vitamin A, and vitamin A/vitamin C, the Gaussian and
Frank copulas can be potential selections. However, in cases
where all three symmetry structures (reflection, radial, and
joint) are rejected, potential asymmetric copula models such
as the Marshall-Olkin and Tawn’s copulas may need to be
considered.

4.2. Stock Prices Data

Assessing pairwise dependence between stock returns is crucial
for portfolio diversification, risk management, and constructing
optimal portfolios (Markowitz 1952). It provides insights into
the interrelationships among stocks, aiding in the identifica-
tion of risk sources and portfolio adjustments. Additionally,
understanding pairwise dependence facilitates opportunities for
hedging and risk mitigation, reducing overall portfolio risk and
enhancing risk-adjusted returns (Campbell, Lo, and MacKinlay
1997). Moreover, it is valuable for financial modeling and fore-
casting, enabling the capture of jointmovements and assessment
of portfolio performance usingmodels such asmultivariate time

series analysis, copula modeling, and factor models (Alexander
2008).

We analyze a time series dataset comprising the daily closing
stock prices of five top companies within the NASDAQ-100
index: Amazon, Facebook, Google, Apple, and Microsoft. The
data spans from January 1, 2018, toDecember 31, 2019, resulting
in 502 observations. For each of the five assets, we have T = 501
log-return values. This dataset has previously been used in Lu
and Ghosh (2023) for portfolio risk management, employing
nonparametric estimation of multivariate copulas. The primary
goal of our study is to assess the pairwise dependence among
the equities under consideration and examine the potential pres-
ence of symmetry structures in the data. We use the visual-
ization and testing procedures outlined in Sections 2.3 and
2.4 to evaluate potential symmetries within each bivariate time
series.

Figure 3 presents the visualization and hypothesis testing
results for the dataset under consideration, focusing on the
three copula structures studied throughout this article. The
results indicate that joint symmetry is rejected for all pairs of
stocks. However, reflection symmetry is only dismissed in the
Facebook-Google case, while radial symmetry is only rejected in
the Amazon-Microsoft case. Our analysis reveals that a signifi-
cant number of bivariate time series pass our tests for reflection
symmetry and radial symmetry, suggesting that copula models
exhibiting such symmetry properties could be potential models
for the data. For cases where reflection and radial symme-
try cannot be rejected, copula models such as the Gaussian
and Frank copulas could be suitable choices. Deng, Smith, and
Maneesoonthorn (2024) presents a comprehensive analysis of
asymmetric dependencies in intraday equity returns through the
application of large skew-t copula models. This study under-
scores the intricate and variable nature of dependency structures
under differing market conditions and time resolutions. While
our approach has concentrated on a specific time period and
assumes a stable dependence structure, it could be extended to
investigate temporal variations in dependency dynamics. Such
an extension would contribute to a deeper understanding of
asymmetry in financial markets and enhance the evaluation of
symmetry within these evolving contexts.

4.3. S&P500 andDAX Return Data

This dataset consists of n = 396 observations of two major
stock indices, the US S&P500 and the German DAX, during
the years 2009 and 2010. The dataset was originally introduced
by Brechmann and Schepsmeier (2013), where each time series
was filtered using an ARMA(1,1)-GARCH(1,1) model with Stu-
dent’s t innovations, and the standardized residuals were trans-
formed nonparametrically to copula data using the correspond-
ing empirical distribution functions.

Subsequently, Li and Genton (2013) used this dataset to
identify the underlying copula structure and propose a suitable
parametric copula model for the dependence between the two
stock indices. In Figure 4, we present the results of our proposed
methodology for investigating the potential symmetry struc-
tures present in the two stock indices. Our analysis indicates
that reflection symmetry cannot be rejected, however, we found
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Figure 2. Visualizations and testing results for copula symmetries over the 5 random variables in the nutritional dataset.
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Figure 3. Visualizations and testing results for copula symmetries over the five top Nasdaq companies: Amazon, Facebook, Google, Apple, and Microsoft. The data spans
from January 1, 2018, to December 31, 2019.
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Figure 4. Visualization and testing results for copula symmetries over the two financial indexes S&P500 and DAX. The data spans the years 2009 and 2010.

sufficient evidence to reject the other two properties, radial
symmetry and joint symmetry.

These findings differ from the results reported in Li and
Genton (2013), where radial symmetry could not be rejected
at the 5% significance level. In our analysis, however, radial
symmetry is rejected with a p-value of 0.027.

Based on these insights, a potential parametric copula model
that could be used to model the dependence between the
S&P500 and DAX indices is the Gumbel copula, as illustrated in
Figure 1.

5. Discussion

In this article, we have presented a comprehensive framework for
visualizing and testing common assumptions regarding copula
structures, such as reflection symmetry, radial symmetry, and
joint symmetry. Our approach uses functional data analysis
techniques to construct test functions based on bivariate cop-
ulas at specific discrete points. These test functions effectively
summarize the copula structures and provide valuable insights
into their adherence to specific structures.

To visually represent the copula structures, we employ func-
tional boxplots, which depict the functional median and vari-
ability of the test functions. These visualizations allow us to
assess the departure from zero and gain insights into the degree
to which the copula structures conform to the desired assump-
tions.

Additionally, we have introduced a nonparametric testing
procedure to evaluate the significance of deviations from sym-
metry. Through extensive simulation studies involving various
copula models, we have demonstrated the reliability and power
of our method, particularly for moderate to large sample sizes.
The numerical experiments and data analyses conducted in
this study have consistently shown robust testing results across
different datasets, and the visualization technique has proven
useful in extracting preliminary information directly from the
data. It is worth mentioning that our functional data approach
can be extended to test copula properties beyond symmetry as
well.

It is important to note that our testing method relies on
the asymptotic distribution of the estimators of the test func-
tions, which are derived from empirical copula processes. As
a result, the small sample properties of our test may not be
as optimal as certain existing testing methods. The required
sample size for our testing approach can vary depending on
the specific copula structure under examination, but in general,

larger sample sizes tend to enhance the size and power of the test.
Thus, increasing the sample size is recommended to improve
the overall performance of the test in terms of accuracy and
sensitivity.

Finally, the proposed visualization and testing techniques
were applied to three real-world datasets: a nutritional habits
survey with five variables, five stock price data, and two
major stock indices—the US S&P500 and the German DAX.
These applications offered valuable insights into the underlying
structures and patterns within the datasets, highlighting our
approach’s effectiveness in data exploration and analysis. To
contextualize our findings within the literature, prior studies,
such as Kole, Koedijk, and Verbeek (2007), have emphasized
the importance of selecting appropriate copulas to model
dependence structures in financial data. Our results suggest
that the Gumbel copula is particularly suitable for capturing the
dependence between the S&P500 and DAX indices, in line with
research advocating for copulas that model tail dependence.
Furthermore, our rejection of joint symmetry across all stock
pairs underscores the limitations of symmetric copulas, such as
the Gaussian and Frank, and reinforces the need for models that
account for the asymmetric dependencies commonly observed
in financial markets.

Supplementary Materials

• Section S1: Interpretation of the Scenario Where Two Samples of
Functional Curves Exhibit a Distinct Pattern Analysis of cases where
functional data shows two distinct samples of curves, such as forming
separate bands with no overlap.

• Section S2: Rank Plots for Different Copula Models and Symmetries
Visualization and analysis of rank plots for various copula models,
including Clayton, Gaussian, and Gumbel, to evaluate symmetries like
reflection and radial.

• Sections S3 to S8: Proofs of Propositions 1 to 6 in the Main
Manuscript Detailed mathematical proofs for propositions, leveraging
the Continuous Mapping Theorem and other tools to establish
asymptotic properties of test functions.
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