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Key Points 12 

 Dominant summer marine heatwave modes in the Northwest Pacific are obtained 13 

through MV-EOF analysis. 14 

 The first mode corresponds to the El Niño decaying summer, while the second 15 

mode aligns with the El Niño developing summer. 16 

 Physics-based empirical models with the leave-one-out cross-validation technique 17 

demonstrate significant predictability for these modes. 18 

19 
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Abstract 20 

Marine heatwaves (MHWs) in the Northwest Pacific (NWP) exert significant 21 

ecological and climatic impacts, yet their drivers and predictability are not fully 22 

understood. Based on the multivariate empirical orthogonal function (MV-EOF) 23 

method, this study identifies two dominant modes of summer NWP MHWs. The first 24 

mode, characterized by widespread warming across the low-latitude NWP, occurs 25 

during the summer following an El Niño event. This mode is strongly associated with 26 

the Pacific–Japan teleconnection pattern and sea surface temperature (SST) anomaly 27 

gradient between the North Indian Ocean and tropical western Pacific. The second 28 

mode exhibits a northeast-to-southwest tripole structure, representing the summer 29 

phase during El Niño development. This tripole pattern is possibly influenced by the 30 

North Pacific Oscillation, highlighting an extratropical–tropical teleconnection that 31 

propagates the effects of positive SST anomalies. Using physics-based empirical 32 

prediction models validated by the leave-one-out cross-validation approach, a notable 33 

degree of predictability is found for these MHW modes. The temporal correlation 34 

coefficient scores and Root Mean Square Errors between observed and predicted 35 

principal components (PC1 and PC2) reach 0.65 and 0.77 for PC1, and 0.55 and 0.84 36 

for PC2, respectively, over the period 1982–2022. Both models effectively capture the 37 

peak intensity and spatial distribution of MHWs, despite minor discrepancies. These 38 

findings might advance our understanding of MHW dynamics in the NWP and provide 39 

a foundation for developing early warning systems to mitigate their adverse effects on 40 

marine ecosystems and coastal communities.  41 
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Plain Language Summary 42 

Marine heatwaves (MHWs) in the Northwest Pacific (NWP) have emerged as 43 

critical climate events with profound impacts on marine ecosystems, fisheries, and 44 

regional weather patterns. However, the drivers of MHW variability are not fully 45 

understood, and predicting summer MHWs in the NWP remains a significant challenge. 46 

In this study, using the multivariate empirical orthogonal function (MV-EOF) method, 47 

we identify two dominant modes of summer MHW variability. The first mode, 48 

occurring during the summer following an El Niño event, is linked to the Pacific–Japan 49 

teleconnection pattern and Indo–Pacific sea surface temperature (SST) anomalies. The 50 

second mode, associated with the summer phase of developing El Niño events, is 51 

potentially tied to the North Pacific Oscillation. To assess the predictability of these 52 

MHW modes, we develop physics-based empirical prediction models validated through 53 

the leave-one-out cross-validation approach. The models effectively capture the peak 54 

intensity and spatial distribution of observed MHWs, demonstrating their potential for 55 

improving seasonal MHW forecasts. This study contributes to the understanding of the 56 

mechanisms driving NWP MHWs and highlights the importance of advancing 57 

predictive approaches to mitigate the ecological and socio-economic impacts of future 58 

MHW events. 59 

  60 
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1. Introduction 61 

Marine heatwaves (MHWs) are extreme climate events characterized by prolonged 62 

periods of sea surface temperatures (SSTs) exceeding climatological thresholds 63 

(Hobday et al., 2016). Since the early 20th century, the intensity, duration, frequency, 64 

and total occurrence of MHWs have significantly increased due to rising background 65 

SSTs (Frolicher et al., 2018). While MHWs have garnered less attention compared to 66 

terrestrial heatwaves, they pose a serious threat to ocean ecosystems, potentially 67 

reshaping marine habitats and disrupting ecological services (Wernberg et al., 2013). 68 

These disruptions can lead to substantial declines in marine biodiversity and 69 

productivity (Smale et al., 2019). Several notable MHWs, including the Northwest 70 

Atlantic MHW in 2012 (Mills et al., 2013), the Tasman Sea MHW in 2015/16 (Oliver 71 

et al., 2017), and the North Pacific MHW in 2014/15 (Di et al., 2016), have led to 72 

serious impacts on marine ecosystems and coastal economies. Projections suggest that 73 

large portions of the global ocean could experience near-permanent MHW conditions 74 

by the end of the 21st century (Oliver et al., 2019). Therefore, improving the 75 

understanding and prediction of MHWs is crucial for enhancing marine ecosystem 76 

resilience and mitigating their economic and societal consequences. 77 

Accurate prediction of MHWs relies on understanding their underlying physical 78 

drivers. Recent studies have revealed that MHWs are closely linked to key atmospheric 79 

and oceanic processes, including increased solar radiation, reduced oceanic heat loss, 80 

and a shallower mixed layer (Yao et al., 2023; Lyu et al., 2024). For instance, MHWs 81 

in the South China Sea (SCS) are significantly influenced by the position and magnitude 82 

of West Pacific subtropical high (WPSH) (Song et al., 2023). This high-pressure system 83 

reduces cloud cover and weakens wind speed by suppressing local convection over the 84 

Northwest Pacific (NWP), resulting in enhanced downward shortwave radiation and 85 

reduced latent heat loss. Additionally, SCS MHWs exhibit a distinct life cycle 86 
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associated with El Niño–Southern Oscillation (ENSO) during 1982–2018. Based on 87 

ENSO-related SSTA, Liu et al. (2022) classified SCS MHWs into three categories: El 88 

Niño-P1, corresponding to the initial warming peak of El Niño; El Niño-P2, occurring 89 

during the secondary warming peak; and La Niña-P1, characterized by a single 90 

warming peak during La Niña. All three types are modulated by an intensified lower-91 

level anticyclone over the NWP. The first empirical orthogonal function (EOF) mode 92 

further reveals a dominant single-signal pattern across the entire SCS (Yao et al., 2021). 93 

Moreover, MHWs in the East China Sea and South Yellow Sea during boreal summers 94 

from 2016 to 2018 were strongly influenced by the East Asian summer monsoon, driven 95 

by interactions between the WPSH and the mid-level westerly jet, with shortwave 96 

radiation and oceanic advection anomalies playing key roles (Gao et al., 2020). For the 97 

broader NWP, which supports vital fisheries and aquaculture industries essential to the 98 

economy and food security of surrounding countries, a comprehensive understanding 99 

of MHWs is crucial. Notably, Hokkaido’s fisheries, situated at the confluence of the 100 

Kuroshio and Oyashio currents, serve as a central hub for North Pacific fisheries. 101 

Commercial species such as scallops, chum salmon, and various shellfish, along with 102 

aquaculture operations for seaweed, oysters, and prawns, are highly vulnerable to 103 

MHWs. Given the potential of these extreme events to disrupt marine industries, 104 

advancing our understanding of NWP MHWs is essential for mitigating socio-105 

economic losses, enhancing marine ecosystem resilience, and safeguarding the 106 

livelihoods of coastal communities. 107 

At present, MHW predictions primarily focus on seasonal forecasts. Jacox et al. 108 

(2022) employed a large ensemble of global climate model forecasts to predict MHWs 109 

up to twelve months in advance, depending on the region, season, and prevailing large-110 

scale climate modes. Similarly, hindcasts from the coupled climate forecast system 111 

(version 1.0) of the Nanjing University of Information Science and Technology 112 

(NUIST-CFS1.0) have demonstrated skill in forecasting the spatial distribution of total 113 
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MHW days over the NWP during summer with a lead time of up to eight months, as 114 

well as capturing the linear trend and interannual variability at lead times of up to nine 115 

and three months, respectively (Zhang et al., 2023). The predictive skill for MHWs in 116 

the NWP also exhibits notable seasonal dependence, with higher skill observed from 117 

mid-summer to early autumn, when ENSO serves as a key source of predictability (Ma 118 

et al., 2024). In recent years, machine learning (ML) techniques have gained attention 119 

in ocean forecasting, with methods such as random forests, long short-term memory 120 

networks, and convolutional neural networks being used to develop predictive models 121 

for SST (Bonino et al., 2023). However, ML techniques are sometimes criticized for 122 

their lack of interpretability in terms of physical processes (Zhang et al., 2022), raising 123 

concerns about their reliability and accuracy in real-world scenarios (de Burgh-Day et 124 

al., 2023). The black-box nature of many ML models implies that while they may yield 125 

statistically accurate predictions, they may fail to fully capture the complexities of 126 

underlying physical mechanisms. Therefore, this study aims to identify effective 127 

precursor factors combined with physical mechanisms and establish physics-based 128 

empirical models that integrate dynamical processes with statistical methods (Li et al., 129 

2016; Long et al., 2022; Yao et al., 2024). Rather than simply forecasting the magnitude 130 

of regional-mean MHWs, this approach seeks to provide a framework for predicting 131 

the spatial patterns of NWP MHWs, ensuring more reliable and physically grounded 132 

predictions. 133 

Previous studies have demonstrated that summer atmospheric circulation and SST 134 

anomalies in the NWP are closely linked to ENSO events in the preceding winter. 135 

During the El Niño decaying spring, an equatorial asymmetric mode of rainfall and 136 

surface wind patterns emerges over the tropical Indian Ocean (TIO) (Wu et al., 2008). 137 

This antisymmetric atmospheric pattern persists through the positive wind–138 

evaporation–SST (WES) feedback until the El Niño decaying summer, further inducing 139 

TIO basin warming. The TIO warming triggers a Matsuno–Gill response in the 140 
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troposphere (Matsuno, 1966; Gill, 1980), leading to the formation of anomalous 141 

anticyclonic circulation (AAC) and positive SST anomalies in the low-latitude NWP 142 

through low-level Ekman divergence (Xie et al., 2009). The easterly wind anomalies 143 

on the southern periphery of the AAC further reinforce TIO warming by weakening the 144 

westerly monsoon winds (Kosaka et al., 2013), while simultaneously promoting NWP 145 

cooling by intensifying the easterly trade winds. This cross-basin positive feedback 146 

between the AAC and SST anomalies amplifies the influence of ENSO on the Indo–147 

NWP climate during the summer following El Niño. 148 

While SST anomalies in the NWP are influenced by preceding ENSO events, the 149 

relationships between local MHWs and broader tropical and extratropical climate 150 

modes remain insufficiently explored. Moreover, the extent to which the NWP MHW 151 

variability can be predicted requires further exploration. This study aims to address the 152 

following key questions: (1) What are the leading modes of the NWP MHW variability? 153 

(2) What are the dynamic origins of these modes? (3) What are the physically 154 

significant precursors of these modes, and can the physics-based empirical model 155 

effectively predict them? The remainder of this paper is organized as follows: Section 156 

2 describes the data and methods used in this study. Section 3 examines the spatial and 157 

temporal characteristics of NWP MHWs and explores the physical mechanisms driving 158 

their dominant modes. In Section 4, we develop a set of physics-based empirical models 159 

to predict the spatial patterns of NWP MHWs. Finally, Section 5 presents the 160 

conclusions and discussion. 161 

 162 

2. Data and methods 163 

2.1 Datasets 164 

In this study, we analyze the characteristics of boreal summer (June–August, JJA) 165 
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NWP MHWs over a 41-year period from 1982 to 2022. The global precipitation data 166 

used in this study are sourced from the Climate Prediction Center (CPC) Merged 167 

Analysis of Precipitation (CMAP) (Xie et al., 1997), which provides monthly averages 168 

at a 2.5°×2.5° resolution, available since January 1979. Monthly mean horizonal wind 169 

data are from the fifth-generation European Centre for Medium-Range Weather 170 

Forecasts (ECMWF) reanalysis (ERA5) (Hersbach et al. 2023), with 37 vertical levels 171 

ranging from 1000 hPa to 1 hPa and a horizontal resolution of 0.25°×0.25°. Monthly 172 

SST data are obtained from the Hadley Centre Sea Ice and SST dataset (HadISST) 173 

dataset (Rayner et al., 2003), which provides SST measurements at a 1°×1° resolution 174 

from 1870 onwards. The observed daily SST data are acquired from the National 175 

Oceanic and Atmospheric Administration (NOAA) Optimum Interpolation SST version 176 

2 (OISST v2) High-Resolution dataset, with a spatial resolution of 0.25° × 0.25°, 177 

covering the period from 1982 to 2022 (Huang et al., 2021). 178 

Phytoplankton chlorophyll-a concentration, a key indicator of primary productivity 179 

and phytoplankton biomass in marine environments, is strongly influenced by SST 180 

variations. In this study, monthly chlorophyll-a concentration data are obtained from 181 

the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) with a spatial 182 

resolution of 9km × 9km and a time span of 2003–2022 (NASA Goddard Space Flight 183 

Center, O. B. P. G., 2018). 184 

To explore the underlying physical drivers of MHWs, we examine simultaneous 185 

changes in key atmospheric and oceanic variables, including horizonal winds, surface 186 

heat fluxes, ocean currents, and ocean temperature. Monthly mean surface heat flux 187 

components are obtained from the National Centers for Environmental Prediction–188 

Department of Energy (NCEP–DOE) Reanalysis II dataset (Kanamitsu et al. 2002), 189 

including Upward Longwave Radiation Flux (ULRF), Downward Longwave Radiation 190 

Flux (DLRF), Upward Shortwave Radiation Flux (USRF), Downward Shortwave 191 
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Radiation Flux (DSRF), Sensible Heat Flux (SHF), and Latent Heat Flux (LHF). These 192 

surface flux datasets are available from January 1979 onward at a spatial resolution of 193 

2.5° × 2.5°. The monthly zonal (𝑢) and meridional (𝑣) components of ocean currents 194 

are sourced from the NCEP Global Ocean Data Assimilation System (GODAS), 195 

available from January 1980 onward (Behringer et al., 1998). Ocean temperature data 196 

are retrieved from the EN4 dataset (Good et al., 2013), which provides temperature 197 

profiles at a 1° × 1° resolution from 1900 onward. For consistency, all datasets have 198 

been interpolated onto a uniform 1° × 1° horizontal grid before formal analysis. 199 

2.2 Methods 200 

In this study, MHWs are identified when SSTs exceed the 90th percentile threshold 201 

of a 30-year historical reference period (1983–2012) for at least five consecutive days, 202 

based on a 5-day running mean (Hobday et al., 2016). MHW events separated by two 203 

days or less are considered a single continuous event. The daily intensity of MHWs at 204 

each grid point is defined as the difference between the observed SST and the threshold 205 

during MHW events, with values set to 0.0 outside these periods. To provide a more 206 

comprehensive assessment of MHW characteristics, we employ the cumulative 207 

magnitude index (CMI), which integrates intensity, duration, and frequency to quantify 208 

MHW properties (e.g., Hu et al., 2020). This index allows for comparative analyses of 209 

MHW events across different regional scales, and is defined as follows: 210 

𝐶𝑀𝐼 =  ∑ ∑ 𝑇(𝑖,𝑑)

𝑑𝑖

𝑑=1

𝑛

𝑖=1

 (1) 211 

where n represents the frequency of MHWs during the research period, 𝑑𝑖 denotes 212 

the duration of the 𝑖 th MHW event, and 𝑇(𝑖,𝑑)  indicates the daily intensity of the 213 

MHW on day 𝑑 of the 𝑖th event. 214 

To capture the coherent spatiotemporal characteristics of NWP MHWs, we apply 215 
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multivariate EOF (MV-EOF) analysis to the CMI and 850 hPa zonal winds from 1982 216 

to 2022 (Wang, 1992). This method provides insights into the dominant spatial and 217 

temporal patterns of MHW variability across the region and facilitates the further 218 

construction of the prediction model. The North significance test is used to assess 219 

whether the leading eigenvalues are significantly distinguishable. For validation, 220 

traditional EOF analysis on the CMI is performed as well, yielding similar results. 221 

Additionally, we employ the upper-ocean mixed layer heat budget equation to diagnose 222 

the drivers behind the leading modes of MHWs. The mixed layer heat budget is 223 

calculated according to the following equation: 224 

∆𝑇 =
𝑄𝑛𝑒𝑡

′

𝜌𝑐𝑝𝐻
+ 𝐷 + 𝑅 (2) 225 

where T is the mixed layer potential temperature; 𝜌 (= 103𝑘𝑔 𝑚−3)  is the 226 

density of ocean water; 𝐶𝑝 (= 4000 𝐽 𝑘𝑔−1 𝐾−1) is the specific heat capacity of 227 

water; H is the climatological mixed layer depth as a constant 50m; D denotes the 228 

oceanic dynamic processes. It is defined as 𝐷 =  〈−𝑢′ 𝜕𝑇̅

𝜕𝑥
〉 +  〈−𝑢̅

𝜕𝑇′

𝜕𝑥
〉 + 〈−𝑢′ 𝜕𝑇′

𝜕𝑥
〉 +229 

〈−𝑣′ 𝜕𝑇̅

𝜕𝑦
〉 + 〈−𝑣̅

𝜕𝑇′

𝜕𝑦
〉 + 〈−𝑣′ 𝜕𝑇′

𝜕𝑦
〉 + 〈−𝑤′ 𝜕𝑇̅

𝜕𝑧
〉 + 〈−𝑤̅

𝜕𝑇′

𝜕𝑧
〉 + 〈−𝑤′ 𝜕𝑇′

𝜕𝑧
〉 , where 𝑢, 𝑣,230 

and 𝑤  denote three-dimensional components of ocean current velocity. Here, the 231 

overbars represent the climatological mean, and the primes refer to the regression 232 

anomalies. R represents the residual term. 𝑄𝑛𝑒𝑡 is defined as 𝑄𝑛𝑒𝑡 = 𝑄𝑆𝑅𝐹 + 𝑄𝐿𝑅𝐹 −233 

𝑄𝐿𝐻𝐹 − 𝑄𝑆𝐻𝐹 , indicating net sea surface heat flux processes. 𝑄𝑆𝑅𝐹  and 𝑄𝐿𝑅𝐹 234 

represent net shortwave radiation (DSRF minus USRF) and net longwave radiation 235 

(DLRF minus ULRF), respectively (downward positive). 𝑄𝐿𝐻𝐹  and 𝑄𝑆𝐻𝐹  denote 236 

LHF and SHF, respectively (upward positive). Given the typically small contribution 237 

of nonlinear advection terms and the lack of vertical current velocity data, this study 238 

focuses on oceanic thermodynamic terms and dynamic terms associated with horizontal 239 

currents to investigate the underlying physical mechanisms. 240 
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To further assess the impact of the SST anomaly gradient between El Niño-induced 241 

North Indian Ocean (NIO) warming and tropical western Pacific (WP) cooling on 242 

atmospheric responses over the NWP, we use the atmospheric component of the MPI-243 

ESM, ECHAM6. It is a general circulation model with a spectral resolution of T63 244 

(corresponding to a 92 × 196 grid in latitude and longitude) and 47 vertical levels. The 245 

first experiment, termed the Control run, is driven by global climatological SST and sea 246 

ice with a seasonal cycle. Following this, three sensitivity experiments are conducted 247 

to investigate regional SST anomaly impacts. In the NIO run, a +1°C SST anomaly is 248 

applied in the NIO (0°–25°N, 40°E–100°E) and added to the climatological SST as the 249 

boundary condition. The WP run follows a similar approach, imposing a -1°C SST 250 

anomaly in the WP (5°S–5°N, 160°E–150°W). The NIO–WP run combines these 251 

configurations, applying a +1°C SST anomaly in the NIO and a -1°C SST anomaly in 252 

the WP. Details of the SST boundary conditions for each experiment are provided in 253 

Table 1. Each experiment is integrated over a 40-year period, with the climatological 254 

SST forcing repeated annually. To reduce the effects of internal variability, results from 255 

the last 30 ensemble members are averaged. 256 

The physics-based empirical model is a prediction method grounded in the 257 

understanding of physical mechanisms. Different from purely statistical approaches, it 258 

employs only predictors with a direct physical linkage to the predictand (Long et al., 259 

2022). This approach not only predicts time series but also captures spatial patterns. 260 

Specifically, the first step involves selecting potential predictors through lead-lag 261 

regression analysis between the principal components (PCs) and anomalies in lower 262 

boundary conditions. The second step assumes that these potential predictors hold 263 

physical significance. Predictors are defined over a broad range where the correlation 264 

coefficient is significant at the 99% confidence level, as follows: 265 
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𝑃𝑟𝑒𝑑(𝑡) = [𝑉𝐴𝐿(𝑡, 𝑙𝑎𝑡, 𝑙𝑜𝑛)266 

× 𝑇𝐶𝐶(𝑙𝑎𝑡, 𝑙𝑜𝑛)]                                 (3) 267 

where VAL denotes potential predictors at lead time t for each grid point, while 268 

TCC refers to the temporal correlation coefficient between the predictand and 269 

corresponding VAL values at each gird during the training period. The square bracket 270 

indicates the area-weighted regional mean over the selected regions. 271 

Following the aforementioned steps, we use the stepwise regression to identify key 272 

predictors and ensure their mutual independence in constructing physics-based 273 

empirical models. To evaluate the performance of the regression model and minimize 274 

overfitting, we implement the leave-one-out cross-validation technique. In this study, 275 

the JJA CMI for each year is predicted using data from the remaining years. The process 276 

involves two steps: (a) setting aside one year as the test dataset while developing a 277 

regression model using the remaining 𝑛 − 1 observations, and (b) applying this model 278 

to predict the PCs for the excluded year, yielding a series of predicted values. We 279 

remove the linear trends from datasets before formal analyses to exclude the impact of 280 

global warming, and use the two-tailed Student's t-test to evaluate the significance of 281 

regression and correlation analyses. 282 

2.3 Study region 283 

The NWP encompasses the Indo–Pacific Warm Pool, the largest warm water region 284 

on the planet. This area is characterized by consistently high SSTs, often exceeding 285 

28°C, and substantial precipitation during the boreal summer months (Figure 1a). 286 

Strategically located at the intersection of easterly and westerly wind systems, the low-287 

latitude NWP is influenced by various weather and climate systems, including typhoons, 288 

monsoons, mesoscale eddies, and ENSO. This region plays a critical role in global 289 

climate dynamics, as it hosts the upward branch of both the zonal Walker circulation 290 

and the meridional Hadley cell. With ongoing global warming, the probability density 291 
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curves of SST anomalies in the NWP are shifting toward higher levels (Figure 1b). As 292 

SSTs increase, local regions experience warmer background conditions, potentially 293 

leading to a higher frequency of MHW occurrences. 294 

 295 

3. Leading modes of NWP MHWs and associated mechanisms 296 

Figure 1c illustrates the climatological spatial distribution of CMI in the NWP 297 

during summer from 1982 to 2022. The CMI exceeds 3°C across most of the NWP, 298 

particularly in regions influenced by the western boundary current. The most prominent 299 

hotspot for NWP MHWs is the Kuroshio–Oyashio extension, located east of Japan. 300 

Over the period from 1982 to 2022, the CMI has increased across nearly the entire NWP 301 

(Figure 1d), with a regional mean trend of 2.2℃ per decade (𝑝 < 0.01). This increase 302 

is especially pronounced in mid-latitude areas influenced by the Japanese warm current. 303 

Sub-seasonal variations of the area-weighted regional mean CMI during summer are 304 

depicted in Figure 1e. A marked rise in CMI is evident after 1998, with severe NWP 305 

MHW events occurring in July–August 1998, June–July 2001 and 2010, and each 306 

summer from 2014 to 2022. Notably, since the late 1990s, the regions influenced by 307 

severe MHWs have expanded from limited oceanic areas (~ 30°N–40°N) to encompass 308 

the entire mid- to low-latitude range (Figure 1f). 309 

To identify the dominant modes of MHW variability in the NWP over the past 41 310 

years, we conduct MV-EOF analysis on CMI and 850hPa zonal winds from 1982 to 311 

2022. Given the relatively low contributions of the higher-order modes, we focus on 312 

the leading two MV-EOF modes, which are significantly separated according to North's 313 

significance test. A traditional EOF analysis on CMI yields similar spatial patterns, with 314 

correlation coefficients of 0.83 and 0.70 for PC1 and PC2, respectively, when compared 315 

to the MV-EOF results (Figure S1). Figure 2 demonstrates the spatial and temporal 316 

characteristics of these modes. The first MV-EOF mode, accounting for 21.49% of the 317 
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total variance, exhibits a robust basin-wide warming from the equator to 30°N, with the 318 

most pronounced signal in the SCS (Figure 2a). This mode is associated with a strong 319 

lower-level AAC, reminiscent of the tropical segment of the Pacific–Japan (PJ) 320 

teleconnection pattern (Figure S2). The corresponding PC (PC1) shows pronounced 321 

interannual variability, with peaks in 1983, 1988, 1995, 1998, 2010, 2020, and 2022 322 

(Figure 2b). Moreover, an inter-decadal variation is observed in PC1 as well, with more 323 

intense anomalies occurring since the late 1990s. The positive phase of this mode is 324 

linked to reduced chlorophyll-a concentrations in the lower latitudes of the NWP 325 

(Figure 3a). The overall negative correlation between CMI and chlorophyll-a indicates 326 

that local MHWs may suppress phytoplankton biomass and productivity, possibly 327 

through increasing ocean stratification and shoaling the mixed layer depth (Chen et al., 328 

2023; Zheng et al., 2024). 329 

The second MV-EOF mode exhibits a tripole pattern, characterized by a warm-330 

cold-warm distribution extending from the northeast to the southwest. In this pattern, 331 

cold-surge zones are identified in the eastern low-latitude Mariana Basin and the East 332 

China Sea, coinciding with the southern and western flanks of the AAC, respectively 333 

(Figure 2c). This mode accounts for 11.75% of the total variance, with the 334 

corresponding PC (PC2) displaying pronounced interannual variability, marked by 335 

notable events in the summers of 1982, 1987, 1992, 1993, 2002, and 2015 (Figure 2d). 336 

In general, cold-surge zones are associated with anomalously high chlorophyll-a 337 

concentrations, whereas regions with elevated CMI tend to exhibit lower chlorophyll-a 338 

levels (Figure 3b). 339 

To investigate the underlying mechanisms driving the leading two dominant modes, 340 

regressions of SRF, LRF, SHF, and LHF anomalies against each PC from 1982 to 2022 341 

are shown (Figure 4). In the basin-wide mode, SRF and LHF anomalies emerge as the 342 

primary contributors to surface temperature changes. In contrast, LRF anomalies play 343 
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a relatively minor role, while SHF anomalies are negligible (Figures 4a–d). In the low-344 

latitude NWP, the presence of a lower-level AAC induces anomalous descending 345 

airflow, which reduces cloud cover and allows more SRF to reach the ocean surface, 346 

thereby increasing local CMI (Figure 4a). Besides, easterly anomalies along the 347 

southern flank of AAC weaken the prevailing westerly winds over the low-latitude 348 

NWP. This weakening reduces LHF loss from the ocean, facilitating heat retention 349 

within the mixed layer, ultimately contributing to rising CMI and an increased 350 

likelihood of MHWs (Figure 4d). 351 

In the tripole mode, SRF anomalies play a dominant role, whereas LHF, LRF, and 352 

SHF anomalies have comparatively minor influences. Positive SRF anomalies induced 353 

by AAC facilitate greater heat accumulation in the ocean mixed layer, fostering the 354 

development and intensification of MHWs (Figure 4e). Compared to thermodynamic 355 

processes, oceanic dynamic processes contribute less to the formation of these two 356 

MHW modes (Figure S3). Together, these findings highlight the critical role of 357 

anomalous atmospheric circulation in modulating surface fluxes, driving CMI increases, 358 

and ultimately triggering local MHWs. 359 

 360 

4. Empirical prediction of NWP MHWs 361 

4.1 Potential predictor identification 362 

To capture the distinct dynamic origins of each mode and ensure the accuracy of 363 

predictability, we employ stepwise regression to identify physically relevant predictors 364 

for each PC. 365 

To investigate the physical mechanisms through which each predictor influences 366 

the two dominant patterns, Figure 5 presents the lead-lag regression maps of the PCs 367 

against SST anomalies. The basin-wide pattern is closely linked to the summer of the 368 
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El Niño decaying phase. During the preceding December–February (DJF), the mature 369 

phase of El Niño promotes the development of NIO warming, which persists into JJA. 370 

This sustained NIO warming triggers eastward-propagating Kelvin waves, reinforcing 371 

positive SST anomalies over the NWP via AAC (Figures 5a, b). As a result, the DJF 372 

Niño3.4 index is selected as the primary predictor. Moreover, summer cooling in the 373 

WP also plays a crucial role in the development of the basin-wide pattern. Physically, 374 

cooling in the WP during summer can generate westward-propagating Rossby waves, 375 

which subsequently strengthen the AAC and enhance the CMI over the NWP (Wang et 376 

al., 2013). This summer cooling is closely linked to the decaying of El Niño, which is 377 

strongly influenced by anomalous easterlies along the southern flank of the NWP AAC 378 

in preceding seasons. Therefore, the MAM low-latitude NWP (0–15°N, 135°E–155°E) 379 

area-weighted regional mean zonal wind anomaly is selected as the second predictor, 380 

as anomalous easterlies strengthen the background northeasterly winds and accelerate 381 

El Niño's demise. To further verify the impact of SST anomaly gradient between El 382 

Niño-induced NIO warming and WP cooling on atmospheric responses over the NWP, 383 

we conduct a series of experiments using ECHAM6, which is well-suited for examining 384 

atmospheric responses to specific SST patterns. The results reveal that SST anomalies 385 

in either the NIO or WP alone can induce NWP AAC and equatorial easterly wind 386 

anomalies, but their effects are relatively weak, particularly in the subtropics (Figures 387 

6a–d). However, when combined, the SST anomalies from both the NIO and WP 388 

produce more pronounced high-pressure anomalies across the NWP (Figures 6e–f), 389 

thereby amplifying local MHWs (Figure 5c). 390 

In the tripole pattern, the central equatorial Pacific undergoes a gradual warming 391 

from preceding winter to summer, indicating the development of an El Niño event. This 392 

warming becomes most pronounced in the subsequent winter, when a fully developed 393 

El Niño event emerges (Figure S4). This is further supported by peak years in the PC2 394 

time series such as 1982, 1997, and 2015, which coincide with notable El Niño 395 
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developing years (Figure 2d). Accompanying El Niño development is the strong 396 

westerly wind anomalies in the equatorial Pacific, which could weaken the easterly 397 

trade winds and generate downwelling Kelvin waves. These waves propagate eastward, 398 

deepening the thermocline in the eastern Pacific, reinforcing SST warming, and further 399 

strengthening El Niño (McPhaden, 1999; Vecchi et al., 2000). Thus, the tripole pattern 400 

likely corresponds to the summer phase of El Niño development, and the MAM 401 

equatorial Pacific (5°S–5°N, 135°E–155°E) area-weighted regional mean zonal wind 402 

anomaly is selected as the first predictor of PC2. 403 

Additionally, the North Pacific Oscillation (NPO) pattern, featuring a north–south 404 

dipole in sea level pressure (SLP) over the North Pacific, may also play a role in shaping 405 

the tripole pattern. In March, an anomalous cyclone develops over the Northeast Pacific, 406 

with its eastern flank featuring anomalous southwesterly flow that weakens the off-407 

equatorial trade winds (Figure 7a). In the following months, the southern portion of this 408 

anomalous cyclone continues to modulate the strength of the northeasterly trade winds, 409 

leading to a warm anomaly signal in the subtropical Northeast Pacific due to changes 410 

in latent heat fluxes (Vimont et al., 2001). This signal propagates southwestward to the 411 

equatorial central Pacific from March to May via WES feedback (Figure 7), 412 

contributing to El Niño development. Meanwhile, anomalous warming in the central 413 

tropical Pacific induced by the anomalous cyclone can feedback into the North Pacific, 414 

intensifying the anomalous cyclone to its north (Ding et al., 2022). This extratropical–415 

tropical interaction may serve as a precursor to sustain El Niño events, accompanied by 416 

the eastward extension of enhanced precipitation over the central equatorial Pacific 417 

(Figure S5). Furthermore, the westward movement of the anomalous cyclone also 418 

affects the NWP AAC near 30°N, further influencing CMI and MHWs in the NWP. 419 

Hence, the NPO index is selected as the second predictor of PC2, defined as the MAM 420 

SLP anomaly difference between the regional mean over (60°N, 140°E–170°W) and 421 

(30°N, 140°E–170°W). 422 
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In summary, the selected predictors, based on well-established physical 423 

mechanisms, exhibit significant correlations with the predictand while remaining 424 

largely independent of each other (Table S1). This supports their effectiveness in 425 

accurately predicting MHW patterns in the NWP. 426 

 427 

4.2 Prediction skills of physics-based empirical models 428 

Building on the physical significance of the previously identified predictors, 429 

empirical prediction models are further developed to enhance the accuracy of MHW 430 

forecasts. To evaluate predictive skill, we apply the leave-one-out cross-validation 431 

method, assessing the predicted sequences of the two modes using TCC and Root Mean 432 

Square Error (RMSE) as metrics. The predicted sequences from both modes are 433 

subsequently used to reconstruct spatial MHW patterns through regression analysis for 434 

further validation. 435 

For PC1, the cross-validated hindcast demonstrates a TCC skill of 0.65 (𝑝 < 0.01) 436 

and an RMSE of 0.77 over the period from 1982 to 2022 (Figure 8a). This model 437 

successfully captures significant MHW events in most years, highlighting its strong 438 

predictive skill for the basin-wide pattern. However, it also faces limitations in 439 

accurately forecasting the strong 2020 NWP MHW, which may be due to the model's 440 

failure to account for factors like the unusually persistent Madden–Julian Oscillation 441 

(MJO) during the summer of 2020 (Zhang et al., 2021). Nonetheless, the predicted 442 

spatial patterns align well with the observed basin-wide pattern (Figure 8b), indicating 443 

that the physics-based empirical model provides a reasonably accurate representation 444 

of large-scale MHW patterns in the NWP, despite some discrepancies. 445 

For PC2, the cross-validated hindcast achieves a TCC skill of 0.55 (𝑝 < 0.01) and 446 

an RMSE of 0.84 during the period from 1982 to 2022 (Figure 8c). This model performs 447 

well in predicting high-impact years linked to developing El Niño events, such as 1997 448 
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and 2015, accurately capturing the increased MHW intensity during these periods. 449 

However, while the predicted spatial patterns reflect most of the MHW regions and 450 

cold-surge areas within the tripole pattern, the model struggles with weaker MHW 451 

events in the SCS (Figure 8d). Overall, the physics-based empirical model demonstrates 452 

credible predictive capability for both PCs, though the bias is slightly larger for PC2 453 

compared to PC1, indicating room for further refinement in prediction accuracy. 454 

Incorporating additional intra-seasonal atmospheric drivers into the model may further 455 

enhance forecast reliability and yield more accurate insights into MHW patterns in the 456 

NWP. 457 

To further assess the prediction skills and predictability of NWP MHWs, we 458 

calculate both the reconstructed and maximum attainable TCC skill at each grid point. 459 

The reconstructed prediction field is obtained by summing the leading two predicted 460 

PCs multiplied by their corresponding observed MV-EOF modes. The maximum 461 

attainable skill is determined by calculating the TCC between the observed total field 462 

and the observed predictable modes. As shown in Figure 8, the domain-averaged 463 

reconstructed TCC skill is 0.36 (Figure 8e), approaching the ideal value of 0.50, which 464 

represents perfect prediction (Figure 8f). In addition, the high TCC skill values 465 

observed in the low-latitude NWP region (0–20°N) are likely linked to tropical ocean–466 

atmosphere interactions. These interactions contribute to the development of tropical 467 

ocean–atmosphere modes, which provide the predictability of weather patterns and 468 

MHWs in the region. 469 

 470 

5. Conclusions and discussion 471 

This study investigates the drivers and predictability of summer MHWs in the 472 

NWP from 1982 to 2022. Our analysis identifies two dominant modes of NWP MHWs, 473 

namely, a basin-wide pattern strongly linked to ENSO and a northeast-to-southwest 474 
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tripole structure associated with the NPO. These modes encapsulate the primary drivers 475 

of spatial variability in summer NWP MHWs, revealing critical insights into their 476 

underlying physical mechanisms. 477 

Our results indicate the significant influence of large-scale atmospheric circulation 478 

on the variability of NWP MHWs, supporting and extending findings from previous 479 

research (Yao et al., 2021; Liu er al., 2022). The basin-wide mode is observed to occur 480 

during the summer of the El Niño decaying phase, modulated by PJ teleconnection 481 

pattern. This pattern highlights that the mature phase of El Niño in DJF triggers the 482 

development of NIO warming and sustains it until JJA, resulting in positive SST 483 

anomalies in the NWP via AAC. In contrast, the tripole mode, associated with the El 484 

Niño developing summer, emphasizes the role of NPO in shaping the spatial 485 

distribution of NWP MHWs. These findings not only corroborate the current 486 

understanding of NWP MHW dynamics but also advance our knowledge by clarifying 487 

the unique physical mechanisms associated with each mode. 488 

Furthermore, the physics-based empirical prediction models developed in this 489 

study, which incorporate preceding anomalous SST and atmospheric circulation indices, 490 

exhibit strong predictive skill in forecasting the occurrence and spatial patterns of NWP 491 

MHWs several months in advance. The models achieve TCC and RMSE values of 0.65 492 

and 0.77 for PC1, and 0.55 and 0.84 for PC2, respectively, during the period 1982–493 

2022. Both models also well simulate the peak intensity years and the overall spatial 494 

distribution of NWP MHWs. Despite these promising results, RMSE values suggest 495 

that the physics-based empirical model can be further improved to better capture MHW 496 

intensities and finer spatial distribution details. These predictive capabilities are 497 

foundational for the development of early warning systems and operational forecasting, 498 

which can mitigate the ecological and economic risks associated with NWP MHWs, 499 

supporting informed decision-making for coastal communities and fishery management. 500 
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Further research is highlighted in several areas. First, this study indicates that the 501 

predictability of MHWs is primarily concentrated in the low-latitude NWP, while mid-502 

latitude predictability remains less explored. Previous research has suggested that the 503 

zonal-mean component of the summer circumglobal teleconnection pattern is 504 

influenced by developing ENSO events (Ding et al., 2011). Identifying and 505 

strengthening the link between this teleconnection pattern and mid-latitude NWP 506 

MHWs may provide a valuable source of mid-latitude predictability. Additionally, 507 

further inclusion of high-resolution regional climate models and ML technology may 508 

enhance the precision of the physics-based empirical model, enabling more localized 509 

surface and subsurface MHW forecasts with improved lead times. Furthermore, future 510 

studies could also explore the physical processes underlying the impact of 511 

anthropogenic climate change on the frequency and intensity of NWP MHWs, given 512 

the increasing prevalence of extreme MHW events under global warming (Sun et al., 513 

2023; Tang et al., 2023). In particular, greenhouse gas and anthropogenic aerosol 514 

forcing may alter the frequency and intensity of ENSO, PJ, and NPO patterns, 515 

potentially amplifying or modifying the identified modes. These changes may have 516 

significant implications for MHW predictability and the resilience of marine 517 

ecosystems in the NWP. 518 

  519 
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Table 1. Description of experiments and the corresponding SST boundary conditions 716 

in ECHAM6. 717 

Experiment Name SST boundary conditions 

Control Climatological SST and sea ice with seasonal cycle 

NIO 
1°C warming in the NIO (0°–25°N, 40°E–100°E) is 

added on the climatological SST 

WP 
1°C cooling in the WP (5°S–5°N, 160°E–150°W) is 

added on the climatological SST 

NIO–WP 

1°C warming in the NIO (0°–25°N, 40°E–100°E) and 

1°C cooling in the WP (5°S–5°N, 160°E–150°W) are 

added on the climatological SST 
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 719 

Figure 1. Spatial and temporal distribution of summer MHWs in the NWP during 720 

1982–2022. (a) Climatological distribution of precipitation (shading; mm/day), SST 721 

(contour; °C) and 850 hPa winds (vector; 𝑚 𝑠−1). (b) Ridgeline plots of summer SST 722 

anomaly (probability density curves; °C) under historical CO2 forcing (shading; W/m²) 723 

above 1983–2012 average. (c) Climatological spatial distribution of CMI (°C). (d) 724 

Spatial distribution of CMI trend (°C/decade). (e) Sub-seasonal variation of area-725 

weighted regional mean CMI in the NWP. (f) Latitude–time diagram for meridional 726 

mean CMI (°C) during 1982–2022. 727 
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 729 

Figure 2. Spatial patterns (a, c) and corresponding PCs (b, d) of the leading two MV-730 

EOF modes of summer MHWs in the NWP during 1982–2022. The first and the second 731 

mode explain 21.49% and 11.75% of the total variance, respectively. Stippling indicates 732 

values that are above the 90% significance level. 733 
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 735 

Figure 3. Regression of chlorophyll-a (shading; anomaly percentage) against PC1 (a) 736 

and PC2 (b) during 2003–2022. Stippling indicates values that are above the 90% 737 

significance level. 738 
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 740 

Figure 4. Regression of SRF (downward positive), LRF (downward positive), SHF 741 

(upward positive) and LHF (upward positive) (shading; 𝑊 𝑚−2) against PC1 (a, b, c, 742 

d) and PC2 (e, f, g, h) during 1982–2022. Stippling indicates values that are above the 743 

90% significance level. 744 
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 746 

Figure 5. Regression of SST (shading; °C) and 850 hPa wind (vectors; 𝑚 𝑠−1) in the 747 

preceding DJF (a, d), preceding MAM (b, e) and JJA (c, f) against PC1 (a, b, c) and 748 

PC2 (d, e, f) during 1982–2022. Stippling indicates values that are above the 90% 749 

significance level. 750 
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 752 

Figure 6. (a) Horizontal distribution of imposed NIO warming. (b) 850-hPa wind 753 

(vector) and SLP (shading) response to the imposed NIO warming in ECHAM6. (c–d) 754 

Same as (a–b), but for WP cooling. (e–f) Same as (a–b), but for the combination of NIO 755 

warming and WP cooling. 756 
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 758 

Figure 7. Regression of SST (shading; °C) and 850 hPa wind (vector; 𝑚 𝑠−1) in the 759 

preceding March (a), preceding April (b), and preceding May (c) against PC2 during 760 

1982–2022. Stippling indicates values that are above the 90% significance level. The 761 

purple box denotes the location of the anomalous cyclonic circulation. 762 
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 764 

Figure 8. The observed (bars) and independent forecasted (black lines) PC of the first 765 

(a) and second (c) MV-EOF mode during 1982–2022. TCC and RMSE skills are shown 766 

on the right top of each panel. Regression of summer CMI (shading; °C) against Simu1 767 

(b) and Simu2 (d) (black lines in a and c, respectively). Stippling indicates values that 768 

are above the 90% significance level. The distribution of the reconstructed (e) and 769 

maximum attainable (f) TCC skills during 1982–2022. The area-weighted regional 770 

mean TCC skills over the NWP are shown on the right top of each panel. 771 
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