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Abstract12

Optimizing driving velocity profiles is crucial for reducing vehicle fuel consumption and NOx emis-13

sions without altering core vehicle components. While many studies have addressed eco-driving, most14

have focused solely on minimizing fuel consumption or have treated NOx emissions separately, re-15

sulting in distinct, non-integrated speed profiles, and have often neglected the influence of real-time16

traffic. To overcome these limitations, this paper introduces a novel Multiobjective Speed Profile Opti-17

mization (MO-SPO) framework for eco-driving that simultaneously minimizes fuel consumption, NOx18

emissions, and travel time while accounting for surrounding traffic. Two solution approaches are devel-19

oped and compared: a two-phase Model Predictive Control (MPC) method and a newly proposed Deep20

Reinforcement Learning (DRL) method that directly integrates multiple objectives and real-time traffic21

constraints into the speed control policy.22

Simulation results on a UK highway segment, with vehicle dynamics and engine characteristics23

derived from GT-SUITE data, demonstrate the benefits of the proposed framework. For instance, at24

one representative Pareto point, results indicate that the DRL approach achieves up to 10% lower fuel25

consumption and 16% lower NOx emissions compared to MPC-based methods while reducing travel26

time by approximately 5%. In addition, the DRL method maintained safer headway distances, offering27

more robust eco-driving strategies in dynamic traffic environments.28

This work is the first to apply multiobjective optimization to generate integrated speed profiles that29

consider fuel, NOx, and travel time simultaneously under realistic traffic conditions.30

Keywords— eco-driving speed profile optimisation; fuel consumption; NOx emission; multiobjective optimiza-31

tion; model predictive control; deep reinforcement learning32

1



1 Introduction33

Rapid urbanization and the steady increase in global vehicle ownership have heightened concerns about34

energy consumption and air pollution in the transportation sector (Placek, 2022). Although research and in-35

dustry efforts have led to the development of more efficient powertrain systems and alternative-fuel vehicles36

(Pickl, 2019; Alam et al., 2010; Jia et al., 2016), conventional internal combustion engine (ICE) vehicles37

still dominate the roads and contribute significantly to environmental problems, particularly through emis-38

sions of nitrogen oxides (NOx). Prolonged exposure to NOx is linked to photochemical smog, acid rain39

formation, and particulate matter (PM), such as PM2.5 and PM10, which pose direct risks to public health40

(Haakman et al., 2020; Chossière et al., 2017; Liu et al., 2022). Additionally, repeated studies indicate that41

vehicle-related emissions are a major source of air pollution, leading to an estimated 7,500 premature deaths42

annually in the UK alone (Ježek et al., 2015).43

Besides the health and environmental concerns, the global rise in fuel prices and the finite nature of44

petroleum supply have consistently underscored the economic imperative to minimise vehicle fuel con-45

sumption (Pickl, 2019). As a result, numerous strategies have been explored to reduce both emissions and46

energy usage, ranging from traffic signal optimisation (Osorio and Nanduri, 2015) and cooperative driving47

(Kamal et al., 2022; Kong and Ma, 2024) to the development of hybrid and electric vehicle technologies.48

Among these, optimizing driving velocity profiles stands out as a highly cost-effective method, since it does49

not require retrofitting vehicles with new hardware or redesigning powertrains (Wang et al., 2022). Instead, it50

focuses on modifying driver behavior—speed, acceleration, braking—to achieve more efficient and cleaner51

operation.52

A substantial body of literature has investigated velocity profile optimisation from various angles (Cui53

et al., 2021; Hamednia et al., 2022; Jia et al., 2022; Nie et al., 2022; Lot et al., 2025). Most of these studies54

concentrate on single-objective formulations, typically aiming to minimise fuel consumption under specific55

constraints such as road safety and rules. Although effective in reducing fuel consumption, these methods56

often overlook or only superficially address NOx emissions—an omission that is partly attributable to the57

complexities in accurately modelling and incorporating NOx in optimisation frameworks (Fernández-Yáñez58

et al., 2021). The incorporation of NOx is indeed technically more challenging, involving additional engine59

and aftertreatment parameters whose dynamic behavior is less straightforward to predict compared to fuel60

consumption. Consequently, comprehensive studies that jointly optimise fuel and NOx remain sparse.61

A few exceptions exist. For instance, Fernández-Yáñez et al. (2021) investigated speed profile genera-62

tion while considering both fuel and NOx, yet it treated each objective separately, yielding distinct profiles63

optimised exclusively for fuel or NOx. More recently, Yuval et al. (2023) employed multi-objective optimi-64

sation to integrate fuel consumption and NOx objectives simultaneously. While this represents a meaningful65

advance, it primarily addresses traffic-free conditions and is built on a shortest-path method (Ozatay et al.,66

2014) without incorporating real-world traffic flow. The absence of traffic considerations limits the real-life67

applicability of such solutions, since constraints like headway distance, dynamic speed limits, and surround-68

ing vehicles’ behaviors significantly influence feasible speed profiles.69
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Against this backdrop, our work aims to close the gap by proposing a multiobjective speed profile70

optimisation (MO-SPO) framework that jointly minimises fuel consumption, NOx emissions, and travel71

time while explicitly accounting for surrounding traffic. Travel time is included as a third objective to reflect72

practical stakeholder needs, since drivers and freight operators often balance economic, environmental, and73

time-efficiency goals. By framing these objectives within a multiobjective optimisation perspective, we74

avoid the pitfalls of blending incommensurable objectives (e.g., fuel vs. NOx) into a single scalar function75

(Ehrgott, 2005). Instead, we derive a Pareto front—a set of optimal solutions—where no objective can be76

improved without compromising at least one other. This approach provides a flexible decision-making tool77

for diverse user preferences, allowing stakeholders to select solutions that best align with their priorities.78

From a methodological perspective, applying multiobjective optimisation to real-time speed generation79

in the presence of dynamic traffic is notably challenging. While traditional MPC can handle certain multi-80

objective problems by aggregating objectives into a single cost function, its sequential decision-making na-81

ture and reliance on finite-horizon optimization can limit its capacity to capture global trade-offs (Rawlings82

et al., 2017). In contrast, reinforcement learning — grounded in the convergence properties of Bellman’s83

equations—offers a holistic, global approach that naturally considers long-term interactions among multiple84

objectives, making it more suitable for truly complex multi-objective optimization scenarios. Therefore, we85

propose and compare two alternative approaches:86

(i) Two-Phase MPC:87

• Phase-1: Solve a traffic-free problem to obtain an “ideal” Pareto front that captures trade-offs88

between fuel consumption, NOx, and travel time in an uncongested environment.89

• Phase-2: Integrate the sampled Pareto-optimal solutions into a real-time MPC framework, bal-90

ancing the objectives and constraints in the presence of surrounding traffic.91

(ii) Multiobjective Deep Reinforcement Learning (DRL):92

• Simultaneously considers real-time traffic dynamics and user-defined weight preferences for fuel,93

NOx, and travel time.94

• Exploits the compatibility between multiobjective optimization and reinforcement learning (Mof-95

faert and Nowé, 2014; Li et al., 2021), enabling an agent to learn speed control policies that yield96

different Pareto-optimal solutions.97

We demonstrate the practicality and effectiveness of these two approaches using a highway segment98

in southern England based on both simulated and real-world traffic data. The vehicle’s powertrain char-99

acteristics and emission rates are modelled based on GT-SUITE simulation data (Gamma Technologies),100

enabling a realistic and detailed representation of fuel consumption and NOx generation. Although the two-101

phase MPC method offers a comparatively more straightforward integration of multiobjective solutions into102

an MPC framework, our results indicate that multiobjective DRL provides greater flexibility and superior103

performance in simultaneously balancing the three objectives. However, its reliance on training data and104
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computational resources may limit its applicability to completely new traffic scenarios without additional105

training.106

By shedding light on the strengths and limitations of these two approaches, this paper aims to contribute107

both methodologically and practically to the ongoing pursuit of greener transportation. The proposed frame-108

work illustrates how multiobjective optimisation can be leveraged to deliver not just a single solution, but an109

entire spectrum of speed profiles that can be tailored to different priorities and real-time traffic conditions.110

To summarize, the primary innovations of our approach are summarized as follows:111

• Integrated Multiobjective Optimization: Simultaneously minimizes fuel consumption, NOx emis-112

sions, and travel time, overcoming the limitations of single-objective approaches.113

• Real-Time Traffic Integration: Explicitly incorporates real-world traffic dynamics to generate prac-114

tical, adaptive speed profiles.115

• Dual Methodology: Proposes both a two-phase MPC and a multiobjective DRL approach, offering116

flexible solutions to eco-driving challenges.117

• Enhanced Performance: The DRL method demonstrates significant improvements over MPC, vali-118

dated through UK highway cases.119

The remainder of the paper is organised as follows. Section 2 provides an in-depth literature survey of120

eco-driving and optimal speed profile generation. Section 3 presents the vehicle modelling and the relation-121

ships between engine power, fuel consumption, and NOx emission. Section 4 introduces the multiobjective122

problem formulation and details the two proposed solution approaches. Section 5 discusses the experimen-123

tal setup, results, and a comparison of the approaches. Finally, Section 6 draws conclusions and outlines124

directions for future research, including advanced multiobjective reinforcement learning techniques and the125

incorporation of other emissions such as PMs and COx.126

2 Related work127

2.1 Conventional approaches for energy focused eco-driving128

Generating an optimised driving speed profile provides an effective way for reducing energy consumption129

and emission of pollutants. Various approaches have been proposed for eco-driving, in particular for gen-130

erating speed profiles that minimise total fuel consumption. Typical conventional solution approaches used131

for generating optimal speed profiles include analytical/exact methods (e.g., mathematical programming or132

dynamic programming) and optimal control methods (e.g., MPC and its variants).133

The concept of “Look-ahead Control” has been widely used in some works (Eriksson et al., 2019), which134

demonstrates the advantage of using available information on future disturbances. For instance, Sharma135

et al. (2021) minimized fuel consumption of a heavy-duty vehicle by predicting the speed of the leading136

vehicle based on its uphill deceleration, achieving up to 8% fuel savings in real road scenarios. Other sim-137

ilar studies include Hellström et al. (2009) for minimising fuel consumption of heavy diesel trucks, Kamal138

4



et al. (2022) for predicting the states of the preceding vehicle in urban scenarios at an adaptive look-ahead139

time step, etc. This advantage has been further applied in the cooperative driving scenario which employs140

aerodynamic drag reduction of platoons. For instance, Zhai et al. (2019) proposed an ecological cooper-141

ative look-ahead control strategy based on distributed model predictive control (DMPC) for a platoon of142

automated vehicles on freeways with varying slopes, combining eco-driving and platooning technologies to143

maximize fuel efficiency. Kong and Ma (2024) developed a cooperative eco-driving and energy manage-144

ment control strategy for heterogeneous vehicle platoons at multiple signalized intersections, leveraging a145

soft actor-critic (SAC)-based approach to optimize ecological velocity, safe inter-vehicle distance, and en-146

ergy efficiency while maximizing fuel economy and driving comfort. With the help of emerging vehicular147

communication technologies, a distributed optimal control scheme Liu et al. (2017) is proposed to achieve148

cooperative highway driving at the level of individual vehicles, which demonstrates the improvement of fuel149

economy and traffic efficiency.150

For long-haul applications, two-stage hierarchical frameworks decouple global route planning from lo-151

cal speed optimization. For instance, Hamednia et al. (2022) proposed a bi-level optimization approach152

where gear selection is pre-optimized offline, and a nonlinear dynamic program is solved online. By lever-153

aging Pontryagin’s Maximum Principle and a model predictive control framework, the method achieves up154

to 11.60% energy savings compared to average driving cycles. Furthermore, integrating advanced ICT tech-155

nologies, such as cloud-based systems, can enhance real-time perception and decision-making. For example,156

Schlechtendahl et al. (2017) introduced the concept of control system as a service (CSaaS), enabling cloud-157

deployed optimization. Jia et al. (2022) developed an enhanced cloud-based predictive cruise control (PCC)158

system, combining deep learning-based traffic prediction with adaptive MPC to optimize speed profiles un-159

der varying traffic conditions. Their method, tested on a UK highway segment, demonstrated improved fuel160

efficiency for heavy-duty vehicles (HDVs) by leveraging real-time traffic data and advanced computational161

techniques. In addition, Nie et al. (2022) coupled gradient-based MPC for speed planning with MPC-based162

energy allocation in fuel cell hybrids, reducing traction power by 2.65% and battery degradation by 8.14%.163

Khalatbarisoltani et al. (2023) propose a two-level eco-driving strategy for Connected Fuel Cell Vehicles164

(C-FCVs) to optimize speed trajectories and powertrain operation, addressing computational challenges and165

real-time traffic complexities. The top layer integrates an LSTM-based traffic predictor and an MPC frame-166

work to optimize speed while considering hydrogen consumption, ride comfort, and traffic efficiency, while167

the bottom layer employs decentralized MPC to allocate power optimally between fuel cells and the battery.168

Simulation results demonstrate that this strategy enhances ride comfort, reduces hydrogen consumption by169

7.28%, and mitigates component degradation by 5.33%.170

Drive cycle optimisation was also considered in some researches to minimise vehicle’s fuel consump-171

tion. Mensing et al. (2011) minimise a light-duty vehicle’s fuel consumption, which demonstrates a 16%172

decrease relative to the New European Driving Cycle (NEDC) while preserving travel time and adhering173

to speed regulations. Cui et al. (2021) proposes a Simulated Annealing (SA)-based method to develop174

driving cycles that better align with real-world speed-acceleration patterns, reducing errors by up to 23%175

compared to traditional methods and improving fuel consumption estimation accuracy. Additionally, Lot176
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et al. (2025) proposed an optimal control formulation for eco-driving in front-wheel drive electric vehicles,177

integrating driver preferences—such as desired speed, following distances, and smooth acceleration—with178

energy efficiency goals, using a simplified polynomial approximation of vehicle losses and relaxed regener-179

ative braking constraints. Testing on a 25km simulated journey shows 21% energy savings with only a 7%180

reduction in average speed, and 10–15% energy savings in car-following scenarios without speed reduction.181

2.2 Reinforcement learning based approaches182

Recent advancements in cloud computing and artificial intelligence have enabled the integration of machine183

learning techniques, particularly reinforcement learning (RL), with traditional optimization frameworks to184

address vehicle energy management challenges. Unlike conventional methods that often rely on heuristic185

rules or static models, RL-based approaches demonstrate unique capabilities in solving complex optimiza-186

tion and optimal control problems through data-driven exploration of state-action spaces. This subsection187

systematically reviews emerging RL methodologies and their applications across diverse energy optimiza-188

tion scenarios.189

Hierarchical Control Architectures A prominent trend involves hierarchical frameworks that decom-190

pose energy management tasks into coordinated layers. Hu and Li (2021) developed an adaptive hierarchi-191

cal energy management system (EMS) combining deep deterministic policy gradient (DDPG) with equiv-192

alent consumption minimization strategy (ECMS) knowledge. This hybrid approach achieves near-optimal193

fuel consumption comparable to dynamic programming (DP) benchmarks while outperforming PID-based194

ECMS and rule-based strategies. The framework’s efficient exploration mechanism demonstrates particu-195

lar promise for real-world applications requiring safe online learning. Extending this concept, Dong et al.196

(2023) proposed a three-layer flexible eco-cruising strategy (FECS) featuring: 1) Dijkstra-based lane plan-197

ning considering long-term traffic impacts, 2) trigonometric speed optimization for energy savings, and 3)198

robust trajectory tracking with safety guarantees. Stochastic simulations reveal significant cost reductions199

in moderate-flow and free-flow traffic scenarios.200

Multi-Objective Optimization Addressing the inherent trade-offs in vehicular energy systems, Yang et al.201

(2023) formulated hybrid electric vehicle energy management as a general-sum stochastic game solved202

through multi-agent RL (MARL). By modeling the engine-generator set and hybrid energy storage system203

as competing agents, their framework achieves Nash equilibrium solutions balancing fuel economy, battery204

degradation, and ultracapacitor state of charge. The MARL approach demonstrates superior performance205

over single-agent RL and DP in maintaining balanced objective optimization. Similarly, Xia Jiang and Li206

(2023) established a hierarchical Markov Decision Process (MDP) integrating car-following, lane-changing,207

and RL policies for electric connected vehicles. SUMO simulations at signalized intersections show sub-208

stantial energy savings while maintaining safe interactions with human-driven vehicles.209
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Partial Observability and Complex Environments For realistic traffic scenarios with limited informa-210

tion, Yang et al. (2024) developed autonomous eco-driving strategies using DDPG, PPO, and SAC algo-211

rithms combined with hybrid car-following models. Their framework enables connected and automated212

vehicles (CAVs) to optimize safety, energy efficiency, and ride comfort simultaneously when navigating213

signalized intersections. Comparative analyses reveal that the HybridSAC variant surpasses human drivers214

and traditional models (Trigo, IDM) across all performance metrics. Addressing partial observability, Zhu215

et al. (2024) framed multi-power-source CAV control as a Partially Observable MDP (POMDP) solved via216

proximal policy optimization (PPO). The developed controller reduces fuel consumption by 17% versus217

human drivers while maintaining comparable travel times.218

Integrated Decision-Making Architectures Recent innovations emphasize unified frameworks for si-219

multaneous longitudinal and lateral control. Li et al. (2024b) introduced an attention-enhanced Twin De-220

layed DDPG (TD3) architecture incorporating multi-head self-attention and hybrid action representation.221

This integration achieves 42.18% stability improvement over prior methods while delivering 30.25% energy222

efficiency gains. Building on this, Fan et al. (2024) proposed a TD3-based eco-driving strategy combining223

lane preference scoring with longitudinal speed planning. Their SUMO simulations demonstrate synergistic224

benefits: longitudinal control alone reduces travel time by 7.94% or energy consumption by 18.15%, while225

integrated lateral decisions further decrease both metrics by 5.7% and 1.75% respectively.226

Customized Multi-agent and Deep Learning Techniques Khalatbarisoltani et al. (2024) proposes a de-227

centralized health-conscious learning-based integrated thermal and energy management (ITEM) system for228

hybrid electric vehicles (HEVs) that optimizes fuel consumption, driver comfort, and battery lifetime using a229

multi-agent deep reinforcement learning (MADRL) framework with long short-term memory (LSTM). The230

MADRL approach outperforms rule-based and single-agent strategies, reducing battery degradation by 48%231

while maintaining cabin comfort. Experimental validation through hardware-in-the-loop (HIL) testing con-232

firms the reliability of the proposed method, with battery and cabin temperature deviations from simulation233

results remaining within 0.45 and 0.85 degrees, respectively. Jia et al. (2025) propose a predictive energy234

management system (PEMS) for fuel cell hybrid electric buses (FCHEBs) using a twin delayed deep deter-235

ministic policy gradient (TD3) algorithm, integrating future driving conditions and a predictive passenger236

model to optimize operational costs. Experimental results show that the TD3-based PEMS reduces com-237

prehensive operational costs by 5.92% compared to conventional TD3-based EMS with a fixed passenger238

count.239

2.3 Energy and emission focused eco-driving240

The analysed papers suggest a predominant focus on energy consumption when generating speed profiles for241

vehicles. Most of the reviewed literature emphasises energy use, sometimes considering travel time, while242

neglecting the assessment of NOx emissions due to its inherent technical complexities in quantification. In243

Fernández-Yáñez et al. (2021) explores speed profile generation considering both fuel and NOx, producing244
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separate optimal profiles for each objective. It shows that optimising for fuel does not necessarily reduce245

NOx, and the study achieves significant reductions in both fuel consumption and NOx emissions through246

dynamic programming.247

Huang et al. (2021) investigate the impact of driver behavior on real driving emissions (RDE) using248

a portable emission measurement system with 30 drivers (15 novice, 15 experienced) driving the same249

diesel vehicle on the same route. Results show that novice drivers are generally more aggressive, leading to250

slightly higher mean fuel consumption (2%) and significantly higher NOx (17%) and PM (29%) emissions251

than experienced drivers. However, individual driver differences play a more significant role than experience252

level, suggesting that adopting eco-driving skills could substantially reduce fuel consumption and emissions253

for the worst-performing drivers.254

Tang et al. (2021) present a strategy for managing energy and emissions based on a deep Q-network255

(DQN) as applied to dynamic programming (DP) as an optimal reference point. Two distributed deep re-256

inforcement learning (DRL) algorithms, namely asynchronous advantage actor-critic (A3C) and distributed257

proximal policy optimisation (DPPO), were employed to propose EMSs. Afterwards, emission optimisa-258

tion was incorporated to propose distributed DRL-based E&EMSs. Through simulation results, three control259

strategies based on deep reinforcement learning (DRL) show outstanding computational efficiency and near-260

optimal fuel economy. Compared to DQN, two distributed DRL algorithms improve learning efficiency by261

four times.262

Guo et al. (2022) introduces an advanced energy management strategy for fuel cell hybrid vehicles based263

on a dueling-double-deep Q-network (D3QN). The primary challenge addressed is achieving an effective264

trade-off between system degradation and hydrogen consumption, while minimizing computational costs265

across diverse operational environments.266

Yuan et al. (2022) quantify the fuel use and emission reduction potential of eco-driving for light-duty267

gasoline vehicles (LDGVs) using three million seconds of real-world driving data from 160 drivers across268

eight routes and 199 segments. Using a Vehicle Specific Power modal model, results show that route-level269

eco-driving can reduce fuel use and emissions by 6% to 40% compared to average driving. While eco-270

driving generally leads to simultaneous fuel and emission reductions, trade-offs exist, highlighting the need271

for strategic decision-making in LDGV eco-driving.272

Jia et al. (2023) propose a novel cost-minimization energy management strategy that integrates thermal273

safety, degradation awareness of lithium-ion batteries, and fuel cell aging suppression to balance durabil-274

ity and hydrogen consumption. Using an enhanced self-learning stochastic Markov predictor for speed275

prediction, the strategy reduces battery aging by 34.8% and total operating costs by 12.3% compared to276

conventional methods.277

Han et al. (2024) propose an energy management strategy that integrates a battery preheating tech-278

nique—supported by a high-precision electro-thermal-aging model, grid- and battery-powered preheating279

methods, and optimization algorithms (PSO and PMP)—to determine optimal preheating times and manage280

energy effectively. Simulation results demonstrate that at -20◦C, preheating can reduce energy usage by281

approximately 44–48% compared to non-preheating scenarios.282

8



Wang et al. (2024) introduces an advanced energy system combining a solid oxide fuel cell (SOFC) with283

compressed air energy storage CAES to generate compressed air, electrical power, and heat. The system’s284

performance was assessed and optimized using regression-based machine learning models, focusing on three285

key process variables: temperature, current density, and utilization factor.286

The closest work relevant to our paper is given by Yuval et al. (2023), where an approach using mul-287

tiobjective optimisation was introduced, aiming to create optimised speed profiles while simultaneously288

considering fuel consumption, NOx emissions and travel time under traffic-free conditions. This method289

represents a more favourable approach for handling problems featuring multiple objectives that cannot be290

directly compared. Rather than combining these objectives into a single weighted metric, the proposed ap-291

proach offers a collection of non-dominated solutions (Pareto front). Each solution within this set reflects292

varying preferences concerning the importance of fuel, NOx and time. A standard shortest path model293

similar to Ozatay et al. (2014) was designed to implicitly address several constraints, and was solved using294

linear programming. By obtaining the Pareto front for the three objectives, this approach provides a range of295

options for users or driving guidance systems to select tailored strategies according to their specific require-296

ments. However, the study in Yuval et al. (2023) only considers traffic-free scenarios, which significantly297

narrows its applicability in real-world situations.298

2.4 Contributions of our work299

Our work distinguishes itself from the existing literature by addressing a critical gap: while many eco-300

driving studies focus solely on fuel consumption or treat NOx emissions separately—often overlooking301

the impact of real-time traffic—our paper presents the first multiobjective framework that optimizes speed302

profiles for fuel consumption, NOx emissions, and travel time in an integrated manner. Unlike conven-303

tional approaches, which typically generate isolated or non-integrated speed profiles using methods such304

as dynamic programming, MPC, or even single-objective reinforcement learning, our Multiobjective Speed305

Profile Optimization (MO-SPO) framework incorporates both a two-phase MPC and a novel DRL method306

that explicitly account for dynamic traffic constraints.307

3 Vehicle modelling308

In this part, we present the longitudinal vehicle dynamics model, along with employing simulated data to309

establish connections between engine power, fuel usage, and NOx emissions. By considering the vehicle’s310

dynamics, the power output can be precisely computed by factoring in the road slope, road condition, and311

the driver’s actions, indicated by changes in speed over a specific duration and the resulting acceleration.312

3.1 Vehicle dynamics313

In our research, we utilize a vehicle’s longitudinal dynamics model, following the convention from previous314

work such as Ozatay et al. (2014); Jia et al. (2022); Fernández-Yáñez et al. (2021); Yuval et al. (2023).315
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We use Me to denote the effective mass of the vehicle, which accounts for both the vehicle’s actual mass316

and the rotational inertia of its wheels. The term dv
dt represents the vehicle’s acceleration, describing the317

rate of change of its velocity v over time. The forces acting on the vehicle include Feng for the tractive318

force generated by the engine, Fbrk for the braking force, Frol for the rolling resistance force, Faro for the319

aerodynamic resistance force, and Fgrd for the road grade resistance force. The rolling resistance force Frol320

is calculated using the vehicle mass Mv, gravitational acceleration g, rolling resistance coefficient Cr, and321

the cosine of the road gradient θ(t). The aerodynamic resistance force Faro depends on the air density ρ ,322

frontal area A f , aerodynamic drag coefficient Cd , and the square of the vehicle’s speed v(t). The road grade323

resistance force Fgrd is determined by the vehicle mass Mv, gravitational acceleration g, and the sine of the324

road gradient θ(t). Finally, the effective mass Me incorporates the vehicle mass Mv and the rotational inertia325

of the wheels, calculated using the number of wheels Nw, rotational inertia of each wheel Jw, and wheel326

radius Rw. The complete model reads,327

Me
dv
dt

= Feng−Fbrk−Frol−Faro−Fgrd . (1)

328

Frol = MvgCr cos(θ(t)). (2)
329

Faro =
1
2

ρA fCdv(t)2. (3)
330

Fgrd = Mvgsin(θ(t)). (4)
331

Me = Mv +Nw
Jw

R2
w
. (5)

The vehicle’s resulting force can be straightforwardly calculated by applying Eq (1) to (5). The term332

representing the overall force generated by the vehicle, denoted as Fveh := Feng−Fbrk, is established. To333

calculate the tractive force Feng and braking force Fbrk, we operate under the assumption that efficient driving334

avoids simultaneous use of throttle and brake, a premise found in various pertinent studies like Fernández-335

Yáñez et al. (2021) and Yuval et al. (2023). This assumption assumes that at any given time, either Feng or336

Fbrk must be zero, determined as follows: When Fveh ≥ 0, then Feng = Fveh and Fbrk = 0; if Fveh < 0, then337

Feng = 0 and Fbrk = Fveh.338

After determining the tractive force Feng, we establish the engine power Peng using the predetermined339

vehicle specifications. Subsequently, fuel consumption and NOx emissions are derived from this engine340

power. We will now elaborate on this process.341

3.2 Fuel and NOx rate functions based on simulation342

Based on of the simulated vehicle, we applied a third-order polynomial fit to establish the relationships343

between NOx rates ṁN and engine power Peng, and a first-order polynomial fit was used to simulate between344

fuel ṁ f and engine power Peng. These relationships are derived from simulation data obtained through345

experiments conducted using the GT-SUITE (Gamma Technologies) package. Appendix A1 elaborates the346

simulation environment and vehicle modules used for deriving such relationships.347
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In this study, the GT-SUITE powertrain and emission model parameters were adopted from the rigor-348

ously validated work of Gao et al. (2021). Their validation process included experimental comparisons un-349

der diverse driving conditions, such as the Worldwide Harmonized Light Vehicles Test Cycle (WLTC), and350

covered critical scenarios like cold-start emissions, SCR/ACCT system efficiency, and thermal dynamics of351

after-treatment systems. Specifically, fuel consumption and NOx emission simulations were benchmarked352

against experimental data, showing strong agreement (e.g., minor deviations in NOx rates and fuel con-353

sumption trends). By leveraging this pre-validated model, we ensure that our eco-driving analysis reflects354

real-world powertrain and emission behaviors across the operational scenarios examined in this work.355

For NOx, the relationship is:356

ṁ f = α1P3
eng +α2P2

eng +α3Peng +α4, Peng ≥ 0, (6)

where α1 = 9.207×10−20,α2 = 1.663×10−14,α3 = 2.076×10−10, and α4 = 4.204×10−7. The R2 of the357

fitting is 0.97.358

For fuel, the relationship is:359

ṁN = β1Peng +β2, Peng ≥ 0, (7)

where β1 = 5.937×10−8,β2 = 0.0001002. The R2 of the fitting is 0.94.360

The situation of negative engine power (i.e., Peng < 0) did not happen in our experiments, since Feng ≥ 0361

and v(s) ≥ 0 always hold. If it is to be included, as in several other research cases (Rakha et al., 2011;362

Wang and Rakha, 2017), a common practice is to set an additional condition such that ṁ f = α0 and ṁN = β0363

if Peng < 0, which can be easily incorporated into our model if needed. Based on Eq (6) and (7), the364

static relationships of fuel consumption and NOx emissions with both zero and varying road grades while365

maintaining a constant vehicle speed are illustrated in Figure 1. Note that since the road grade typically366

varies along the observed journey section, these static relationships provide only idealised results.367

4 Problem formulation and two alternative solution approaches368

In this section, we first introduce the fundamentals of multiobjective optimisation and the overall speed369

profile generation problem as an optimal control problem. We then delve into the two alternative solution370

approaches both offering innovative ways to tackle the challenge of simultaneously optimising fuel con-371

sumption, NOx emissions, and travel time considering surroundiung traffic. The first approach is based372

on traditional optimisation and control. It divides the problem into two phases, applying multiobjective373

optimisation in a traffic-free scenario and then using model predictive control to address real-time traffic374

scenarios. The second approach combines multiobjective deep reinforcement learning with real-time traffic375

considerations, allowing for direct weighting of preferences to obtain optimised speed profiles. Through376

these approaches, we aim to enhance eco-driving strategies and promote more sustainable and efficient377

transportation solutions.378
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Figure 1: Investigating the relationship between NOx emissions and fuel consumption at a constant vehicle speed
and varying road gradients. A-C: Fuel consumption (A) and NOx emissions (B) are examined with respect to a
constant vehicle speed on a flat road. The relationship between fuel consumption and NOx emissions is shown in C.
The red dots indicate the minimum values. D-F: Similar analyses to A-C are conducted, but with a range of constant
road slopes from −10◦ to 10◦.

4.1 Multiobjective optimisation379

Multiobjective optimisation (Ehrgott, 2005) is a technique used to handle problems with multiple, often380

incomparable, objectives. Instead of seeking a single optimal solution, it aims to find a set of solutions381

known as the Pareto front, where no other solution can improve one objective without sacrificing another.382

This approach provides decision-makers with a range of trade-off options, allowing them to select the most383

suitable solution according to their preferences and requirements.384

The modelling of multi-objective optimization for eco-driving is of paramount importance due to the385

diverse and often conflicting preferences of users, as well as the inherent uncertainties in real-world driving386

scenarios (Li et al., 2024a; Chen et al., 2018). Traditional eco-driving strategies typically prioritize single387

objectives, which may not adequately address the multifaceted priorities of drivers. For instance, while some388

drivers may prioritize energy efficiency, others may place greater emphasis on minimizing travel time or en-389

hancing driving comfort. This paper underscores the necessity of integrating multiple objectives, including390
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fuel consumption, NOx emissions, and travel time, into a cohesive framework to deliver tailored eco-driving391

recommendations. Additionally we highlight the critical role of accounting for real-time dynamics in traffic392

conditions, where the unpredictable behaviors of leading vehicles can significantly influence energy effi-393

ciency, NOx emission and travel time. Addressing these complexities is crucial for the widespread adoption394

of eco-driving practices, where real-time adaptability and user satisfaction are key to achieving both envi-395

ronmental and operational goals.396

Let there be K distinct objectives, each representing an aspect to be minimized and denoted by zk(x),k =397

1, ...,K, and these objectives are not directly comparable:398

minimize {z1(x),z2(x), ...,zK(x)}. (8)

Solution x is said to dominate solution x′ if x is better than or the same as x′ for all objectives, i.e., zk(x) ≤399

zk(x′),∀k = 1, ...,K, and there exists at least one objective where x is strictly better than x′, i.e., ∃k : zk(x)<400

zk(x′). A non-dominated (efficient) solution refers to a feasible solution within a set that is not surpassed by401

any other feasible solutions. The collection of all these non-dominated solutions is termed the Pareto-optimal402

set. The boundary delineated by the points derived from this Pareto-optimal set is known as the Pareto front403

(frontier). In multiobjective optimisation problems, the goal is to discover a diverse set of solutions situated404

along this Pareto front. Common methods used to generate a Pareto front include techniques like weighted405

sum, ε-constraint, and weighted metric methods (Ehrgott, 2005).406

4.2 Speed profile generation as an optimal control problem407

4.2.1 Original optimal control problem408

In this section, we outline the overall optimal control problem focused in our research. The aim is to generate409

a speed profile that minimises specific objectives throughout a total distance travelled, denoted as S. As the410

longitudinal model operates within the spatial domain, we apply the following domain transformations:411

dt = ds
v(s) and dv

dt = dv
ds

ds
dt = dv

ds v, in a way that the distance travelled s becomes an independent variable412

and ṁ(t)dt = ṁ(s)
v(s) ds corresponds to a rate ṁ(t) originally measured with respect to time. When the travel413

velocity v(s) is known, the engine power (Peng(s) =
Feng
v(s) ) can be exclusively determined using Eq (1)–(5)414

provided that the velocity and acceleration are identifiable. Subsequently, the fuel consumption and NOx415

emission rates can be computed using Eq (6) and (7). Three objectives are identified in our multiobjective416

optimisation framework:417

(i) Total fuel consumption: J f =
∫ S

0
ṁ f (Peng(s))

v(s) ds,418

(ii) Total NOx emission: JN =
∫ S

0
ṁN(Peng(s))

v(s) ds, and419

(iii) Total travel time: JT =
∫ S

0
1

v(s)ds.420

13



Our goal is to minimise the three objectives while taking various preferences into account:421

minimize {J f ,JN ,JT}. (9)

As per convention, necessary normalisation is needed for the three objectives in Eq (9) in an multiobjec-422

tive optimization context. In our MO-SPO framework, we adopt the weighted sum method, one of the most423

widely used techniques (Ehrgott, 2005). This approach assigns a weight to each objective and combines424

them into a single objective function. By systematically varying the weights, different regions of the Pareto425

frontier can be explored as comprehensively as possible. Specifically, the objective function is formulated426

as,427

J = w f J f +wNJn +wT JT , w f +wN +wT = 1 (10)

where w f ,wN and wT are the weights associated with fuel, NOx and time objectives respectively. In addi-428

tion to the objectives, the following constraints are included into our model to guarantee practical driving429

scenarios in real-world.430

The speed is restricted within the range of minimum speed limit vmin to maximum speed limit vmax for431

all velocities v(s). This range ensures adherence to legal speed limits on the motorway. Additionally, a lower432

bound may be included if specified by the local traffic authority. The vehicle’s acceleration is confined within433

the range of maximum acceleration limit−amax to amax for all velocities v(s). This limitation is implemented434

to prioritise the safety and comfort of the driver and passengers (Table 1). The initial and final states of the435

journey entail the vehicle being stationary, indicated by the conditions v(0) = v(S) = 0. Standing condition436

dv
dt ̸= 0,∀v= 0 is imposed such that when the speed reaches zero, the acceleration must not be zero to prevent437

the vehicle from remaining stationary indefinitely. When a vehicle navigates through traffic, its movement438

is influenced by the presence and behaviour of other vehicles nearby. These neighbouring vehicles create439

constraints that impact how the vehicle can manoeuvre or accelerate, making it essential to consider these440

limitations when planning or controlling its movement.441

We denote the above constraints as a constraint set D . Depending on the specific requirements, more442

constraints apart from the above ones can be included into D . Note that our driving model focuses on mo-443

torway conditions and does not account for signal stop points. Nevertheless, these can be readily integrated444

into the model depending on the chosen settings.445

4.2.2 Discretized optimal control problem based on road position446

Similar to Ozatay et al. (2014) and Jia et al. (2022), the total distance S is discretised into Q equal intervals447

∆s = S/Q. This allows a variety of approaches, such as shortest path, MPC and DRL to be applied in prac-448

tically solving the original optimal control problem. We further make the assumption that the acceleration449

remains unchanged within each interval i = 1, . . . ,Q, and denote it as ai. Then the speed profile can be450

derived by determining the start and end speed of each interval i (denoted as v1i and v2i), or equivalently, by451

determining the acceleration ai =
v2

2i−v2
1i

2∆s of interval i if v1i is given. Note that the time needed within interval452
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i is ∆ti = 2∆s
v1i+v2i

. Therefore the fuel consumption and NOx emission incurred at interval i can be calculated453

by ṁ f (Peng(i))∆ti =
2ṁ f (Peng(i))

v1i+v2i
∆s and ṁN(Peng(i))∆s = 2ṁN(Peng(i))

v1i+v2i
∆s respectively, where Peng(i) is the engine454

power at interval i by applying Eq (1)–(5).455

Three discretised objective terms on the distance domain can be further defined, corresponding to the456

original objectives in (9):457

(i) Total fuel consumption: J′f = ∑
Q
i=1

2ṁ f (Peng(i))
v1i+v2i

∆s,458

(ii) Total NOx emission: J′N = ∑
Q
i=1

2ṁN(Peng(i))
v1i+v2i

∆s, and459

(iii) Total travel time: J′T = ∑
Q
i=1

2
v1i+v2i

∆s.460

In a multiobjective optimisation framework, we aim to minimise the three objectives considering differ-461

ent preferences:462

minimize {J′f ,J′N ,J′T}. (11a)

subject to D . (11b)

The final objective after adopting weighted sum remains in the same form as in Eq (10).463

We propose two alternative solution approaches to deal with the above multiobjective optimal control464

problem in Sections 4.3 and 4.4 respectively.465

4.3 A two-phase approach using shortest path and MPC466

As our objective is to generate a speed profile based on real-time traffic conditions, it becomes imperative467

to consider the influence of surrounding traffic, which sets it apart from traffic-free scenarios. MPC has468

traditionally been an effective tool for addressing such real-time problems. However, when combined with469

multiobjective optimisation, MPC encounters significant challenges, and despite considerable efforts made470

in the past few decades, there is no satisfactory generic method to obtain exact or high-quality solutions471

(Gambier and Badreddin, 2007; Bemporad and Muñoz de la Peña, 2009). Due to the successive computa-472

tional nature of MPC, the results are often not Pareto optimal (Grüne and Stieler, 2017).473

Considering the above challenges mentioned, we propose an approximate two-phase approach, striking474

a balance between the “desirable” Pareto-efficient speeds obtained from the traffic-free condition (Phase-1)475

and the adjusted speeds due to surrounding traffic, computed using an MPC model (Phase-2). In Phase-1,476

in the absence of surrounding traffic, the speed profiles are ideally designed to minimise fuel consumption,477

NOx emissions, and travel time, based on vehicle specifications and road geometry information. However,478

these profiles may not be practical or entirely feasible due to the lack of surrounding traffic considerations.479

In Phase-2, realistic solutions are generated by a conventional MPC model, accounting for other vehicles’480

presence, while endeavouring to maintain speeds as close to those obtained in Phase-1 as possible. The481

subsequent sections provide a comprehensive elaboration of both phases.482
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4.3.1 Phase-1: traffic-free shortest path problem formulation483

Vehicle dynamics, road 
geometry, fuel consumption, 

NOx emission… 

Shortest path model
(Ozatay et al., 2014,
Yuval et al., 2023)

     

p1

p2

pn
……

speed

Pareto front and sampled points p ∈ P

Deterministic input

p3

Traffic free

v (speed)

s (distance)

Apply MOOP to shortest path model

distance

Figure 2: An illustration of Phase-1 where the traffic-free scenario is modelled as a shortest path problem and applied
to a multiobjective optimization framework. Sampled points p1, p2, ..., pn ∈P correspond to different efficient speed
profiles with respect to their own preferences.

In Phase-1, given the absence of surrounding traffic, the discretised multiobjective optimal control prob-484

lem represented by (11) can be further reformulated as a deterministic shortest path problem (Ozatay et al.,485

2014; Yuval et al., 2023), if the speed horizon is also discretised into [0,∆v,2∆v, ...,vmax]. This yields a short-486

est path network defined over [0,∆s,2∆s, ...,S]× [0,∆v,2∆v, ...,vmax], where each node (s,v) in the network487

represents a chosen speed v at a distance s, and an arc represents the costs (NOx, fuel and time) from one488

node to another, i.e., how speed changes from one distance point to the next. This shortest path problem is489

solvable using standard mathematical programming. The outcome of Phase-1 yields a Pareto front, illustrat-490

ing various trade-offs among the preferred weight settings, where each point on the Pareto front corresponds491

to a complete speed profile. A set of sampled points p ∈P will be collected from the Pareto front and be492

used as reference points for Phase-2. For details in how to formulate the shortest path problem in the context493

of generating speed profiles, see examples from Ozatay et al. (2014) and Yuval et al. (2023).494
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4.3.2 Phase-2: MPC problem considering surrounding traffic495

In Jia et al. (2022), an MPC model is proposed to generate speed profiles that only minimise fuel consump-496

tion considering surrounding traffic. Its objective function for an interval i and total prediction horizon n497

reads,498

J(i) = λe

i+n−1

∑
j=i

Ee( j)2 +λk

i+n−1

∑
j=i

(Ek( j)− 1
2

Mev2
d( j))2 +λs

i+n−1

∑
j=i

(Ee( j)−Ee( j−1))2. (12)

where the first term minimises the engine energy Ee (fuel), the second term minimised the deviation between499

the actual speed (represented by kinetic energy Ek) and the desired speed vd and the third term minimises jerk500

(represented by energy increment) to ensure driver’s comfort. λe,λk and λs are the corresponding weights.501

We have developed an MPC model based on Jia et al. (2022) to account for the surrounding traffic while502

aiming to keep the speed profile as close as possible to the sampled Pareto solutions from Phase-1. A detailed503

description of this MPC algorithm can be found in Appendix A3. Figure 3 provides an illustration of how our504

Phase-2 operates: the MPC model is employed for generating vehicle speed profiles considering surrounding505

traffic for each sampled points p∈P from Phase-1. The vehicle’s dynamics accounts for various constraints506

D including surrounding traffic (headway) and speed/acceleration limits. The MPC indirectly optimises the507

three objectives (fuel, NOx and time) by minimising the deviation between vd and the reference Pareto point508

p. The entire process is conducted over a finite distance, which is divided into discrete steps. The controller509

predicts the vehicle’s future behaviour within the horizon, subject to the constraints D . At each time step,510

MPC solves an optimisation problem to find the optimal control input sequence. Then, the controller shifts511

the horizon by one step and updates the information with new measurements.512

It should be noted that we adopted a data-driven traffic predictive model for speed prediction which513

applies the CNN-based deep learning method to capture spatio-temporal dependencies in traffic data (Jia514

et al., 2022). The multi-view CNN processes multiple factors (e.g., traffic flow, speed) separately through515

convolutional layers, fuses their outputs, and predicts traffic speed via fully connected layers. The model516

uses a weighted loss function to balance contributions from different traffic factors. Predicted speeds are517

transformed from the time domain to the space domain for use in predictive control systems, enabling real-518

time speed optimization.519

To realise the above, for each sampled Pareto point p ∈P , we set the desirable speed vd in the MPC’s520

objective function (see Jia et al. (2022)) dynamically depending on the speed of the front vehicle v f and the521

Pareto speed vP(p) derived from Phase-1. Two strategies are designed to address the problem from different522

aspects: a conservative MPC strategy (“MPC1”) and a balanced MPC strategy (“MPC2”).523

Conservative MPC strategy (MPC1): Under this strategy, the new desirable speed vd is calculated as524

follows:525

vd =

vP(p), if vP(p)≤ v f ,

v f , if vP(p)> v f .
(13)
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Vehicle dynamics, 
road geometry, fuel 
consumption, NOx 

emission… 

Apply MPC to each sampled 
Pareto point 𝑝ଵ, 𝑝ଶ, … , 𝑝 from Phase-1

p1 p2 pn…

speed

time

Deterministic & real-time input Traffic characteristics Pareto front from Phase-1

desired
actual

speed

time

speed

time

Adjusted speed profiles based on real-time data

Figure 3: An illustration of Phase-2 where based on the sampled Pareto points p1, p2, ..., pn ∈P from Phase-1, the
surrounding traffic is taken into account in an MPC model.

The justification for the conservative MPC tactic, as described in Eq (13), is that in order to maintain max-526

imum safety, the speed of the targeted vehicle must not surpass that of the front vehicle at any given time.527

Furthermore, the vehicle following the targeted one will regulate its speed in tandem with the targeted vehi-528

cle, and the whole set of traffic behind them will do likewise. Note that this strategy cannot guarantee that529

the speed of the current vehicle will never exceed that of the preceding vehicle, as vd can only be approached530

as much as possible in objective. However, this approach has the advantage that whenever the Pareto speed531

vP(p) is less than the speed of the preceding vehicle v f , the MPC will attempt to achieve vP(p), resulting in532

solutions with higher quality in terms of the three objectives.533

Balanced MPC strategy (MPC2): Since safety headway constraints are included in the MPC model (Jia534

et al., 2022), it is considered safe to occasionally allow the desired speed to be higher than the speed of the535

front car. Therefore, in the balanced strategy, the desired speed is calculated as the average value of the536

Pareto and front car speeds, i.e.,537

vd =
vP(p)+ v f

2
. (14)

This approach increases the likelihood of the current vehicle surpassing the front vehicle’s speed when538

prioritising minimisation of travel time. It provides more realistic speed profiles, but may result in lower539
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solution quality than “MPC1", since the desired speed will only match the Pareto speed if vP(p) = v f .540

4.4 A deep reinforcement learning approach541

Reinforcement learning (RL) enables agents to learn decision-making strategies for maximising cumulative542

rewards in sequential processes (Sutton and Barto, 2018). Deep reinforcement learning (DRL) employs543

multi-layer Artificial Neural Networks (ANNs) for training in simulated environments. Here, the agent544

interacts with the environment, receives feedback on actions, and improves decision-making through trial545

and error. This study focuses on continuously controlling the starting point’s acceleration in each section546

to achieve a speed profile that addresses multiple diverse objectives. To address complex control tasks with547

continuous state and action spaces, we use an actor-critic framework with the deep deterministic policy548

gradient (DDPG) algorithm (Sutton and Barto, 2018). The actor-critic architecture, resembling a Generative549

Adversarial Network, consists of two ANNs: the “critic” estimates state transition values, guiding decisions,550

and the “actor” selects optimal actions based on critic feedback. The actor uses a Policy-based method for551

high-dimensional and continuous action spaces, and the critic employs a Value-based method for efficiency552

and stability. The iterative interaction in the actor-critic framework is depicted in Figure 4. The black lines553

represent the predicting loop, while the red lines represent the training loop. The squares depict the agents554

and the environment, and the ellipses represent the information flow. The red circle represents to update the555

weights of ANNs for a given state-action pair.556

Figure 4: Actor-critic training framework

The DRL approach is shown in Figure 5. The state is formulated by traffic speed v f , driving speed v,557

headway distance δ , and gradient θ . The action determines the speed variance a, which is a continuous558

value, at the upcoming road section. Negative values indicate deceleration, while positive values indicate559

acceleration. The action is constrained by the limits specified in Table 1, ensuring the agent’s acceleration or560

deceleration stays within acceptable bounds during the control process. Consequently, the agent can adjust561
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its speed within the speed limit and efficiently navigate through the road section. The agent updates the562

state at the beginning of each road section and receives the reward after traversing the section with the given563

speed. The reward is formulated by combining the three objectives of the optimisation in Eq (11), namely564

fuel consumption, NOx emissions, and travel time. These values are normalised and combined into the same565

weighted objective. Due to the nature of minimisation, the reward is inversely proportional to the values of566

fuel, NOx, and travel time.567

Figure 5: DRL framework for eco-driving with traffic flow

In this study, success is defined as the vehicle safely traversing the road without a crash, and failure568

occurs when a crash happens. The step reward is provided after each action, but they don’t distinguish569

between success and failure. Increasing control accuracy results in more decision points, potentially leading570

to sparse rewards before task completion. Too few penalties may reduce the agent’s cautiousness, resulting571

in numerous crashes in the initial stages of learning, hindering the ability to successfully complete the task.572

Conversely, too large penalties may lead the agent to adopt overly conservative actions, such as driving573

slowly to maintain a safe distance from the front car, which is not desired. Experiencing excessive failures574

during training can lead the agent to adopt a conservative behaviour, often referred to as the coward effect575

in reinforcement learning (Bakos and Davoudi, 2022). This is primarily attributed to the agent’s exploration576

of the environment resulting in infrequent successes. Over time, the agent begins to perceive the game577

as consistently ending in failure. Consequently, its strategy shifts towards surviving longer rather than578

optimising reward acquisition.579

To prevent the agent from being stuck in local optimal solutions and to mitigate the coward effect, an580

episode reward is designed each time the agent completes an episode, whether it is a failure or success.581

The termination condition is determined by two standard criteria: (i) either the agent crashes the front582

vehicle during the experiment (indicating failure) or (ii) the agent completes the entire journey through the583

road (indicating success). When the agent fails, it receives a penalty, which is discounted by the length it584
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travelled. This means that the longer the agent travels before failure, the less severe the penalty. When585

the agent completes the task, it receives a reward, but the reward is discounted based on how the objective586

values achieved by the agent compare to the values derived from the ideal condition (representing traffic-587

free solution). This means that the agent receives a higher reward for achieving objectives closer to the ideal588

values. Accordingly, the agent receives an evaluation after termination based on its ending state, which is589

calculated by Eq (15). γ+ and γ− are coefficients to balance the value of episode reward and step reward,590

which avoids the gradient vanishing during training. β1 is a parameter to control the discounting rate. Ob jI is591

the weighted sum of objectives derived from traffic-free solution, and Ob jE is that derived from this episode.592

The tendency of the episode reward is shown in Figure 6. The penalty curve (blue) follows an exponential593

shape, which penalises the agent more when the agent fails early, but imposes only a slight penalty if it fails594

near the end of the road. On the other hand, the reward curve (green) follows a linear shape, which uniformly595

increases as the objective becomes better. A linear-shaped function imparts a consistent and gradual reward596

as the agent performs better, thereby reducing the intricacy of stimulation and preventing the agent from597

getting trapped in local performance optima.598

Episode reward =


γ+×

Ob jI
Ob jE

, Finish

γ−×
(

eβ1(∑∆s−S)−1
)
, Failure

(15)

Figure 6: Episode reward under different termination states

The training process of ANN can be viewed as solving a parametric optimisation problem through599

stochastic gradient descent, which iteratively updates the parameters of ANN to minimise the loss function.600

The training process by DDPG algorithm follows the pseudo code in Algorithm 3 in Appendix A4.601

The policy gradient method with time-difference error can be summarised with the following equations.602

A tuple (si,ai,ri,si+1) represents the state, action, reward, and next state, respectively. First, compute the603
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target value yi by the target critic-network Qtarget with weight set θ target_critic and target actor-network µ with604

weight set θ target_actor by Eq (16).605

yi = ri + γQtarget(si+1,µ(si+1|θ target_actor)|θ target_critic) (16)

Here, γ is the discount factor, which represents how much importance is given to future rewards.606

Then, calculate the loss function of critic network using the memory set containing N samples. This607

is done by employing the mean square error as shown in Eq (17). Subsequently, the weights of the critic608

network are updated using the gradient descent method with the gradient ∇L (θ critic).609

L (θ critic) =
1
N

N

∑
i
(Q(si,ai|θ critic)− yi)

2 (17)

The loss function of actor network is defined as the negative mean of the expected Q-values for the610

state-action pairs in the batch in Eq (18). This means that the actor seeks to minimise the negative Q-values,611

effectively maximising the Q-values. Then, the gradient decent ∇L (θ actor) is performed to update the612

weight of actor network.613

L (θ actor) =− 1
N

N

∑
i

Q(si,µ(si|θ actor)|θ critic) (18)

After each training round, the target critic network is updated using a decay rate τ . This update is614

performed to prevent rapid changes in target Q-values, which can lead to unstable learning.615

The action is selected following the ε-greedy method where ε is the explorative parameter.Before each616

action is selected, a random number is generated according to a uniform distribution between 0 and 1. If the617

random number is greater than ε , the action with the highest probability is selected. Otherwise, an action618

is selected randomly. For sufficient exploration at the initial process of the simulation, ε is annealed in a619

sigmoid shape as620

ε = εmax−
εmax− εmin

1+ e−β2[(E−β3)−β4)]
(19)

where εmax and εmin are the lower and upper bounds, respectively. β2, β3 and β4 are the parameters to control621

the shape of annealing. E stands for the number of experienced episodes. The value of ε decays with the622

increasing of episode number.623

The learning rate of the actor and critic ANNs is also decayed during iteration, following an exponen-624

tial shape. The decaying learning rate ensures that the networks adapt to changing dynamics and avoids625

overshooting or getting stuck in local minima during the learning process.626
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5 Computational experiments627

5.1 Experiment environment and dataset628

In this section, we present the experimental results obtained by applying both the two-phase approach629

(shortest-path + MPC) and the novel DRL-based approach to generate optimised speed profiles for our630

focused passenger car. The surrounding traffic was simulated using SUMO (Lopez et al., 2018), an open-631

source traffic simulation software that allows modelling and analysing the movement of vehicles, pedestri-632

ans, and other road users in urban areas. To validate the ability of the traffic simulator SUMO to replicate633

real-world traffic scenarios, we utilized loop data collected from April 1, 2015, to December 31, 2015, on634

a segment of the M25 highway. This segment includes approximately 30 evenly distributed detector points,635

which recorded average traffic speed and flow at 15-minute intervals. The same dataset was employed in636

Jia et al. (2022). Traffic demand was initially generated using DFROUTER based on historical loop data637

from entrance point A, as illustrated in Fig. 7a, and subsequently implemented in SUMO with the Intelligent638

Driver Model (IDM) for car-following behaviour. A validation point C was randomly selected midway along639

the highway segment to collect simulated traffic flow and average speed data, which were then compared640

against real-world records. Vehicles in the real dataset were classified into two categories: passenger cars641

and freight cars. Their parameters, such as speed and acceleration, were configured using default values in642

the simulation.643

We applied our approaches to the same 12km segment on the M25 motorway in the UK as in Jia et al.644

(2022) and Yuval et al. (2023) (see Figure 7a), including the elevation data for this road segment from the645

Shuttle Radar Topography Mission (SRTM) Far (2007). In both the two-phase and MPC approaches, three646

objectives (fuel, NOx and travel time) were considered to fully explore the potential of these methods.647

5.2 Experiments on the two-phase approach648

5.2.1 Parameter settings649

The experiments for the two-phase approach were conducted using MATLAB 2022a (MathWorks). The650

phase-1 multiobjective shortest path problem was solved using the default linear programming solver of651

MATLAB. For the Phase-2 MPC problem, our MPC model was developed based on the OptiTruck model in652

Jia et al. (2022) by updating its objective terms and speed generating logic, and replacing the original heavy653

duty truck with our simulated car vehicle in Table 1.654

5.2.2 Results from Phase 1 shortest path multiobjective optimization655

The experiment road section of 12 km is divided into 120 segment of 100 m and thus the available road656

positions form a finite set D= {0,100, ...,12000}. The speed range from 0 to 120km/h (33.33 m/s) is divided657

into 33 levels with a 1m/s resolution and thus the available speed values form a finite set V = {0,1,2, ...,33}.658

The discrete road positions and speed values form the feasible region of the shortest path problem.659

23



Figure 7: Road segment for experiments.
a: A 12k road segment on the M25 motorway (marked from A to B) used in the experiments (Source: Google Maps).
b: The plot illustrates the relationship between road position along an 12km segment of the M25 motorway and both
the road slope angle.

Based on the relationships established in Eq (7) and (6) and the multiobjective optimization shortest660

path computations, we have obtained the corresponding Pareto front as shown in Figures 8 and 9. It can be661

concluded that generally the travel time is conflicting with both NOx and fuel but with different rates and662

patterns under free-flow. The relationship between NOx and fuel is positively correlated but is linear.663

5.2.3 Knee point and sample points664

In the two-phase approach, the Phase-1 Pareto front provides valuable guidance points for Phase-2. To665

ensure the sampled points adequately represent the Pareto front, we consider various types of points.666
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Symbol Value [unit] Description Remarks

g 9.81 [m/s2] gravitational acceleration
A f 2 [m2] vehicle frontal area
Mv 1505 [kg] vehicle mass
Nw 4 number of wheels
Jw 15 [kg·m2] tire inertia
Rw 0.6 [m] tire radius
Cr 0.012 tire rolling resistance coefficient Wargula et al. (2019)
Cd 0.31 aerodynamic drag coefficient Windsor (2014)
g 9.81 [m/s2] gravitational acceleration
ρ 0.51 [kg/m3] air density

amax 1.47 [m/s2] maximum acceleration/deceleration Bae et al. (2019)
vmax 120 [km/h] maximum speed Jia et al. (2022)

S 12 [km] total travel distance a segment of the M25 motorway

Table 1: Parameters settings

(a) 2D projection in space of NOx and time. (b) 2D projection in space of fuel and time.

(c) 2D projection in space of NOx and fuel.

Figure 8: 2D projections of the 3D Pareto front.
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Figure 9: Speed profiles of three objective Pareto front (with the same colour legend as in Figure 8)

Figure 10: An illustrative example of the knee point (K) and boundary points (A,B) on the Pareto front in a minimi-
sation problem with two objectives.

Firstly, we include the knee point (Das, 1999), where an enhancement in one objective would result in a667

significantly adequate decline in at least one other objective. These solutions are often referred to as “knees”668

due to their distinctive characteristics and are often found in the “middle” area of the Pareto front. A knee669

point is arguably the most “balanced” point on the front (Branke et al., 2004). Additionally, we incorporate670

the boundary points obtained by minimising only one individual objective. These points represent extreme671

solutions along each objective axis and contribute to a comprehensive understanding of the Pareto front.672

Furthermore, we include the points between the knee and boundary points by averaging the weights. These673

intermediate points capture the gradual transition in the trade-off relationship and provide a more nuanced674

representation of the Pareto front. Figure 10 gives an illustrative example of the knee and boundary points.675

Algorithm 1 in Appendix A2 shows a classical approach in calculating the knee point that is used in676

our experiments. Note that since the shortest path problem in Phase-1 is convex (Ahuja et al., 1993), this677

standard approach suffices in finding the knee point.678

By considering these different types of points, we ensure that the sampled points in Phase-2 are repre-679

sentative enough to guide the MPC and DRL process effectively. The weight sets and Pareto-optimal values680

of sample points can be found in Table 2 and Figure 11.681
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Sample Fuel weight NOx weight Time weight Fuel NOx Time (sec)
p1 0 1 0 0.00536 2.42×10−5 1094
p2 1 0 0 0.00529 2.97×10−5 866
p3 0.68 0.16 0.16 0.00573 3.44×10−5 626
p4 0.18 0.66 0.16 0.00541 3.48×10−5 716
p5 (knee) 0.37 0.32 0.31 0.00822 9.26×10−5 419
p6 0.18 0.16 0.66 0.00824 1.07×10−4 417
p7 0 0 1 0.00835 1.19×10−4 415

Table 2: Sampled Pareto points from Phase-1 result (traffic-free)

Figure 11: Illustration of sampled knee, boundary and middle points from the Pareto front with three objectives.

5.2.4 Results from Phase-2 MPC approach682

In these Phase-2 experiments, MPC was utilised to account for the surrounding traffic at each of the sampled683

points. The speed profiles of the seven points sampled from the Pareto front (see Figure 8 and Table 2) are684

designated as the Pareto speed vP. The front car speed v f is determined using the same simulated traffic685

as in Jia et al. (2022). The parameter settings in the MPC model remained the same as in Jia et al. (2022)686

except that the series of desired speed vd was set in accordance with either Eq. (13) (MPC1) or Eq. (14)687

(MPC2). Both the conservative strategy (MPC1) and the balanced strategy (MPC2) were employed and688

their outcomes compared.689

Sample Fuel NOx Time (sec)
p1 0.00562 2.83×10−5 1028
p2 0.00564 3.06×10−5 854
p3 0.00653 4.28×10−5 629
p4 0.00599 3.56×10−5 715
p5 (knee) 0.00919 9.20×10−5 495
p6 0.00907 8.80×10−5 496
p7 0.00959 1.00×10−4 493

Table 3: Phase-2 results given by MPC1 based on seven sampled points.

27



Figure 12: Phase-2 speed profiles given by MPC1 based on seven sampled Pareto points.

Results from conservative strategy (MPC1) Results in terms of the objective values of the three criteria690

from applying MPC1 are reported in Table 3 and the seven resulting speed profiles are depicted in Figure 12.691

In the figure, the dark blue line represents the speed profile of sample point p1, the light blue line represents692

p2, the green point represents p3, the yellow point represents p4, the orange point represents p5, the light693

red point represents p6, and the dark red point represents p7. The speed of the traffic flow is indicated by694

the black dashed line. The speed profiles correspond to the left y-axis, while the road altitude, represented695

by the light brown line, corresponds to the right y-axis. The influence of minimising travel time gradually696

becomes more significant from sampled point p1 to p7, leading to higher speeds. The pattern depicted697

in Figure 12 remains consistent with the observation that maintaining a low speed approximately between698

40 and 60 km/h frequently leads to reduced fuel consumption and NOx emissions (see Figure 1). As the699

travel time is further prioritised, both the fuel and NOx get worse values. Note that due to the design of the700

strategy in Eq. (13), even p6 or p7 is set as the reference Pareto speed, MPC1 rarely gives solutions with701

speeds surpassing the traffic when travel time is more prioritised.702

Sample Fuel NOx Time (sec)
p1 0.00670 4.30×10−5 657
p2 0.00700 4.90×10−5 614
p3 0.00796 6.48×10−5 548
p4 0.00745 5.74×10−5 578
p5 (knee) 0.00774 7.10×10−5 483
p6 0.00757 6.93×10−5 482
p7 0.00834 8.81×10−5 441

Table 4: Phase-2 results given by MPC2 based on seven sampled points

Results from balanced strategy (MPC2) Results regarding the objective values of the three criteria ob-703

tained by applying MPC2 are outlined in Table 4, along with the depiction of the seven resulting speed704

profiles in Figure 13. Similar to results given by MPC1, the impact of minimising travel time increases705

gradually from sampled point p1 to p7, resulting in higher speeds. On the other hand, since MPC2 uses the706

average speed between the Pareto and front car speeds, when travel time is more of a priority, the speed of707

the vehicle can exceed that of the traffic, making the speed profiles more realistic and flexible. In addition,708

the speed profiles from MPC2 are more centred around the traffic, as opposite to the case in MPC1’s result.709
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Figure 13: Phase-2 speed profiles given by MPC2 based on seven sampled Pareto points

However, as previously stated, this compromise comes at the expense of lower solution quality since the710

profiles deviate further from the Pareto samples due to averaging the Pareto and front car speeds.711

Overall, in either the solutions from MPC1 or MPC2, given the set of varied results, users have the712

flexibility to select a speed profile from this collection based on their specific requirements while taking into713

account of surrounding traffic. For instance, if a driver prioritises reaching their destination earlier and is714

less concerned about fuel efficiency or NOx emissions, they can opt for p6 or p7 as their preferred speed715

profile. By considering these options, users can tailor their driving experience to align with their individual716

preferences and priorities.717

5.3 Experiments using DRL-based approach718

5.3.1 Parameter settings719

With the same settings for section division, vehicle parameters, and traffic flow as Phase-2 MPC conditions,720

we utilised the DRL method to simultaneously generate a speed profile considering both the three objective721

terms and the traffic flow. The actor and critic networks were formulated using deep neural networks in722

Python 3.9 with TensorFlow. The actor network consists of two hidden layers with 100 and 50 nodes,723

utilising ReLU activation functions. The output layer uses tanh activation to ensure the output acceleration724

remains within the specified accelerate/decelerate limits. On the other hand, the critic network has two725

hidden layers with 300 and 200 nodes, using SELU activation to maintain the value of the penalty (negative726

value). For learning rate decay, we employed the exponential decay function from TensorFlow with the727

initial value of 10−6 for the actor network and 10−3 for the critic network. The decay step occurs every728

1000 episodes, and the decay rate is set to 0.1. For epsilon decay, the parameters are set as follows: εmin =729

0.1, εmax = 1, β2 = 10−3, β3 = 5000, β4 = 0.5. The total number of episodes in the training process is730

set to 10,000. During each episode, the parameters used in the episode reward calculation are specified as731

follows: γ+ = 10, γ− = 50, β1 = 0.01.732

In the three-objective settings of the two-phase method, we have selected 7 points from the Pareto front,733

p1, p2, ..., p7. These weighting sets are then utilised in the step reward of the DRL method to generate the734

multi-objective solutions. Each of these 7 solutions corresponds to a specific combination of weights for the735

three objectives. In the DRL method, the step reward is computed by normalising and weighting the three736
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objectives, and then summing them up. By leveraging these 7 different sets of weights, the DRL method737

produces 7 distinct solutions, each offering a unique trade-off among the three objectives. These solutions738

effectively provide a diverse set of optimised outcomes that cater to different decision-making requirements.739

The settings were chosen with specific values to balance stability, convergence speed, and computa-740

tional efficiency. For example, the actor network’s two hidden layers use 100 and 50 nodes with ReLU,741

a choice that helps achieve quick convergence, while the tanh activation in the output layer ensures the742

acceleration stays within defined limits. Meanwhile, the critic network’s larger layers (300 and 200 nodes)743

with SELU activation are tailored to accurately capture the negative penalty values. The learning rate decay744

settings—starting at 10−6 for the actor and 10−3 for the critic, with a decay step every 1,000 episodes and a745

decay rate of 0.1—are specifically set to gradually reduce the learning rate as training progresses, prevent-746

ing overshooting and ensuring fine adjustments in later stages. Additionally, the epsilon decay parameters747

(εmin = 0.1, εmax = 1, β2 = 10−3, β3 = 5000, β4 = 0.5) are precisely tuned to balance exploration and ex-748

ploitation over the 10,000 episodes of training. Finally, selecting 7 points from the Pareto front allows the749

method to cover a range of trade-offs among the three objectives by assigning distinct weight combinations750

in the step reward calculation, leading to a diverse set of optimized outcomes. Each of these specific settings751

plays a crucial role in ensuring the DRL method not only trains effectively but also maintains real-time752

responsiveness in deployment.753

The DRL methodology was executed using Python on a high-performance computing system with In-754

tel Xeon Gold 6138 CPUs operating at 2.0GHz. Each training episode consumed approximately 7 sec-755

onds of computational time, resulting in an overall training duration of approximately 19 hours for 10,000756

episodes. It is worth noting that while the training process exhibited substantial duration, the application757

of a pre-trained agent demonstrated prompt responsiveness, effectively responding to a given state within a758

millisecond timeframe. This responsiveness aligns well with real-time response requisites.759

5.3.2 Convergence analysis760

Due to space limitations, we present the convergence progress of the DDPG training with epsilon decay for761

weighting set of the knee point. The convergence patterns for other weighting combinations are similar.762

The epsilon decay follows the shape depicted in Fig.14d. The convergence of the three objectives, namely763

fuel, NOx, and travel time, is shown in Fig.14a-Fig.14c, respectively. The moving average of 50 solutions764

is shown in the coloured lines, and the standard deviation is shown in the black dashed line. Based on765

the convergence figures, the grey lines represent the objective values obtained in each episode, while the766

coloured lines (red, blue, and yellow) show the moving averages of the 100 nearest values. At the exploration767

stage (episode 0-5,000), the relatively high epsilon indicates that the agent’s actions heavily rely on random768

selection. Consequently, the objective values show significant deviations, and the solutions fluctuate widely769

as the agent explores different actions to gather rewards in varying states. As the epsilon decays (episode770

3,000-6,000), the agent starts to depend more on its experience rather than random actions. This leads to771

a better understanding of the environment and rewards, resulting in less deviation among the solutions and772

more cost-saving solutions. At the exploitation stage (episode 6,000-10,000), both epsilon and learning773
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rate are low, indicating that the agent predominantly relies on the trained actor ANN. Consequently, it can774

consistently provide cost-saving solutions and effectively drive the vehicle on the experiment road, striking775

a balance among the three objectives.776

(a) Convergence of Obj 1: Fuel (b) Convergence of Obj 2: NOx

(c) Convergence of Obj 3: Travel time (d) Epsilon decay

Figure 14: Convergence of DRL method using weighting set of the knee point

5.3.3 Application of the energy management system with DRL777

Table 5 presents the objective values associated with the same sampled seven points as shown in Table 2,778

which were obtained using the DRL method. A comparison among the Pareto-optimal solutions and solu-779

tions derived from two-phase and DRL approaches is illustrated in Fig. 15, and the projections are shown780

in Fig. 16. The proximity of a scatter point to the bottom-left corner indicates its superior performance.781

Notably, the Pareto solutions reflect the best outcomes within a traffic-free context, representing the optimal782

solutions for given weights. In actual scenarios, the speed profile is controlled by MPC or DRL approaches783

amidst surrounding traffic flow. Upon comparison, it is evident that the DRL solutions are situated closer784

to the Pareto front in contrast to the MPC solutions. Across all weight sets, the DRL solutions consistently785

outperform the two-phase solutions under traffic flow conditions. The integrated DRL approach excels in786

identifying solutions that yield reduced fuel consumption, NOx emissions, and time savings compared to787
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the two-phase approach.788

Sample Fuel NOx Time (sec)
p1 0.0538 2.49×10−5 1104
p2 0.00506 2.38×10−5 976
p3 0.00577 3.32×10−5 760
p4 0.00537 3.08×10−5 726
p5 (knee) 0.00555 3.73×10−5 667
p6 0.00808 8.13×10−5 456
p7 0.00878 1.13×10−4 433

Table 5: Results given by DRL based on seven sampled points

Figure 15: Comparison of the three objective values derived from Phase-1 Pareto (traffic-free), Phase-2 (MPC-1 and
MPC-2) and DRL

The speed profiles resulting from the DRL approach, as depicted in Fig. 17, exhibit distinct qualities789

when contrasted with the optimisation-based method. Notably, the DRL outcomes showcase several no-790

table features. Firstly, the DRL approach offers enhanced flexibility in speed adjustments, a characteristic791

that stems from its heightened sensitivity to variances in gradient, speed, and acceleration. This heightened792

adaptability enables it to more effectively address the three objectives, reacting dynamically to their fluctua-793

tions. Importantly, boundary samples (1, 2, and 7) indicate DRL’s superiority over MPC1 and MPC2. These794

boundary cases highlight the DRL agent’s ability to adeptly navigate the complex interaction between driv-795

ing speed and emissions within the dynamic context of traffic flow. This showcases the DRL’s capacity to796
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(a) 2D projection in space of NOx and time. (b) 2D projection in space of fuel and time.

(c) 2D projection in space of NOx and fuel.

Figure 16: 2D projections of the 3D objective values.

capture nuanced relationships and deliver enhanced performance, setting it apart as a powerful optimisation797

approach. Another notable attribute is the incorporation of gradient profiles. In scenarios favouring emis-798

sion reduction over travel time, the DRL agent showcases a strategic behaviour: maintaining a consistent799

speed on uphill sections while accelerating on downhill stretches. This smart strategy serves to optimise800

both emission levels and travel time efficiency.801

Moreover, the DRL method integrates the concept of headway gap, a safety parameter. In situations802

where the gap remains within safe limits, the vehicle is allowed to accelerate, leading to instances where803

driving speed outpaces traffic speed. This approach takes into consideration not only objective optimisation804

but also road safety. The headway gap of the DRL, MPC1 and MPC2 are compared in Fig 18 where the805

solutions with optimal travel time (p7) are selected. Because, when objectives focus on the NOx and fuel806

consumption, the driving speed is always smaller than the flow speed, following the eco-driving require-807

ments. It is obviously that the MPC methods will induce large headway with the front vehicle. Because808

the MPC methods control the speed by referring to the traffic speed rather, while headway indicator is not809

incorporated in such controlling algorithms. The vehicle cannot accelerate even though the headway is safe810

enough.811

The DRL approach outperforms the two-phase strategy due to its methodological advantages. Unlike812

MPC, which lacks the capability to adjust acceleration based on headway distance, DRL provides a more813

flexible strategy. MPC’s conservative approach, prioritising collision avoidance based on the lead vehicle’s814
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Figure 17: Speed profile of the seven sample Pareto points by DRL (three objectives case)

Figure 18: Comparison of headway between the three methods

speed, becomes inefficient when headway distance is safe. In such cases, if the lead vehicle slows down,815

MPC responds by decreasing speed, impacting overall efficiency.816

Unlike MPC, the DRL approach adapts dynamically, updating headway distance and traffic speed in817

real-time. Trained to optimise acceleration and deceleration based on accumulated experience, it offers818

enhanced flexibility, enabling more nuanced movement strategies aligned with optimisation goals.819

Additionally, the issue of transferability is crucial. While the two-phase strategy generates optimal820

solutions in traffic-free conditions and incorporates it into an MPC for real-world scenarios, the dynamic821

nature of traffic and variable speeds can undermine the effectiveness of this idealised profile. If traffic speed822

consistently falls below the set of Pareto-optimal solutions, the MPC may predominantly mimic traffic823

speed, potentially sidelining essential optimisation objectives. In contrast, the DRL approach consistently824

makes optimal decisions for each state variable, systematically addressing optimisation objectives at each825

time step.826

The experiment currently assumes that the following vehicle never surpasses our own, which is some-827

what unrealistic. However, the DRL approach excels, especially in scenarios involving “vehicle insertion”.828

Strategies focused on conserving fuel or reducing NOx emissions often entail maintaining a larger headway829

distance, leading to situations where vehicles insert themselves between the subject vehicle and the lead830

vehicle. In contrast, the MPC strategy may struggle to handle such insertions accurately, highlighting the831

DRL agent’s strength in promptly recalibrating the headway distance and implementing suitable braking832

measures.833

Despite its advantages, the DRL approach has a drawback. It requires training for each specific weight834
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set, leading to a time-intensive process before convergence. This slower solving efficiency, compared to835

the two-phase approach, may limit its suitability for entirely new situations lacking training data. This836

highlights the trade-off between DRL’s enhanced decision-making and the computational time needed for837

optimal convergence.838

Furthermore, the profiles of fuel consumption, NOx emissions, travel time, and headway are compared839

and analysed in Appendix A5 to comprehensively demonstrate the different eco-planning strategies resulting840

from various weight combinations.841

5.4 Incorporation of the jerk cost842

As highlighted by several studies on eco-driving behaviour (Chen et al., 2018; Li et al., 2024a), the jerk843

cost significantly impacts driver comfort during acceleration and deceleration. To further account for driver844

comfort, this section evaluates the performance of our approaches by incorporating the jerk cost into the845

objectives. Methodologically, the jerk cost is calculated as the absolute difference between the previous and846

current speed across all road segments (Jia et al., 2022).847

To generate speed profiles after incorporating the jerk cost, the weights of the objectives are uniformly848

set to 1/4 for fuel consumption, NOx emissions, travel time, and jerk cost. To assess the influence of the849

jerk cost, the knee point weight solution (p5) from Section 5.3.3 (which does not include the jerk cost in the850

objectives) is used as a benchmark for both the two-phase approaches and the DRL approach.851

The speed profiles with and without the jerk cost in the objective function are illustrated in Fig. 19.852

The dark and light blue lines represent the DRL solutions, the dark and light green lines represent the853

MPC1 solutions, and the dark and light red lines represent the MPC2 solutions. As shown in the figure, the854

speed profiles produced by considering the jerk cost become smoother for the DRL and MPC1 approaches855

compared to those without the jerk cost. However, since the speed profile for the MPC2 solution is already856

sufficiently smooth even without considering the jerk cost, the difference is less pronounced. Incorporating857

the jerk cost effectively reduces severe acceleration and deceleration, thereby enhancing driving comfort.858

The objective values for each term are presented in Table 6. For the DRL approach, while fuel consump-859

tion, NOx emissions, and jerk cost are reduced when the jerk cost is incorporated, the travel time increases860

from 658.7 to 718.05. Consequently, no dominated solution is found in the multiobjective optimization861

problem, demonstrating the capability of DRL to handle multiobjective optimization problems effectively.862

In contrast, for both the MPC1 and MPC2 approaches, incorporating the jerk cost results in a reduction of863

all four objective values, dominating the solutions that do not consider the jerk cost. This indicates that the864

two-phase approach is less robust in ensuring solution quality.865

5.5 Online application with real-world traffic866

MO-SPO face significant challenges in real-time applications due to their high computational complexity,867

which arises from solving multiple conflicting objectives like fuel consumption, NOx emissions, and travel868

time simultaneously. These problems are further compounded by the dynamic and unpredictable nature869
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Figure 19: Comparison of speed profiles with and without jerk cost

Without jerk cost With jerk cost
DRL MPC1 MPC2 DRL MPC1 MPC2

Fuel consumption 0.00555 0.00919 0.00774 0.0052 0.0069 0.0068
NOx emission 3.73E-05 9.20E-05 7.10E-05 2.80E-05 5.35E-05 5.41E-05
Travel time 667 495 483 718.05 481.98 474.86
Jerk cost 88.48 159.83 90.70 28.55 43.76 29.14

Table 6: Objectives of the speed profiles with and without jerk cost

of real-world traffic conditions, such as fluctuating traffic speeds and driver behaviour, which MO-SPOs870

struggle to adapt to efficiently. Additionally, as the number of objectives and constraints increases, the871

complexity grows exponentially, making it difficult to scale MO-SPOs for large-scale or complex scenarios.872

Finally, the lack of real-time feedback mechanisms means that solutions based on static data may become873

suboptimal or infeasible in dynamic environments, limiting their practicality for online applications.874

An advantage of our two-phase and DRL approach is their suitability for online applications, which875

enable the generation of eco-driving speed profiles using real-time information. To demonstrate the online876

applicability of our approaches, we applied our pretrained models to a novel real-world traffic scenario.877

Specifically, we utilized evening peak-hour traffic speed data (19:00–21:00) collected from January 1–7,878

2022, on a segment of the M25 highway. This segment includes 12 detector points, approximately evenly879

distributed, where traffic speed was recorded at 1-minute intervals. The average speed of each segment was880

used to represent the real-world traffic speed.881

The comparison between the simulated traffic speed (using SUMO) and the real-world traffic speed is882

illustrated in Fig. 20. In the figure, the blue line represents the simulated traffic speed, while the red line883

represents the average real-world traffic speed. This comparison highlights the ability of our approaches884

to adapt to real-world conditions, ensuring that the generated eco-driving speed profiles are both practical885

and effective in dynamic traffic environments. By leveraging real-time data, our methods provide a robust886

solution for optimizing speed profiles in real-world applications, particularly during peak traffic hours when887

efficiency and responsiveness are critical.888

By comparison, the real-world traffic speed is slightly higher than the simulated traffic speed. Since the889

traffic speed serves as the upper bound for speed limitations and influences the headway to the front vehicle,890

a higher traffic speed does not significantly impact the solutions for p1 to p5. This is because the speed891
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Figure 20: Comparison of traffic speed of simulating and real-world condition

Figure 21: Speed profiles of p6, p7 by different approaches

profiles for these points are consistently lower than the traffic speed to optimize fuel consumption and NOx892

emissions. Therefore, to test the online application under real-world traffic conditions, the weights of p6893

and p7 are applied. These points represent scenarios where the speed profiles are closer to the traffic speed,894

making them more sensitive to real-world variations and thus better suited for evaluating the performance of895

our approaches in dynamic environments. This ensures that the solutions remain robust and effective even896

when applied to real-world traffic data with higher average speeds.897

The speed profile of MPC1, MPC2 and DRL approaches are shown in Fig 21. The blue lines repre-898

sent the speed profiles of MPC1 approach, the green lines represent the speed profiles of the MPC2, the899

red lines represent the speed profiles of DRL. The light lines represent the sample p6, and the dark lines900

represent the sample p7. Among the methods, DRL speed profiles demonstrate exceptional smoothness and901

adaptability, closely aligning with the real-world traffic speed. For p6, the DRL profile is smoother than902

MPC1 and slightly more adaptive than MPC2, showcasing its ability to balance smoothness and real-world903

responsiveness. For p7, the DRL profile almost perfectly follows the real-world traffic speed, highlighting904

its superior capability to handle dynamic conditions. This adaptability makes DRL particularly well-suited905

for unpredictable environments.906

Table 7 compares the performance of three approaches, namely MPC1, MPC2, and DRL, for two sam-907

ple points, p6 and p7, across three objectives: fuel consumption, NOx emissions, and travel time. Among908

these, DRL stands out as the best-performing approach, particularly when travel time is prioritized as the909

most important factor. DRL achieves the shortest travel times for both p6 (440.66) and p7 (418.68), making910

it the fastest and most time-efficient method. This exceptional performance in reducing travel time is partic-911
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ularly critical for online applications, where speed and responsiveness are paramount, especially when user912

preferences prioritize time efficiency. While MPC2 and MPC1 excel in fuel efficiency and environmental913

performance, they cannot match DRL’s speed and responsiveness.

MPC1 MPC2 DRL
p6 p7 p6 p7 p6 p7

Fuel consumption 0.0031 0.0037 0.0028 0.0034 0.0033 0.0041
Nox emission 3.43E-05 5.62E-05 3.38E-05 7.06E-05 5.57E-05 8.02E-05
Travel time 476.69 475.09 464.11 425.04 440.66 418.68

Table 7: Objectives of in online application
914

6 Conclusions and future work915

Using multiobjective optimisation, this paper addresses the eco-driving problem by generating vehicle speed916

profiles that consider up to three objectives: fuel consumption, NOx emission, and total travel time in real-917

world scenarios with surrounding traffic. Unlike traditional approaches that generate a single solution, multi-918

objective optimisation provides a collection of solutions, each representing unique preferences in weighting919

different objectives. This approach is particularly suitable for problems with incomparable objectives, as is920

the case in our study. Simulated data from GT-SUITE are used to derive the relationships between engine921

power and the rates of fuel consumption and NOx emission, which can be determined analytically by vehicle922

dynamics.923

Two solution approaches are presented and compared. The first involves a two-phase process: Phase-1924

solves a traffic-free problem analytically, providing “ideal” Pareto points for Phase-2. In Phase-2, an ex-925

isting model predictive control approach generates compromised results considering both Pareto points and926

surrounding traffic. The second approach, designed by the authors from scratch, employs deep reinforce-927

ment learning (DRL) to generate speed profiles, considering multiple objectives and surrounding traffic928

simultaneously. Both approaches use the weighted sum method to generate Pareto fronts, marking the first929

application of multiobjective optimisation to simultaneously consider fuel consumption and NOx emissions930

in generating optimised speed profiles.931

The DRL approach outperforms the two-phase method in modeling flexibility and solution quality on932

a real-world highway in southern England. It explicitly considers vehicle headway, leading to more so-933

phisticated eco-driving strategies and optimised objective values across all three criteria. For instance, at934

one representative Pareto point, results indicate that the DRL approach achieves up to 10% lower fuel con-935

sumption and 16% lower NOx emissions compared to MPC-based methods while reducing travel time by936

approximately 5%. In addition, the DRL method maintained safer headway distances, offering more robust937

eco-driving strategies in dynamic traffic environments. However, it requires prior training, making it less938

suitable for entirely new scenarios with limited or no training data.939

Building on these promising results, future work could extend the MO-SPO framework to other ve-940
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hicle classes, such as heavy-duty trucks, electric vehicles, and hybrid models, by re-calibrating vehicle941

parameters and integrating appropriate powertrain and emission models to better reflect distinct dynamic942

characteristics. Moreover, adapting the framework to diverse traffic environments—including urban set-943

tings, mixed-traffic conditions, or multi-lane roads with varying densities—will enhance its applicability,944

while integrating richer traffic data, such as real-time signal timings or pedestrian interactions, could further945

improve its robustness. As the complexity of these extended scenarios may increase computational de-946

mands, future research should focus on improving training efficiency through methods like transfer learning947

or advanced parallel computing strategies to maintain real-time responsiveness. Additionally, incorporating948

further environmental metrics such as particulate matter (PM) and COx, and integrating robust or stochas-949

tic optimization techniques to manage uncertainties in traffic flow, weather, and driver behavior, represent950

promising avenues for further refinement. Overall, these research directions aim to advance the MO-SPO951

framework towards a more comprehensive, adaptable, and environmentally conscious solution for modern952

traffic management.953
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Appendices1172

A1 Simulation environment and vehicle modules1173

Simulations were carried out using GT-SUITE simulation software, as detailed in (Gamma Technologies),1174

employing identical vehicle specifications outlined in Gao et al. (2021). The vehicle under study was a1175

Euro 6 compliant diesel passenger car equipped with a four-cylinder, four-stroke turbocharged diesel en-1176

gine. It weighed 1505 kg and boasted a maximum power output of 103 kW, correlating to an engine speed1177

of 4000 rpm. The diesel engine featured a compression ratio of 16.5:1. This vehicle model comprised1178

three main modules: vehicle powertrains, emission sources, and after-treatment systems. The powertrain1179

system encompassed an engine model, a transmission model, and a control model. The engine model was1180

constructed based on experimental tests, incorporating maps for brake-specific fuel consumption and brake1181

mean effective pressure. Additionally, the emission model integrated maps for exhaust temperature, emis-1182

sion factors, and exhaust flow rates to consider the impact of cold starts on emissions. The after-treatment1183

system encompassed a diesel oxidation catalyst and a diesel particulate filter, as discussed in (Gao et al.,1184

2021).1185
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A2 Algorithm for calculating the knee point1186

Algorithm 1: Calculate Knee Point on Pareto Front
Require: Non-dominated solution set on the Pareto front, S
Ensure: Knee point solution, K
1: Initialize weights for distance and angle, wd , wa
2: for all Non-dominated solution si = (xi,yi,zi) in S do
3: Initialize the utility (weighted sum of distance and angle) of si, i.e., ui := wd ·d(si)+wa ·θ(si)
4: for all Other non-dominated solutions s j in S where s j ̸= si do
5: Calculate Euclidean distance di j between si and s j:

di j =
√

(xi− x j)2 +(yi− y j)2 +(zi− z j)2

6: Calculate angle θi j between si and s j:

θi j = arccos
(

vi·v j
∥vi∥·∥v j∥

)
, where vi and v j are vectors from origin to si and s j, respectively.

7: Update ui := ui +wd ·di j +wa ·θi j
8: end for
9: if ui is the current minimum then

10: Update knee point solution K = si
11: end if
12: end for
13: return Knee point solution K

Here the weights on distance and angel (wd and wa) are set as 5× 10−9 and 0.5 respectively, and a1187

discount of 10−8 is applied to eliminate the magnitude of distance.1188
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A3 Algorithm for the MPC method1189

Algorithm 2: Time-Varying Adaptive MPC for Speed Profile Generation
Input: Longitudinal model parameters (e.g. A(i), B(i), D(i)), cost weights λe, λk, λs, prediction

horizon np, initial state Ek(0), vehicle and safety constraints, traffic context data, and

desired speed profile vd

Output: Optimal engine energy sequence E∗e (i) over the prediction horizon and corresponding

speed profile

Initialization: Set current index i← 0, obtain initial kinetic state Ek(i), and retrieve initial traffic

and road condition information.

while vehicle has not reached the destination do
1. Update Measurements:

Obtain current state Ek(i), vehicle speed v(i), and updated traffic context (including real-time

local and predicted future traffic data).

2. Update Prediction Parameters:
Adapt the spatial step ∆s based on the current vehicle speed v(i)

Determine the desired speed profile vd over the horizon using the traffic predictive model.

3. Update Longitudinal Model:
Compute the time-varying matrices A(i), B(i), and offset D(i) from the linearized vehicle

dynamics:

Ek(i+1) = A(i)Ek(i)+B(i)U(i)−D(i)

where the control input is U(i) =

[
Ee(i)

Eb(i)

]
.

4. Solve the MPC Optimization:
Formulate the quadratic cost function over the prediction horizon:

J(i) =
i+np−1

∑
j=i

(
λe Ee( j)2 +λk

(
Ek( j)− 1

2
Mevd( j)2

)2

+λs (Ee( j)−Ee( j−1))2

)

subject to constraints D and safety headway requirements.

Compute the optimal control sequence:

{U∗(i),U∗(i+1), . . . ,U∗(i+np−1)}= argmin
U

J(i)

5. Implement Control Action:
Apply the first control input U∗(i) (i.e., use E∗e (i) and E∗b (i)) to update the vehicle state.

6. Shift Horizon:
Set i← i+1 and update the prediction horizon accordingly.

return Sequence {U∗(0),U∗(1), . . . ,U∗(N−1)} representing the optimal engine energy inputs and

resulting speed profile.

1190
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A4 Pseudocode for DDPG1191

Algorithm 3: Deep Deterministic Policy Gradient (DDPG)
Data: Initialize actor network θ actor and critic network θ critic with random weights
Data: Initialize target actor network θ target_actor← θ actor and target critic network θ target_critic← θ critic

Data: Initialize memory B
while e≤ E do

Receive initial state s1;
for t = 0 to S/∆s−1 do

if random ≤ ε then
Choose action at = µ(st |θ actor);
else
Random choose an action within the limit;

end
Execute action at and calculate the driving speed;
Observe step reward rt and new state st+1;
Store transition (st ,at ,rt ,st+1) in B;

end
Give the episode reward re;
Store the terminal tuple (se,ae,re,__) in B;
for (st ,at ,rt ,st+1) in B do

Pick a transition (si,ai,ri,si+1) from B;
Compute target value yi;
Calculate the loss function of critic network L (θ critic);
Update weights of critic network by gradient descent ∇L (θ critic);
Calculate the loss function of actor network L (θ actor);
Update weights of actor network by gradient descent ∇L (θ actor)

end
Update target networks:
θ target_critic← τθ critic +(1− τ)θ target_critic;
Decay exploration rate ε and learning rates;

end
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A5 Performance comparison between different weights of preference1192

Figure 22, 23, 24, and 25 display the profiles of NOx emission, fuel consumption, travel time, and headway1193

distance resulting from the three approaches under various traffic conditions. Each subfigure presents the1194

profile of a specific approach. The comparative analysis among different points obtained from the same1195

approach reveals their sensitivity to weight proportions. Greater deviation signifies heightened sensitivity1196

of an approach. A substantial similarity in profiles under diverse weight sets may fail to cater to different1197

trade-off requirements.1198

As observed in Fig. 22 and 23, the DRL approach exhibits more pronounced deviations in NOx emission1199

and fuel consumption profiles, while the profiles of MPC-1 and MPC-2 remain similar across different sam-1200

ples. The objective value visualization in Fig. 16 illustrates that heightened sensitivity to weight proportions1201

corresponds to larger differences between objectives on the Pareto front, allowing for more flexible choices.1202

Significantly, the divergence in the time profile is substantial across all three approaches. Intriguingly, in1203

p1 and p2, where NOx and fuel are minimized, the time profile mirrors the road altitude. This similarity1204

suggests that adopting a slower pace uphill and accelerating downhill can effectively conserve fuel and min-1205

imize emissions. Referring to Fig. 25, it’s evident that the headway distance to the lead vehicle increases1206

notably with higher weights assigned to NOx and fuel. Opting for strategies that minimize NOx or fuel1207

eventually results in a headway gap surpassing 6,000 meters.1208

Figure 26, 27, 29, and 28 provide a comparative analysis of objectives and headway distance among1209

the three approaches with different weight configurations. These samples encompass scenarios, including1210

p1 (minimum NOx), p2 (minimum fuel), p7 (minimum time), and p5 (knee point). Each subfigure presents1211

profiles of NOx emission, fuel consumption, travel time, and headway distance.1212

In the cases of the first two samples (p1 with minimum NOx and p2 with minimum fuel), MPC-2 exhibits1213

the least favorable performance due to its higher driving speed. The strategy employed by MPC-2 struggles1214

to address scenarios of minimum NOx and fuel, primarily because the driving speed is heavily influenced1215

by the traffic speed. This limitation prevents MPC-2 from ensuring optimal speeds in scenarios where only1216

a single objective is considered. Conversely, MPC-1 and DRL showcase similar performance. However,1217

DRL adopts a more conservative driving approach compared to both MPC methods, prioritizing fuel and1218

NOx reduction over higher speeds, irrespective of the traffic conditions.1219

In Sample 7, we delve into the scenario of minimizing travel time, where all three methods are focused1220

on completing the drive as quickly as possible. Starting with the same initial headway distance, the two MPC1221

approaches and the DRL approach adopt distinct strategies. MPC-1 consistently maintains its driving speed1222

at the same pace as the traffic speed, resulting in a stable headway that hovers around its initial value. In1223

contrast, MPC-2 employs a more uniform acceleration strategy, causing the headway to gradually decrease1224

over time. Lastly, DRL opts for an initial speed increase, actively tailing the front vehicle. As the headway1225

narrows, DRL slows down, ensuring that the vehicle maintains a reasonable distance from the vehicle in1226

front. This strategy results in the headway fluctuating between approximately 50 to 300 meters.1227

Examining the outcomes of the knee point (p5), the fuel consumption and NOx emission exhibit striking1228
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(a) NOx emission of MPC-1 samples.

(b) NOx emission of MPC-2 samples.

(c) NOx emission of DRL samples.

Figure 22: Comparison of NOx emission
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(a) Fuel consumption of MPC-1 samples.

(b) Fuel consumption of MPC-2 samples.

(c) Fuel consumption of DRL samples.

Figure 23: Comparison of fuel consumption
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(a) Travel time of MPC-1 samples.

(b) Travel time of MPC-2 samples.

(c) Travel time of DRL samples.

Figure 24: Comparison of Travel time

53



(a) Headway distance of MPC-1 samples.

(b) Headway distance of MPC-2 samples.

(c) Headway distance of DRL samples.

Figure 25: Comparison of Headway distance
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Figure 26: Comparison of results of p1 (minimum NOx)
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Figure 27: Comparison of results of p2 (minimum fuel)
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Figure 28: Comparison of results of p7 (minimum time)
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similarity across all three approaches. In terms of speed, the DRL approach positions itself between MPC-1229

1 and MPC-2, strategically finding a balance that minimizes the combined fuel and NOx values. This1230

measured approach to speed is complemented by the travel time and headway, both of which also fall within1231

the midpoint between the two MPC strategies.1232
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Figure 29: Comparison of results of p5 (knee point)
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