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 A B S T R A C T

Optimising driving velocity profiles is crucial for reducing vehicle fuel consumption and NOx emissions without 
altering core vehicle components. While many studies have addressed eco-driving, most have focused solely 
on minimising fuel consumption or have treated NOx emissions separately, resulting in distinct, non-integrated 
speed profiles, and have often neglected the influence of real-time traffic. To overcome these limitations, this 
paper introduces a novel Multiobjective Speed Profile Optimisation (MO-SPO) framework for eco-driving that 
simultaneously minimises fuel consumption, NOx emissions, and travel time while accounting for surrounding 
traffic. Two solution approaches are developed and compared: a two-phase Model Predictive Control (MPC) 
method and a newly proposed Deep Reinforcement Learning (DRL) method that directly integrates multiple 
objectives and real-time traffic constraints into the speed control policy.

Simulation results on a UK highway segment, with vehicle dynamics and engine characteristics derived 
from GT-SUITE data, demonstrate the benefits of the proposed framework. For instance, at one representative 
Pareto point, results indicate that the DRL approach achieves up to 10% lower fuel consumption and 16% 
lower NOx emissions compared to MPC-based methods while reducing travel time by approximately 5%. In 
addition, the DRL method maintained safer headway distances, offering more robust eco-driving strategies in 
dynamic traffic environments.

This work is the first to apply multiobjective optimisation to generate integrated speed profiles that consider 
fuel, NOx, and travel time simultaneously under realistic traffic conditions.
1. Introduction

Rapid urbanisation and the steady increase in global vehicle own-
ership have heightened concerns about energy consumption and air 
pollution in the transportation sector [1]. Although research and in-
dustry efforts have led to the development of more efficient powertrain 
systems and alternative-fuel vehicles [2–4], conventional internal com-
bustion engine (ICE) vehicles still dominate the roads and contribute 
significantly to environmental problems, particularly through emissions 
of nitrogen oxides (NOx). Prolonged exposure to NOx is linked to photo-
chemical smog, acid rain formation, and particulate matter (PM), such 
as PM2.5 and PM10, which pose direct risks to public health [5–7]. 
Additionally, repeated studies indicate that vehicle-related emissions 
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are a major source of air pollution, leading to an estimated 7500 
premature deaths annually in the UK alone [8].

Besides the health and environmental concerns, the global rise in 
fuel prices and the finite nature of petroleum supply have consistently 
underscored the economic imperative to minimise vehicle fuel con-
sumption [2]. As a result, numerous strategies have been explored to 
reduce both emissions and energy usage, ranging from traffic signal 
optimisation [9] and cooperative driving [10,11] to the development 
of hybrid and electric vehicle technologies. Among these, optimising 
driving velocity profiles stands out as a highly cost-effective method, 
since it does not require retrofitting vehicles with new hardware or 
redesigning powertrains [12]. Instead, it focuses on modifying driver 
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behaviour – speed, acceleration, braking – to achieve more efficient 
and cleaner operation.

A substantial body of literature has investigated velocity profile 
optimisation from various angles [13–17]. Most of these studies concen-
trate on single-objective formulations, typically aiming to minimise fuel 
consumption under specific constraints such as road safety and rules. 
Although effective in reducing fuel consumption, these methods often 
overlook or only superficially address NOx emissions—an omission that 
is partly attributable to the complexities in accurately modelling and 
incorporating NOx in optimisation frameworks [18]. The incorporation 
of NOx is indeed technically more challenging, involving additional 
engine and aftertreatment parameters whose dynamic behaviour is 
less straightforward to predict compared to fuel consumption. Con-
sequently, comprehensive studies that jointly optimise fuel and NOx 
remain sparse.

A few exceptions exist. For instance, Fernández-Yáñez et al. [18] 
investigated speed profile generation while considering both fuel and 
NOx, yet it treated each objective separately, yielding distinct profiles 
optimised exclusively for fuel or NOx. More recently, Yuval et al. [19] 
employed multi-objective optimisation to integrate fuel consumption 
and NOx objectives simultaneously. While this represents a mean-
ingful advance, it primarily addresses traffic-free conditions and is 
built on a shortest-path method [20] without incorporating real-world 
traffic flow. The absence of traffic considerations limits the real-life 
applicability of such solutions, since constraints like headway dis-
tance, dynamic speed limits, and surrounding vehicles’ behaviours 
significantly influence feasible speed profiles.

Against this backdrop, our work aims to close the gap by proposing 
a multiobjective speed profile optimisation (MO-SPO) framework that 
jointly minimises fuel consumption, NOx emissions, and travel time 
while explicitly accounting for surrounding traffic. Travel time is in-
cluded as a third objective to reflect practical stakeholder needs, since 
drivers and freight operators often balance economic, environmental, 
and time-efficiency goals. By framing these objectives within a mul-
tiobjective optimisation perspective, we avoid the pitfalls of blending 
incommensurable objectives (e.g., fuel vs. NOx) into a single scalar 
function [21]. Instead, we derive a Pareto front – a set of optimal solu-
tions – where no objective can be improved without compromising at 
least one other. This approach provides a flexible decision-making tool 
for diverse user preferences, allowing stakeholders to select solutions 
that best align with their priorities.

From a methodological perspective, applying multiobjective optimi-
sation to real-time speed generation in the presence of dynamic traffic 
is notably challenging. While traditional MPC can handle certain multi-
objective problems by aggregating objectives into a single cost function, 
its sequential decision-making nature and reliance on finite-horizon 
optimisation can limit its capacity to capture global trade-offs [22]. In 
contrast, reinforcement learning – grounded in the convergence prop-
erties of Bellman’s equations – offers a holistic, global approach that 
naturally considers long-term interactions among multiple objectives, 
making it more suitable for truly complex multi-objective optimisa-
tion scenarios. Therefore, we propose and compare two alternative 
approaches: 

(i) Two-Phase MPC: 
• Phase-1: Solve a traffic-free problem to obtain an ‘‘ideal’’ 
Pareto front that captures trade-offs between fuel con-
sumption, NOx, and travel time in an uncongested envi-
ronment.

• Phase-2: Integrate the sampled Pareto-optimal solutions 
into a real-time MPC framework, balancing the objectives 
and constraints in the presence of surrounding traffic.

(ii) Multiobjective Deep Reinforcement Learning (DRL): 
• Simultaneously considers real-time traffic dynamics and 
user-defined weight preferences for fuel, NOx, and travel 
time.
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• Exploits the compatibility between multiobjective optimi-
sation and reinforcement learning [23,24], enabling an 
agent to learn speed control policies that yield different 
Pareto-optimal solutions.

We demonstrate the practicality and effectiveness of these two 
approaches using a highway segment in southern England based on 
both simulated and real-world traffic data. The vehicle’s powertrain 
characteristics and emission rates are modelled based on GT-SUITE 
simulation data [25], enabling a realistic and detailed representation 
of fuel consumption and NOx generation. Although the two-phase MPC 
method offers a comparatively more straightforward integration of 
multiobjective solutions into an MPC framework, our results indicate 
that multiobjective DRL provides greater flexibility and superior per-
formance in simultaneously balancing the three objectives. However, 
its reliance on training data and computational resources may limit 
its applicability to completely new traffic scenarios without additional 
training.

By shedding light on the strengths and limitations of these two 
approaches, this paper aims to contribute both methodologically and 
practically to the ongoing pursuit of greener transportation. The pro-
posed framework illustrates how multiobjective optimisation can be 
leveraged to deliver not just a single solution, but an entire spectrum of 
speed profiles that can be tailored to different priorities and real-time 
traffic conditions.

To summarise, the primary innovations of our approach are sum-
marised as follows:

• Integrated Multiobjective Optimisation: Simultaneously min-
imises fuel consumption, NOx emissions, and travel time, over-
coming the limitations of single-objective approaches.

• Real-Time Traffic Integration: Explicitly incorporates real-
world traffic dynamics to generate practical, adaptive speed pro-
files.

• Dual Methodology: Proposes both a two-phase MPC and a multi-
objective DRL approach, offering flexible solutions to eco-driving 
challenges.

• Enhanced Performance: The DRL method demonstrates signif-
icant improvements over MPC, validated through UK highway 
cases.

The remainder of the paper is organised as follows. Section 2 
provides an in-depth literature survey of eco-driving and optimal speed 
profile generation. Section 3 presents the vehicle modelling and the 
relationships between engine power, fuel consumption, and NOx emis-
sion. Section 4 introduces the multiobjective problem formulation and 
details the two proposed solution approaches. Section 5 discusses the 
experimental setup, results, and a comparison of the approaches. Fi-
nally, Section 6 draws conclusions and outlines directions for future 
research, including advanced multiobjective reinforcement learning 
techniques and the incorporation of other emissions such as PMs and 
COx.

2. Related work

2.1. Conventional approaches for energy focused eco-driving

Generating an optimised driving speed profile provides an effec-
tive way for reducing energy consumption and emission of pollutants. 
Various approaches have been proposed for eco-driving, in particular 
for generating speed profiles that minimise total fuel consumption. 
Typical conventional solution approaches used for generating optimal 
speed profiles include analytical/exact methods (e.g., mathematical 
programming or dynamic programming) and optimal control methods 
(e.g., MPC and its variants).
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The concept of ‘‘Look-ahead Control’’ has been widely used in 
some works [26], which demonstrates the advantage of using available 
information on future disturbances. For instance, Sharma et al. [27] 
minimised fuel consumption of a heavy-duty vehicle by predicting 
the speed of the leading vehicle based on its uphill deceleration, 
achieving up to 8% fuel savings in real road scenarios. Other similar 
studies include [28] for minimising fuel consumption of heavy diesel 
trucks, Kamal et al. [10] for predicting the states of the preceding 
vehicle in urban scenarios at an adaptive look-ahead time step, etc. 
This advantage has been further applied in the cooperative driving 
scenario which employs aerodynamic drag reduction of platoons. For 
instance, Zhai et al. [29] proposed an ecological cooperative look-ahead 
control strategy based on distributed model predictive control (DMPC) 
for a platoon of automated vehicles on freeways with varying slopes, 
combining eco-driving and platooning technologies to maximise fuel 
efficiency. Kong and Ma [11] developed a cooperative eco-driving and 
energy management control strategy for heterogeneous vehicle pla-
toons at multiple signalised intersections, leveraging a soft actor–critic 
(SAC)-based approach to optimise ecological velocity, safe inter-vehicle 
distance, and energy efficiency while maximising fuel economy and 
driving comfort. With the help of emerging vehicular communication 
technologies, a distributed optimal control scheme [30] is proposed to 
achieve cooperative highway driving at the level of individual vehicles, 
which demonstrates the improvement of fuel economy and traffic 
efficiency.

For long-haul applications, two-stage hierarchical frameworks de-
couple global route planning from local speed optimisation. For in-
stance, Hamednia et al. [14] proposed a bi-level optimisation approach 
where gear selection is pre-optimised offline, and a nonlinear dynamic 
programme is solved online. By leveraging Pontryagin’s Maximum Prin-
ciple and a model predictive control framework, the method achieves 
up to 11.60% energy savings compared to average driving cycles. Fur-
thermore, integrating advanced ICT technologies, such as cloud-based 
systems, can enhance real-time perception and decision-making. For 
example, Schlechtendahl et al. [31] introduced the concept of control 
system as a service (CSaaS), enabling cloud-deployed optimisation. Jia 
et al. [15] developed an enhanced cloud-based predictive cruise control 
(PCC) system, combining deep learning-based traffic prediction with 
adaptive MPC to optimise speed profiles under varying traffic condi-
tions. Their method, tested on a UK highway segment, demonstrated 
improved fuel efficiency for heavy-duty vehicles (HDVs) by leveraging 
real-time traffic data and advanced computational techniques. In ad-
dition, Nie et al. [16] coupled gradient-based MPC for speed planning 
with MPC-based energy allocation in fuel cell hybrids, reducing traction 
power by 2.65% and battery degradation by 8.14%. Khalatbarisoltani 
et al. [32] propose a two-level eco-driving strategy for Connected Fuel 
Cell Vehicles (C-FCVs) to optimise speed trajectories and powertrain 
operation, addressing computational challenges and real-time traffic 
complexities. The top layer integrates an LSTM-based traffic predictor 
and an MPC framework to optimise speed while considering hydrogen 
consumption, ride comfort, and traffic efficiency, while the bottom 
layer employs decentralised MPC to allocate power optimally between 
fuel cells and the battery. Simulation results demonstrate that this 
strategy enhances ride comfort, reduces hydrogen consumption by 
7.28%, and mitigates component degradation by 5.33%.

Drive cycle optimisation was also considered in some researches 
to minimise vehicle’s fuel consumption. Mensing et al. [33] minimise 
a light-duty vehicle’s fuel consumption, which demonstrates a 16% 
decrease relative to the New European Driving Cycle (NEDC) while 
preserving travel time and adhering to speed regulations. Cui et al. [13] 
proposes a Simulated Annealing (SA)-based method to develop driving 
cycles that better align with real-world speed-acceleration patterns, 
reducing errors by up to 23% compared to traditional methods and 
improving fuel consumption estimation accuracy. Additionally, Lot 
et al. [17] proposed an optimal control formulation for eco-driving in 
front-wheel drive electric vehicles, integrating driver preferences – such 
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as desired speed, following distances, and smooth acceleration – with 
energy efficiency goals, using a simplified polynomial approximation 
of vehicle losses and relaxed regenerative braking constraints. Testing 
on a 25 km simulated journey shows 21% energy savings with only 
a 7% reduction in average speed, and 10%–15% energy savings in 
car-following scenarios without speed reduction.

2.2. Reinforcement learning based approaches

Recent advancements in cloud computing and artificial intelligence 
have enabled the integration of machine learning techniques, par-
ticularly reinforcement learning (RL), with traditional optimisation 
frameworks to address vehicle energy management challenges. Unlike 
conventional methods that often rely on heuristic rules or static models, 
RL-based approaches demonstrate unique capabilities in solving com-
plex optimisation and optimal control problems through data-driven 
exploration of state–action spaces. This subsection systematically re-
views emerging RL methodologies and their applications across diverse 
energy optimisation scenarios.

Hierarchical control architectures. A prominent trend involves hierar-
chical frameworks that decompose energy management tasks into co-
ordinated layers. Hu and Li [34] developed an adaptive hierarchical 
energy management system (EMS) combining deep deterministic policy 
gradient (DDPG) with equivalent consumption minimisation strategy 
(ECMS) knowledge. This hybrid approach achieves near-optimal fuel 
consumption comparable to dynamic programming (DP) benchmarks 
while outperforming PID-based ECMS and rule-based strategies. The 
framework’s efficient exploration mechanism demonstrates particular 
promise for real-world applications requiring safe online learning. Ex-
tending this concept, Dong et al. [35] proposed a three-layer flexible 
eco-cruising strategy (FECS) featuring: (1) Dijkstra-based lane planning 
considering long-term traffic impacts, (2) trigonometric speed optimi-
sation for energy savings, and (3) robust trajectory tracking with safety 
guarantees. Stochastic simulations reveal significant cost reductions in 
moderate-flow and free-flow traffic scenarios.

Multi-objective optimisation. Addressing the inherent trade-offs in ve-
hicular energy systems, Yang et al. [36] formulated hybrid electric 
vehicle energy management as a general-sum stochastic game solved 
through multi-agent RL (MARL). By modelling the engine-generator set 
and hybrid energy storage system as competing agents, their framework 
achieves Nash equilibrium solutions balancing fuel economy, battery 
degradation, and ultracapacitor state of charge. The MARL approach 
demonstrates superior performance over single-agent RL and DP in 
maintaining balanced objective optimisation. Similarly, Xia Jiang and 
Li [37] established a hierarchical Markov Decision Process (MDP) 
integrating car-following, lane-changing, and RL policies for electric 
connected vehicles. SUMO simulations at signalised intersections show 
substantial energy savings while maintaining safe interactions with 
human-driven vehicles.

Partial observability and complex environments. For realistic traffic sce-
narios with limited information, Yang et al. [38] developed
autonomous eco-driving strategies using DDPG, PPO, and SAC algo-
rithms combined with hybrid car-following models. Their framework 
enables connected and automated vehicles (CAVs) to optimise safety, 
energy efficiency, and ride comfort simultaneously when navigating 
signalised intersections. Comparative analyses reveal that the Hybrid-
SAC variant surpasses human drivers and traditional models (Trigo, 
IDM) across all performance metrics. Addressing partial observabil-
ity, Zhu et al. [39] framed multi-power-source CAV control as a 
Partially Observable MDP (POMDP) solved via proximal policy opti-
misation (PPO). The developed controller reduces fuel consumption by 
17% versus human drivers while maintaining comparable travel times.
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Integrated decision-making architectures. Recent innovations emphasise 
unified frameworks for simultaneous longitudinal and lateral control. Li 
et al. [40] introduced an attention-enhanced Twin Delayed DDPG 
(TD3) architecture incorporating multi-head self-attention and hybrid 
action representation. This integration achieves 42.18% stability im-
provement over prior methods while delivering 30.25% energy effi-
ciency gains. Building on this, Fan et al. [41] proposed a TD3-based 
eco-driving strategy combining lane preference scoring with longitu-
dinal speed planning. Their SUMO simulations demonstrate synergistic 
benefits: longitudinal control alone reduces travel time by 7.94% or en-
ergy consumption by 18.15%, while integrated lateral decisions further 
decrease both metrics by 5.7% and 1.75% respectively.
Customised multi-agent and deep learning techniques. Khalatbarisoltani 
et al. [42] proposes a decentralised health-conscious learning-based 
integrated thermal and energy management (ITEM) system for hy-
brid electric vehicles (HEVs) that optimises fuel consumption, driver 
comfort, and battery lifetime using a multi-agent deep reinforcement 
learning (MADRL) framework with long short-term memory (LSTM). 
The MADRL approach outperforms rule-based and single-agent strate-
gies, reducing battery degradation by 48% while maintaining cabin 
comfort. Experimental validation through hardware-in-the-loop (HIL) 
testing confirms the reliability of the proposed method, with battery 
and cabin temperature deviations from simulation results remaining 
within 0.45 and 0.85 degrees, respectively. Jia et al. [43] propose 
a predictive energy management system (PEMS) for fuel cell hybrid 
electric buses (FCHEBs) using a twin delayed deep deterministic policy 
gradient (TD3) algorithm, integrating future driving conditions and a 
predictive passenger model to optimise operational costs. Experimental 
results show that the TD3-based PEMS reduces comprehensive opera-
tional costs by 5.92% compared to conventional TD3-based EMS with 
a fixed passenger count.

2.3. Energy and emission focused eco-driving

The analysed papers suggest a predominant focus on energy con-
sumption when generating speed profiles for vehicles. Most of the re-
viewed literature emphasises energy use, sometimes considering travel 
time, while neglecting the assessment of NOx emissions due to its in-
herent technical complexities in quantification. In [18] explores speed 
profile generation considering both fuel and NOx, producing separate 
optimal profiles for each objective. It shows that optimising for fuel 
does not necessarily reduce NOx, and the study achieves significant re-
ductions in both fuel consumption and NOx emissions through dynamic 
programming.

Huang et al. [44] investigate the impact of driver behaviour on 
real driving emissions (RDE) using a portable emission measurement 
system with 30 drivers (15 novice, 15 experienced) driving the same 
diesel vehicle on the same route. Results show that novice drivers 
are generally more aggressive, leading to slightly higher mean fuel 
consumption (2%) and significantly higher NOx (17%) and PM (29%) 
emissions than experienced drivers. However, individual driver differ-
ences play a more significant role than experience level, suggesting that 
adopting eco-driving skills could substantially reduce fuel consumption 
and emissions for the worst-performing drivers.

Tang et al. [45] present a strategy for managing energy and emis-
sions based on a deep Q-network (DQN) as applied to dynamic pro-
gramming (DP) as an optimal reference point. Two distributed deep 
reinforcement learning (DRL) algorithms, namely asynchronous advan-
tage actor–critic (A3C) and distributed proximal policy optimisation 
(DPPO), were employed to propose EMSs. Afterwards, emission opti-
misation was incorporated to propose distributed DRL-based E&EMSs. 
Through simulation results, three control strategies based on deep re-
inforcement learning (DRL) show outstanding computational efficiency 
and near-optimal fuel economy. Compared to DQN, two distributed 
DRL algorithms improve learning efficiency by four times.
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Guo et al. [46] introduces an advanced energy management strat-
egy for fuel cell hybrid vehicles based on a duelling-double-deep Q-
network (D3QN). The primary challenge addressed is achieving an 
effective trade-off between system degradation and hydrogen consump-
tion, while minimising computational costs across diverse operational 
environments.

Yuan et al. [47] quantify the fuel use and emission reduction 
potential of eco-driving for light-duty gasoline vehicles (LDGVs) using 
three million seconds of real-world driving data from 160 drivers across 
eight routes and 199 segments. Using a Vehicle Specific Power modal 
model, results show that route-level eco-driving can reduce fuel use 
and emissions by 6% to 40% compared to average driving. While eco-
driving generally leads to simultaneous fuel and emission reductions, 
trade-offs exist, highlighting the need for strategic decision-making in 
LDGV eco-driving.

Jia et al. [48] propose a novel cost-minimisation energy manage-
ment strategy that integrates thermal safety, degradation awareness 
of lithium-ion batteries, and fuel cell aging suppression to balance 
durability and hydrogen consumption. Using an enhanced self-learning 
stochastic Markov predictor for speed prediction, the strategy reduces 
battery aging by 34.8% and total operating costs by 12.3% compared 
to conventional methods.

Han et al. [49] propose an energy management strategy that inte-
grates a battery preheating technique – supported by a high-precision 
electro-thermal-aging model, grid- and battery-powered preheating 
methods, and optimisation algorithms (PSO and PMP) – to determine 
optimal preheating times and manage energy effectively. Simulation 
results demonstrate that at −20 ◦C, preheating can reduce energy usage 
by approximately 44%–48% compared to non-preheating scenarios.

Wang et al. [50] introduces an advanced energy system combining a 
solid oxide fuel cell (SOFC) with compressed air energy storage CAES to 
generate compressed air, electrical power, and heat. The system’s per-
formance was assessed and optimised using regression-based machine 
learning models, focusing on three key process variables: temperature, 
current density, and utilisation factor.

The closest work relevant to our paper is given by Yuval et al. 
[19], where an approach using multiobjective optimisation was intro-
duced, aiming to create optimised speed profiles while simultaneously 
considering fuel consumption, NOx emissions and travel time under 
traffic-free conditions. This method represents a more favourable ap-
proach for handling problems featuring multiple objectives that cannot 
be directly compared. Rather than combining these objectives into a 
single weighted metric, the proposed approach offers a collection of 
non-dominated solutions (Pareto front). Each solution within this set 
reflects varying preferences concerning the importance of fuel, NOx 
and time. A standard shortest path model similar to Ozatay et al. [20] 
was designed to implicitly address several constraints, and was solved 
using linear programming. By obtaining the Pareto front for the three 
objectives, this approach provides a range of options for users or driving 
guidance systems to select tailored strategies according to their specific 
requirements. However, the study in [19] only considers traffic-free 
scenarios, which significantly narrows its applicability in real-world 
situations.

2.4. Contributions of our work

Our work distinguishes itself from the existing literature by address-
ing a critical gap: while many eco-driving studies focus solely on fuel 
consumption or treat NOx emissions separately – often overlooking the 
impact of real-time traffic – our paper presents the first multiobjective 
framework that optimises speed profiles for fuel consumption, NOx 
emissions, and travel time in an integrated manner. Unlike conven-
tional approaches, which typically generate isolated or non-integrated 
speed profiles using methods such as dynamic programming, MPC, or 
even single-objective reinforcement learning, our Multiobjective Speed 
Profile Optimisation (MO-SPO) framework incorporates both a two-
phase MPC and a novel DRL method that explicitly account for dynamic 
traffic constraints.
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3. Vehicle modelling

In this part, we present the longitudinal vehicle dynamics model, 
along with employing simulated data to establish connections between 
engine power, fuel usage, and NOx emissions. By considering the 
vehicle’s dynamics, the power output can be precisely computed by 
factoring in the road slope, road condition, and the driver’s actions, 
indicated by changes in speed over a specific duration and the resulting 
acceleration.

3.1. Vehicle dynamics

In our research, we utilise a vehicle’s longitudinal dynamics model, 
following the convention from previous work such as Ozatay et al. [20], 
Jia et al. [15], Fernández-Yáñez et al. [18] and Yuval et al. [19]. We 
use 𝑀𝑒 to denote the effective mass of the vehicle, which accounts for 
both the vehicle’s actual mass and the rotational inertia of its wheels. 
The term 𝑑𝑣𝑑𝑡  represents the vehicle’s acceleration, describing the rate 
of change of its velocity 𝑣 over time. The forces acting on the vehicle 
include 𝐹𝑒𝑛𝑔 for the tractive force generated by the engine, 𝐹𝑏𝑟𝑘 for 
the braking force, 𝐹𝑟𝑜𝑙 for the rolling resistance force, 𝐹𝑎𝑟𝑜 for the 
aerodynamic resistance force, and 𝐹𝑔𝑟𝑑 for the road grade resistance 
force. The rolling resistance force 𝐹𝑟𝑜𝑙 is calculated using the vehicle 
mass 𝑀𝑣, gravitational acceleration 𝑔, rolling resistance coefficient 𝐶𝑟, 
and the cosine of the road gradient 𝜃(𝑡). The aerodynamic resistance 
force 𝐹𝑎𝑟𝑜 depends on the air density 𝜌, frontal area 𝐴𝑓 , aerodynamic 
drag coefficient 𝐶𝑑 , and the square of the vehicle’s speed 𝑣(𝑡). The 
road grade resistance force 𝐹𝑔𝑟𝑑 is determined by the vehicle mass 
𝑀𝑣, gravitational acceleration 𝑔, and the sine of the road gradient 𝜃(𝑡). 
Finally, the effective mass 𝑀𝑒 incorporates the vehicle mass 𝑀𝑣 and 
the rotational inertia of the wheels, calculated using the number of 
wheels 𝑁𝑤, rotational inertia of each wheel 𝐽𝑤, and wheel radius 𝑅𝑤. 
The complete model reads, 

𝑀𝑒
𝑑𝑣
𝑑𝑡

= 𝐹𝑒𝑛𝑔 − 𝐹𝑏𝑟𝑘 − 𝐹𝑟𝑜𝑙 − 𝐹𝑎𝑟𝑜 − 𝐹𝑔𝑟𝑑 . (1)

𝐹𝑟𝑜𝑙 = 𝑀𝑣𝑔𝐶𝑟 cos(𝜃(𝑡)). (2)

𝐹𝑎𝑟𝑜 =
1
2
𝜌𝐴𝑓𝐶𝑑𝑣(𝑡)2. (3)

𝐹𝑔𝑟𝑑 = 𝑀𝑣𝑔 sin(𝜃(𝑡)). (4)

𝑀𝑒 = 𝑀𝑣 +𝑁𝑤
𝐽𝑤
𝑅2
𝑤
. (5)

The vehicle’s resulting force can be straightforwardly calculated 
by applying Eq. (1) to (5). The term representing the overall force 
generated by the vehicle, denoted as 𝐹𝑣𝑒ℎ ∶= 𝐹𝑒𝑛𝑔 −𝐹𝑏𝑟𝑘, is established. 
To calculate the tractive force 𝐹𝑒𝑛𝑔 and braking force 𝐹𝑏𝑟𝑘, we operate 
under the assumption that efficient driving avoids simultaneous use 
of throttle and brake, a premise found in various pertinent studies 
like [18,19]. This assumption assumes that at any given time, either 
𝐹𝑒𝑛𝑔 or 𝐹𝑏𝑟𝑘 must be zero, determined as follows: When 𝐹𝑣𝑒ℎ ≥ 0, then 
𝐹𝑒𝑛𝑔 = 𝐹𝑣𝑒ℎ and 𝐹𝑏𝑟𝑘 = 0; if 𝐹𝑣𝑒ℎ < 0, then 𝐹𝑒𝑛𝑔 = 0 and 𝐹𝑏𝑟𝑘 = 𝐹𝑣𝑒ℎ.

After determining the tractive force 𝐹𝑒𝑛𝑔 , we establish the en-
gine power 𝑃𝑒𝑛𝑔 using the predetermined vehicle specifications. Sub-
sequently, fuel consumption and NOx emissions are derived from this 
engine power. We will now elaborate on this process.

3.2. Fuel and NOx rate functions based on simulation

Based on of the simulated vehicle, we applied a third-order poly-
nomial fit to establish the relationships between NOx rates �̇�𝑁  and 
engine power 𝑃𝑒𝑛𝑔 , and a first-order polynomial fit was used to simulate 
between fuel �̇�𝑓  and engine power 𝑃𝑒𝑛𝑔 . These relationships are derived 
from simulation data obtained through experiments conducted using 
5 
the GT-SUITE [25] package. Appendix  A.1 elaborates the simulation 
environment and vehicle modules used for deriving such relationships.

In this study, the GT-SUITE powertrain and emission model pa-
rameters were adopted from the rigorously validated work of Gao 
et al. [51]. Their validation process included experimental comparisons 
under diverse driving conditions, such as the Worldwide Harmonised 
Light Vehicles Test Cycle (WLTC), and covered critical scenarios like 
cold-start emissions, SCR/ACCT system efficiency, and thermal dynam-
ics of after-treatment systems. Specifically, fuel consumption and NOx 
emission simulations were benchmarked against experimental data, 
showing strong agreement (e.g., minor deviations in NOx rates and 
fuel consumption trends). By leveraging this pre-validated model, we 
ensure that our eco-driving analysis reflects real-world powertrain and 
emission behaviours across the operational scenarios examined in this 
work.

For NOx, the relationship is: 
�̇�𝑓 = 𝛼1𝑃

3
𝑒𝑛𝑔 + 𝛼2𝑃

2
𝑒𝑛𝑔 + 𝛼3𝑃𝑒𝑛𝑔 + 𝛼4, 𝑃𝑒𝑛𝑔 ≥ 0, (6)

where 𝛼1 = 9.207 × 10−20, 𝛼2 = 1.663 × 10−14, 𝛼3 = 2.076 × 10−10, and 
𝛼4 = 4.204 × 10−7. The 𝑅2 of the fitting is 0.97.

For fuel, the relationship is: 
�̇�𝑁 = 𝛽1𝑃𝑒𝑛𝑔 + 𝛽2, 𝑃𝑒𝑛𝑔 ≥ 0, (7)

where 𝛽1 = 5.937 × 10−8, 𝛽2 = 0.0001002. The 𝑅2 of the fitting is 0.94.
The situation of negative engine power (i.e., 𝑃𝑒𝑛𝑔 < 0) did not 

happen in our experiments, since 𝐹𝑒𝑛𝑔 ≥ 0 and 𝑣(𝑠) ≥ 0 always hold. 
If it is to be included, as in several other research cases [52,53], a 
common practice is to set an additional condition such that �̇�𝑓 = 𝛼0
and �̇�𝑁 = 𝛽0 if 𝑃𝑒𝑛𝑔 < 0, which can be easily incorporated into our 
model if needed. Based on Eqs. (6) and (7), the static relationships of 
fuel consumption and NOx emissions with both zero and varying road 
grades while maintaining a constant vehicle speed are illustrated in Fig. 
1. Note that since the road grade typically varies along the observed 
journey section, these static relationships provide only idealised results.

4. Problem formulation and two alternative solution approaches

In this section, we first introduce the fundamentals of multiobjec-
tive optimisation and the overall speed profile generation problem as 
an optimal control problem. We then delve into the two alternative 
solution approaches both offering innovative ways to tackle the chal-
lenge of simultaneously optimising fuel consumption, NOx emissions, 
and travel time considering surrounding traffic. The first approach is 
based on traditional optimisation and control. It divides the problem 
into two phases, applying multiobjective optimisation in a traffic-free 
scenario and then using model predictive control to address real-time 
traffic scenarios. The second approach combines multiobjective deep 
reinforcement learning with real-time traffic considerations, allowing 
for direct weighting of preferences to obtain optimised speed profiles. 
Through these approaches, we aim to enhance eco-driving strategies 
and promote more sustainable and efficient transportation solutions.

4.1. Multiobjective optimisation

Multiobjective optimisation [21] is a technique used to handle prob-
lems with multiple, often incomparable, objectives. Instead of seeking 
a single optimal solution, it aims to find a set of solutions known as 
the Pareto front, where no other solution can improve one objective 
without sacrificing another. This approach provides decision-makers 
with a range of trade-off options, allowing them to select the most 
suitable solution according to their preferences and requirements.

The modelling of multi-objective optimisation for eco-driving is 
of paramount importance due to the diverse and often conflicting 
preferences of users, as well as the inherent uncertainties in real-world 
driving scenarios [54,55]. Traditional eco-driving strategies typically 
prioritise single objectives, which may not adequately address the 
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Fig. 1. Investigating the relationship between NOx emissions and fuel consumption at a constant vehicle speed and varying road gradients. A–C: Fuel consumption (A) and NOx 
emissions (B) are examined with respect to a constant vehicle speed on a flat road. The relationship between fuel consumption and NOx emissions is shown in C. The red dots 
indicate the minimum values. D–F: Similar analyses to A–C are conducted, but with a range of constant road slopes from −10◦ to 10◦.
multifaceted priorities of drivers. For instance, while some drivers 
may prioritise energy efficiency, others may place greater emphasis 
on minimising travel time or enhancing driving comfort. This paper 
underscores the necessity of integrating multiple objectives, including 
fuel consumption, NOx emissions, and travel time, into a cohesive 
framework to deliver tailored eco-driving recommendations. Addition-
ally we highlight the critical role of accounting for real-time dynamics 
in traffic conditions, where the unpredictable behaviours of leading 
vehicles can significantly influence energy efficiency, NOx emission and 
travel time. Addressing these complexities is crucial for the widespread 
adoption of eco-driving practices, where real-time adaptability and user 
satisfaction are key to achieving both environmental and operational 
goals.

Let there be 𝐾 distinct objectives, each representing an aspect to be 
minimised and denoted by 𝑧𝑘(𝑥), 𝑘 = 1,… , 𝐾, and these objectives are 
not directly comparable: 

minimise {𝑧1(𝑥), 𝑧2(𝑥),… , 𝑧𝐾 (𝑥)}. (8)

Solution 𝑥 is said to dominate solution 𝑥′ if 𝑥 is better than or the 
same as 𝑥′ for all objectives, i.e., 𝑧𝑘(𝑥) ≤ 𝑧𝑘(𝑥′),∀𝑘 = 1,… , 𝐾, and 
there exists at least one objective where 𝑥 is strictly better than 𝑥′, 
i.e., ∃𝑘 ∶ 𝑧𝑘(𝑥) < 𝑧𝑘(𝑥′). A non-dominated (efficient) solution refers to a 
feasible solution within a set that is not surpassed by any other feasible 
solutions. The collection of all these non-dominated solutions is termed 
the Pareto-optimal set. The boundary delineated by the points derived 
from this Pareto-optimal set is known as the Pareto front (frontier). In 
multiobjective optimisation problems, the goal is to discover a diverse 
set of solutions situated along this Pareto front. Common methods 
used to generate a Pareto front include techniques like weighted sum, 
𝜀-constraint, and weighted metric methods [21].
6 
4.2. Speed profile generation as an optimal control problem

4.2.1. Original optimal control problem
In this section, we outline the overall optimal control problem 

focused in our research. The aim is to generate a speed profile that 
minimises specific objectives throughout a total distance travelled, 
denoted as 𝑆. As the longitudinal model operates within the spatial 
domain, we apply the following domain transformations: 𝑑𝑡 = 𝑑𝑠

𝑣(𝑠)  and 
𝑑𝑣
𝑑𝑡 = 𝑑𝑣

𝑑𝑠
𝑑𝑠
𝑑𝑡 = 𝑑𝑣

𝑑𝑠 𝑣, in a way that the distance travelled 𝑠 becomes an 
independent variable and �̇�(𝑡)𝑑𝑡 = �̇�(𝑠)

𝑣(𝑠) 𝑑𝑠 corresponds to a rate �̇�(𝑡)
originally measured with respect to time. When the travel velocity 𝑣(𝑠)
is known, the engine power (𝑃𝑒𝑛𝑔(𝑠) =

𝐹𝑒𝑛𝑔
𝑣(𝑠) ) can be exclusively deter-

mined using Eqs. (1)–(5) provided that the velocity and acceleration 
are identifiable. Subsequently, the fuel consumption and NOx emission 
rates can be computed using Eqs. (6) and (7). Three objectives are 
identified in our multiobjective optimisation framework:

(i) Total fuel consumption: 𝐽𝑓 = ∫ 𝑆
0

�̇�𝑓 (𝑃𝑒𝑛𝑔 (𝑠))
𝑣(𝑠) 𝑑𝑠,

(ii) Total NOx emission: 𝐽𝑁 = ∫ 𝑆
0

�̇�𝑁 (𝑃𝑒𝑛𝑔 (𝑠))
𝑣(𝑠) 𝑑𝑠, and

(iii) Total travel time: 𝐽𝑇 = ∫ 𝑆
0

1
𝑣(𝑠)𝑑𝑠.

Our goal is to minimise the three objectives while taking various 
preferences into account: 

minimise {𝐽𝑓 , 𝐽𝑁 , 𝐽𝑇 }. (9)

As per convention, necessary normalisation is needed for the three 
objectives in Eq. (9) in an multiobjective optimisation context. In our 
MO-SPO framework, we adopt the weighted sum method, one of the 
most widely used techniques [21]. This approach assigns a weight to 
each objective and combines them into a single objective function. 
By systematically varying the weights, different regions of the Pareto 
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frontier can be explored as comprehensively as possible. Specifically, 
the objective function is formulated as, 
𝐽 = 𝑤𝑓𝐽𝑓 +𝑤𝑁𝐽𝑁 +𝑤𝑇 𝐽𝑇 , 𝑤𝑓 +𝑤𝑁 +𝑤𝑇 = 1 (10)

where 𝑤𝑓 , 𝑤𝑁  and 𝑤𝑇  are the weights associated with fuel, NOx and 
time objectives respectively. In addition to the objectives, the following 
constraints are included into our model to guarantee practical driving 
scenarios in real-world.

The speed is restricted within the range of minimum speed limit 
𝑣min to maximum speed limit 𝑣max for all velocities 𝑣(𝑠). This range 
ensures adherence to legal speed limits on the motorway. Addition-
ally, a lower bound may be included if specified by the local traffic 
authority. The vehicle’s acceleration is confined within the range of 
maximum acceleration limit −𝑎max to 𝑎max for all velocities 𝑣(𝑠). This 
limitation is implemented to prioritise the safety and comfort of the 
driver and passengers (Table  1). The initial and final states of the 
journey entail the vehicle being stationary, indicated by the conditions 
𝑣(0) = 𝑣(𝑆) = 0. Standing condition 𝑑𝑣𝑑𝑡 ≠ 0,∀𝑣 = 0 is imposed such 
that when the speed reaches zero, the acceleration must not be zero 
to prevent the vehicle from remaining stationary indefinitely. When 
a vehicle navigates through traffic, its movement is influenced by the 
presence and behaviour of other vehicles nearby. These neighbouring 
vehicles create constraints that impact how the vehicle can manoeuvre 
or accelerate, making it essential to consider these limitations when 
planning or controlling its movement.

We denote the above constraints as a constraint set D . Depending 
on the specific requirements, more constraints apart from the above 
ones can be included into D . Note that our driving model focuses 
on motorway conditions and does not account for signal stop points. 
Nevertheless, these can be readily integrated into the model depending 
on the chosen settings.

4.2.2. Discretised optimal control problem based on road position
Similar to Ozatay et al. [20] and Jia et al. [15], the total distance 

𝑆 is discretised into 𝑄 equal intervals 𝛥𝑠 = 𝑆∕𝑄. This allows a 
variety of approaches, such as shortest path, MPC and DRL to be 
applied in practically solving the original optimal control problem. We 
further make the assumption that the acceleration remains unchanged 
within each interval 𝑖 = 1,… , 𝑄, and denote it as 𝑎𝑖. Then the speed 
profile can be derived by determining the start and end speed of each 
interval 𝑖 (denoted as 𝑣1𝑖 and 𝑣2𝑖), or equivalently, by determining 
the acceleration 𝑎𝑖 =

𝑣22𝑖−𝑣
2
1𝑖

2𝛥𝑠  of interval 𝑖 if 𝑣1𝑖 is given. Note that 
the time needed within interval 𝑖 is 𝛥𝑡𝑖 = 2𝛥𝑠

𝑣1𝑖+𝑣2𝑖
. Therefore the fuel 

consumption and NOx emission incurred at interval 𝑖 can be calculated 
by �̇�𝑓 (𝑃𝑒𝑛𝑔(𝑖))𝛥𝑡𝑖 = 2�̇�𝑓 (𝑃𝑒𝑛𝑔 (𝑖))

𝑣1𝑖+𝑣2𝑖
𝛥𝑠 and �̇�𝑁 (𝑃𝑒𝑛𝑔(𝑖))𝛥𝑠 = 2�̇�𝑁 (𝑃𝑒𝑛𝑔 (𝑖))

𝑣1𝑖+𝑣2𝑖
𝛥𝑠

respectively, where 𝑃𝑒𝑛𝑔(𝑖) is the engine power at interval 𝑖 by applying 
Eqs. (1)–(5).

Three discretised objective terms on the distance domain can be 
further defined, corresponding to the original objectives in (9):

(i) Total fuel consumption: 𝐽 ′
𝑓 =

∑𝑄
𝑖=1

2�̇�𝑓 (𝑃𝑒𝑛𝑔 (𝑖))
𝑣1𝑖+𝑣2𝑖

𝛥𝑠,

(ii) Total NOx emission: 𝐽 ′
𝑁 =

∑𝑄
𝑖=1

2�̇�𝑁 (𝑃𝑒𝑛𝑔 (𝑖))
𝑣1𝑖+𝑣2𝑖

𝛥𝑠, and
(iii) Total travel time: 𝐽 ′

𝑇 =
∑𝑄

𝑖=1
2

𝑣1𝑖+𝑣2𝑖
𝛥𝑠.

In a multiobjective optimisation framework, we aim to minimise the 
three objectives considering different preferences: 
minimise {𝐽 ′

𝑓 , 𝐽
′
𝑁 , 𝐽 ′

𝑇 }. (11a)

subject to D . (11b)

The final objective after adopting weighted sum remains in the same 
form as in Eq. (10).

We propose two alternative solution approaches to deal with the 
above multiobjective optimal control problem in Sections 4.3 and 4.4 
respectively.
7 
4.3. A two-phase approach using shortest path and MPC

As our objective is to generate a speed profile based on real-time 
traffic conditions, it becomes imperative to consider the influence of 
surrounding traffic, which sets it apart from traffic-free scenarios. MPC 
has traditionally been an effective tool for addressing such real-time 
problems. However, when combined with multiobjective optimisation, 
MPC encounters significant challenges, and despite considerable efforts 
made in the past few decades, there is no satisfactory generic method 
to obtain exact or high-quality solutions [56,57]. Due to the succes-
sive computational nature of MPC, the results are often not Pareto 
optimal [58].

Considering the above challenges mentioned, we propose an ap-
proximate two-phase approach, striking a balance between the ‘‘desir-
able’’ Pareto-efficient speeds obtained from the traffic-free condition 
(Phase-1) and the adjusted speeds due to surrounding traffic, com-
puted using an MPC model (Phase-2). In Phase-1, in the absence of 
surrounding traffic, the speed profiles are ideally designed to minimise 
fuel consumption, NOx emissions, and travel time, based on vehicle 
specifications and road geometry information. However, these profiles 
may not be practical or entirely feasible due to the lack of surrounding 
traffic considerations. In Phase-2, realistic solutions are generated by 
a conventional MPC model, accounting for other vehicles’ presence, 
while endeavouring to maintain speeds as close to those obtained in 
Phase-1 as possible. The subsequent sections provide a comprehensive 
elaboration of both phases.

4.3.1. Phase-1: traffic-free shortest path problem formulation
Fig.  2 gives an illustration of the framework of Phase-1. In Phase-1, 

given the absence of surrounding traffic, the discretised multiobjective 
optimal control problem represented by (11) can be further reformu-
lated as a deterministic shortest path problem [19,20], if the speed 
horizon is also discretised into [0, 𝛥𝑣, 2𝛥𝑣,… , 𝑣𝑚𝑎𝑥]. This yields a short-
est path network defined over [0, 𝛥𝑠, 2𝛥𝑠,… , 𝑆] × [0, 𝛥𝑣, 2𝛥𝑣,… , 𝑣𝑚𝑎𝑥], 
where each node (𝑠, 𝑣) in the network represents a chosen speed 𝑣
at a distance 𝑠, and an arc represents the costs (NOx, fuel and time) 
from one node to another, i.e., how speed changes from one distance 
point to the next. This shortest path problem is solvable using standard 
mathematical programming. The outcome of Phase-1 yields a Pareto 
front, illustrating various trade-offs among the preferred weight set-
tings, where each point on the Pareto front corresponds to a complete 
speed profile. A set of sampled points 𝑝 ∈ P will be collected from the 
Pareto front and be used as reference points for Phase-2. For details in 
how to formulate the shortest path problem in the context of generating 
speed profiles, see examples from [19,20] (see Fig.  2).

4.3.2. Phase-2: MPC problem considering surrounding traffic
In [15], an MPC model is proposed to generate speed profiles that 

only minimise fuel consumption considering surrounding traffic. Its 
objective function for an interval 𝑖 and total prediction horizon 𝑛 reads,

𝐽 (𝑖) = 𝜆𝑒
𝑖+𝑛−1
∑

𝑗=𝑖
𝐸𝑒(𝑗)2 + 𝜆𝑘

𝑖+𝑛−1
∑

𝑗=𝑖
(𝐸𝑘(𝑗) −

1
2
𝑀𝑒𝑣

2
𝑑 (𝑗))

2

+ 𝜆𝑠
𝑖+𝑛−1
∑

𝑗=𝑖
(𝐸𝑒(𝑗) − 𝐸𝑒(𝑗 − 1))2. (12)

 where the first term minimises the engine energy 𝐸𝑒 (fuel), the second 
term minimised the deviation between the actual speed (represented 
by kinetic energy 𝐸𝑘) and the desired speed 𝑣𝑑 and the third term 
minimises jerk (represented by energy increment) to ensure driver’s 
comfort. 𝜆𝑒, 𝜆𝑘 and 𝜆𝑠 are the corresponding weights.

We have developed an MPC model based on [15] to account for 
the surrounding traffic while aiming to keep the speed profile as close 
as possible to the sampled Pareto solutions from Phase-1. A detailed 
description of this MPC algorithm can be found in Appendix  A.3. Fig.  3 
provides an illustration of how our Phase-2 operates: the MPC model is 
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Fig. 2. An illustration of Phase-1 where the traffic-free scenario is modelled as a shortest path problem and applied to a multiobjective optimisation framework. Sampled points 
𝑝1 , 𝑝2 ,… , 𝑝𝑛 ∈ P correspond to different efficient speed profiles with respect to their own preferences.
employed for generating vehicle speed profiles considering surrounding 
traffic for each sampled points 𝑝 ∈ P from Phase-1. The vehicle’s 
dynamics accounts for various constraints D including surrounding 
traffic (headway) and speed/acceleration limits. The MPC indirectly 
optimises the three objectives (fuel, NOx and time) by minimising the 
deviation between 𝑣𝑑 and the reference Pareto point 𝑝. The entire pro-
cess is conducted over a finite distance, which is divided into discrete 
steps. The controller predicts the vehicle’s future behaviour within the 
horizon, subject to the constraints D . At each time step, MPC solves 
an optimisation problem to find the optimal control input sequence. 
Then, the controller shifts the horizon by one step and updates the 
information with new measurements.

It should be noted that we adopted a data-driven traffic predictive 
model for speed prediction which applies the CNN-based deep learning 
method to capture spatio-temporal dependencies in traffic data [15]. 
The multi-view CNN processes multiple factors (e.g., traffic flow, speed) 
separately through convolutional layers, fuses their outputs, and pre-
dicts traffic speed via fully connected layers. The model uses a weighted 
loss function to balance contributions from different traffic factors. 
Predicted speeds are transformed from the time domain to the space 
domain for use in predictive control systems, enabling real-time speed 
optimisation.

To realise the above, for each sampled Pareto point 𝑝 ∈ P, we 
set the desirable speed 𝑣𝑑 in the MPC’s objective function (see [15]) 
dynamically depending on the speed of the front vehicle 𝑣𝑓  and the 
Pareto speed 𝑣𝑃 (𝑝) derived from Phase-1. Two strategies are designed 
to address the problem from different aspects: a conservative MPC 
strategy (‘‘MPC1’’) and a balanced MPC strategy (‘‘MPC2’’).
Conservative MPC strategy (MPC1): Under this strategy, the new desir-
able speed 𝑣𝑑 is calculated as follows: 

𝑣𝑑 =

{

𝑣𝑃 (𝑝), if 𝑣𝑃 (𝑝) ≤ 𝑣𝑓 , (13)

𝑣𝑓 , if 𝑣𝑃 (𝑝) > 𝑣𝑓 .

8 
The justification for the conservative MPC tactic, as described in 
Eq. (13), is that in order to maintain maximum safety, the speed of the 
targeted vehicle must not surpass that of the front vehicle at any given 
time. Furthermore, the vehicle following the targeted one will regulate 
its speed in tandem with the targeted vehicle, and the whole set of 
traffic behind them will do likewise. Note that this strategy cannot 
guarantee that the speed of the current vehicle will never exceed that of 
the preceding vehicle, as 𝑣𝑑 can only be approached as much as possible 
in objective. However, this approach has the advantage that whenever 
the Pareto speed 𝑣𝑃 (𝑝) is less than the speed of the preceding vehicle 
𝑣𝑓 , the MPC will attempt to achieve 𝑣𝑃 (𝑝), resulting in solutions with 
higher quality in terms of the three objectives.
Balanced MPC strategy (MPC2): Since safety headway constraints are 
included in the MPC model [15], it is considered safe to occasionally 
allow the desired speed to be higher than the speed of the front car. 
Therefore, in the balanced strategy, the desired speed is calculated as 
the average value of the Pareto and front car speeds, i.e., 

𝑣𝑑 =
𝑣𝑃 (𝑝) + 𝑣𝑓

2
. (14)

This approach increases the likelihood of the current vehicle surpass-
ing the front vehicle’s speed when prioritising minimisation of travel 
time. It provides more realistic speed profiles, but may result in lower 
solution quality than ‘‘MPC1’’, since the desired speed will only match 
the Pareto speed if 𝑣𝑃 (𝑝) = 𝑣𝑓 .

4.4. A deep reinforcement learning approach

Reinforcement learning (RL) enables agents to learn decision-
making strategies for maximising cumulative rewards in sequential 
processes [59]. Deep reinforcement learning (DRL) employs multi-
layer Artificial Neural Networks (ANNs) for training in simulated 
environments. Here, the agent interacts with the environment, receives 
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Fig. 3. An illustration of Phase-2 where based on the sampled Pareto points 𝑝1 , 𝑝2 ,… , 𝑝𝑛 ∈ P from Phase-1, the surrounding traffic is taken into account in an MPC model.
feedback on actions, and improves decision-making through trial and 
error. This study focuses on continuously controlling the starting point’s 
acceleration in each section to achieve a speed profile that addresses 
multiple diverse objectives. To address complex control tasks with 
continuous state and action spaces, we use an actor–critic framework 
with the deep deterministic policy gradient (DDPG) algorithm [59]. 
The actor–critic architecture, resembling a Generative Adversarial Net-
work, consists of two ANNs: the ‘‘critic’’ estimates state transition 
values, guiding decisions, and the ‘‘actor’’ selects optimal actions based 
on critic feedback. The actor uses a Policy-based method for high-
dimensional and continuous action spaces, and the critic employs a 
Value-based method for efficiency and stability. The iterative inter-
action in the actor–critic framework is depicted in Fig.  4. The black 
lines represent the predicting loop, while the red lines represent the 
training loop. The squares depict the agents and the environment, and 
the ellipses represent the information flow. The red circle represents to 
update the weights of ANNs for a given state–action pair.

The DRL approach is shown in Fig.  5. The state is formulated by traf-
fic speed 𝑣𝑓 , driving speed 𝑣, headway distance 𝛿, and gradient 𝜃. The 
action determines the speed variance 𝑎, which is a continuous value, 
at the upcoming road section. Negative values indicate deceleration, 
while positive values indicate acceleration. The action is constrained 
by the limits specified in Table  1, ensuring the agent’s acceleration or 
deceleration stays within acceptable bounds during the control process. 
Consequently, the agent can adjust its speed within the speed limit and 
efficiently navigate through the road section. The agent updates the 
state at the beginning of each road section and receives the reward after 
traversing the section with the given speed. The reward is formulated 
by combining the three objectives of the optimisation in Eq. (11), 
namely fuel consumption, NOx emissions, and travel time. These values 
are normalised and combined into the same weighted objective. Due to 
the nature of minimisation, the reward is inversely proportional to the 
values of fuel, NOx, and travel time.

In this study, success is defined as the vehicle safely traversing the 
road without a crash, and failure occurs when a crash happens. The 
step reward is provided after each action, but they do not distinguish 
between success and failure. Increasing control accuracy results in 
9 
more decision points, potentially leading to sparse rewards before task 
completion. Too few penalties may reduce the agent’s cautiousness, 
resulting in numerous crashes in the initial stages of learning, hindering 
the ability to successfully complete the task. Conversely, too large 
penalties may lead the agent to adopt overly conservative actions, such 
as driving slowly to maintain a safe distance from the front car, which is 
not desired. Experiencing excessive failures during training can lead the 
agent to adopt a conservative behaviour, often referred to as the coward 
effect in reinforcement learning [60]. This is primarily attributed to 
the agent’s exploration of the environment resulting in infrequent suc-
cesses. Over time, the agent begins to perceive the game as consistently 
ending in failure. Consequently, its strategy shifts towards surviving 
longer rather than optimising reward acquisition.

To prevent the agent from being stuck in local optimal solutions and 
to mitigate the coward effect, an episode reward is designed each time 
the agent completes an episode, whether it is a failure or success. The 
termination condition is determined by two standard criteria: (i) either 
the agent crashes the front vehicle during the experiment (indicating 
failure) or (ii) the agent completes the entire journey through the road 
(indicating success). When the agent fails, it receives a penalty, which 
is discounted by the length it travelled. This means that the longer the 
agent travels before failure, the less severe the penalty. When the agent 
completes the task, it receives a reward, but the reward is discounted 
based on how the objective values achieved by the agent compare 
to the values derived from the ideal condition (representing traffic-
free solution). This means that the agent receives a higher reward 
for achieving objectives closer to the ideal values. Accordingly, the 
agent receives an evaluation after termination based on its ending state, 
which is calculated by Eq. (15). 𝛾+ and 𝛾− are coefficients to balance 
the value of episode reward and step reward, which avoids the gradient 
vanishing during training. 𝛽1 is a parameter to control the discounting 
rate. 𝑂𝑏𝑗𝐼  is the weighted sum of objectives derived from traffic-free 
solution, and 𝑂𝑏𝑗𝐸 is that derived from this episode. The tendency of 
the episode reward is shown in Fig.  6. The penalty curve (blue) follows 
an exponential shape, which penalises the agent more when the agent 
fails early, but imposes only a slight penalty if it fails near the end of 
the road. On the other hand, the reward curve (green) follows a linear 
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Fig. 4. Actor–critic training framework.
Fig. 5. DRL framework for eco-driving with traffic flow.
shape, which uniformly increases as the objective becomes better. A 
linear-shaped function imparts a consistent and gradual reward as the 
agent performs better, thereby reducing the intricacy of stimulation and 
preventing the agent from getting trapped in local performance optima.

Episode reward =

⎧

⎪

⎨

⎪

⎩

𝛾+ ×
𝑂𝑏𝑗𝐼
𝑂𝑏𝑗𝐸

, Finish

𝛾− ×
(

𝑒𝛽1(
∑

𝛥𝑠−𝑆) − 1
)

, Failure
(15)

The training process of ANN can be viewed as solving a parametric 
optimisation problem through stochastic gradient descent, which iter-
atively updates the parameters of ANN to minimise the loss function. 
The training process by DDPG algorithm follows the pseudo code in 
Algorithm 3 in Appendix  A.4.

The policy gradient method with time-difference error can be sum-
marised with the following equations. A tuple (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1) represents 
the state, action, reward, and next state, respectively. First, compute 
the target value 𝑦𝑖 by the target critic-network 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 with weight set 
𝜃target_critic and target actor-network 𝜇 with weight set 𝜃target_actor by 
Eq. (16). 
𝑦 = 𝑟 + 𝛾𝑄 (𝑠 , 𝜇(𝑠 |𝜃target_actor)|𝜃target_critic) (16)
𝑖 𝑖 target 𝑖+1 𝑖+1
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Here, 𝛾 is the discount factor, which represents how much impor-
tance is given to future rewards.

Then, calculate the loss function of critic network using the memory 
set containing 𝑁 samples. This is done by employing the mean square 
error as shown in Eq. (17). Subsequently, the weights of the critic net-
work are updated using the gradient descent method with the gradient 
∇L (𝜃critic). 

L (𝜃critic) = 1
𝑁

𝑁
∑

𝑖
(𝑄(𝑠𝑖, 𝑎𝑖|𝜃critic) − 𝑦𝑖)2 (17)

The loss function of actor network is defined as the negative mean 
of the expected Q-values for the state–action pairs in the batch in 
Eq. (18). This means that the actor seeks to minimise the negative Q-
values, effectively maximising the Q-values. Then, the gradient decent 
∇L (𝜃actor) is performed to update the weight of actor network. 

L (𝜃actor) = − 1
𝑁

𝑁
∑

𝑖
𝑄(𝑠𝑖, 𝜇(𝑠𝑖|𝜃actor)|𝜃critic) (18)

After each training round, the target critic network is updated using 
a decay rate 𝜏. This update is performed to prevent rapid changes in 
target Q-values, which can lead to unstable learning.
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Fig. 6. Episode reward under different termination states.
The action is selected following the 𝜀-greedy method where 𝜀 is 
the explorative parameter. Before each action is selected, a random 
number is generated according to a uniform distribution between 0 and 
1. If the random number is greater than 𝜀, the action with the highest 
probability is selected. Otherwise, an action is selected randomly. For 
sufficient exploration at the initial process of the simulation, 𝜀 is 
annealed in a sigmoid shape as 

𝜀 = 𝜀max −
𝜀max − 𝜀min

1 + 𝑒−𝛽2[(𝐸−𝛽3)−𝛽4]
(19)

where 𝜀max and 𝜀min are the lower and upper bounds, respectively. 𝛽2, 
𝛽3 and 𝛽4 are the parameters to control the shape of annealing. 𝐸 stands 
for the number of experienced episodes. The value of 𝜀 decays with the 
increasing of episode number.

The learning rate of the actor and critic ANNs is also decayed 
during iteration, following an exponential shape. The decaying learning 
rate ensures that the networks adapt to changing dynamics and avoids 
overshooting or getting stuck in local minima during the learning 
process.

5. Computational experiments

5.1. Experiment environment and dataset

In this section, we present the experimental results obtained by 
applying both the two-phase approach (shortest-path + MPC) and the 
novel DRL-based approach to generate optimised speed profiles for our 
focused passenger car. The surrounding traffic was simulated using 
SUMO [61], an open-source traffic simulation software that allows 
modelling and analysing the movement of vehicles, pedestrians, and 
other road users in urban areas. To validate the ability of the traffic 
simulator SUMO to replicate real-world traffic scenarios, we utilised 
loop data collected from April 1, 2015, to December 31, 2015, on a 
segment of the M25 highway. This segment includes approximately 30 
evenly distributed detector points, which recorded average traffic speed 
and flow at 15 min intervals. The same dataset was employed in [15]. 
Traffic demand was initially generated using DFROUTER based on 
historical loop data from entrance point A, as illustrated in Fig.  7a, and 
subsequently implemented in SUMO with the Intelligent Driver Model 
(IDM) for car-following behaviour. A validation point C was randomly 
selected midway along the highway segment to collect simulated traffic 
flow and average speed data, which were then compared against real-
world records. Vehicles in the real dataset were classified into two 
categories: passenger cars and freight cars. Their parameters, such as 
speed and acceleration, were configured using default values in the 
simulation.
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We applied our approaches to the same 12 km segment on the 
M25 motorway in the UK as in [15,19] (see Fig.  7a), including the 
elevation data for this road segment from the Shuttle Radar Topography 
Mission (SRTM) [62]. In both the two-phase and MPC approaches, three 
objectives (fuel, NOx and travel time) were considered to fully explore 
the potential of these methods.

5.2. Experiments on the two-phase approach

5.2.1. Parameter settings
The experiments for the two-phase approach were conducted using 

MATLAB 2022a (MathWorks). The phase-1 multiobjective shortest path 
problem was solved using the default linear programming solver of 
MATLAB. For the Phase-2 MPC problem, our MPC model was developed 
based on the OptiTruck model in [15] by updating its objective terms 
and speed generating logic, and replacing the original heavy duty truck 
with our simulated car vehicle in Table  1.

5.2.2. Results from phase 1 shortest path multiobjective optimisation
The experiment road section of 12 km is divided into 120 segment 

of 100 m and thus the available road positions form a finite set 𝐷 =
{0, 100,… , 12 000}. The speed range from 0 to 120 km/h (33.33 m/s) 
is divided into 33 levels with a 1 m/s resolution and thus the available 
speed values form a finite set 𝑉 = {0, 1, 2,… , 33}. The discrete road 
positions and speed values form the feasible region of the shortest path 
problem.

Based on the relationships established in Eqs. (6) and (7) and 
the multiobjective optimisation shortest path computations, we have 
obtained the corresponding Pareto front as shown in Figs.  8 and 9. It 
can be concluded that generally the travel time is conflicting with both 
NOx and fuel but with different rates and patterns under free-flow. The 
relationship between NOx and fuel is positively correlated but is linear.

5.2.3. Knee point and sample points
In the two-phase approach, the Phase-1 Pareto front provides valu-

able guidance points for Phase-2. To ensure the sampled points ade-
quately represent the Pareto front, we consider various types of points.

Firstly, we include the knee point [66], where an enhancement 
in one objective would result in a significantly adequate decline in 
at least one other objective. These solutions are often referred to as 
‘‘knees’’ due to their distinctive characteristics and are often found in 
the ‘‘middle’’ area of the Pareto front. A knee point is arguably the most 
‘‘balanced’’ point on the front [67]. Additionally, we incorporate the 
boundary points obtained by minimising only one individual objective. 
These points represent extreme solutions along each objective axis 
and contribute to a comprehensive understanding of the Pareto front. 
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Fig. 7. Road segment for experiments.
a: A 12k road segment on the M25 motorway (marked from A to B) used in the experiments (Source: Google Maps).
b: The plot illustrates the relationship between road position along an 12 km segment of the M25 motorway and both the road slope angle.
Table 1
Parameters settings.
 Symbol Value [unit] Description Remarks  
 𝑔 9.81 [m/s2] Gravitational acceleration  
 𝐴𝑓 2 [m2] Vehicle frontal area  
 𝑀𝑣 1505 [kg] Vehicle mass  
 𝑁𝑤 4 Number of wheels  
 𝐽𝑤 15 [kg m2] Tire inertia  
 𝑅𝑤 0.6 [m] Tire radius  
 𝐶𝑟 0.012 Tire rolling resistance coefficient Wargula et al. [63]  
 𝐶𝑑 0.31 Aerodynamic drag coefficient Windsor [64]  
 𝑔 9.81 [m/s2] Gravitational acceleration  
 𝜌 0.51 [kg/m3] Air density  
 𝑎max 1.47 [m/s2] Maximum acceleration/deceleration Bae et al. [65]  
 𝑣max 120 [km/h] Maximum speed Jia et al. [15]  
 𝑆 12 [km] Total travel distance A segment of the M25 motorway 
Furthermore, we include the points between the knee and boundary 
points by averaging the weights. These intermediate points capture 
the gradual transition in the trade-off relationship and provide a more 
nuanced representation of the Pareto front. Fig.  10 gives an illustrative 
example of the knee and boundary points.

Algorithm 1 in Appendix  A.2 shows a classical approach in calculat-
ing the knee point that is used in our experiments. Note that since the 
shortest path problem in Phase-1 is convex [68], this standard approach 
suffices in finding the knee point.
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By considering these different types of points, we ensure that the 
sampled points in Phase-2 are representative enough to guide the MPC 
and DRL process effectively. The weight sets and Pareto-optimal values 
of sample points can be found in Table  2 and Fig.  11.

5.2.4. Results from phase-2 MPC approach
In these Phase-2 experiments, MPC was utilised to account for the 

surrounding traffic at each of the sampled points. The speed profiles of 
the seven points sampled from the Pareto front (see Fig.  8 and Table 
2) are designated as the Pareto speed 𝑣 . The front car speed 𝑣  is 
𝑃 𝑓
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Fig. 8. 2D projections of the 3D Pareto front.
Fig. 9. Speed profiles of three objective Pareto front (with the same colour legend as in Fig.  8).
Table 2
Sampled Pareto points from Phase-1 result (traffic-free).
 Sample Fuel weight NOx weight Time weight Fuel NOx Time (s) 
 𝑝1 0 1 0 0.00536 2.42 × 10−5 1094  
 𝑝2 1 0 0 0.00529 2.97 × 10−5 866  
 𝑝3 0.68 0.16 0.16 0.00573 3.44 × 10−5 626  
 𝑝4 0.18 0.66 0.16 0.00541 3.48 × 10−5 716  
 𝑝5 (knee) 0.37 0.32 0.31 0.00822 9.26 × 10−5 419  
 𝑝6 0.18 0.16 0.66 0.00824 1.07 × 10−4 417  
 𝑝7 0 0 1 0.00835 1.19 × 10−4 415  
determined using the same simulated traffic as in [15]. The parameter 
settings in the MPC model remained the same as in [15] except that the 
series of desired speed 𝑣𝑑 was set in accordance with either Eq. (13) 
(MPC1) or Eq. (14) (MPC2). Both the conservative strategy (MPC1) 
and the balanced strategy (MPC2) were employed and their outcomes 
compared.

Results from conservative strategy (MPC1) Results in terms of the objec-
tive values of the three criteria from applying MPC1 are reported in 
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Table  3 and the seven resulting speed profiles are depicted in Fig.  12. 
In the figure, the dark blue line represents the speed profile of sample 
point 𝑝1, the light blue line represents 𝑝2, the green point represents 
𝑝3, the yellow point represents 𝑝4, the orange point represents 𝑝5, 
the light red point represents 𝑝6, and the dark red point represents 
𝑝7. The speed of the traffic flow is indicated by the black dashed 
line. The speed profiles correspond to the left 𝑦-axis, while the road 
altitude, represented by the light brown line, corresponds to the right 
𝑦-axis. The influence of minimising travel time gradually becomes more 



E. Liu et al. Energy 324 (2025) 135793 
Fig. 10. An illustrative example of the knee point (𝐾) and boundary points (𝐴,𝐵) on 
the Pareto front in a minimisation problem with two objectives.

Fig. 11. Illustration of sampled knee, boundary and middle points from the Pareto 
front with three objectives.

Table 3
Phase-2 results given by MPC1 based on seven sampled points.
 Sample Fuel NOx Time (s) 
 𝑝1 0.00562 2.83 × 10−5 1028  
 𝑝2 0.00564 3.06 × 10−5 854  
 𝑝3 0.00653 4.28 × 10−5 629  
 𝑝4 0.00599 3.56 × 10−5 715  
 𝑝5 (knee) 0.00919 9.20 × 10−5 495  
 𝑝6 0.00907 8.80 × 10−5 496  
 𝑝7 0.00959 1.00 × 10−4 493  

significant from sampled point 𝑝1 to 𝑝7, leading to higher speeds. The 
pattern depicted in Fig.  12 remains consistent with the observation 
that maintaining a low speed approximately between 40 and 60 km/h 
frequently leads to reduced fuel consumption and NOx emissions (see 
Fig.  1). As the travel time is further prioritised, both the fuel and NOx 
get worse values. Note that due to the design of the strategy in Eq. (13), 
even 𝑝6 or 𝑝7 is set as the reference Pareto speed, MPC1 rarely gives 
solutions with speeds surpassing the traffic when travel time is more 
prioritised.

Results from balanced strategy (MPC2) Results regarding the objective 
values of the three criteria obtained by applying MPC2 are outlined in 
Table  4, along with the depiction of the seven resulting speed profiles 
in Fig.  13. Similar to results given by MPC1, the impact of minimising 
travel time increases gradually from sampled point 𝑝  to 𝑝 , resulting in 
1 7
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Table 4
Phase-2 results given by MPC2 based on seven sampled points.
 Sample Fuel NOx Time (s) 
 𝑝1 0.00670 4.30 × 10−5 657  
 𝑝2 0.00700 4.90 × 10−5 614  
 𝑝3 0.00796 6.48 × 10−5 548  
 𝑝4 0.00745 5.74 × 10−5 578  
 𝑝5 (knee) 0.00774 7.10 × 10−5 483  
 𝑝6 0.00757 6.93 × 10−5 482  
 𝑝7 0.00834 8.81 × 10−5 441  

higher speeds. On the other hand, since MPC2 uses the average speed 
between the Pareto and front car speeds, when travel time is more 
of a priority, the speed of the vehicle can exceed that of the traffic, 
making the speed profiles more realistic and flexible. In addition, the 
speed profiles from MPC2 are more centred around the traffic, as 
opposite to the case in MPC1’s result. However, as previously stated, 
this compromise comes at the expense of lower solution quality since 
the profiles deviate further from the Pareto samples due to averaging 
the Pareto and front car speeds.

Overall, in either the solutions from MPC1 or MPC2, given the set 
of varied results, users have the flexibility to select a speed profile from 
this collection based on their specific requirements while taking into ac-
count of surrounding traffic. For instance, if a driver prioritises reaching 
their destination earlier and is less concerned about fuel efficiency or 
NOx emissions, they can opt for 𝑝6 or 𝑝7 as their preferred speed profile. 
By considering these options, users can tailor their driving experience 
to align with their individual preferences and priorities.

5.3. Experiments using DRL-based approach

5.3.1. Parameter settings
With the same settings for section division, vehicle parameters, and 

traffic flow as Phase-2 MPC conditions, we utilised the DRL method 
to simultaneously generate a speed profile considering both the three 
objective terms and the traffic flow. The actor and critic networks were 
formulated using deep neural networks in Python 3.9 with TensorFlow. 
The actor network consists of two hidden layers with 100 and 50 nodes, 
utilising ReLU activation functions. The output layer uses tanh acti-
vation to ensure the output acceleration remains within the specified 
accelerate/decelerate limits. On the other hand, the critic network has 
two hidden layers with 300 and 200 nodes, using SELU activation to 
maintain the value of the penalty (negative value). For learning rate 
decay, we employed the exponential decay function from TensorFlow 
with the initial value of 10−6 for the actor network and 10−3 for the 
critic network. The decay step occurs every 1000 episodes, and the 
decay rate is set to 0.1. For epsilon decay, the parameters are set as 
follows: 𝜀𝑚𝑖𝑛 = 0.1, 𝜀𝑚𝑎𝑥 = 1, 𝛽2 = 10−3, 𝛽3 = 5000, 𝛽4 = 0.5. The 
total number of episodes in the training process is set to 10,000. During 
each episode, the parameters used in the episode reward calculation are 
specified as follows: 𝛾+ = 10, 𝛾− = 50, 𝛽1 = 0.01.

In the three-objective settings of the two-phase method, we have 
selected 7 points from the Pareto front, 𝑝1, 𝑝2,… , 𝑝7. These weighting 
sets are then utilised in the step reward of the DRL method to generate 
the multi-objective solutions. Each of these 7 solutions corresponds to 
a specific combination of weights for the three objectives. In the DRL 
method, the step reward is computed by normalising and weighting 
the three objectives, and then summing them up. By leveraging these 7 
different sets of weights, the DRL method produces 7 distinct solutions, 
each offering a unique trade-off among the three objectives. These 
solutions effectively provide a diverse set of optimised outcomes that 
cater to different decision-making requirements.

The settings were chosen with specific values to balance stability, 
convergence speed, and computational efficiency. For example, the 
actor network’s two hidden layers use 100 and 50 nodes with ReLU, a 
choice that helps achieve quick convergence, while the tanh activation 
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Fig. 12. Phase-2 speed profiles given by MPC1 based on seven sampled Pareto points.
Fig. 13. Phase-2 speed profiles given by MPC2 based on seven sampled Pareto points.
in the output layer ensures the acceleration stays within defined limits. 
Meanwhile, the critic network’s larger layers (300 and 200 nodes) with 
SELU activation are tailored to accurately capture the negative penalty 
values. The learning rate decay settings – starting at 10−6 for the actor 
and 10−3 for the critic, with a decay step every 1000 episodes and a 
decay rate of 0.1 – are specifically set to gradually reduce the learning 
rate as training progresses, preventing overshooting and ensuring fine 
adjustments in later stages. Additionally, the epsilon decay parameters 
(𝜀𝑚𝑖𝑛 = 0.1, 𝜀𝑚𝑎𝑥 = 1, 𝛽2 = 10−3, 𝛽3 = 5000, 𝛽4 = 0.5) are precisely 
tuned to balance exploration and exploitation over the 10,000 episodes 
of training. Finally, selecting 7 points from the Pareto front allows the 
method to cover a range of trade-offs among the three objectives by 
assigning distinct weight combinations in the step reward calculation, 
leading to a diverse set of optimised outcomes. Each of these specific 
settings plays a crucial role in ensuring the DRL method not only trains 
effectively but also maintains real-time responsiveness in deployment.

The DRL methodology was executed using Python on a high-
performance computing system with Intel Xeon Gold 6138 CPUs op-
erating at 2.0 GHz. Each training episode consumed approximately 
7 s of computational time, resulting in an overall training duration of 
approximately 19 h for 10,000 episodes. It is worth noting that while 
the training process exhibited substantial duration, the application of 
a pre-trained agent demonstrated prompt responsiveness, effectively 
responding to a given state within a millisecond timeframe. This 
responsiveness aligns well with real-time response requisites.

5.3.2. Convergence analysis
Due to space limitations, we present the convergence progress of 

the DDPG training with epsilon decay for weighting set of the knee 
point. The convergence patterns for other weighting combinations are 
similar. The epsilon decay follows the shape depicted in Fig.  14(d). The 
convergence of the three objectives, namely fuel, NOx, and travel time, 
is shown in Figs.  14(a)–14(c), respectively. The moving average of 50 
solutions is shown in the coloured lines, and the standard deviation 
is shown in the black dashed line. Based on the convergence figures, 
the grey lines represent the objective values obtained in each episode, 
while the coloured lines (red, blue, and yellow) show the moving 
averages of the 100 nearest values. At the exploration stage (episode 
15 
0–5000), the relatively high epsilon indicates that the agent’s actions 
heavily rely on random selection. Consequently, the objective values 
show significant deviations, and the solutions fluctuate widely as the 
agent explores different actions to gather rewards in varying states. As 
the epsilon decays (episode 3000–6000), the agent starts to depend 
more on its experience rather than random actions. This leads to a 
better understanding of the environment and rewards, resulting in less 
deviation among the solutions and more cost-saving solutions. At the 
exploitation stage (episode 6000–10,000), both epsilon and learning 
rate are low, indicating that the agent predominantly relies on the 
trained actor ANN. Consequently, it can consistently provide cost-
saving solutions and effectively drive the vehicle on the experiment 
road, striking a balance among the three objectives.

5.3.3. Application of the energy management system with DRL
Table  5 presents the objective values associated with the same 

sampled seven points as shown in Table  2, which were obtained using 
the DRL method. A comparison among the Pareto-optimal solutions and 
solutions derived from two-phase and DRL approaches is illustrated 
in Fig.  15, and the projections are shown in Fig.  16. The proxim-
ity of a scatter point to the bottom-left corner indicates its superior 
performance. Notably, the Pareto solutions reflect the best outcomes 
within a traffic-free context, representing the optimal solutions for 
given weights. In actual scenarios, the speed profile is controlled by 
MPC or DRL approaches amidst surrounding traffic flow. Upon compar-
ison, it is evident that the DRL solutions are situated closer to the Pareto 
front in contrast to the MPC solutions. Across all weight sets, the DRL 
solutions consistently outperform the two-phase solutions under traffic 
flow conditions. The integrated DRL approach excels in identifying 
solutions that yield reduced fuel consumption, NOx emissions, and time 
savings compared to the two-phase approach.

The speed profiles resulting from the DRL approach, as depicted in 
Fig.  17, exhibit distinct qualities when contrasted with the
optimisation-based method. Notably, the DRL outcomes showcase sev-
eral notable features. Firstly, the DRL approach offers enhanced flexi-
bility in speed adjustments, a characteristic that stems from its height-
ened sensitivity to variances in gradient, speed, and acceleration. This 
heightened adaptability enables it to more effectively address the three 
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Fig. 14.  Convergence of DRL method using weighting set of the knee point.
Fig. 15. Comparison of the three objective values derived from Phase-1 Pareto (traffic-free), Phase-2 (MPC-1 and MPC-2) and DRL.
objectives, reacting dynamically to their fluctuations. Importantly, 
boundary samples (1, 2, and 7) indicate DRL’s superiority over MPC1 
and MPC2. These boundary cases highlight the DRL agent’s ability 
to adeptly navigate the complex interaction between driving speed 
and emissions within the dynamic context of traffic flow. This show-
cases the DRL’s capacity to capture nuanced relationships and deliver 
enhanced performance, setting it apart as a powerful optimisation 
approach. Another notable attribute is the incorporation of gradient 
profiles. In scenarios favouring emission reduction over travel time, the 
16 
DRL agent showcases a strategic behaviour: maintaining a consistent 
speed on uphill sections while accelerating on downhill stretches. This 
smart strategy serves to optimise both emission levels and travel time 
efficiency.

Moreover, the DRL method integrates the concept of headway gap, a 
safety parameter. In situations where the gap remains within safe limits, 
the vehicle is allowed to accelerate, leading to instances where driving 
speed outpaces traffic speed. This approach takes into consideration not 
only objective optimisation but also road safety. The headway gap of 
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Fig. 16. 2D projections of the 3D objective values.
Fig. 17. Speed profile of the seven sample Pareto points by DRL (three objectives case).
Table 5
Results given by DRL based on seven sampled points.
 Sample Fuel NOx Time (s) 
 𝑝1 0.0538 2.49 × 10−5 1104  
 𝑝2 0.00506 2.38 × 10−5 976  
 𝑝3 0.00577 3.32 × 10−5 760  
 𝑝4 0.00537 3.08 × 10−5 726  
 𝑝5 (knee) 0.00555 3.73 × 10−5 667  
 𝑝6 0.00808 8.13 × 10−5 456  
 𝑝7 0.00878 1.13 × 10−4 433  

the DRL, MPC1 and MPC2 are compared in Fig.  18 where the solutions 
with optimal travel time (𝑝7) are selected. Because, when objectives 
focus on the NOx and fuel consumption, the driving speed is always 
smaller than the flow speed, following the eco-driving requirements. It 
is obviously that the MPC methods will induce large headway with the 
front vehicle. Because the MPC methods control the speed by referring 
to the traffic speed rather, while headway indicator is not incorporated 
in such controlling algorithms. The vehicle cannot accelerate even 
though the headway is safe enough.

The DRL approach outperforms the two-phase strategy due to its 
methodological advantages. Unlike MPC, which lacks the capability to 
adjust acceleration based on headway distance, DRL provides a more 
17 
flexible strategy. MPC’s conservative approach, prioritising collision 
avoidance based on the lead vehicle’s speed, becomes inefficient when 
headway distance is safe. In such cases, if the lead vehicle slows down, 
MPC responds by decreasing speed, impacting overall efficiency.

Unlike MPC, the DRL approach adapts dynamically, updating head-
way distance and traffic speed in real-time. Trained to optimise accel-
eration and deceleration based on accumulated experience, it offers en-
hanced flexibility, enabling more nuanced movement strategies aligned 
with optimisation goals.

Additionally, the issue of transferability is crucial. While the two-
phase strategy generates optimal solutions in traffic-free conditions 
and incorporates it into an MPC for real-world scenarios, the dynamic 
nature of traffic and variable speeds can undermine the effectiveness 
of this idealised profile. If traffic speed consistently falls below the 
set of Pareto-optimal solutions, the MPC may predominantly mimic 
traffic speed, potentially sidelining essential optimisation objectives. In 
contrast, the DRL approach consistently makes optimal decisions for 
each state variable, systematically addressing optimisation objectives 
at each time step.

The experiment currently assumes that the following vehicle never 
surpasses our own, which is somewhat unrealistic. However, the DRL 
approach excels, especially in scenarios involving ‘‘vehicle insertion’’. 
Strategies focused on conserving fuel or reducing NOx emissions often 
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Fig. 18. Comparison of headway between the three methods.
entail maintaining a larger headway distance, leading to situations 
where vehicles insert themselves between the subject vehicle and the 
lead vehicle. In contrast, the MPC strategy may struggle to handle such 
insertions accurately, highlighting the DRL agent’s strength in promptly 
recalibrating the headway distance and implementing suitable braking 
measures.

Despite its advantages, the DRL approach has a drawback. It re-
quires training for each specific weight set, leading to a time-intensive 
process before convergence. This slower solving efficiency, compared 
to the two-phase approach, may limit its suitability for entirely new 
situations lacking training data. This highlights the trade-off between 
DRL’s enhanced decision-making and the computational time needed 
for optimal convergence.

Furthermore, the profiles of fuel consumption, NOx emissions, 
travel time, and headway are compared and analysed in Appendix  A.5 
to comprehensively demonstrate the different eco-planning strategies 
resulting from various weight combinations.

5.4. Incorporation of the jerk cost

As highlighted by several studies on eco-driving behaviour [54,55], 
the jerk cost significantly impacts driver comfort during acceleration 
and deceleration. To further account for driver comfort, this section 
evaluates the performance of our approaches by incorporating the jerk 
cost into the objectives. Methodologically, the jerk cost is calculated as 
the absolute difference between the previous and current speed across 
all road segments [15].

To generate speed profiles after incorporating the jerk cost, the 
weights of the objectives are uniformly set to 1/4 for fuel consumption, 
NOx emissions, travel time, and jerk cost. To assess the influence of the 
jerk cost, the knee point weight solution (𝑝5) from Section 5.3.3 (which 
does not include the jerk cost in the objectives) is used as a benchmark 
for both the two-phase approaches and the DRL approach.

The speed profiles with and without the jerk cost in the objec-
tive function are illustrated in Fig.  19. The dark and light blue lines 
represent the DRL solutions, the dark and light green lines represent 
the MPC1 solutions, and the dark and light red lines represent the 
MPC2 solutions. As shown in the figure, the speed profiles produced 
by considering the jerk cost become smoother for the DRL and MPC1 
approaches compared to those without the jerk cost. However, since the 
speed profile for the MPC2 solution is already sufficiently smooth even 
without considering the jerk cost, the difference is less pronounced. 
Incorporating the jerk cost effectively reduces severe acceleration and 
deceleration, thereby enhancing driving comfort.

The objective values for each term are presented in Table  6. For the 
DRL approach, while fuel consumption, NOx emissions, and jerk cost 
are reduced when the jerk cost is incorporated, the travel time increases 
from 658.7 to 718.05. Consequently, no dominated solution is found in 
the multiobjective optimisation problem, demonstrating the capability 
of DRL to handle multiobjective optimisation problems effectively. In 
contrast, for both the MPC1 and MPC2 approaches, incorporating the 
jerk cost results in a reduction of all four objective values, dominating 
the solutions that do not consider the jerk cost. This indicates that the 
two-phase approach is less robust in ensuring solution quality.
18 
5.5. Online application with real-world traffic

MO-SPO face significant challenges in real-time applications due to 
their high computational complexity, which arises from solving mul-
tiple conflicting objectives like fuel consumption, NOx emissions, and 
travel time simultaneously. These problems are further compounded by 
the dynamic and unpredictable nature of real-world traffic conditions, 
such as fluctuating traffic speeds and driver behaviour, which MO-
SPOs struggle to adapt to efficiently. Additionally, as the number of 
objectives and constraints increases, the complexity grows exponen-
tially, making it difficult to scale MO-SPOs for large-scale or complex 
scenarios. Finally, the lack of real-time feedback mechanisms means 
that solutions based on static data may become suboptimal or infea-
sible in dynamic environments, limiting their practicality for online 
applications.

An advantage of our two-phase and DRL approach is their suitability 
for online applications, which enable the generation of eco-driving 
speed profiles using real-time information. To demonstrate the online 
applicability of our approaches, we applied our pretrained models to 
a novel real-world traffic scenario. Specifically, we utilised evening 
peak-hour traffic speed data (19:00–21:00) collected from January 1–7, 
2022, on a segment of the M25 highway. This segment includes 12 
detector points, approximately evenly distributed, where traffic speed 
was recorded at 1 min intervals. The average speed of each segment 
was used to represent the real-world traffic speed.

The comparison between the simulated traffic speed (using SUMO) 
and the real-world traffic speed is illustrated in Fig.  20. In the figure, 
the blue line represents the simulated traffic speed, while the red line 
represents the average real-world traffic speed. This comparison high-
lights the ability of our approaches to adapt to real-world conditions, 
ensuring that the generated eco-driving speed profiles are both practical 
and effective in dynamic traffic environments. By leveraging real-time 
data, our methods provide a robust solution for optimising speed pro-
files in real-world applications, particularly during peak traffic hours 
when efficiency and responsiveness are critical.

By comparison, the real-world traffic speed is slightly higher than 
the simulated traffic speed. Since the traffic speed serves as the upper 
bound for speed limitations and influences the headway to the front 
vehicle, a higher traffic speed does not significantly impact the solu-
tions for 𝑝1 to 𝑝5. This is because the speed profiles for these points are 
consistently lower than the traffic speed to optimise fuel consumption 
and NOx emissions. Therefore, to test the online application under real-
world traffic conditions, the weights of 𝑝6 and 𝑝7 are applied. These 
points represent scenarios where the speed profiles are closer to the 
traffic speed, making them more sensitive to real-world variations and 
thus better suited for evaluating the performance of our approaches in 
dynamic environments. This ensures that the solutions remain robust 
and effective even when applied to real-world traffic data with higher 
average speeds.

The speed profile of MPC1, MPC2 and DRL approaches are shown in 
Fig.  21. The blue lines represent the speed profiles of MPC1 approach, 
the green lines represent the speed profiles of the MPC2, the red 
lines represent the speed profiles of DRL. The light lines represent 
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Fig. 19. Comparison of speed profiles with and without jerk cost.
Table 6
Objectives of the speed profiles with and without jerk cost.
 Without jerk cost With jerk cost
 DRL MPC1 MPC2 DRL MPC1 MPC2  
 Fuel consumption 0.00555 0.00919 0.00774 0.0052 0.0069 0.0068  
 NOx emission 3.73E−05 9.20E−05 7.10E−05 2.80E−05 5.35E−05 5.41E−05 
 Travel time 667 495 483 718.05 481.98 474.86  
 Jerk cost 88.48 159.83 90.70 28.55 43.76 29.14  
Fig. 20. Comparison of traffic speed of simulating and real-world condition.
Fig. 21. Speed profiles of 𝑝6 , 𝑝7 by different approaches.
the sample 𝑝6, and the dark lines represent the sample 𝑝7. Among 
the methods, DRL speed profiles demonstrate exceptional smoothness 
and adaptability, closely aligning with the real-world traffic speed. 
For p6, the DRL profile is smoother than MPC1 and slightly more 
adaptive than MPC2, showcasing its ability to balance smoothness and 
real-world responsiveness. For p7, the DRL profile almost perfectly 
follows the real-world traffic speed, highlighting its superior capability 
to handle dynamic conditions. This adaptability makes DRL particularly 
well-suited for unpredictable environments.

Table  7 compares the performance of three approaches, namely 
MPC1, MPC2, and DRL, for two sample points, 𝑝  and 𝑝 , across 
6 7
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three objectives: fuel consumption, NOx emissions, and travel time. 
Among these, DRL stands out as the best-performing approach, par-
ticularly when travel time is prioritised as the most important factor. 
DRL achieves the shortest travel times for both 𝑝6 (440.66) and 𝑝7
(418.68), making it the fastest and most time-efficient method. This 
exceptional performance in reducing travel time is particularly critical 
for online applications, where speed and responsiveness are paramount, 
especially when user preferences prioritise time efficiency. While MPC2 
and MPC1 excel in fuel efficiency and environmental performance, they 
cannot match DRL’s speed and responsiveness.
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Table 7
Objectives of in online application.
 MPC1 MPC2 DRL

 p6 p7 p6 p7 p6 p7  
 Fuel consumption 0.0031 0.0037 0.0028 0.0034 0.0033 0.0041  
 Nox emission 3.43E−05 5.62E−05 3.38E−05 7.06E−05 5.57E−05 8.02E−05 
 Travel time 476.69 475.09 464.11 425.04 440.66 418.68  
 

6. Conclusions and future work

Using multiobjective optimisation, this paper addresses the eco-
driving problem by generating vehicle speed profiles that consider up 
to three objectives: fuel consumption, NOx emission, and total travel 
time in real-world scenarios with surrounding traffic. Unlike traditional 
approaches that generate a single solution, multiobjective optimisation 
provides a collection of solutions, each representing unique preferences 
in weighting different objectives. This approach is particularly suitable 
for problems with incomparable objectives, as is the case in our study. 
Simulated data from GT-SUITE are used to derive the relationships 
between engine power and the rates of fuel consumption and NOx 
emission, which can be determined analytically by vehicle dynamics.

Two solution approaches are presented and compared. The first 
involves a two-phase process: Phase-1 solves a traffic-free problem 
analytically, providing ‘‘ideal’’ Pareto points for Phase-2. In Phase-2, 
an existing model predictive control approach generates compromised 
results considering both Pareto points and surrounding traffic. The 
second approach, designed by the authors from scratch, employs deep 
reinforcement learning (DRL) to generate speed profiles, considering 
multiple objectives and surrounding traffic simultaneously. Both ap-
proaches use the weighted sum method to generate Pareto fronts, 
marking the first application of multiobjective optimisation to simul-
taneously consider fuel consumption and NOx emissions in generating 
optimised speed profiles.

The DRL approach outperforms the two-phase method in modelling 
flexibility and solution quality on a real-world highway in southern 
England. It explicitly considers vehicle headway, leading to more so-
phisticated eco-driving strategies and optimised objective values across 
all three criteria. For instance, at one representative Pareto point, 
results indicate that the DRL approach achieves up to 10% lower 
fuel consumption and 16% lower NOx emissions compared to MPC-
based methods while reducing travel time by approximately 5%. In 
addition, the DRL method maintained safer headway distances, offering 
more robust eco-driving strategies in dynamic traffic environments. 
However, it requires prior training, making it less suitable for entirely 
new scenarios with limited or no training data.

Building on these promising results, future work could extend the 
MO-SPO framework to other vehicle classes, such as heavy-duty trucks, 
electric vehicles, and hybrid models, by re-calibrating vehicle param-
eters and integrating appropriate powertrain and emission models to 
better reflect distinct dynamic characteristics. Moreover, adapting the 
framework to diverse traffic environments – including urban settings, 
mixed-traffic conditions, or multi-lane roads with varying densities – 
will enhance its applicability, while integrating richer traffic data, such 
as real-time signal timings or pedestrian interactions, could further 
improve its robustness. As the complexity of these extended scenarios 
may increase computational demands, future research should focus 
on improving training efficiency through methods like transfer learn-
ing or advanced parallel computing strategies to maintain real-time 
responsiveness. Additionally, incorporating further environmental met-
rics such as particulate matter (PM) and COx, and integrating robust 
or stochastic optimisation techniques to manage uncertainties in traffic 
flow, weather, and driver behaviour, represent promising avenues for 
further refinement. Overall, these research directions aim to advance 
the MO-SPO framework towards a more comprehensive, adaptable, and 
environmentally conscious solution for modern traffic management.
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Appendix

A.1. Simulation environment and vehicle modules

Simulations were carried out using GT-SUITE simulation software, 
as detailed in [25], employing identical vehicle specifications outlined 
in [51]. The vehicle under study was a Euro 6 compliant diesel passen-
ger car equipped with a four-cylinder, four-stroke turbocharged diesel 
engine. It weighed 1505 kg and boasted a maximum power output 
of 103 kW, correlating to an engine speed of 4000 rpm. The diesel 
engine featured a compression ratio of 16.5:1. This vehicle model 
comprised three main modules: vehicle powertrains, emission sources, 

https://arc.leeds.ac.uk/
https://arc.leeds.ac.uk/
https://arc.leeds.ac.uk/
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Algorithm 1: Calculate Knee Point on Pareto Front
Require: Non-dominated solution set on the Pareto front, 𝑆
Ensure: Knee point solution, 𝐾
1: Initialise weights for distance and angle, 𝑤𝑑 , 𝑤𝑎
2: for all Non-dominated solution 𝑠𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) in 𝑆 do 
3: Initialise the utility (weighted sum of distance and angle) of 𝑠𝑖,

i.e., 𝑢𝑖 ∶= 𝑤𝑑 ⋅ 𝑑(𝑠𝑖) +𝑤𝑎 ⋅ 𝜃(𝑠𝑖)
4: for all Other non-dominated solutions 𝑠𝑗 in 𝑆 where 𝑠𝑗 ≠ 𝑠𝑖 do 
5: Calculate Euclidean distance 𝑑𝑖𝑗 between 𝑠𝑖 and 𝑠𝑗 :

𝑑𝑖𝑗 =
√

(𝑥𝑖 − 𝑥𝑗 )2 + (𝑦𝑖 − 𝑦𝑗 )2 + (𝑧𝑖 − 𝑧𝑗 )2

6: Calculate angle 𝜃𝑖𝑗 between 𝑠𝑖 and 𝑠𝑗 :
𝜃𝑖𝑗 = arccos

(

𝐯𝑖 ⋅𝐯𝑗
‖𝐯𝑖‖⋅‖𝐯𝑗‖

)

, where 𝐯𝑖 and 𝐯𝑗 are vectors from origin to
𝑠𝑖 and 𝑠𝑗 , respectively. 

7: Update 𝑢𝑖 ∶= 𝑢𝑖 +𝑤𝑑 ⋅ 𝑑𝑖𝑗 +𝑤𝑎 ⋅ 𝜃𝑖𝑗
8: end for
9: if 𝑢𝑖 is the current minimum then 
10: Update knee point solution 𝐾 = 𝑠𝑖
11: end if
12: end for
13: return  Knee point solution 𝐾
and after-treatment systems. The powertrain system encompassed an 
engine model, a transmission model, and a control model. The engine 
model was constructed based on experimental tests, incorporating maps 
for brake-specific fuel consumption and brake mean effective pressure. 
Additionally, the emission model integrated maps for exhaust temper-
ature, emission factors, and exhaust flow rates to consider the impact 
of cold starts on emissions. The after-treatment system encompassed 
a diesel oxidation catalyst and a diesel particulate filter, as discussed 
in [51].

A.2. Algorithm for calculating the knee point

See Algorithm 1.
Here the weights on distance and angle (𝑤𝑑 and 𝑤𝑎) are set as 

5 × 10−9 and 0.5 respectively, and a discount of 10−8 is applied to 
eliminate the magnitude of distance.

A.3. Algorithm for the MPC method

See Algorithm 2. 

A.4. Pseudocode for DDPG

See Algorithm 3.

A.5. Performance comparison between different weights of preference

Figs.  22, 23, 24, and 25 display the profiles of NOx emission, 
fuel consumption, travel time, and headway distance resulting from 
the three approaches under various traffic conditions. Each subfigure 
presents the profile of a specific approach. The comparative analysis 
among different points obtained from the same approach reveals their 
sensitivity to weight proportions. Greater deviation signifies heightened 
sensitivity of an approach. A substantial similarity in profiles under 
diverse weight sets may fail to cater to different trade-off requirements.

As observed in Figs.  22 and 23, the DRL approach exhibits more 
pronounced deviations in NOx emission and fuel consumption profiles, 
while the profiles of MPC-1 and MPC-2 remain similar across different 
samples. The objective value visualisation in Fig.  16 illustrates that 
heightened sensitivity to weight proportions corresponds to larger dif-
ferences between objectives on the Pareto front, allowing for more 
flexible choices. Significantly, the divergence in the time profile is 
substantial across all three approaches. Intriguingly, in 𝑝  and 𝑝 , where 
1 2
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NOx and fuel are minimised, the time profile mirrors the road altitude. 
This similarity suggests that adopting a slower pace uphill and accel-
erating downhill can effectively conserve fuel and minimise emissions. 
Referring to Fig.  25, it is evident that the headway distance to the lead 
vehicle increases notably with higher weights assigned to NOx and fuel. 
Opting for strategies that minimise NOx or fuel eventually results in a 
headway gap surpassing 6000 m.

Figs.  26, 27, 29, and 28 provide a comparative analysis of objec-
tives and headway distance among the three approaches with different 
weight configurations. These samples encompass scenarios, including 
𝑝1 (minimum NOx), 𝑝2 (minimum fuel), 𝑝7 (minimum time), and 𝑝5
(knee point). Each subfigure presents profiles of NOx emission, fuel 
consumption, travel time, and headway distance.

In the cases of the first two samples (𝑝1 with minimum NOx and 𝑝2
with minimum fuel), MPC-2 exhibits the least favourable performance 
due to its higher driving speed. The strategy employed by MPC-2 
struggles to address scenarios of minimum NOx and fuel, primarily be-
cause the driving speed is heavily influenced by the traffic speed. This 
limitation prevents MPC-2 from ensuring optimal speeds in scenarios 
where only a single objective is considered. Conversely, MPC-1 and DRL 
showcase similar performance. However, DRL adopts a more conser-
vative driving approach compared to both MPC methods, prioritising 
fuel and NOx reduction over higher speeds, irrespective of the traffic 
conditions.

In Sample 7, we delve into the scenario of minimising travel time, 
where all three methods are focused on completing the drive as quickly 
as possible. Starting with the same initial headway distance, the two 
MPC approaches and the DRL approach adopt distinct strategies. MPC-
1 consistently maintains its driving speed at the same pace as the 
traffic speed, resulting in a stable headway that hovers around its 
initial value. In contrast, MPC-2 employs a more uniform acceleration 
strategy, causing the headway to gradually decrease over time. Lastly, 
DRL opts for an initial speed increase, actively tailing the front vehicle. 
As the headway narrows, DRL slows down, ensuring that the vehicle 
maintains a reasonable distance from the vehicle in front. This strategy 
results in the headway fluctuating between approximately 50 to 300 m.

Examining the outcomes of the knee point (𝑝5), the fuel consump-
tion and NOx emission exhibit striking similarity across all three ap-
proaches. In terms of speed, the DRL approach positions itself between 
MPC-1 and MPC-2, strategically finding a balance that minimises the 
combined fuel and NOx values. This measured approach to speed is 
complemented by the travel time and headway, both of which also fall 
within the midpoint between the two MPC strategies.
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Algorithm 2: Time-Varying Adaptive MPC for Speed Profile Generation
Input: Longitudinal model parameters (e.g. 𝐴(𝑖), 𝐵(𝑖), 𝐷(𝑖)), cost weights 𝜆𝑒, 𝜆𝑘, 𝜆𝑠, prediction horizon 𝑛𝑝, initial state 𝐸𝑘(0), vehicle and 

safety constraints, traffic context data, and desired speed profile 𝑣𝑑
Output: Optimal engine energy sequence 𝐸∗

𝑒 (𝑖) over the prediction horizon and corresponding speed profile
Initialisation: Set current index 𝑖 ← 0, obtain initial kinetic state 𝐸𝑘(𝑖), and retrieve initial traffic and road condition information.
while vehicle has not reached the destination do

1. Update Measurements:
 Obtain current state 𝐸𝑘(𝑖), vehicle speed 𝑣(𝑖), and updated traffic context (including real-time local and predicted future traffic data).
2. Update Prediction Parameters:
 Adapt the spatial step 𝛥𝑠 based on the current vehicle speed 𝑣(𝑖)
 Determine the desired speed profile 𝑣𝑑 over the horizon using the traffic predictive model.
3. Update Longitudinal Model:
 Compute the time-varying matrices 𝐴(𝑖), 𝐵(𝑖), and offset 𝐷(𝑖) from the linearised vehicle dynamics:
𝐸𝑘(𝑖 + 1) = 𝐴(𝑖)𝐸𝑘(𝑖) + 𝐵(𝑖)𝑈 (𝑖) −𝐷(𝑖)

where the control input is 𝑈 (𝑖) =
[

𝐸𝑒(𝑖)
𝐸𝑏(𝑖)

]

.

4. Solve the MPC Optimisation:
 Formulate the quadratic cost function over the prediction horizon:

𝐽 (𝑖) =
𝑖+𝑛𝑝−1
∑

𝑗=𝑖

(

𝜆𝑒 𝐸𝑒(𝑗)2 + 𝜆𝑘
(

𝐸𝑘(𝑗) −
1
2
𝑀𝑒𝑣𝑑 (𝑗)2

)2
+ 𝜆𝑠

(

𝐸𝑒(𝑗) − 𝐸𝑒(𝑗 − 1)
)2
)

 subject to constraints D and safety headway requirements.
 Compute the optimal control sequence:
{𝑈∗(𝑖), 𝑈∗(𝑖 + 1),… , 𝑈∗(𝑖 + 𝑛𝑝 − 1)} = argmin

𝑈
𝐽 (𝑖)

5. Implement Control Action:
 Apply the first control input 𝑈∗(𝑖) (i.e., use 𝐸∗

𝑒 (𝑖) and 𝐸∗
𝑏 (𝑖)) to update the vehicle state.

6. Shift Horizon:
 Set 𝑖 ← 𝑖 + 1 and update the prediction horizon accordingly.

return Sequence {𝑈∗(0), 𝑈∗(1),… , 𝑈∗(𝑁 − 1)} representing the optimal engine energy inputs and resulting speed profile.

Algorithm 3: Deep Deterministic Policy Gradient (DDPG)
Data: Initialise actor network 𝜃actor and critic network 𝜃critic with random weights
Data: Initialise target actor network 𝜃target_actor ← 𝜃actor and target critic network 𝜃target_critic ← 𝜃critic

Data: Initialise memory 𝐵
while 𝑒 ≤ 𝐸 do

Receive initial state 𝑠1;
for 𝑡 = 0 to 𝑆∕𝛥𝑠 − 1 do

if random ≤ 𝜀 then
Choose action 𝑎𝑡 = 𝜇(𝑠𝑡|𝜃actor);
else
Random choose an action within the limit;

end 
Execute action 𝑎𝑡 and calculate the driving speed;
Observe step reward 𝑟𝑡 and new state 𝑠𝑡+1;
Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in 𝐵;

end 
Give the episode reward 𝑟𝑒;
Store the terminal tuple (𝑠𝑒, 𝑎𝑒, 𝑟𝑒, __) in 𝐵;
for (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in 𝐵 do

Pick a transition (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1) from 𝐵;
Compute target value 𝑦𝑖;
Calculate the loss function of critic network L (𝜃critic);
Update weights of critic network by gradient descent ∇L (𝜃critic);
Calculate the loss function of actor network L (𝜃actor);
Update weights of actor network by gradient descent ∇L (𝜃actor)

end 
Update target networks:
𝜃target_critic ← 𝜏𝜃critic + (1 − 𝜏)𝜃target_critic;
Decay exploration rate 𝜀 and learning rates;

end 
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Fig. 22. Comparison of NOx emission.
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Fig. 23. Comparison of fuel consumption.
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Fig. 24. Comparison of Travel time.
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Fig. 25. Comparison of Headway distance.
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Fig. 26. Comparison of results of 𝑝1 (minimum NOx).
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Fig. 27. Comparison of results of 𝑝2 (minimum fuel).
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Fig. 28. Comparison of results of 𝑝7 (minimum time).
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Fig. 29. Comparison of results of 𝑝5 (knee point).
Data availability

The data that has been used is confidential.
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